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- ABSTRACT | |
The>30;inch froéane bubble chamber(l) waefused at the Beyatronafikril‘

. to investigate Y;tproduction by 1.15 BeV/c K‘-meson”inreraction, e
KT P oY 4T, Y '
5h8 events where the final: state consists of a lambda hyperon and

—aA + 7t The analysis was limitedjhainlyito7ﬂFf_v;;J.f”'

two pions of opp051te charge, and which satlsfy the hypothe51s that
"jthe interactlon took place in hydrogen.v | | N
" Both the negative and the positive Y resonance’ states were
ﬂtherved These decay strongly into a lambda hyperon and a plon. 1fﬁfd}:f,,f:

.‘JThis ¥ state has a mass of l378 .3 MeV, and a full-width at half‘¢‘¢

1

L maximum of 58 6 MeV ’or the positively charged state,.Yi and 70 _‘

- 8 Mev for the negative one, Yi' . The ratio of. production cross-;;’

Sect10n8,~0'(K + p-—aYl- + 3 ) to 0'(K +p -aY g ), s l 53

“'y:10.16. The cross- section for production of Ax x via Yl is 2. 33

L 003 m

The production angular dlstributions were fitted to a power

,;A;;serles in cos eprod’ where Gp od is the angle between the Y*

'in:i”direction and that of the incoming K~ -meson 1n the center of mass

"ffof the K -p system. This distribution for the Y system require

'ga fourth order polynomial, while that for the y* required & thir”

b ~1
._';order polynOmial., Both imply that at least up to d-wave orbital



-.angular momentum states were present

( cos Gp |'<o. 5), is not isotropic.c This 1mplies that the

avdecay with respect to the production normal was studied in an attempt
to establlsh whether the Y state is a p- state resonance,'or a d-_*

“state resonance, assumlng ‘now the spln of the ¥ is 3/2, 'In-the'v

' resonance, or the’ even parlty case.;-‘ll ) -,u'jf::f"iwt}* =

n-x"

The Spln state of the Y was studied via its various decay

e

angular_distributions. In partlcular, th c Y

1 decay angular distribution

‘relatlve to the production normal for Y* production angles near 90"'w

1

od

angular momentum of the X

l'state must be eqpal or greater than 3/2. o

 The lorward backward asymmetry of the proton 1n the Lambda

l .
former case,,the Yl-- A parlty would be even, while in the latter t;

case,: it would be odd; The results are not conclusive, although the

data from Y* -alone yielded & result slightly favoring the p-wave

.Q

AT




@

'v‘f'xBerkeley Bevat;on to search for the =° hyperon Both the lS-lnch lrf

;nydrogen bubble chamber and the 30-inch propane chamber were used .

| © - .7in the hydrogen chamber, and found the FIETIN resonance state Yl with

" preted as a two-step one in which the Yl state is the 1ntermediate_f“

.. the x-A resonance would be P

-: this_case, the Y&
‘v .uj},would béia:either’#he Sl/ or P
; 5;:;§TKA paritvaere odd or even. Both of these theories are, thoroughly

. Q?;ﬂfdiscussed in references i end, 5, 50 only a brief Summary of the main :

jglfQ;iconclusions will be prebcnted in the next section.;

'7regard to the spin of the Y

~l--

';’;Introductionef,v

In the'fali‘of’l958 a’high energy K-*beam"was*éet Up(e)'at”théVQfWH”"'

—0

‘

for the investlgation., Later, Alston et al.(3) studied the reactzon

. frmass 1385 MeV and half-width about 25 MeV The reaction_was intere-nﬁ/f, ﬁd'”'si;

R
p

n-A resonance state
R | ‘.Y*++":rt-
K +p - N L PArT ET ,
Y + 5 R S T e
i 7 TSN R

This resonance state was predicted by Gell;Mann(h) in nis"ﬂ~
globai.symmetry scheme as a hyperonic anaioguefto the (3, 3);N*d |
.iaobar resonance well known in ﬁ-Niscatteringlf In:thia inatance,f"$
32" : L. I e

This was also predicted by Dalitz(S) as a Boﬁnd7a-state‘in:“;nrg
the K N system which undergoes decay into the n-A- channel.g‘Iv
state would have J = 1/2 and the ﬂ - A resonance gtzﬁniil’df

-7l

1/2 state depending on whether the ]

Alston et al. ’s investigatioa did not yield any conclusion with

l due to limited statistics




‘the 30

F_in;h' prdp_anef‘ bubble‘, é‘hyax.r_xber LR ‘
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Theory o | >,

. 'VA. Global Symmetry with Doublet Apgroximatlon .
The global symmetry model -assumes that the strong couplings
:between pions and all of the baryons are of equal strength and puts;iriV} ,LJ?:V‘~~
the_baryons‘lnto doublets on the same footing as the (p, n) doublet._’;;vf,{fi |
These strong couplings possess a high symmetry in baryonslwhich is‘iitrr' ;
broken up by the weaker K couplings. Thus, the problem of pion
’ hyperon interactions can be approximately reduced.to a problem in :
the theory of pion nucleon interactions. In analogy to the J = 3/2,i(1;
W 3/2 w-N resonance, one would expect a similar pion-hyperon
%r . resonance ~In the case of the A, a J = 3/2 T = l nqA resonance
:ib"‘ The mass and the width of this resonance can be obtained in ‘ 2
{; an empirical way.( ) One writes the isotopic spin T’as the sum_ofi :Tﬁ; }[1_§[

22 = : . | '
- two terms, T = I + Ri_ I is the spin that specifies the state com-

pletely in the global symmetry approximation in the absence of K & » @ - . i 'f)// .

