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ABSTRACT

" Part I.

The variational approaches 1n statistical mechanics are ZL

discussed. The relationshlps among several formalisms and p0531ble ‘

'simplificatlons are p01nted out.

' The principie is applied to the equation of state of gas-
liquid, the Ising model, and the Boson system'above the transition

temperatﬁre. ‘No essentlally new results are obtained, but through

- these s1mple examples, 1t is seen “how toruse the variational pr1nc1plef'

-to make a thermodynamlcally consmstent approximation and how to

obtain the stable solutions. ot .

 Part IT.

5

Some eqpilibrium properties of He” are calculated by

: us1ng thermodynamlcal Green s function formalism. The T-matrix

integral‘equation.is solvedfby neglecting the statistical factor
in the intermediate states and_using the effective mass approximation.
The effective'mass and ground‘state_energy'are calculated

and the-eorrection‘due fopthe statistical factor-is esﬁimated;.



UCRL-11541

ﬁ.‘ . o : | . : | - -1-.
| | I. INTRODUCTiON '
Amongiva;iOus ﬁays of doing calculations of the many-body
.problem, one of them uses eqpations'of‘motion (or the Green's.
I function forﬁalism) which usualiy‘neglects multipleéparticle_corfelé#
tion. in ofder to:sqlﬁe the chains~of integral equations. Many
vothér abprbximations‘are based on physicai arguments in different
kinds'of prdblems,,for,instance,-the Bruckner reaction matrix
| method, Lﬁndau's theory;Igeneralized, H~-theorem, and R.'Ibierig'
. varistional brinciﬁle. It is the purpose qf this first part to

show that all the methods mentioned are essentially the same varia-

i
i
B

,tionél approa;h'with d;fferent approximations. ‘ o R
We first review the so-called 'variational principle" in
the iiﬁérature aﬁd show the relaﬁionship aﬁong these various ’
approaches.l Actually; hefe is a very general way of calculating
the self-energy of éingle particles in the system by using the
variational ﬁrinciple dérived by Luttinger and Ward. It seems,
however, extremély hard to carry out in any realistic probleﬁ. |
The simplified'way‘is fo use the'qp;si;particle approximation,
- assuming that the system coﬁéisté.df interacting quasi particles
which are defined'iﬁ-diffefeﬁt ways in different systems.
| It is pointed out that.one of the advantages of using a
. ) ' ‘variational ap?foagh is that it helps one to decide whether ok not the _
approximatioﬁ.uSedgwill giﬁe»an'accepﬁable answer.

In III. A the principle is applied to the gas-liquid system.



s

The Hartree approx1mation 1s made, but as the total volume
ﬁe*xis reduced because of the hard core of the molecules, a curve- o
i!of Van. der Waal's type is obtained. The thermodynamical stability .

“fr;condition gives us a prescriptlon for discarding certain solutions e

'":‘i'that gives the usual curve of the equation of state.pu{:l'

.‘“fffsolution that does not include correlation among partlcles at

III B is the application to- the Is1ng Model A trial iJi;,:’fv.

. ]

: dlfferent Sites is the well—known Bragg—W1lliams zero approx1mation.ﬁ

"»"If we. start with a wave-type solution (similar to spln wave in ferro-

"“ﬂ magnetism) it is better,>51nce the free energy is lower than the first e

h

f»’solution, but it does not illustrate the differences due to dimens1onslj;
Of the system.: If "righ " states are chosen at first, “one obtains i

.,;the exact solution of the one-dlmen51onal problem w1th no magnetic ?wi”

5;f1eld but the exten51on of it to tw0 d1mens1ons is almost im-:;

'possible because of the complicated comblnatorial factor assoc1ated

< with tne counting of the states. II

III C is a brief note to show that a self-con81stent Hartree’}'

h*"apprOXimation is not stable on: the ba51s of the phase shifts given'“

L“»nqby usual potentials studied 1n the literature.-.»fW;

e, e

€« oo
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TI. GENERAL. THEORY

Several works on this subject are briefly reviewed in

i this chapter. First, R. E. Peierls' variational principle, and

2,3

and Riesenfeld and Watson.u Later,

" we show that the most general form is contained in Luttinger and

Ward's papér.5’ The usual appliéations mentioned above take only

terms of the first order. . One of the advantages of putting the:

: calculations of the statistical mechanics in ﬁariational form is

that'consistency) which will be discussed later, is assured, and,

furthermore, the method indicates where the approximation breaks

- The general tﬁéoryvis hard to carry oﬂt at finite tempera-~
ture,.and a’qpasi-particie aﬁpr;ximatiqn is Suggested. "It is/
simpler, but it cannot be.mathematically justified; only the success
of its application gi&es the physical picture of'tﬁe system con-
s1dered and the validity of our approx1matlon. |

The variational principle for statistical mechanlcs, whlch :

is Dbest understood ﬁmterms of the extension of-the varlatlonal

. calculation of eigenvalues of thé Schfadinger equation, should

be attributed to R. E. Peierls, who derived it thirty years ago.

Tt has recently been extens1vely applled to. the many-body problem.l

].The principle 1s extremely simple. _ L et

n

oM

Z<alre-x1°[-é (@ - il eof-alalr - o=z

(1)



“'fﬂ system.:f”
L (alH ]a) When a “is an- arbitrary state vector whlch may

'”'1nstance, 1n a condensed Boson system we would use a :— (n ) ( k+)
i
i

where‘ niA takes on all possible 1nteger values and a

:1., where H _: total Hamlltonian,._p;ﬁ=f chemical potentlal, and ;'"7
oo ;f F _;é free energy ;fB-}'-zn;zvar?’ w1th B kT_, then L

a Z ;';Z . 'only if a is the true wave functlon of the N-partlcle

_var

' UGRL-11541 .
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The usefulness of (l) is that though 1t 1s almost 1mpossible _T'

- to evaluate (a{expl:ﬁ(H - pN)J]a) s 1t is easier’ to calculate

R}

‘ *;'contaln some varlatlonal parameters.v The essentlalzfeatures of the -

'-?system are contained in Fvar ir o is properly chosen. For

kL

;phonon creatlon operator. The result of th1s formallsm 1s the same f

T e

r\

:~as the result "palr Hamlltonlan formallsm. Thls is rather natural, B
(‘s1nce:1n (l) y all off-dlagonal elements in a representatlon are ;
. ”-fneglected Applying this: formallsm to a~superconduct1ng system, o

. we can. derive BCS theory.é, Even though we mlght at flrst thlnkffJ;"

S

~ttthat the usual prdblems that are to be solved can also be framed.iﬁf )

;j>calculatlons are attempted.. Certalnly, 1t should ‘be’ argued that;

[..

”:can possibly be derlved from other methods, but the dlscus51on 1s:':

beyond what We;pan include here.: Bas;cally,_th;s varlatlonal

~ approach cannot be better than the Hartree-Fock approximetion. .|

 As a matter ofifact;jthéyrbOth'éiveythe'same’equation;forﬁthe'-'

L B

R S
lSZa.“f’*~~

Io>,

h -T 1nto this- theory, it 1s actually not poss1ble when more 1nvolved.$};,;]v_'f

- more. elaborate trlal-wave functlons will prov1de all results that 3v:;’

&

g
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free energy

It is derived 1n hRef..l:

."A(‘

W,.f, fT.W

L N _ ,_i' _— N
‘ , - +a v = .
Y R = ERTARQ L) FW W,

var -

where Wi Wi are the kinetic and potentlal energy in certaln

spec1fic representations, and the dlstrlbutlon functlon 1s

. 1
i~ exp B(W + W f )T l 2

o

- -

-

.ﬁhich.is‘td be solved for fi'. In the Ha;tree-Fock approximet;on,

+ all the equetionevare the same. . - | o |
The so-called Vse;f-ceneistentv method is actually the
‘same approximation; se is;the‘generalize& .H'-theoreﬁ.%, Let gs 

. see from the entropy = .
, e N
=" - - + o+ .
s =T [fk R NN : £,) n(L % fk)]

the total energy

N
mn—* N

R _o!
}_ 5= T+ fk fk, [V(O) * V(l; vk )},,

(3)



_UCRL-11541

'.__6_ L L PR, el EYT

:*ﬂ‘lfwhere Ty is the dlstrlbutlon functlon of partlcles w1th momentum flif

;‘7“;5k v(k) the Fourier transform of potentlal.' Us;ng?

