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ABSTRACT

-

impossible because most experimenters do not publish likelihood

aingle experiment when only the physical quantity and its standard

deviation are published.
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The usual way of combining experimental data by the method of
least squares gives a biased result when the errors from the individual
experiments are based on Poisson fluctuations. Instead, one would

like to combine the data into one large experiment, This is usually

functions. The suggested method of effective counts provides a way to

treat data from several experiments as though they came from an effective
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INTRODUCTION .

It is often desirable to combine the resulta of two (or more) ex-" ’

‘periments to obtain a weighted-average result for some quantity. I

 the experiments disagree they should not be combined. The compiler

nevertheless usually insists on combining them, and of course if the
disagreement is due to statistical fluctuations they should be combined.
Suppose that the compiler has available from each experiment no infor-

mation other than the experimental result and its standard deviation.

. This is often the case. How should he form the weighted averagé?‘ The

- customary procedure is to use the method of least squares.- But this

biases the average towards the smaller of the two results.. At least this
is true when the experimental result is proportional to a coﬁ.nting rate
and there are not many counts,

We illustrate the bias with a simple numerical example, from

‘which we are also led to suggest a simple alternative method of averaging.

Suppose that in e:&periment No. 1 nine counts are obtained in 2 minutes.
The "published" result and standard deviationlfor the counting rate

R+ 6R is Ry '='[n1 :I:(ni)i/z] /t1v=.(9i3)/2 = 4,5%14.5, In anothe\r experiment, |
No. 2, involving identical apéara.tus. .25 counté are obtained in 2 minutes.
Tﬁus R2.= (25%5)/2 = 12.5.:!: 2.5. The two results are in poor agreement, . -
but there is no way of choosing a priori between them, and perhaps it will 'V
be 2 years before anofher resuft is available. Theréfore we may Be suré
that the results will be combined. The method of least squares prescribés

R = (w1R1 i-’wZRz)/(w1 + wz), ‘with‘_ wy = i/(bRi)z. The standard deviation -

on R is given by 6R = (w1 + wz)‘i/z. In our example we then have .

R = [(1. 5)'2(4 5) + (2.5)"2(12. 5 /[1.5)" 2, (z 5)°%], or R=6.62%1.29.

Why do we call this answer biased? Suppose that not only the results
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R1 & 6R1 and. R2 :h&Rz were available, but also the data iﬁself--ni.
t,»n,, and t,. Then if the discrepancy were believed to be due to sta-
tistical ﬂuctué.tions'. the most rea;oxiable proéedure wduld be to combine |

the data as though it were from one La.rgé experiment. Then we would have

for the combined resuit

| 1/2 a
, (n, +n,)4(n, +n.) : :
R = 1 2 -1 2 . (1)

t, +¢

1 2

In our example we would then find R = [34::*.:(34)1/z

1/4=8.50+1,45, We
call this the unbiased average., It is exactly what is pres.cﬁbgd by the
m_etﬂod of maximum likelihood (see Appendix A). “The leasi-équares re- |
sult is too small by 1.5 of itz; standard deviations! Of course’it-would:-be
unusual for two determinations of R to disagree as violently as they did
in our example (unless there are systematic errors), but it is in just those
circumstances (poor agreement) that it matters how we com’bing .\the two

.

results.

METHOD OF EFFECTIVE COUNTS '

How can we obtain the "uﬁbiased" average if the expe rir_nen.tersido _
not publishva‘.ll of their data, but only.the result and its standa.rd devi}a.tion?
Our s\iggestion cq.ﬁsists of defining "'effective counts" and ‘"eff,e'cti've 'running
time" (or track length, or some other denominator) for each experiment.
We then use Eq. (1). For example, suppose R, 6R1 and R, = 6Rz are
two published values of a cross sectiop (or of a amall branching ratio)
‘for»r which we believe, although the expeﬂmenter may not hé.ve told us, o

that the quoted errors were obtained esaentially from the square root of

the counts (or counts in the numerator if itis a small branching frdction).
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_expect that the published standard deviation was based on the welloknown
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We then define the effective counts as .