,_coupllngs ¥ is that part of isotopic spin due to theVWeaker‘coupliné'ﬁ ,ﬂﬂfjfr‘f
TA-;.Wthh breaks up thls symmetry.v Thus, for pions, 3? l and.i? 0 |
A:»Jct.ffor kaons,: f> O, and K> 1/2 . In this scheme, the. A and the three ff
it': charge components of the Z form two doublets (E:, Y°), (Z° ;)%:f

o g,with I 1/2 and.i?—-l/2 where '

'Yo V=‘!,. ' A - 20. . : -"  ‘ - Zo: A + Zo ,

2.

izAssume the phenomenological mass formulae :.Ji.,w;

om- a (e’ ) m

'f f—_- -l/h and for 2 » I . f 3/# thus, A" is‘l" he'mass difference




K . ) s L ambp . o oo co : - . .

v_of 2 and.A, abqut 75 MeV end m(Ke) is emplrically found to be 1172ff'7” “‘ff &

MeV for K 1/ 2

D -7 R
. . H

For the Y resonance, one modifies{the above

.jwempirical eqpation to the follow1ng form-ﬁls*-‘

e SN

M= "m(K ) flfj ;I"f: K A‘_ff M + Q

;':;;where les the total available kinetic energy and is aasumed to be i
‘rt . the’ same as for the nN system. For Y*, T = l,_I = 3/2: K = 1/2’ |
:y{and its. mass is predicted to be about 1380 MeV.tlﬁg.‘

The w1dth of the resonance can he obtalned from that of the cor-

‘:'responding pion-nucleon resonance;}the‘( 3)N* resonance at 1238 MeV

i,

KRR _Wlth half-w1dth r / 2 hs MeV However, the Yl resonance can decay

vthrough several channels. For example, the Y§+ can decompose into

- 20 + 2 n Sy the ratlo of ‘their amplltudes being 2//— l/f_

b,l/f—; Thus, the wldth of the nqA resonance from the Yl must be

. weighed by the I-sPin factor 2/3 Furthermore, due to the energy

*

.dlfference between the two resonances, the width is multiplled by

215 +.;, the momenta belng measured in

f

. a klnematlc factor (P /

ifrthe center of mass frame of the approPrlate resonance. For the Yi

2

HEZPA =.210 MeV/c; for.the N* resonance,ﬁ N

' @ﬁresonance is dominated by the p-wave state ,ﬂ

230 MeV/c.-. The (3, 3)

.“Therefore, the

3 ’»—rdfull-width of the yl is predicted to be 16 MeV

e ot




Jr—

[T,

e

"fﬁfandhb 0. 20 + o 06 Dalitz obtained

B T e e S

Bl

.. Using. the data presented by Alvarez at Kiev(7);f

- The resonance will be narrow 1f la | is large,Aor if b is small

open. He'shows'that if the imagihary part of the scattering*length'B;;;;'

available n-Y chennels, and there is a finite rate.of transition

R A

B. K-N Bound—State Interpreta

Dalitz uses a zero-range approximation to treat the K-p collision

iwith both elastic (K-N scattering).and reaction (r-Y states) channels R A
. ; bber s , - nal NERRRARE

[]
h

is small i e., the . cross-channel interaction parameter is small,

and 1f the real part is negative, then the K-N system pas an eigen- i
solution - i‘ij- 5 " ' 'f}'a'v'f"'i ,; : 5»3{5

o R _ v L
S 1 expl—-r/1 a1} )

K-N bound state of mass

M= MN MK-l/(Qp.KQ )

where pK denotes the K-N reduced mass and a is the real part of thef

reoresenting'a7§i/2_

scattering length. However, this state is linked‘with'energetically_;f}fh'

from K-N channel to the x-Y channels. This finite transition rate‘

A

corresponds to a lifetime, With a half~w1dth
‘l/Q‘I" ___ .~____h___....3
T | °‘|' -

PN

1382 : 20 MeV
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Experimental Procoduresﬁ .;: nepsif'i‘_:_ ;- - s“:ti:-T _ -s-j

.The X~ beam used in this- exneriment was designed‘byié. Eberhard ftafu:':l
B %v,ift et al (2) - The layout is shown in Fig. l. A spatial separationv -

7 tg‘idi"of the K mesons from the pion background was achieved through two

”stages of electromagnetic separation. A detailed description of theh

‘ ;,beam is. given by P. Eberhard et al ( ) B , _ .
During the run, 2, steady magnetic field of l3 5 kilogauss was‘;.i
kamaintained over the’ volume of the 30 inch propane bubble chamber..
About th OOO pairs of pictures in stereo view, were taken. After_}hn

rejecting pictures Wthh had no beam tracks, which had one of the'

:,', view missing,nor which were of poor quality, 86 h89 frames were
~usable. The beam momentum and the number of K~ _per'frame were t
‘determined as follows: i -

vp"A. Beam Momentum

.To determine the momentum of the K beam, 332 tracks were selected

~fof length, L, greater- than or equal to lO cm, which satisfied the .;.;;ﬂf,’”"

'Mf ‘following criteria(g)

= ' 1. They wére all apparent K 1nteractions‘i

1’13:;{s :%fféri;dﬂ.'. ‘
1i’”37~-5h, Sk : i |

"J:#; The track must have passed through the thin window..

"

90° & 2 *
£° + 3% *

ﬁThe coordinate system used to define a and b is shown in Fig.,

A scatter diagram of momentum versus x was made and it wasu

leound that for track lengths less than about l9 cm, the distribu-

fftion of points was very diffuse.. So_a further restriction that’:

"=the center of the chamber

v
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'_met thls crlterion. The momentum value was corrected for ionlzation

;'loss and extrapolated to the center of the bubble chamber..-Th'f

S

”'m.‘data were further d1v1ded 1nto flve subgroups according to thelr
"‘:_g.jﬁfilengths. The mean of the momentum value and its standard deviation

b;fwere found for each group.' The flnal value was taken to be the vt

l& welghted average of the five groups whlch was found to be 1 104
O OOT BeV/c at the center of the bubble chamber.nnﬁ'

'l B. Estimation of Number of Tracks of X Particles:fg

Two independent methods were employed to estimatetthe number

.F,;Of K partlcles~ b ‘
:l. By. finding the number of T decays where
X ST +n++75MeV

In scanning 9237 frames of pictures, there were 127 decays
'which satisfled the T decay hypothe51s._ U51ng the average momentum
‘; value of 1. 1oh BeV/e, with the mean, llfe of K being (l 22h O 013)
.”x“lo a sec.’ and the branchlng ratlo of K decaylng into three charged

F'pions belng 5 66%(10) “the number of K particles per frame is

' '1;;L;calculated to be 3 h7 31._1-jfu;;’"

The cross-section for production delta rays of'a,certain minimum:

3fkinet1c energy is a functlon of the veloclty of the 1ncoming particle

7Thus, particles of different masses with the same momentum have

'1fferent probablllties for produclng delta-rays. At l l BeV/c,

'the K,jparticlefcannot produce delta-rays of'kinetic'energy above




IR AT IUREE SRR L+ MEEE I S
. ) .