"

: :. We obtain L. ]

and:

S -‘Z‘i%l?"'f‘-’@f—*iv& RN S e

It.ls.not surér1s1ng.tha; thls answerrls the same as we obtaln’
',from Eq; (2), since correlatlon 1s neglected in (3), and (H) is the 'f%trf
-consequence w1th only statlst1CS taken into con51derat10n. Slmllarly,véd
,t the generallzed self-con51stent2’F abprox1matlonia3'1t ds used 1s;_}uhji B

-:-also a varlatlonal approach It dlffers from the above formulatlon .'55~'

’:only 1n:that a perameter, g is introduced :so that

S s
t.. :

i_. total energy 21_ K] /ém f o+ j{:fk i v(7) v(h = h')-“

-

_ ;Zﬁgg;[v’<o>'e:f.%_ftn-e -h;‘ﬂ; el

¢
vy
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'where Flt is the two-particle denSity matrix, if ¢ = 0,
1 "u is exact; if & = l the approx1mation is the Hartree Fock
s

"approximation. . With the u given above, and requiring
ST

v l,', 5%, 0 ’ we then have o
. A “k
aF ‘1'2 o | L
& "5 & (Ffyr = P ) (VO 2 VG - %) (5)
when £ and F,, depend on §{ . This formulation is said to

) be useful for the calculation of properties of electron gas at

1ntermed1ate densities, but in practice, finding 8F/§fk = 0
with Fkk,4.unknown is very hard, and any approximation with
- SF/Sf = 0 not setisfied will.lead to a thermodynamical in-
" consistency (whlch W1ll be discussed later)
Though some important problems can be solved approx1mately
" in nhe formalism mentioned above, it is by no means general, and.
- is very hard to:generelize. Furthermore, it is perhaps easier to do

4 variational calculations if we can write. down the total energy and

- entropy and vary 'Fo= U~ TS - uN, but actually entropy is much
liharder to calculate from' Tr p Zn p than from F = Tr o . Unless
. B | , some approx1mat10n is used, it is ‘hard to start w1th F = U ~T8 -

. and, generally speaking,_entropy 1s,physxcally clear only in some

simple system. Recently several'people have established the



. Green' s function or occupation number in momentum space._

',be used.f Free energy can be written as ﬂ;ff73

. -l >— L exp (g/z o ) zn(c + G (C ) - § )

' UCRL-11541

: expanSion for free energy;_in terms of either the single-particle o

> 7

Since R

) the expansion given in Ref.,5 is the general expreSSion for free
V'fenergy, which iS'shown to satisfy a variational'prinCiple, it can' :
;’”'be used even An practical calculations Where some apprOXimation is

n made to include only a sweries of speCialized diagrams._-f~

we sketch the theory given in Ref. 5 to indicate how it can :;; 4

")

x(@i - >>‘l R

where‘ r denotes the quantum number and speCifies the states, and

.igé may be an- even or odd integer depending on Whether e have bosons .hff

S o fermions.f The G (Cz) ‘are the proper self- energies, which are'}_'
) i;.given by all linked closed diagrams With one line removed We t
'trd:do not give here the rules of calculating closed linked diagrams,"

.'which are given in Ref. 5._ If we define skeleton diagrams as diagrams -

with no self-energy part, then G (§ ) are the contributions from
l

Tall closed linked skeleton diagrams With propagator ,f
’ instead of z—~f—f——f; and With one line opened Y”: is7the

'contribution of closed-skeleton diagrams.i It 1s shown in’ Ref. 5 that

Sy e i [REN .

©

-
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'jslr@z")f——- "'[ cz e - c;(cz)vjf?‘.i'-ﬁ',L' R :<6_')
" if and only ;Lf '5-—(}'—:@. (‘free‘ eoergy) = »o ..Y‘Eq_uat.ion (6) ;ctuallty_ '_

is - a complicated integral equation which determines ‘Gi(gz), since

Y is independently glven.' Furthermore (6) has to be satisfied

.

'to guarantee thermodynamical con51stency.8 . o A
. In pract;ce,.(6) eagnot be carried far, and only the ﬁartree-v
Foek solutiong whiCh‘takes »%(:::>f"'<:::>+.% <ZZ::> ae y";
has been investigated; this‘brocedurehis equivélent to Peierls’
-variational princlple,as we “have 1nd1cated before. Numerically,.
Ceven the H-F approximation is already too dlfflcult to solve, not g
to say the random-phase approximation and the T approximation.
» gsoally, all these approximations are not eonsistently calculated,
'1and therefore some thermodynamicel equalities are not satisfied;‘
bfo: instance, the entropy thus'oeleulated is not the same as the
-derivative of free.enefgyy and the theorem of ngenholz-van.Hove'will
be violated. 8_ Since (6) is too formldable to handle, we ask vhat

one can do it the propertles of a many—partlcle system at flnite



__‘_10_ .
i?temperature are wanted and self cons1stency is required. In
(6), Y can be an arbltrary number of dlagrams, and the

,jcon51stency is still maintalned. In practlce, (6) can hardly

7‘U@RLF14541 R

i be solved, 1f more terms than the Hartree-Fock approx1matlon are S

Y ‘u A

1ncluded. - :.;‘ o ”j_~ *l - ,.-f;,;;: ;; T ',_»‘“T”‘

We deflne f as the quas1.part1cle dlstributlon functlon R

. R

“for convenlence, and take it in momentum space.. (Whether the qua51 o .

h ]

partlcle so defined w1ll descrlbe the system very well 1s anotherj:_?d
*m}problem.) Entropy is glven by sz d\, el
L ]5ng$ff;i§- 8™ Tr {f ot (1 f)zn(l f)] V'févd

S unlform s&stem the distribution functlon 1s dlagonal in momentum Q

ff'f and the total energy U = // ——;;fd {txf\

~VY" w1ll con51st of all the dlagrams that We need to keep 1n order
%0 make a good approx1mat10n, then We. put SF 8(U - TS - uN)

" and _;e’;; o e

[

T«
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: _mhus, forvinstance,'”'
ST s”-_— -~ 36 = (_Tﬁ) A [i’k in £, % (1 £ )zn(l k)] :

My V-

" as it is defined. _ '
o Furthermore, (7) guarantees that the Hngenholz-Vén Hove theorem