‘~(R1/6R1) and nza(nz/aaz) I (2)

-and the effective running times (whose dimension and ‘rffé"afﬁiﬁg‘ will not

actually be time in most cases) as

ty = n1/R1 and t; = n,/R,. N | (3)
We then combine the experiments accoirding to Eq. (1), Clearly in our
numerical example we get the "unbiased" result, s’ince the effectiveA
counts turn out to be the actual counts,

Iﬁ experiments based on entirely different techniques and counting
efficiencies, but for which the publishe:d uncertainties are gaaed only on .
Poisson fluctuations in the counts, our method agrees with the maximume-
likelihood method (seé Appendix A), because then the effective counts will
be the actual counts. | |

If the experimenfer arrived at his quoted error in a more c\omplicated :
manner, then our method need not be equivaient to combining the data ‘as
though they came from one large experiment. But our method is still
probably preferable to least squares, and is perhaps as clqse a\é one can |
come to the maximum-likelihood result without access to the data or like-. .

lihood functions .1

FURTHER APPLICATIONS

>

Ag a second example, consider a branching fraction that is not sma_.]..l' .
(but is still of course < 4,0), so that ﬂuctuations in the denominator can -

not be neglected. Suppose we have f=n /N. where N = n, + nb Then we |

relation (6£) = f(i-f)/ N. In any case we define the effective counts

N1 ® f1(1 “fi)/‘afi)z and similarly for Nz. Then the effective cou;até of
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type a are n_, =f1N1 and n_ =f2N2. The weighted average is thus

N £, + Nyf,  (2(1-9) 1/2 o
£ = 2 ., . (4)
N, N, NN, ,

Again, this is not the prescription of least squares, but Eq. (4) is equiv~

alent to Eq. (1) if we think of the "denominator" t, and t, in Eq. (1)
becoming the total counts N1 and NZ in the present case. For a small -
branching ratio, N1 and N2 are essentially completely known and the

fluctuations are all due to the small number of counts Nifi and N, {

2
of the numerators, '
Instead of thé branching function £, the publiéhed quantity may be

the branching ratio

We then assume that the published standard deviation ©6r ‘was based on
1

+ nb'i. We solve r and (E»r)2 for the effective n. and

(6r/r)2 = na- a .

ng for experiment No. 1. This gives
2 e
(na)i =Ty (1+r1)/(6r1) >

and

(nphy = (n,)y/ 7y

‘and similarly for No. 2. The combined result is then

| (-na)1 +(na)2 ) r.1:3.
r = =

: . (8)
(aphytlmgly omy

with (6r/1f)2 = na-1+nb..1. S - , . e

Aé a third example, consider the up-down decay asyfnmetry for a . '

parity-nonconserving decay of 2 hyperon of spin 1/2 - One encounters ex-

pressions like -

N :
2= (/N z xa[3-aty/N Y2,

“
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where a is the decay asymmetry and * }ia thé cosine of the decay
particle in the hyperon rest frame. Thérefo:e if two published values -
are a, & 6a.1' and a, & 6a.z. we define Ni = (3-312)/(5312) and combine
data from the two experiments into data from an equivalent single ex-
periment

(Ni a, + N2 a,z) 3. az 1/2
= & -

.« o (6)

a
' N, + N

1 *Np - \Ng Ny

Sometimes a decay asymmetry is calculated with only the 'up'"’

_counts U and "down' counts D. Then, with U+D= N, one has

o 2 20U -D) *<4~a2\1/2
N TN /

We can then defir_xe Ni = {4 -aiz)/ (Ga,i)2 and obtain the combined valueb ‘

L

L2 \1/2

a= Cmmmm—

e M

As a last example, consider a mean decay lifetime. Fof ‘a'.nA ex-"

periment with no cutoffs or corrections we would have

b

/ N . L ‘
r={1/N)YZ ¢t : : -
( )izi i |

with standard deviation &7 =7/ (VN)i/ e, .Therefore we define the effective

counts Ni = (71/6 1"'1')2 and similarly for NZ‘ The "large combined experi- |

>

" ment' then givesl

o

-r. = - + 1/2 .« ' (8)

This is a very different érescription from that of least squares and is

equivalent to the maximum-likelihood method when we have 'rb=(i/ N)Z-ri. ‘

Notice that if we set R,= 7 1'1 as the "effective counting rate' for .

experiment No. 1, and N, 7, = t, as the"effective running time", and.
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similarly for experime:it No. 2, then our p;regscription for T 15 ideniica.l _
with Eqs. (1), (2), and (3).

In all of our examples we would probably use rour.prescri‘ption, no
matter how the expe rimént.ers arrived at their quoted standard deviations,
(Of course it might not be a bad idea to also read their paper. ) If the -
experimenters éublish likelihood functions, then there is a correct way to
compile, and that is to multiply ti'\e likelihood functions. That is equivalent
to combining the data into one large experiment; fn most cases this is not
practical (for instance, usually the likelihood functions are not pubiished. )
The method of effective counting rates is then a fea.sonably good substitute,
to b;a preferred to the method of least squares, B | |

There are of course mzﬁny types of measurements _for which the Quoted
error is not based on Poisson's fluctuations -- for example, a mass meas- ‘
urement. In those cases our suggestion does not apply.