;11_,

. scattering either by a pion or a muon.
We counted lO 080 chamber lengths of track 1If there were

kinks on tracks, we measured their lengths up to the kinks only.

oy

The total number of delta-rays counted was l 125 and there were

37 delta-rays on tracks before kinks.
For normalization, we counted the number of delta-rays and of
(ll) The :Q4

kinks in a previous 30-inch propane bubble chamber run

beam, consisting mainly of negative pions at l 08 BeV/c, has lO
For every hundred chamber-lengths observed

. 2% muon contamination.
and 26 6 kinks.

~there were 2k delta-rays
From the number of delta-rays counted in the two experiments,

we computed the percentage of K~ in the beam to be 56 3 4, 5%
From the number of delta—rays observed before kinks, we. separated
»The,former,_;

"out the pion contamination from the muon contamination.
3.2)%.,'. e _,p* |
' Thus.f ‘:“f

is (11.% t 3.2)%, the latter is (32.3
The ‘average number of beam tracks per picture was six.

27 K -meson per picture. B ;‘f:; éil;f*f ii.;
"Forfthe.

- there were 3 38 %
Results from these “two independent methods agree well.

computation of the cross- sections, the average of the two results,

3 hz 0. 20 beam tracks per frame, ‘was " used.




b semig

N el

”rapossible beam tracks that could be interpreted a';their production.
::f:origins.‘ If there were more than one possible origin, they were all

i oted on the scan cards.a The scan cards guide the measurer to

”'Vgparticular tracks that were of interest. These V particles could

e

“be either lambda decays, theta decays, or two-prong charged stars

fifproduced by neutron interactions.» The scanner tried to classify

"*}the particles through kinematic identification‘curves(la);and track

"'ionization ’

Only production origins which were associated with beam tracks
hiwere accepted The restrictions on beam tracks were that the track

4fmust (l) have negative charge, (2) have minimum ionization,_(3)

‘fcome in through the upper end of the chamber, (h) have a curvature

> LN . Tw
S o

'f'less than a certain value correspOnding to SOme minimum momentum

iwere accepted their production origins mnst not have'more than

»



-13- |

'*J}of points along it with respect to fiducial marks in both views.
Vigthipl'“lE'The resulting data were processed by the FOG CLOUDY FAIR system( 3)

WJ%_uc“”ffwf;x gh ' The bulk of the film was scanned by a professional scanner.,wv

:ﬂj-Out of 86 h98 frames, lO OOO frames weré double scanned by the

Sazi s

’\f;scanner and the writer to determine the former’s scanning efficiency,sh
tnwhich was found to be 85. 9%._, | SR o
| ~ In this experiment, there were e,huz events which nere.candi-e:é

‘ dates of the type of interaction | v L
B K P oA+ ; '; n+t I ttiﬁ;if.'
It was not always p0551ble to’ identify a positively chargedfv.
1.secondary which could be either a positive pion or a proton 'At.fjs
p}the production origin, the\pre sence of the proton would meanithe;:.
i.fyinteraction had taken place in carbon; at the decay origin, thef;&
u“y:_ambigulty implied the V- particle could be either a lambda decay,he?E;axv:jiﬂ;ff N
ih theta decay, or a neutron interaction. In any_case,‘prov1sions'_:ff |
' were made for differentvpermntations of masses for the ambigudus};}
_i;track'so that‘decisionsrcouid be mede later after'precise measnre::;
'Q;ments were made. Events ‘were rejected if the ambiguity persisted

) ';“after constraints..u- R

0B, _Data Reduction “‘

w

A detailed description of the FOG CLOUDY FAIR system is given

@?in reference 12 So only a brief summary will be attempted here.
= FOG reconstructs the spatial pos1tion of each track finding
ithe dip angle, a ; and the azimuthal angle s, and obtains the |
;momentum through curve-fitting the track projected onto & plane

'Aparallel to the bottom of the chamber.° It also applies a series

'of checks on the measurement input for‘errors‘ hat might have been




»..‘ .
. (.

'f_parameter, X , through successive iterations until‘the quantities

A

Py 's are‘zero-and M is minimized _ These quantities are defined
.. as follows:’

o where X? is_theiactual measuredtvaluerof Xi

A is the error on X

¥

~ff¢x are the Lagrangian multipliers introduced
F

BN are the four constraint equations for forward momentum,

transverse momentum, coplanarity and total energy at an :

origin.'
The program also performs a center-of-mass transformation and
calculates the Q-value between any two tracks,gq-T

+

FAIR organizes the result of the computations and presents

the’ output data in various forms

C. Constraint of Lambda

Energy and. momentum conservation gives'four constraining g

' ';equations.v In the case of lambdas, one qpantity is not directly

of the V-particle. Thus, there are only h~-:l

ffreedom.
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‘chosen, i e., only V particles with M § lO were‘accepted.ﬁ

'out of 2 hhe events satisfied this criterion., The ambiguous events

Q{‘[which fitted both the lambda and the theta constraints, with M less

”Zthan lO 0 were rejectea in the subsequent analysis. About lh%

*of the events were Ommitted in this way.fxy‘*

: ‘fﬁ?:ﬁf fiD.— Constraint of Interactions at Production Origins

With the calculated values of p, d B B for each lambda the

vﬂ'event was constrained at the production origin to he from the

v\{»following interaction

K =3 p —éA.+ ﬂ + n+

Since quite often the K track was. too short for accurate'