“ is satisfied. It should be emphaSi;ed that fk ~does not have
v direct,physical meaning,'unless the U and S calculated are

good enough to Justify saying that the whole system is describediby
.1 quasi particles with a distribution function fk . | .
The choice of,,y is not easy. In the exact expression (6),}x
it is Well defined, but in the approximate calculation, A is
- chosen according to whether it yields good results for total energy
- or -not. Furthermore, the-validityvof the qua51-part1cle approximation
depends on tne nature of our spproximation also. 'Bruckner's reectiQn-
matrix a@prbximétion can serve as a good example. Flrst we know
that in his calculation the 1mag1nary part of the self- energy is
neglected, and the correctlon was,madevlater. The correction‘term:vf
:is proportional to:higher1pouers’in.tne ‘R matrix.: Ifsthis kind of
'.celculation is'extendedfto finite temperature; we write down tne;
- entropy and energy as before,w1th y consisting of-all ladder~
N l' : ‘f.-diagrams in his eelculation. Ow: way of writing entropy or Justlfying
| | ;the quasi-particletconceptidepends on Whether-or not higher powers

in the R reactioniarefreally small. Furthernore, it shows the



";:fthat 15, several 1mportant quantities, such as rearrangement

R Zbut a consistent calculation 1s perhaps too formidable.~. B

o UCRL-11544

1ﬁid1fficulty of extending the calculation to finite temperature,_ l_ 55;.-

;5;energy and renormalization factors, are most likely very 1mportant

P

One of the advantages to applying the variational princ1ple

'_1s that not only is 1t an approx1mation, but it also provides an

' indication of where 1t breaks down., It means égg' O is the'a
- : k ‘ >
;vequation from which ‘one obtains pk 5. but any acceptable solution,;'
:_ 2 o 3
must also satisfy ——§—E——f; > O to 1nsure the stability of the
S 8oy 0Py g |
» solution.- The sign of ' _ ‘is discussed 1n the Hartree-
SkaQk

1H3“*Fock approx1mation in Rei. 9, e take free energy F 1n (3), thenf%nzf

52F= Spkl lﬁp [V(k_L k) V(O)]Spk
ey g | (8) L,

i.;‘ To discuss'the'sign of this quadratic, one needs to know the:‘rf

‘1'e1genvalues of the matrix

” k.k' ” P Where

Unless all eigenvalues are positive, 8 F will not be posmtive ,fv"

B A

for all Spk




' stability is satisfied. -
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To discuss (8) even}in simplé approximations is ﬁot easy,
not?to'mention more éomplicated approximations, but whenever an
éppfoximation is-made, it is necessary to examine 5°F . Thoﬁgh '
62F in the genéral form is‘always ﬁoo hard to see, it wéuld be

much simpler if ®p were specified as &p .; <%§@Q then (8) wowld:

‘be easy to calculate. If ®p is fixed this way, the sign 8°F

) . oN - oP
in (8) is the same as S and - 57 must be positive. It seems

>

vthaf perhaps it is not necessary to carry out the general discussion.

. Instead, we may only have to know whether or notlﬁhermodynamical
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S ?"5'1"11 APPLICATION __ S
K- In this chapter, the variational principle lS applied to
three problems.: First, we- con51der the gas-liquid phase tranSlthh.\ o
' :‘Eqpations of state for the gas and liquid are obtained by 51mple | 8
"i;calculations which are only a conSistent Hartree approximation.v We
t”{also show that the solution derived from the variational prinCiple
“;'1n some region is not acceptable,and this breakdown 1ndicates 5
'.‘phase transition.} Though 1t is not a theory for the phase transition,
”1.fit provides a criterion for calculation.,""”l
P The variational pr1n01ple 1s applied to the Is1ng model.v'
'g'It does not 51mplify the problem.‘ We can solve only the one-dimen-v'

"-51onal problem and show how the quas1 particle that we pick up

to, calculate the property of the system will influence our results.‘- D

o The phase tranSition in the Ising model is due to long-range correla-,

v"} tion, and wrong conclusions can be drawn 1f an approx1mation which

i '

ff takes no cons1deration of this p01nt is used, and vice versa.s o

I the last section, we discuss the calculation of the Boson 3

"',5system, Heh above transition temperature.‘ It is shown, from the '

'_‘pOint of view of variational principle, that the eXistlng calcu-f N

vlations on’ the subJect are not to be accepted It needs more

L elaborate conSideration than u31ng the Hartree~Fock approx1mation

"iW1th the effective interacting potential given by the phase shifts.V

Some poss1ble improvements are suggested.., ;Qfl;fl}l,lfppf,t : «”:1._->' &
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A. A Discussion of the Equation of State

Thevequation of state is not easy to calculate in general
It 1s & matter simple in principle but complicated in practice.
The discontinuity in the equation of state, or the phase tran51tion,‘
"has been the concern of physicists for meny years. Until Onsager's
exact solution of the two-@imensional Ising model, it was even doubted
whether sterting from first principles, the phase transition would
. , R
" appear-aut ome.t ically.lo
Generally speaking, there are two ways of approaching the
problem. Inlthe eerly works,ll thehsystem is assumed tO‘consist
of several components to explain the mechanism of phase tranSition,
and discontinuity shows up naturally as the Gibb's function of
different components have different values. Certainly we do not
regard.this approach es'theory. Another approach examines the
.free energy directly;‘for instance, the method of cluster expansion.
Somevremerkable progressihas'been made concerniné the relationship '
of the phase tran31tion with the force between 1nteract1ng particles.
However, we. know that force is not ‘the only thing important in phase
trans1tion. The Weighting factor may also play a dec1s1ve role.
. Bose-Einstein condensation is an example. To sum up, a unified
approach really does not eXist An the theory of phase transition.
| It is not our- 1ntent10n to discuss the theory of phase
» transition.loﬂlhe question is how, with a given twc-particle

potential,.to-calcﬁlete the‘equation of'state.h-SinceWe;realize;it
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r>ls impossible to present a way which might be applicable for all

:*kinds of systems, different systems must have different approxi- ‘

.jmmations. Here is the simplest application—,f}b_'ag

As far as the gas-liqnid phase trans1tion 1s concerned

'721: approximation 1s reasonably good for long-range, weak potentials,
ﬁ?jfbut certainly breaks down for the.infinitely strong, short-range 'ﬁfd
' ﬂh:force which exists in molecules.-rsince the 1nteraction con51dered
CARDRE B .

f¥1s weak except for the hard core, we expect all particles hav1ng a »';

PR SN

";'§;1certa1n momentum k to move -in a self-conSistent field S
‘v.‘ Because.of the hard core one needs to take higher-end ':i c'g
fthigher pOWers of the potential (essentially the ladder diagram)‘fﬂl

:'?ﬁto arrive at almost the same solution of the pseudo-potential method
."”5;’As we have shown, we do not have much difficulty in . dbtaining the ,f”
- same result., It will be adv1sable to give the phy51cal argumentS'c}i

'cf;of how to write a; reasonably good two-particle dens1ty matrix 1n

rlhjihterms of pl‘

f (12]p1'2")
R :' ik(R-R ) ik(r .-1k (r - ) 3 3
i f fpé,(kz'k’zk)\% e ‘2. 172’ o7k kd9k

o 1t is'the type of the force which is responsible. We know the Hartree'?“ o
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Here
U o (6 E - WHE 2 OE - Nl oy
(ks ks B) = Tx W (g - k)*(g +.1~<>\° z -_h)\lf(gf X >9>

 and

e
|

1 : ) T
é-('l\"l + 5-52)) 4". }\’." =X TELs %

}'Iex"év () is-used_to denote the ensembie avérage; X the total
-momentum, and Xk, kv'  the relative moménfa of the incoming -and
outgoing particles. In the region wheré R g s, R '\<. _a,
the a is thgﬁ radius of the hard core; V(1), \Lr.(2) do not overlap.
Several ways c'anb"be_ used to say the same thing, namely, the integraﬁion
of R does not extend to whole space V; rather ~ (1 - Na5). This is
a very important factor foi' 'obtaiﬁing in order to obtain tvhe dis;continﬁity ‘
- .in the ﬁhase tran.sition.'r_ If the interaction is wéak and is not s’créngly.
' dependent on the‘dens-ity of the‘system, the.n the whole system wili
_reduce its voiﬁme continuously té zero. It is the term (1 - NaB)
" “which force;uchéhges of thelstruéture ofzthe system to take place
when the voiume' is »suffjv.cientiy redlAJce‘d," cqmparable tol 1\Ta.3 .
, . . If p2_'(k;,‘ x! &) is independent of k and set equal to
: o(x)o(x') in the Hé,rt.z_'é'e .approximation, there .should ‘be another |