\

Itis a pieasurg to acknowledge stirhﬁlat:lng conversitions with

.

Arthur H. Rosenfeld and Frank T. Solmitz.
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APPENDICES

A. Maximum Likelihood Derivation of Eq. (1) .

We show here that Eq. (1) or its equivalent is prescribed_by the

method éf maximum likelihood. Suppose that quantity R is measured in
| two experiments that _d,iffef;,eﬁtirely in such things as technique and detec-
tion efficiencieé; but havé one feaﬁu;é ix;common. namely, that the expected
number of counts is propoftional to R. " For experiment Né. 1 we bhaw'/e
Ei =a, R, where ?1'1 is the ‘expecte'd number o;' counts for a given v_a.lue of‘_
_ R; and di depends on the experimental method. Simiblarly n. 5 = eyR.
The factora_ a, and a, are assumed to be comélgtely known (no syétematic
errors). If R were known, :-»;1 and HZ would.a.levo be known, Then,thé
chance that experiment No. 1 would find exa;ctly n, counts and No. 2
exactly n, counts would be L=L, L, = [e'ﬁi (5;)°1/n, y] [e"‘ﬁz('ﬁz)“z/nzd ,
Instead n, and n, ‘are known and R is not known; L isvcalled the likel~
hood function for R. If-we consider experiment No. 1 a.l;ne and'write;
'51 = o.iR in I“i' define W, = - 'lnALi. and drop into "cdnst" all teffr;a from
wi that do not contain R, we then hay'e w, = Ki '-_An1 In 'r'x'1 + const=a1R-n1thR
+ const. . . .. The ma:dmum-likelihood result for R.1 is obtained by
setting the derivative of w 1 with respect to R equa.l to zero, i.e.,
0=a, -n,l/R. so that R, = n1/u.1. and aimilarly, of course. R2=nz/a.z.
When we cOmbine the experiments we have w'= w1 + wz
(a +o,z)R - (n, +n,) In R + const. Setting dw/dR = 0, we obtain - .

= (n +n2)/(o. +o,2) This is just Eq. (1), ~with t, ‘and ty generalized |

- toa 4 and a,. Thus we see that the maximum-likelihood prescription is
to combine the two experiments into an equivalent single experiment by
adding the counts with equal weight and szmilarly combining the effective

running times. The difference between the prescriptions of the likelihood
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method and the method of least squares is of course entirely due to the
difference in properties of a Poxsson dxstribution and a Gaussian distri-

bution,

N

B. Average Bias in Introductorjr Example

z

In our introductory example of the bias that results from weighting by -
least squares we used a rather extreme example. Now we calculate the
t e o t i
average bias. Suppose thatn is the "true" result for the average numbé; uit 18

of counts pef minute that one gets by counting for a very long time and

' dividing by the time. The probabihty that in experiment No. 1 (which lasts

1 minute), exactly n.1 counts are obtained in P, "n(n) 1/[(ni)]
the similar experlment No. 2, the probability that we will get ny counts is

A g n
PZ =e " 2/[(n2)‘] . If we combine data from the two expenments as

prescribed by the maximum-likelihood method we get

as the best estimate that can be obtained for .

If we perform this type of Weighting (of itwo experiments) many times,

o0 n1+ nz
n1=0 n2=0

This is ."unbiased."
Instead we combine data from the two experiments by least squares,

using . , : ' . .

n—(w1n1+w 2)/(w +w2), withw "1(6n Z . 1/n._ Thus = | .
n= 2 .
1 L
Ll

If we perform this kind of weighting many times we’ would:find
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n1=0 , ny= .i.. + ._i_.
n. n‘z
g |
which is easily shown to give
. ~ :
' o= 4 e “" v
<n>.anl-?+' 5 ...o
‘instead of the true value n. In the linfit of large n, the least-squares result is
e . unbiased.
i
i
]
| - FOOTNOTEAND REFERENCE! .01 £
i " : . . - v . : N -
Work performed under the auspices of the U, S. .A_tomie Energy Commission,
1. It seems to us highly unlikely that our suggestmn is new, ~This article
is therefore At'o_ be taken as largely pedagogical in nature.
e
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the

.Commission"” includes any employee or contractor of the Com-

mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee

of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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