} measurement the momentum from investigation of long incoming -

3:tracks was better known, the edited momentum of l ll O 3 BeV/c
' was employed for’theaincoming beam. This range is quite adequate,

‘4fgfor at this momentum, the ionization loss in proPane is about l 1

o fg?MeV/c.- Again, one has four constraining equations, but all quantities,

f.are nowv known.~ There are four degrees of freedom. -The resulting

UM distribution is shown in Fig- 4 It peaks around.M

s

Egnot vanish at high M values._ There appears to exist a c0nstant
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the "probability paper y values of x?/a are:plotte linearly along'

sﬂ?the abscissa, along the ordinates,vthere is: also a linear scale in

"ﬂfii g/a but the points are labelled 1nstead with corres onding values
g . P

”'5:,of PC>X2/3 ) {xa is the chi-square value.,," 4 is 8 varl&ble para

ik;fmeter, associated with input errors._ P(>x2/a ) is the integral
ﬁluifchi squared distribution correaponding to the fraction of total

A '1l;number of- events,'in percentage, with a value X /a or greater..
.P(>>&?/a ) j 2 , f(x 2/a) d(x’e/a)
. where f(x’?/a ) is the theoretical Xa distribution.: If the M f
y distribution behaves in general like a chi-squared distribution,
Aithe plot of P(>M) vs ¥ would be a straight lineev P(>M’) s the :
.?ffraction of the events 'with M equal to M’ or greater° Furthermore,
for correct,input»errors, the plot would.coincide'with ‘the dotted:u
'aAline shown”in Fig} 5. The dotted line correSponds to a l,ov,;i{

: After subtracting the background we computed the percentage

irfi of events with M equal to or greater than certain values and the_
'"lﬁiresults are:shown 1n‘F;5’\5. The points fall on a straight line,
lﬂ;;iﬁlying to'the‘rightvof.the dotted lineu, This shows that the M di

1f\tribution behaves like a; chi-square distribution, but that the ap

'Aﬁ;restimated 1nput error was too small.v The- cut-off of M 12 was
: ;;selected and would 1nclude 10% background._ There were. 6ll such .
;‘J”;ievents.l From Fig. 5 it is seen that this cut-off M 12 correspon

_f?to 8. x2 of h 9 and that about 32% of the good events are excluded

:iIn the computation of the total cross-section, this was one of thefi

‘ necessary corrections.‘ng{y;:'?
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's

( decay. p:g'oducts,.‘ The latter method was sultable for the _present'?

experlment.-; o
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8 negative pion respectively. The second peaks are the reflections ‘-V, }}'_n‘J,'Li

'ﬁf‘of the resonance peaks due to kinematics For example, in the

I t.
e »M‘M(A, 1 ) distribution, the contribution to the broader peak was
ﬁf -~ from events which lay under the resonance peak in the M(A, x )
| 3: “jvdistribution.' The interaction - R e‘f::lff" }
S R eI

- R
K +p=-A+ta +

' is a two step process where . v 0

K"+ R - _.. Y]_ +:r+. }.,'._?A*_,vn_‘ R

The distributions, :f‘or 131+5 MeV/ c = M s. 1&25 MeV/c, were fitted.
with theoretical three~body Lorentz Invariant phase Space distri-"
:butions,_with theAassumptionithat a resonance occprs,between the:;

.Z«:lambaa and the pion. The nesonance‘isfrepresentealp&?a facton;};i,
'foof'the_ foi-m(lS)‘., R s

N . -
(M Mo)d*‘ ( ln\d ‘

';where M. is the mass of the resonance P is the full width of the

E _;,1,resonance at half the maximum amplitude, and- N is a normalization

‘The dashed lines represent the best fitted resonance: curves

"*uﬁfand the dotted'curves represent tnefexpected value;of Mgnhen,theﬁf

”Efbther}pionvis resonating'with the'iambda,,i,e;,.inﬁtnenM distriﬁution
'fof A and n ’ the o vis the resonating particle.y The solid lines are
ghthe sum of . these two curves.h The best value of Mo and I/2 are.

.";' Atabulated in Teble 1.

To 'show that the peak in the M(A, n) distribution is not due

to a resonance of the pions* the Dalitz plot where the kinetic

ER The threshoid for the f p two-pion resonance 15 1860 MeV, the
: f’:;,energy of the present experiment is 1865 MeV.,Wi-‘x
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Dalitz p.:.c+ of kinetic’energies' of 'the. two. iiioﬁ
. in 'bhe K“-p center of Dass, in Mev. T




T

fmas are plotted as’ shown in Fig 8

SR

The Dalitz plot has the pr0perty that unit area dT ‘ x dT o

'is Just proportional to the element of volume in phase space( )

PR R i

1ff;.w Thus, if 1ndividual events are plotted in the T T + plane, the

'fdenSity of events is proportional to the sqpare of the decay matrix

'.dielement If there is no interference between ‘the two pions in the

By

. final state, the points representing the events should spread uniformlyf

fover ‘the entireiplane w1thin a confined region due to the constraint
{{];.,V of conservation,of energy and of momentum.' The preﬁence of 8 two-“
;‘:.' '7. ) ( R . , ”
: ’,-h'pion resonance would result in a cluster of data about a line with

" slope eqpal to -1, 1ts exact position depending on the mass, of the_'

';,two—pion resonance, ThlS was not observed d ;j ng*wj"n,~

Instead there were two bands of points, one. horizontal and

one vertical° This agrees well with the interpretation that the‘
T{’production was a two-body final state process,’ While one pion is

'i{\produced together w1th the hyperon, in the form of a Y the other

l)
'a;-pion carries a. unique amount of kinetic energy.\ The resonating pion
?f ’é.shares the energy with the lambda, thus 1t can have various values
ffor its kinetic energy, resulting in a line associated with a. uniqne
.injT of the non-resonating pion.; But, from the data, the ii is a'
Ji@dfresonance haVing finite w1dth thus the kinetic energy of the non-

ffresonating pion also has a range, and the line becomespa finite'