.considérativon, viz., integration over R (or R') should not be
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extended through the whole space as argued before. The result

i;is the same as. using the variational prinCiple in @)

FRENCIRREA
i .._’(:‘_

»7 -\7 /when klk kO’ Ol; 5 :7: kO

~,when klk O’ vand (v)

‘{ﬁ"are"all constant; More complicated potentials w1ll obscure our dis- i
R 'é;éussiaﬁ; Also, this potential does give the essential featurs of

kR

any realistic potential of the type with hard core and weak attractive*"
tail.._-;‘ ; | o

We use the H—F approximation p2 ]ﬁ_k ) pl(kl) Dl(k );

'S

'but We must account for the hard-core effect. It 1s :mcluded

t Wt

’f'ig}' 31mply by reducing the volume of the whole system ,{f;-f 5«f{i;}j_;;lf‘
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and.p (k) depends Qﬁ "k as :f_‘ollows:

Alk)  for k & Xy,
CB(x) for kX > X4,

o
l.—'

Py

c

- —
]

i

et énﬁ[k2/2m + (1= ap)fan, + B'5, + 5’12;31)] + /T,

=
-
i

1 TR D

Here
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' We realize the simplicity of (9) is due to our approximation in
. . R

. V(k = k') ; but the point that we want to make is how o obtain .

. the equation of state from the variational point. of view:

o

oy j A(p) ( p oo© et T * :
2“ oo
0 P B 3 |
. P ~ o S >
. _ ) s : ' '
i =i, |
m -

l -
e )

L e/ —emy 0,1 - ap)
e e e T .

p = (12)
and
pl+p2 = p, the density ‘of the total system. - | - (13)

Equation (1) can be written as

@) e

-



~

iand_

:i From (13), (lh), and (15) the sign of C is dec1ded by whether-- “f:*

Co=rap 6'9101 - YRy e (15)

From the definition of pl, 92’ pl and C,)the equation Vf‘.
of state lS that of the ideal gas plus some correction term.

Since a N/V 1s always less than 1, c ‘essentially determines thej?-

- D - V curve. And O@ ﬁ ’ 7 are of the same order of magnitude,; i

b ]

0
likely is strongly density-dependent, although we must go beyond

'_ although they would vary from substance to substance. X most .

the Hartree approximation to assess. how 1t depends on the dens1ty.-
: 1
.\1

s

there are more highrmomentum particles (k > k ) than low-

A

f momentum particles (k < k ), or whether pl >> Py and vice:
' versa.: "It is an inev1table feature of us1ng separable potentlals

“.that C depends on: the momentum of the 1nd1v1dual particles rather -

than onithe relative momentum.. )
"~ We may have a qualitative discussion of the solutions as ;'

follows.-_With denSity fixed, when - T increases, one can see

from (10), (11), (12) and (13) that plr decreases, and since,

'pl +.p2 '=-'p, p2 becomes more 1mportant.5 It means hlgh~

. momentum particles increase 1n number, a natural consequence of

increasing temperatureﬁ.”:



Py

S VA A" 4'a o S S SR O o
- (ﬁ')} -".T’(f\f) *Z Cy-e =[+ 2]+, = o (6)

UCRL-115414

“23a
Sbmilarlyg'with.the temperature constant, when p increases;
increases, but not as fast as Py e Although «, B"and o

are not well known numbers, effective mass usually does not

.increase'very'fast and is always finite, It seems when "p is véry

large, pl' will be "saturated" and P, Will increase without limit.
| ~ Let us consider.the P~ V curve from Egs. (14) and (15)

for a given value of p . Tt is justva;cubic equation of p ,

]

It alvays has one root greater than zero.

‘From the curve for'—&a} P%;, one sees the solution V is

greater than or less than V, = ,zg-(ideal case), depending on .

. whether| C 1s greater than or less than zero.

According to the previous Qiscussion,‘e is negative when

the density,isvhigh, and vice versa. This is just what Ref. 4

' means by the change from "essentially attractive' to "refulsivef

. when the density becomes high;

So far we are discussing the limiting case of very high and

very low deﬁsiﬁy.; The equation for'existence)of.these-real roofs

~ for Eq. (16) is -



-

f' ;small‘values of

that in. (6) ‘there are not three solutlons for large ”PfkT,fer‘

N
“is really a curve of Van der Waal s type..

[

One of the most important questlons is the valldlty of

not.. It 1s not hard to see from general discuss1ons or from

m

general discu531ons or from the nature of cdbic equatlon (lh)

-

that the solutlon is stable.; For the reglon where three solutlons

exist, 1t is hard to discuss analytlcally, but then We can use

Flg. l dlrectly.” -

This 1nd1cates that the equatlon of P - V:Q4

the entlre approximatlon, namely, whether 82F is posmtlve or .

Actuallyy 31nce b and ¢ are both small quantlties,'it'ié clear  j i
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. =25- .
.There are two solutions which satlsfy (l > 0, but when.
two’stable solutlons exist, the only one that should survive 1is the :
one that mekes F relatively smaller. This means that because.
-of the sfrucfure of the system,-ﬁhe gas system at certain T and

" pressure must. undefgo'a dynamical change to form a liquid, so that

" the volume of the system is changed in such a way that ¥ assumes

a the smallest possible value.

iy " P



"B. The Ising Model in the Var:.ational Method

”ieuwhere J is positlve or negative depending on whether Itfis a

The Hamiltonian in which we are interested is

T

.‘_

ferromagnetnc or an antiferromagnetlc system.. The trlal den51ty

dvmatrlx 1s taken as the producb of

‘",As Wlll ‘be explained, the dlfferent

*ulead ﬁo dlfferent answers.'f

' plcture has more advantages than the others.

e Sat
n 'x!

If the'"qpasi partlcles here are 1nd1vidual" partlcles

~in the lattice,_then'

. 1s 1n the spin-coordlnate system and

i . ( i i

of spin up, -]bile the snin down

‘v."'."

o
~

.We W1ll try to show below hOW(one

simple—particle plctures

el B . - 3
W s

We have e

¥

' qua51-part1cle denslty matrlces.;Jts_,
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~and

| kz {layl® 1-4‘_‘_

e e 2 o
: 2 | ,+vlbil o % p

(‘filz - lb._ile)"?m'e,- l.bi%lle). .

N 2 2 - "
o RE Z la'il"_- Ibil A

‘.L'et .

] N . . 2 . . ‘ .
o lelem
sting the eciuation’ . 8(—3 +.'

of .SRiI “to be zero, we have

2

%) = 0. and choosing the coefficient

8¢z k0(1 + R_i) <£1’1.(‘]_. +R,) + 5 qu(; - Ri),rzn(_l - R;)

o /1 + RN
KT 1
‘-‘é“”n<1—R>“J(Ri-1 *

. If we take .Ri = R, .

R = tann p HLT2IR

-

2R o S an

> VAN
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';{f We then have the well-known Bragg-Williams solutlon.l%a‘&f”*

CUCRL-11544
: : o v, t

oo e e e A 2 el
a8 T .

“8PF

:ffgﬁ_ > O, is discussed

The stability of ‘this solution, i.e iy

. \[f?fin books on statistical mechanlcs.l} we know this solution is far ::?;ifnm

abffrom the exact one of the one-dimens1onal 131ng model,12 but the

v

t;iicurve of the specific heat obtained from this solutlon resembles '? :

"“:bthe experlmental curve.- Perhaps this 1nd1cates that our Hartree

‘ﬁ‘:rmodel Wlth 1nfin1te long-range force W1ll have the Bragg-W1lliams'li

Af-_approximation is good only for the long-range force, 1.e., the more',-‘ L
-4rﬂ,1nteract10n particles w1th range of the force, the better. As a;;_’;jihf“::

o fi”matter of fact, it has been shown that the one-dimens1onal Ising

solution. The success of the theory of high—dens1ty electron gas,af

: fusing the random phase approx1mation, 1s another good example.