., Foremass of 1380 % 30 Nel, the Tul band wiath 1 bh Y. - -
. 'A'E_*or_,'t.‘};eéi?suﬁgequeﬁt::én_a;il-n,reis' ,only . with »
.. M ly.ing between 1305 and 1)445 MeV were used Analyseswere also
carried out 'with a ‘narrowe;f'.rgné;é ofM, 1nparticular,for 13h5§
i L M s ll§25 MeV;\ . The _res-_ulis th_ai‘neyd fer.‘these"two-_ ranges of._v ir.1-_"'.
v S '.\réri;ént:masse"s cut-ef'f agree | In_,'the' following c.lis‘cus'sioh,v.fhe
- . | rb_ro_aildvereut'-'o_;f"_’f,z 1305§_vf..MA 51&&5 Mev;' ..Vw'eLs "use-'cbl".}_v" N o




. of computing cross—section, only the cut in chi square value for

’;-hydrogen-production constraint was used i e., only events with

'ij'events where a production on a proton bound in carbon may simulat

'h
S B .
3 iy

‘_{1No corrections need to be made, for presumably the same bias are

l

To find the absolute cross-section for reaction ‘K -+ p —9A + T

'f{"present identically in both b and Y* channels:;

ﬂfvia-Y production, several criteria and bias corrections must be

L"taken into consideration:fff;;puﬂglf

l. Because of the uncertainty in interpreting the chi-square.

‘ distribution for the constraint of lambda decay, for the purpose ‘_h

kY

;-xe = k.9 were accepted There were, as seen on page 18 6ll such

’ events. Out of these was 10% background, which were due to carbon

;;a production from a free proton.ﬂ In Fig. 5, it is seen that, for

fa cut at M 12 or xe;—rh 9, 32% of good hydrogen-production events

:flie beyond this cut. An uncertainty of +6 25% was estimated for'

e 2 In order to determine the fraction of events missed‘in




I . X _29_ R : f-f g

The scanning efficiency of A_is then exoressed by;“

'.Mnherethé'= number of events both A and B found

7f;,héfg number of events which only B found

P X

_ . HtAssuming that A’s scanning efficiency was constant ,the correcfe
. V.number of events found by A should e N /e > where NAqis the number
“of. events found by A-.hw';'.:;l‘>‘;,:;' ‘nf.;?e?fﬂ7fdsﬁ;T”ii.
V37§;%i“f?-ﬂf;f L The average scanning efficiency was then found to be 86+ ~$%;1
ol 3. There gre two non-leptonic decay modes for;lambda -
S aadtes | @
; ek
The neutral decay (B) 1s. difficult to detect. It is known that
N %: the ratio of charged (A) to neutral decay is. approximately two to:“

one. ‘Since- only the charged mode was observed in the scanning, a;f

N

correction factor of 1. 56 * 07( 7) was multiplied to the observed

\Qa.qf;f”t'iﬁ number of hydrogen—productions.,

h For the convenience of computing path length and of measuring7

the decay secondaries, ‘a fiducial volume at reasonable distance=y

inwards from the walls of the physical chamber was chosen.;_

PO

This chosen volume excluded 2 cm each at the bottom end and“'



fdistribution of the outg01ng track about the incoming track which

j_would be isotr0pic if there were no missing events.. There were two

.

. azimuthal angles to be examined the one made by the lambda about

f?the incoming K track AK, and the other ‘made by the proton from;'

" the lambda decay about the lambda direction,}épA.;.,
The two distributions are shown in Figs. 9 and lO, and are
- »‘iconsistent with 1sotroplc distributions. Thus, we consider the
-' “t’icorrection to be nil but estimated an error of 2% to the correction.
: S 3f - K 6, Lambdas which decayed too close to or too far away from
'?~the production origins were missed in scanning.: Since lambdas ex- ﬁ

;53xhibit an exponential decay, e found No, the true number of lambdav

Tf“iproduced by the following expression-

v RS

between the time interval K(f and K( )2

)l

.
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- TR -33-" A |
o of. L/P between the interval (L/P)l = l and (L/P)2 = 8 are identical,“_f-

‘:with or. without the criterion that the distance transversed by

lam'bdas L must be greatei +han o 5 cm and less than:‘ 2l& cm.

we used a value of 2 69 O 13 x lO 19 sec.‘for the mean life

(l ),

Te.

of the lambda, ‘as previously determined :t‘rom this experiment
and found that between L/p 1 end L/p 8 lies h6 0 6 3% of the
total number of events. , Thus ) we can correct i‘or the events with
extremely short or long lines of flight. : ‘ | 3

7 Lambda decays would escape detection if the secondary
proton was too short to be visible For 8 proton of momentum llO MeV/ c,
_‘w.hich would be approximately l mm in length in prOpane s the maximum |
'momentum for the lambda is 250 MeV/ c. Thus, these "one-prong
-lambdas were slow ones. They were produced backward in the center

G*

of mass of «bhe K -p system. As will be ‘shown later, Y;‘s were
)ﬁ

S ‘vproduced mainly backwards also° Therefore ) ‘these slow lambdas were o

‘If?f'those which were produced forward with- respect to the Yy direction = |

1l
“in the Yl benter of mess. -
_ g R : : .
’I‘o cos‘rect for these" invisible lambdas, the distribution of
Sy

".:.lambda momehp_,_jin the center-oi‘-mass of the K" P system was compared )
with its theoretical distribution Assuming that the ls.mbdas '

3_‘decay isotropically 1n the Y»l center-of-mass system, the energy |

,distribution, n(E*) of the lambdas in the center-of»%ass of. the
. w,g
‘:‘:',K -p system will be flat. The momentum distribution; n'(p*) , is

'related by '

n(E*) p*/E* |

. "_‘ n’ (p*)
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The curve wes normalized to the number of events with p* less than ‘}

')f.300 NeV/c 'S0 that even in the worst’ case when e lambda goes directly t;7fi:ﬁif