A.\,_

As has been emphas1zed, qua51 particles are not well

';deflned, different qua51 particles w1ll be used to examine Whlch

"1fitls better. We may also use wave~type quaSi particles, for instance

expand R ;; % Qi

: k=0 . v ‘ BT

{"where a: is the interpartlcle distance,l N the number of particles.

-;L;In Heisenberg s theory of ferromagnetism, R(k) wmll be a spin-v

| h‘f"wave operator, and our variational pr1nc1ple can be used to obtain

7the results of the spin-wave theory 1n a 51milar fashion. Certainly

"5this result is not surprising, s1nce 1t 1s only the Hartree-Fock .fi'f

: . . <
. o L
© o ‘ -
S
¢ - o
5 e R
£ LT -
- - !
- . .
» i
ur
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epproximation.-_ ,
| If expansion (18) is made in the Ising model we will obtain
+2JR (k

R(x) tanh 2{ = ‘cos -111;1 and this answer is better than the

. one glven in (17), 51n0e it ylelds a lower free energy, but does not
-change’the.essential features. | ‘
"In our‘approximation,_correlatiop'of particles has been -
neglected'completel&; and this 1s the primary reason why there is
-a phese.transition in two dimension, but not in one dimension: as
‘R. E. Peierle'has pointed out. Therefore, we do not expect any-< .
lreasonably close answer to the exact solutlon in our approx1matlon.
It has been empha31zed that the power of the varlatlonal
rrinciple is that we have the freedom .to use the most approprlate |
lquasi partlcle. ‘ l
~ Our previous approx1mat10n is not valid for the Ising model,
- but we can improve it,by #aking different'quasi particles. Let us
specify,the'states by the number of foreign neighbors invthe one-"
dimensional problem. (we coﬁné one.foreign neighbor as one conse-
| cutive pair with one spin up and one spin down ) Denote this state
by fkn , with n the mumber of spins wp; ok the number of
'foreién nelghbors; The oo ntribution of one'configuration to the
. n

. | . - n
entropy is - - 5 fék £n f2k

",‘total entropy'tovbe the summation over k, and n, since there

. Tt would be wrong to put the

- are 2N possible configurations; each configuration does not have

the seme weight. The energy of ,this configuration is -J(N-hk)fkn



" ';5.3

-3o-zf7?x

(there are 2k foreign nelghbors in- the conflguratlon{

1ndependent of n in the absence of magnetic fleld. 'In the one-‘f

dimensional problem we always can plck 2k lattlces among N

particles to form 2k pairs of forelgn neighbors.i For instance,

in the plcture we pick

-A, B as two arbitrary*n"""”u

i

p01nts and change the

directions of spins

between A and B_‘ .

B

f zn fk .' ..;).f-,_s,‘j;;’“

v g _.‘v-..-‘,.,a e s -

“total éﬁfrépyl-

¥
PRSI
B

vfk
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This is the exact answer o?'thé one-dimensioné%'lsing model.
. Since iﬁ is‘simple to obtain, it seems useless'to do i% our way,
| but our purpose is only to illustrate the idea of using the varlational'
S | -‘   pr1nciple. _ ‘

Our method is hard to extend to the two-dimen51onal problem._,
' Some early works on the Ising model engaged in the countlng

of all possiblevconfiguratlons ran 1nto the same problem. -Since it

R}

~ has been reviewed intensively, we do'not répeatvit here.

1

R
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 'ﬁ:C;b‘SfefisticalvMechanios;of He h Above the Tran51tion Temperature
L 1&

The specific heat of H.elL has been recently calculated

;5hy use of the Hartree-Fock approx1matlon.i

The pseudO-potentlal

"vj;:;f,, :f ;:;lﬁ_ _ (k]V ttractive part

op 18 assumed. o 7o

‘ | ASV,VettractiVe is finite ana conuerges fast enough for
.large distances, a and B are defined.- (The 6-12 potential is used
: : 1n Ref. 1k, ) ‘The total potential is a + Bk ia (a is the,L,, . j.{f
'5:}?rad1us of the hard core) L e L
| . Above the tran51t10n temperature‘the'result of fhls oaiculaslon:,
';:gives a specific heat flve times as high as the experlmental values,r |
B ;-;but there are two questionable points in Ref. 1& Flrst, the ‘
;calculaulon is thermodynamlcally 1ncons1stent the total energy
:57f‘1s not the same as glven by g- ,. here F ;; free energy3; (kT)
etIt is hard to see why one has to use g— for total energy. Anotherb_:f
:J;question is’ that to ‘use the Hartree~Fock approximatlon, 1t 1s necessary'
?ito examine whether the solution is thermodynamlcally stable.v “ ‘
. The potentlal with a hard core does not have a. FourlerWM‘-w

""transform, the only more or less satlsfactory way to do theL;' y f.'“'

.?;calculation is to put

»,».n

e

jf.
m

T vy -L’=‘i-:7'<i<,.lﬂ:5|\.k,>j..? Hn p o3,

fhﬂe;{;ﬁﬁ

W
K . B
- : o w’
. e d b - o
- » -r L #
T o :
Ve~
™ -
[
. 9
} «
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=33
where ©® is the phase shift of two free particles. aﬁhis means that

the potential between two particles is replaced by the}effective

interaction (leblk) s which is the summation of the ladder

diagrams Withvthe‘free-particle propagator, and furthermore is

density independent.

A rigorous T approximation means the summation of the -

ladder diagrams with real qp351-particle propagator, and this

exact T, in prlnciple, ‘can be expanded in terms of powers in’ T

and is strongly density dependent. If we take the first order of
o &8 the 1nteraction, then we have for the entropy S, energy

E,and free energy oo - o o .

R -l . . - . ) .
15 = 8o, tno, - (1+6y) dnd + 0]

au. T

=T - - -
| --__E;e 1 1~ 5 - T
S B~
k : : .
{
F = E-TS - V.
. Here pk is the distribution offtheuquasf.particle of momentum k:
..§.F-‘. = O;
8pk




vﬁpk Spk,
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has to be discussed, and 1t is

To discuss whether (19) is positlve or negative is: very hsrd

i but we are interested only in the reglon where the temperature 1s,;

very close to the transition temperature. The pk may be written as
s “';.' s -*,- - ! o

. . o o R . STow ',' b B -l » .. T
[ [6(k /ém,_g p ) + higher power in ¥ ] } Tl

A 3 pk will be large for small k .

Equatlon (19) 1s a quadratic.‘ It will be pos1t1ve deflnlte

“v-: and u ,-» O when T-* T

Cif 8 F/8p

k has no negatlve eignevalue. We take only the'”

L dlagonal term k - O,\kn. O, whmch is the dominatlng term

when T S Tx Ebcpand (,19) . and when u/mz is: small it reduces to

j,Heree_N'eactwslly is:the,numher;bf;pertieiesfwith”momehtum.zerd, efv:

T

N b X e



i

UCRL-11541

. =35-=
~approximately the number of particles in the system interacting
* with (O|T lo), and this should be about the order of N .

The following numbers are taken from Ref. 15 and 16.

' Temggrature,;~' “‘2  . “Den51tz:(g/cm ) | J _'EZEE
2.2 . . ";“‘f:i. -t? 0.l . . 0
3.0 7 eam Lm0
4.0 L 0.128 - =107

If we beliéve that the first order of T .is going to give

“us a reasonableenswer, T. must be negatlve, 51nce 1t is proportional

0]

(roughly) to the ground-state energy. Thus, u=>0 when T > TK 3
{
o

(20) must be negative.  This means that the solution given by the

0
82/8p8p - is positive.

first order qf' T. cannot give us a sensible solﬁtion to'guérantee

Our arguments are not rigoroué at all, but'they show that
simple calculations‘cannot provide meaningful answers. The s1mplest

extensipn is to. attempt a better solutlon for T din Eq. (21).

Ty = (elvie") N (el (s 5] " vx'y "
. S . ’ k?/ém - k"2/2m +‘ Z(kl).+ 2(32):_ Z(k{) _ ‘Z(kz)'
ey o |
L 21)
‘(2ﬂ)3' - ( ’)

vhere s.f.' = statistical factor .



SR
P

The expansion of T 1n terms of T as mentloned in the next part -

Here z: s the self—energy of “the- particle in the medium, -Js‘-'.f'. e

, only for u 0, ‘kT - 0 for k; and - kg' not Zero. ‘ Therefore, ', PR

the exact T equation is too far away from TO, which satisfies S
[} pR ii.

_ (k]vlk ){k IT lk ) dak ,-

"vv-k?/em_.v_-;. "2-/2m 5 (27()3

A

’? should be interesting, 51nce the complicated dependence of T

On temperature might reveal the behaVior of the spe01f1c heat of “llfffi.r .-

. E‘Heu.. We realize that Eq. (21) is still an approx1matlon in the

"jt:quasi-particle picture, but it is believed that above the tranSitio."' S

;Ylw?temperature, 1t is the statistical factor that plays an 1mportant o ﬁﬁ.rf"

f"i'qrole and the quasi particle used should be reasonably Justlfied.

“"ﬂ:We may'also use a simple potential and calcuLate (kIT lk ) ea51ly

E”QfJust to see how the statistical factor influences the results.fi;

With these approximations, 1t seems, at least, we can.

J’“.;*Justlfy our calculation, namely, our solutlon will be thermodynamically }

3

.f*fstable,,-In simple effective mass approx1mations, (O|T ]O) w1ll
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be positive if.inpﬁt and output mf\ are conéiétently‘calculéﬁediwﬁ
Ag a métter of fact; we can.obtain the transition_temgefaturg from 
A'this effective méssvapproximaﬁioh,‘aﬁd thermodynamicaily it is a

o

3 'stablé,solutidn; but'tolébtaiﬁ the speqéfic heat is not simple.
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oo 77 1, INTRODUCTION |
We wish to present a way of calculating-equilimrium properties

'of & fermion system with high density and strong short-range force

3

E-Q;but relatively weak long-range force.; He serves as an example.,l

1-3

s-As far as the theory is- concerned, it has been. dlscussed repeatedly.
. f- li:We will use the thermodynamlcal Green s functlon,u’5 and the

vT~approx1mat10n, whlch is essentially the Brueckner s reaction matrix

»

method.
The validity of the T approx1mation is well understood,

iinamely it 1s a good approximation for low den51ty and short~range '

5

‘force. Some arguments have been given that because of the . Q

',f_strong degeneracy of the fermlon system, 1nteract10ns take place
e -_a?only among the partlcles at the Ferml surface. The successvof{7
~'J;:Iandau 8 theory seems to Justify this assertlon :t: f”:ﬁi,”ﬂ .,,
v There is: no reason to belleve that an approx1matmon whlch
binvolves more than two-body correlatlon will. not substantlally h
;’;change the results in, a system like -He5’{1 It should also be
r'fp01nted out that rigorous treatment of the T approx1matlon in - the
ﬁ'Green s-functlon formallsm 1s more compllcated than calculatlons Af,
‘:'done in Ref. l.‘ As a sim;&e example, we Wlll see that the 1mag1nary
'part of the self—energy 1s falrly large, whlch 1nd1cates that the
spectral function is far from a delta functlon; and a compllcated
‘renormalizatlon factor must be used,rthough how much 1t 1nfluences

9 .

' the results is not known.
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'_It is nét‘our~intenti§n here to solve this prgblem, rather
 ve wish to dp & calculation similar to that of Ref. léin a slightlyv
_aifferent formalism. The pﬁrpose is to calculate the diagonal T-matrix
s .' . - elements (the forward sééttering émplitude_of two gquasi particles |
| in the medium). N | » | : |

| In Ref. 1, the iﬁtegral equation for the réactionnatrix
is set up and the single-particle energy. is obtainedAconsistently.
It is_very difficult to solvevthe integrai equation involving)the

6

principal part; - It is.hoped that this can be avoided and a

 differential equation will emerge insteéd. 'in order to accompiiéh
" this purpose, thefe are two simplificatioﬁs to be made: . _ -{ﬁ
(a) Tne statistical factor in the intermediate states will be
ignored, B | |
)(b) thgvsingle-pafticles energy .will be teken to be of'the form
A+ B2 | "
-.‘LThe‘correction due to the hole-holé term 1is believéd to
be small, though this contribution is of higher power in dgnsity,
. and. the density.of liquid He> is high. | However, it will be
- shown that to neglect thé statistical faétorvaﬁ first in the
calculation of. £ and then tO‘m;ke,a correction later is
Justifiable, considering the other approximations we have to.
‘,, S make. We write the singie-particle energ& w(p) = A+ B p?/g,
B where BT will mean'gfféctivé mass of the He and A will

 not appear in the T equation.” There is no compelling reason to say
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-he—. .

| f,; that this approximatlon is good, only experlence ca’ ell. Under

.:i‘[these assumptions, the T equation Will become the free-partlcle.fv

B
There has been some argument about the boundary conditlon

ig?Scatterlng equation with mass L y whmch can be readlly solved.- -

'f}féln the reaction matrix, i. e., whether the two-partlcle wave functlon

'vf{ﬁ~should be outgoing or stationary.7;:y

T

“In prlnciple, this has heen answered8 after careful study of the'.
limitlng process as the volume ﬂ~oo ; but it seems doubtful that the
%tkdiﬁg‘lyarguments are still valid for ‘a strongly 1nteract1ng system at 4v

| ldvr'high density. The diagonal terms of T are- related to the phase _

‘ ';:'shifts by solv1ng the Schrodinger eqpatlon w1th different boundary";f

: {y?conditions (kIle) "f’%ﬁ tan 6'“’lf)the pr1n01pal part is taken,~'
18 ”

| Qf5or (kIle) %% e1® gin s ’ for the outg01ng condltion. In

’f Green s-function formallsm this problem (the boundary conditlon)

‘*»\.

'7:w1s settled from the beginnlng. o
| Instead of effectlve ma.ss approx1matlon, calculatlonsl”.
S h RS

3x;ffﬁsimllar to Ref. 3 can also be used in He3, but certainly 1t is S

3

»; not correct 1n He to cons1der the attractive part as "‘small? -'5

Section II is a brief summary of the formallsm of

fthermodynamical Green s functlons.' We treat fermlons and bosons'v:
"?ffall together at flrst._ Slnce the formallsm hass been 1ntens1vely N

: fydiscussed in the literature, we- glve only the relevant equatlons;.
' ”f;fwhich are necessary to explain the calculatlon.i,f

In SectlonLIII the Tﬁapprox1mation is used to obtaln the }\
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;

-1{3- |

‘effective mass, with the assumption that the 31nglenpart1cle energy

'~,1s written as A+ k /2m . Calculations of velocity of sound

are discussed, and show the strong density dependence of the -
T matrix.

Sections IV and V deal with the correction due to the

’ exclusion principle in the intermediate states and calculation of

the ground-state energy.