”‘ﬂﬁffbackward in the. X" -p center-of-mass system, its laboratory momentum

:'is about 360 MeV/ c. . The decay proton from a lambda o:f‘ such energy
}Vhas ‘a minimum momentum of l90 MeV/ c, corresponding to a range of
-Pabout l cm in propane. Thus ) we could safely assume that for l2O
p* s 300 MeV/ c, the decay proton was always visible. _‘ This was a ;-:l}
jrather conservative estimate. 'I'he correction was made for the interval
: oo = p* = 5)+2 MeV/ c, instead of 300 511-2 MeV/ c, which was L
: :_:‘found to be lh % The distribution with-an additional criterion"?f
l O L/p s 8 0 was also studied and the results were very similar.
:Therefore, in correcmng xi‘or missing events of ty'pe (6) and of slow
:‘,‘lambdas, we had not over-corrected the data. - ‘ :
. _ 8 Because Z° has a short mean life, it was. very dii‘:f:‘icult
to separate out the contamination of lambdas, produced i‘rom 2"

K +p—92 +:r'+1f+
L-» A+y

The contamination was estimated 1o be: lO to 315%

“ B . ; e “e .

Hebe T 9. A small number of events were rejected as being unmeasurable.-.ﬂ s

s . 'These rejects were assumed to have ‘the seme percentage of good

s hydrogen-like events as events not re,jected

The biases and their corrections are summarized in 'I‘able II

. The data was divided by scanning efficiency and multiplied by -

_the E° contamination factor. For the other corrections, (16 3
1. 6%) means the data vas multiplied by l l63 0 016 f‘ '
* wmm.n the defined fiducial volume, with a. chi~sqpare value

i
. or hydrogen production constraint equal to or less than 12 O and
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'isection calculation, the 1nteraction volume is hO cm long. Not o

‘1length due to interaction. Let L be the 1nteraction volume length‘

':v:)~be the mean-free path for all 1nteractions in the propane, then

:'Q‘to be;3.h2 O 20., Thus, the total beam track length is (lO hh

f~0;95)7X"lO6‘cm.. Using a value of 0 hl5 gm/cm for the.density of

A‘f MeV/c.7

Sl 5

P

all tracks which enter the 1nteract10n volume transverse 1ts entire

Wt

o PR

the average length a track goes before interaction

.

,F-E

e

| 'Eo‘cal 'é‘ibs's;;

sections( 9) to be on the order of 159 ll cm.z The average track

length is found to be 35 3 2 5 cm.v, 1n:‘fffv
We have scanned 86, h98 frames of bubble chamber film in this

experiment,‘ The average number of " beam tracks per frame is found

propane, the prodnction cross-section is calculated to be 2 33
36 mb, This value’ is con51stent with the existing results from
other similar experiments-

at 1150 Mev/ c,




Prodnction Angular Distribution 4f§-; ;i;l

i i_ljﬁ i The distributions of cosine of the production angle, 9 are

f{ given in Figs.,l2 and l3 for both the Yl and the Yl production,
o A
f%i - where 6 is the angle between the. incoming K and the outgoing Y§¥

u7? directions in the center of mass of the K -p system.v_They were-

4’both fitted to polynomials in cos 9 * -J{.._ f:V‘;‘

';Table III shows*the coefficients, a ; for the best ﬂi tifg poly-i

;jﬁ;*j{f nomials.:  ff?f;'ﬁf'ff ;1ffp;i;d.£j*f.f" ”e;”¥ t f MA

The two distributions are different. For the Y the fourth

l !
a third order term The addition

;{fijffﬁ-iFf order term is necessarY: for the Yifﬁ

. n'of higher order terms did not improve the fits.. The presence of
" ) L .
. Q-if - both .even and odd terms, and of terms higher than the second order - }

'4 N ;
iindicates that the production was not in any pure engular’momentum '

state end'that‘up to}D-waue production was preeent:u
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Decay Distrlhution of Y; ‘;j ﬁf}i o hfl, T . o
S N T e IRV
The decay distribution in the Yi center of mass frame depends urfwﬂ{tV'*,4 '

.w-strongly on whether the Y is produced and decays as a free particle.ffij-*

1

s “.:‘hUnless the Ylfis in a free state, there will be 1nterference effects?; .?
h,-‘ hi"_ﬁ'i‘vd“e to (1) thq Yi and therbachground non—resonant‘A_n‘;n productlons{f,fzﬁih
. ’{j(2) the Yl and the Y;-'channels. ‘These'interferenceVEffects cause.57%

L Lfil}‘”pdistortion in'various angular distributions Since the Yl breaks -

‘ - up via strong decay, where parity is expected to be conserved only

‘”;even or odd partlal wave states, but not both can ﬁe present TheA
"-g<‘§}j decay angular d@stribution of the lembda w1th respect to the Yl

,f)fdlrectlon in ,he v*

) center of mass frame would xtherefore, 1splay
: h:,ino fore-aft asymmetry If it were.fltted to a'polynomlal in cos eAI
i *g“coeff1c1ents for the odd power terms should vanish. . " _h”"
S f“ i Fig. lh end 15 give the decay distributions for the Yifjand;?f%
F'Zg;;;.gﬁi;theixi' reSpectively. In scanning e missed slow lambdes, the'iﬁf':

L:decay protons of which had 400 little energy to leave visible tracks.i

'V"éiiiThese were lambdas going forward in- the Y center of Inass frame,,id;;

ﬁ"f(See section T on cross-section” corrections ) Thus, we left out-
jéiithe data O 8 £ cos 9 Y" 1. O and. fitted the rest with a distribution;l
"ijfii Of'the form o S

'fffas 1ndicated by the solid curves.g The:coefficie‘nts_;,ar‘ej

0 16) for Y*+

O 15) for Yld

(21)

For the same interaction at 850 MeV/c where.interference

‘ueffects between the Y and the Yi channels are{'trong, the coeffi»




particle and the

Y was produced and decayed as a. relatlvely free
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7.
Spin Analysis . | ‘
‘ | The spin state oi il cen be manifested through its decay | e
‘.i-distributionsf_ The lambda has a Spln of 1/2 and Orbltal*angular 1yupm/; a

e

.Armomentum quantum numbers are integers Thus, the spin of Yl’ J, ,3,{Q¢T;

‘ 'i must be half integer, i.e. ¥y (2n + 1)/2.

If J is 1/2 there is no possible alignment of Yi spin and '{n_,LQA‘“"

f N " the momentum vector of the decaying lambda, A, in the Yl center - .- .

\of mass must be isotropically distributed If J is greater than ::F

'1/2, it is possible to achieve an alignment of Yl Spin in the

fproduction process, which will in turn produce an anisotrOpy in the 'j“

’distribution of A about. the axis of alignment

U A. Adair Analysis . f‘;" o

.f“ R )

Adair(zz) has pointed out thaL ior J. >l/2 the conservation

"=:of components of angular momentum along the incoming K beam directiont:' i

‘ ‘b,f(call this the z direction) forces the alignment of sPin of those

"‘v,Yl which are produced along or against this direction,:_

In the center of mass_of the K -p system along the z direction,-7?"”;

‘Fi_the component of orbital angular momentum is zero._ Since h has

“zero spin, only the spin of target proton contributes an'angular vl,gwlh-

i;momentum component of one-half, In the final interaction, the‘
fvfprimary pion has spin zero and the orbital angular momentum of the

‘fﬁYl which is produced either forward or backward with reference to ;

”5;ithe z axis has 2ero component along this direction. Thus, from con

hservation of momentum, the spin of Yi must be aligned to give a p
“*z-component of,l/2., For example, for J = 3/2, +the. J 3/2 statesu
‘f?are'not-allOWed Consequently, when J >l/2 the distribution of;:

‘~A K is anisotropic, where.A is measured in the Yl center of mass
: : A o S o : EAREPR RS RS VLA

" \' .




'had prodnctioq angle of Yi

S:choice of cut-off of production angle depends on.the production

close to but not equal to zero.-:The.

iangular momentum state. If there were only s-wave stﬁte present
Aall events coul% be used If higher partial wave stétes were present
;;the accepted production angle must be limited 1o (Le + l) radians(23)

}:where L is the highest angular momentum state;”.As a result the

'J;-fanisotrOpy would become less pronounced also.’ﬁ

For ddwave production, the production angle cut-off was llmited

fto O 33 radians about the beam directicn, the cosine of which is

, ufifo 9h ' However, with this restricted cut-off the data yielded too

Y

:*few events to be useful. Thus, e’ extended the cut-off to O 9,»'

“;‘;Ecorresponding to’ about O h5 radian

‘fﬁduction angles other than zero. Since the production angular




'~E9-

e

. i ' v
distributions,:we folded the (A. K) distribution along A K = 0.

‘.’Fig. 16 shows the distribution of hoth the Y end the Yi events R

: (-1‘% o T “ W.’l.'th 1305 Q’I 1(‘ l’-l-)'l-s MeV and I COS 6 rod l > 0.9, There were ).|J+ \ : :
PR o ‘ R AL BRI

o : _ events. The solid line is the best fitted distribution“of the‘

o :é; o ‘ g ' g

PR . fornv b

where a = -(0.05 £ 0.66). The distribution agrees very well with . .

" isotropy. IR 'A'- C _ '_ o _}Af'

With a nan";cow My, cut- off i3l+5< M < ihes MeV, &= '-'(o" 25 & L

Qf,0.66). The distribution again is consistent with isotr0py

:’9_ " B. Decay distribution with respect to the production normal.?-.

If any Y decay distribution is found to be non isotroPic, RN

- : 1 C T -
- “?15nassuming there 1is no strong interference to distort this distribution,;}dﬁff”d'“"3

L
We had studied the distribution of A n, where n is the produc-l

f1.this would exclude the possibility that the spin of Y is l/2

v otion normal, defined as Kx Y, hoth heing unit vectors in the . centert
- of mass of K -p system, a nd_A is defined in the Y center of mass.,:?ﬁ\

- For those Y*’s that were produced close to the beam direction, the

" normal, D was not well defined experimentally. Thus, we restricted
- our analysis to those events where . cos eprod < O 5 | These ;‘”
) ";distributions involve a different sample of events than those in

hfﬁfﬂ;the Adair snalysis and 1nclude both the Y ~and the ¢ events

iThey are non isotropic, the lambdas were emitted preferentially

l
f]in the center of mass of the K -p system. When the A n distributions

ffperpendicular to the production plane containing the Y end the K‘“

;were fitted with a power series in (A- n) the coefficients for

”,ithe linear term are small compered w1th those for the qyadratic

. tre
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; 'Gir At

. 1305 <M <,iﬁ};5_ MeV 1 -(0.k0

aj}7‘ This' anisotropy Persisted when we' studied the Y*+ and the Y* Sl

‘ _51_
. term and all the high power terms other than the qpadratic do not .

fflmprove the fittihe.1 The results for two 1nvariant mass intervals, ;'5V
M ,' are tabulated as’ follow:»._ ii'.‘.‘,: (
' ‘ Decay Distribution

-

_ 0.27) (A n) + (2 18 0. 55) (A n)mi
- 1345 < <_1l+§%5 MeV 1 -(0.39 % 0. 31) (n) + (2 a1 i o.6’3), (-’_\-2)_*!--2 e

| Noting the relative small value of linear term coeffic1ents, T R

PN : ‘ .
: ”!the distributio?s were folded and fitted to a’ curve of the form

1o+ a (A n) as shown in Fig l7 The distributions are more than t
”}three standard deviations,from 1sotropy. And the values of a
obtained are '_-5 ?'lh:i‘