. -
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. II THEORY OF GREEN'S-FUNCTION FORMALISM

a.nd summa.r:.zed. :i.n Ref.- 5 We will only presen‘c the necessaryiu

_‘sf* (r ) B V' (2,

| 'The general theory has been given many times qn ‘the literature T
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wh5.

| Similarly ve define = S

g'<1_1',>==*_T<¢(1) ¢+<1 no.o

. We alsd define* G'(12;-l 2') and - ge(le 1'2 ) , the two-particle

‘Green! 8 functions of He5  and H:e'LL ; respectlwely, as they are defined
in Ref. 1. Here G (12, l 2 ) is the Green s functlon for

¢ "and ' i{r, namelyy .
et a2 > T(\lr(l) ¢<e) at) W(e >>

The ‘equations of;motibn.arei _ o 3 | |
(2 sufe@t) = s@u) -t [v(r, -x,) o (121%") |&
ot T 2m TR M7 Pt 17 T2l 2

‘ _— | ,

St

T Ty S AR "-*'“ij‘ié r, - 1,) 6'(12,1%2%) |4

e - (@)

' The equations for g(11'), and G'(ll') are similar. Using the

_HT_approximatienlgﬁhich;is diecussed”in Refs. 4 and 5, we have

o2 1% e o) a(') - cli2') oar)

T

o 1[ __d."l-?ngG(.lI")‘ G'(éé')_ vl(i'z‘:EE) 6, (I 1’2ty .
B o ‘
| ,(3)
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¥

a,re taken in calcula.tion of the ground-state energy., .ﬁ Fof m.stance, L '_ '

.,

2 y ge, G2 ' 3, defined as above can be expressed in terms of the

‘I' ma‘brix, £t

'( Slmllarly we can deflne t for g g2 ,and T for :G ;;.:‘”_ o T
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';47-

M ‘\)“ B ‘
I .

f[(lzlmll,'zf)’-, (12]1'[53)] ale, 3) dz dz
o+ f(lelm’]ié)l g@et)diaz . (6a)-
Heré-'Tf- is the scattering amplitude between ng‘ and Heh .
- g'(11') 'is similar to this. He s He" are different types of par-
v"ticles, thus we dosfiot ha?e an éxchange term for T . ’
" Due to the peri'odicit'y of the ’chermod.;ynafnical Green's function,

we can expand’ G(llf) and T in Fourier series. For instance,
- _. "\i" ‘7 o o
. L L zv (b, -t ") n ‘
' o1y o1 S—* 171 151 :
v<l‘2]'T(_t_l £ )I:L_,..e ) =) e | (12|T(zv)|12") , |

v

v = ':n:v/-iB + 21, *1\

5

where‘-ié v are even integers.. Similarly,

L (bt ) -

-where1 v are,bdd integersf WFurthermére we take the Fourier integral

of Eas. (2) and Gy
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-).;9-
The details are given in Appendix I., Z‘l is the contpibutioh from.
He5 - He3 ’ scatter:i.ng, a,nd Z‘. . comes from the contributlon of

Will be ‘neglected from now on:

He3 - -H.el+ | scatterlng, and Z 5 ]

dBk“‘, :
2“2. 8 o

2309 ) = ) ol v) (i, v + vl
‘ v - o .

The details are given in the Appendix. One has to solve Egs. (5),
(6) and (8) consistently. to obtain the T approximation. It‘is

. exceedingly difficﬁit* to obtain & spectral functim defined by . I

A(k w)

G(k, v) = fdm K

w =V .

In Brueckner's ‘calcula.tivon' Alk,w) is implicitly taken to be
2:r 8(w - w(k)), and w(k) .is determined self-consistentiy. We .
- will take A(k,w) as a delta function also. It is noted. however,

: from a- general theorem,9 proved. in a perturbatlon expansion, that
Ak @) = 7 8o - o)

when. k - k.f 3 ’chough we -car.mof.t Justify our approximation by
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. i

- proving Zk is about l._ vr’.iﬂ:_ff}fu'fdi SN

b

There are two other major differences between the T equation fdfﬁf

,13> given in Ref. 5 and Brueckner s integral equation for the reaction
Co matrix,h G 15 the propagator of two particles in “the. medium.'
;fThe princ1pal part is taken somewhat arbitrarily and a s1ngularity o

?'will be expected. This prdblem is settled for a system of low denSity

»

and.weak - interaction in Ref. 8--namely, as follows., the diagonal waﬁs f;ih5”"f"

o matrix element of the R matrix is proportional to tan 6 . g where )'ff fd:?:?;"”
?:.8 is the phase shifts of two bare particles. If the level shift of =
’x:iltthe single-particle energy in the medium is introduced, R defined ]}f,;ﬁ
by the integral equation is proportional to 8 instead of “tan 5 }w.ﬁl

- However, w1th a very strong force and high-density system, such as o

1viHe3', the prdblem is hard to answer, but the Green S function formalism

L

’"Lﬂ; does provide the boundary condition unequivocally in the T matrix. L

o

After the spectral function is. taken to be a delta function,if'

- ?<9>?

Here g means the product of two one-particle Green s functions 1n'ﬁ
’: 'Vthe 1ntermediate state with momenta and energies Pl’ Pé P wi, F}
e i
) - : Tf: . - ”_',.'_v_?__’_._
Lat; .
# N N N *.o. ¥ '--'»A._N*g.‘*__‘,_‘_‘



~ More expliéitly;:

" where f is the Fermi distribution, and 2z is the.total energy

Tim {p|T(z + 1€)|p') . To solve even this equation is an exceedinglya

UCRIL,-141544

o

. ,.f(Pl.) f_(pz) - (1 £(p,)) (2 'f(f:z),) o)

z - - &

>

of two particles.l -

This equation is exactly the same as Brueckner's eguation

except that * {p|T(z)|p') for real z is taken to be -

{
i

7

complicated computation.’ In the following we proceed to make an .

| . approximate caléulation, in which an integrél equation is reduced

to a différentialAeqpation. After some approximations have been
made, Egs. (9) and (10) are still far from being easily solved.

The fairly general equation for the . T matrix would be

11 1}

o . . : . ' f(Pl N p, ) 5
- (pl'l‘( z7)]p' ) (pIVIP ) + f(pIVIp") - , (p"lTlp')é—P-g :
- | ‘ Z~ (Pl)-w (p,) | (2x)

(11) -

(Contributions from‘the:cut discussed in Appendix I  is still -

neglected here, bﬁtiit is not too relevant to our discussion.



1:?"“"., N
+

To solve (ll) by expansion in terms of (PIle!) s s1mply

E

the phase
i

L ey - <p|T Ip ) f (o, lp )

S vij-3- : ;jfﬁg f( ) N v‘f-_;'_ L  “v,"; 3 o
L X o % PSPUSES Hash a';<plT,lp')a—d—% s
B | T ( i 2‘“) e o2

B

G T wy

.« - I3




ez

to fit the phase shifts and make the complete solution of (12)
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_When (p'TOfp') is expressed 1n terms'éf phase shifté; thé expansion

v

of (12) ip-terms of '(pITolp'>. mekes sense;'.At least;eit,is ﬁuch
better thén_to expand T with potential,'but one must thave the off-v
diagonal elements (plTO]Pf)', with p # p', to do the calcwlation.
It seemé that the'only reasonable ana éimple way to do the Qalculatioﬁ

is toxuse gome sﬁmplified-potential Vhich fits the phase shifts well and

- to solve the‘SchrSdinger equation with that potential. .Actually'ﬁéf. 10.