,2_.21-1: 0. 56

1305 < M < 1&&5 MeV a

l31+5<MM<l)+25MeV a;203:062

l?tfﬁiﬁ
samples separately.w1L‘ ,l'ﬁ' | ol

i o g

. Fig. 18 shows the decay distribution,;h.;é for foar invariahtlf
ﬁ;hhass intervals (a) 1355 < MAn < 1370 MeV, (b) 1370 < M < 1385 N
;"V_Mev, (c) 1385 < M < 1l+oo MeV, (d) 1l+oo < M < 11;15 MeV.v The.-
1 statistics are poor. Except for the last interval the anisotr0py
;Tpersists and there is no 1dication that the angular distributionsil;
iz vary strongly as the value of the invariant mass passes through :
if h, The anisotropy in the decay distribution and its persistence
%;can be simply explaine by the high spin of the Yl

the Y{ alone with: its spin eqpal to 1/2 cannot produce an anisotropikh
(24)

In other words,

decay distribution.“ﬁHowever, Adair shows that if one allows o

el -
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el

h ﬂiwlth Specifically definite phase relations

Lintenaity, the interference would produce an enisotroPic distribution
of the form k + a c0526 with a = 2.0. Adalr further shbws that the
”ﬂ,varlation of anisotroPy needs not be large as the value of the

7’1nvar1ant mass passes through resonance. o o

'“'can be explainea by (l) a simpler hypothesis that the spin of the

‘TY is equal to or greater ‘than 3/2 or (2) a sPin 1/2 hypothesis

-of. the resonance and the background

-53-

B 0

for a non~resonant background which is coherent with the resonant

,t

famplitude, the resulting 1nterference can - give appreciable anisotrOpies.‘§§f:‘

N

Thus, even ;f the sPin were 1/2 with a 8% non-resonant background

4

\

i

i r’

|

Thus, the existence of anlsotropy in the decay distrlbution

between the eigenstates'f
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@;;‘system :

S .between the jroton from lambda decay and - the ¥

~55~

3 Polarlzauion of Lamcdasl,_ ‘ -y oy

An analys}s of the average polarization of lambdas, P, may

wffd,yield 1nformation with regard to the relatlve parity of the Yi - A
' oo : : 3

The distribution of - 8 vas studied where 6. is the angle o 7‘Y

l

NERRENEP T S

l productlon normal

“C‘va we denote by N up. the number of decays having cos 9 > O then

4?.\":“ ) ':, L e )
S v . 72‘(N + Ndown) . ‘
‘ 5

i

' ;_where a is the asymmetry coefficient of‘A, eqpal tc 0. 67 +.0. 07(25)?i3,ﬁ““

il of B P found for WO production angle 1ntervals are given in Teble’ IV,f

L studied the polarization of lembds from the Y*

E,{;a large value, 0. 75 . 0. 33 Since the maximum value of P * possiblet

'~Vgﬁis unity, the maximum value of the polarization of lambdas, P, is i

:"j”generally less than 0 4 for a D-wave decay, and less than 0. 66 for

.;_iAssuming the Yl has a spin of 3/2 for D-wave decay,:'l F 2/5
"'l'l Pf* g for a P-wave decay, t P ' 2/3 I P‘ I Ey* is the e

iA}average polarization of the Yl

For the events in the mass 1nterval l3h5 - lh25 MeV, the valuesﬁ

2;0 £ ¢0s 6 prod £ 1 and 0 £ cos 6 prod s 0 75 From the results-'

bﬁg of the combined data of both.the Y*+ and. Yi , We cannot make any “”flxiffff'“ﬂfl

“f.conclnsion as to the’ relative parity of the quA system. We also 7-*£3f? .

l' and the Y »eeparately f}“;;‘

. The data from Yl gave 1o polarizatlon. Those from the Y

1 ylelded

Y

P-wave decay.v Thus, while all the values for P are compatlble‘_

'tﬁiwith both hypotheses, the large polarlzation in the Yl' sample

ﬁﬁagrees better with the P-wave or even parity case.-
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Results and Conclusions . ‘,; L '. »'.,ﬂ, o g}_vﬁ

From the study of the 1nvar1ant mass between the lambda and

the plons in the final state, we have found that the ratio of cross-'c;f:f._ %'”{

1
: isot0p1c Spln state of the final A n system 1s a mixture of

s‘,,._‘___‘%“_ y

sections fon producing y¥-ig and Y ’S'is not»unity;- The total _;f\;ﬁ,,ﬁf;;'_“':'

 ::kI =0and I =1 states. 'If the final state were reached by either.;
_:one of>the‘isotopic,spin channels, then the'crossssection ratio ’-ﬂ;=;f~’3'

a“f would be unity.

That the production was not via a single isotopic spin channel

‘ is further borne out. by the dlfference in the Y " and the Yl pro-,_;'j

1.

- duction angular dlstribution.' We also observed-a difference in masse;u;;"”

| ?vidth”between their mass ﬁeaks;-'All'these effects uere presumablv?tﬁ”'u
due to the interference of the I = O ‘and the I l4amplitudes.,.
: It is interesting to note that if we limit the maximum allowedgl{
productlon angular momentum state to D~wave, then the only pure i
;,n - Y configuration which will reproduce a large negative coshue ‘T;wagllf
term in the production angular distribution is (a P3/2 5/2" ‘ lhat;‘f;;f};;g!{?“"'

- isla,D—wave production of a spin 3/2 Yl via an intermediate state . -

: .~f having total‘angular momentum of 5/2.- We are in no way maintaining;lﬁ?-fkr
'i that this is the exclusive evidence for the spin of Y* being 3/2

Rather, the conclusion of the. spin of Y belng 3/2 is’ based -

jf;; upon the anlsotropy of the lambda decay dlstrlbutions measured with13jwu?”;f' .
L I.respect to the production normal
Tn the Adair analysis for determlnation of the spin, we were

"u_hampered by poor statistics. In order to- gain more events, we had

;1to accept events with Yl‘s produced farther away frcm the beam

IS jdirection.' But 1n doing so, the advantage of the Adair analysis




to the production normellisfqpite pronounced._ It persists throughout

t mass intervals.' It persists as we vary the mass intervals from one

*of events used in the spin analysis. This validates the'assumption

;free particle in the present interaction._ All these indicate that
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