‘is one example.’ Perhaps one can use some separable. potential

CGlvie) = ) eh

' possiblé. It has been'fouhd, however, that there is no unique ’

choicé_of a separable potential, and different separablé potentials
which yield the same phésé shifts will make off-diagonal elements of
the T matrix entirely airferent.® | |
Equation (12) is still toé difficultvto solve, but-it éértainly fz
is useful to inveétigaté how large.éome negiected effects are, -
for instance,‘the magnitﬁde of thevrenormalizatién_consfant and the
effect of the exclusion Principle in the intermediate states, which
wiil be approximately‘estimated_in later sections from (12). o
Since only (11') éan be S§lved through_the Schrgdinger

equation, we expand



z(k,w) is taken to 'be z (k )

(kk ),and

- % is neglec'bed here. _ It measures the w:.dth of ’the spectral
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-55=
<4_."  | will be made laterbon, is also of order VTOE . The dlfficult
o | : i point in high-density systems is that higher powers. 1n TO ‘are not
S _necessarily small.' Even in higher angular momentsa, because of the - -

- o . factor (2£ + 1), the contribution is not small,

} a - I the follow1ng calculatlon, we solve only for TO
and uée it throughout'the whole work; it will be seen that the
cofrection is.ndt always small e;ough to bé neglected. . Perhaps it

is necessary to solve (12) roughly to see the order of magnltude

of the correction to T e



(22+1) for: éver; y)
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. . —5 7-
‘Here the exchange part is taken equal to the direct part, and only
.vthe real part of T is to be integrated. Sin 5, (@®) is calculated
as described in Sectien II, the values of different sin‘ﬁz(m )
'afe tabulated for the .Y'~:S -potenﬁial,ueed by’Brueckner and the
6 - 12 ‘potential.lz The results are given as follows for the

4

6 412 potential .

Input. effective mass B fd-j‘eidfi_ouﬁgut‘ " f_:
T :,  ‘::. 9.6
"_We'use Y?ﬁ'thpoténtial:from.now.on;clThevresults jon effectiue mass -
_are as follows.-ij'-%'f.:f - blszw':u ' L ew,;»%
. Input (w1thout correction)A if;:Outgut maee~ll |
q _f o l'f , ; v_ 1;_ | .5;7 -
8 - : | 6.6
85 R

If we include a correction due to exclu51on princ1ple (see Appendix.II
- and Section III), then, Af we use phase shlfts for m* = 7, the

:?'contrlbutlen to the output m*' is about 0. 6 - The nurber does not.

'f'uery‘too much for‘differentﬂinput m* ;v S;nce_phase shifts are

lv ve:yrsensitive tobiuput’.m%, it seems thatjalconsisfenf m* ehouldv..

i

‘be between T ahd' 8 .
The numerical values of: phase shlfts are given in Tables I

,and IL and plotted in ig} l. All these curves are qualitatlvely
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the same:- as Brueckner—s

diagonal elements of ;K;}~

S
6fk‘q)

_LZ(k)
*f;f:”ﬁfl'ijﬁl'lt is of higher power in T Since we: have neglected T 2 in,' v

0 RS
';dlfferent places, as mentioned before, 1t would be hardly Justifled i;

T”to calculate the correction 1n Brueckner s way and claim it 1s the

“;frlght amount of correctlon.”kThus TO2 terms Wlll be neglected here.w

. tfhiﬁlauf‘:”‘hi; Landau s forward scattering amplltude is shown to be

CE SRR ¥ ,'<=, ——jlji—— (where E is total energy,-,f "is qua51-partlcle
S TRRLA kaka, » “k o
":1?distr1but10n functlon),a'fkk, is our T if we approx1mate theNe B

ireal T as'_To' Thus_we ee_the success of Landau s seml—phenomeno-

LRI

lvloglcal theory is due t the fact that f \ obtalned from experl-

fﬁlngzygfmental m and sound velocity 1ncludes 1gher power 1n'“ O ‘If

“Toeu 1s neglect.d throughout the whole calculatlon, the expresslon

P
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59 |
A»! " "Using our values of '53 ,lwe obtain .02. < 0. This geems to
hold also for Brueckner's results, but a reasonable number will

be obtained, if

2

;&5.

o

iy
m

o
Bim
=
=5

is used. It.éhéws‘that higher'powers in 'TO are of Vita%limportance'

f’ i ;" in the calculgtipn of soﬁnd velocity. We mentioned that Toz'-ma-
| s smali, but g;g_,jwhich'cgﬁ“?;,derived from (;17),_and is pro- 3
'p‘ortio>na.1 to " ‘ | |

ok

‘.n“v 3 " | " *
o g

k'-
L

and %%; Eg‘ =‘ 2;8 ,‘fféﬁ the expgriméntal déta. The strong denéity
dependence of T makes ﬁhe calculation of the velocity of sound |
“harder than oﬁher-qﬁantitiesa' Weido qot meaﬁ.to go beyond firsﬁ‘

. .order.in TO _here;rthQS'a more detailed study of this prdblem cannot N

be given. -
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).:(g(k") - 1>lk"lle ) d kz
“E+E (k )-- E, (k ) + ie (231)3

where E is thevtota.l energy, Q,(k ), as was expla.lned before, is

kF (or va.ce versa) 5

. T- ‘.-'"' . h}
kF e }“

<

;.iv--If (k|T|k ) “on the right-hand side is replaced by (le ]k ) ;. ',_},,f S

i

) 11: means that only the second-order term :Ln‘the expa.ns:.on 1s taken.

We do not know how 'to calculate off dlagonal elements (k|T lk )

s consider then ’l’:&re L y le Here We follow

N



UCRIL-11544
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. . | . o l(le Ik">( Q
: ‘ E - E (k1 ) - E(k2 ) + ie
K" Qx") - 2 159
3 1] n . . .
(23) v$ - E(k1 ) - E(k2 ) + ie
~ ‘Therefore the corrected diagonal element is, after partial-wave
expansion,- .
o .
y on(2s + 1)° l(kl'l‘ Ik)l o |
(le Ik + G I (cos ©)d cos ©
(en)” - Y A S
x| & "‘k(g‘e)., e
R S S e
‘ . L ) L
K The region of integration is shown in the figure. |
where Q - 2 = -2 in the shaded region
= -1 inside the two circles.
;'Because of the symmetryy it is equivalent £o 1ntegration over one.
. I ’-e-circle with a factor‘v2.3 We' will evaluate the 1ntegral for‘

y 'si o, l,vév.i-Sincelﬁhe incident ‘momentum is fixed, let
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is the second integral in the expression for A, which is

The corrected Tz is, from (16),: '; W; 

z) (A +3B,)
'The'contribution to ‘m* from the second texrm for 8(m ) ‘with
fﬂ-i{‘;f‘mf' 7 is about O 6 i' We cannot tell whether it is an acceptable‘i
‘:fvalue or not. Since 'To s qpalltatively similar to k in Ref. 11, :
_ the correction should be almost the same as calculated in Ref. 2;.
} M - 2



".-formula will also be applicable there.

L H = V_. G (k,w)dw

" where

" and o

. UCRL-11541

C-6a- .

v CALGULA:DION OF THE GROUND- STATE ENERq:g

Hére we calculate the ground~ state energy when the T matrix

ia known. Since it_needs more,than the two-particle scatterzng in 55'“7
'ﬁuhe Fermi sﬁrface,'perhaps oun effectiVe—maes approximation.cannot';-<-c-d
" be expected to be satlsfactory. If the density dependence of the .;"'”

- : forward scattering amplitude in Landau s theory 1s neglected our '

The ground-state energy 1s given 1n (5)

“' Z(k) CO) G<(k;¢°

f\)
R fel) '
N

dval Ak, ¢)1n=' 2x 8w éAé(k))”‘end the effective mass'approximaticn,'b

~ is used, we have. =

B N xS,
E =V .‘%An(k) s +%—f f n(kl) n(ka)(lelk) —(—k—l—)-gé
R o v | |

(o}

Ca(k) =1 L i k< Xy,

o .

n(x). = i x>k,

3T ——
,~'k =" 5\/;1 ,f k2‘ - le ké cos 8 A.



dcos & to &

LPAD s

R

: S . ; . Do v - .
and change the order of 1ntegrat10n.4 Furthermore, a factor 2"

0 is added from the summation of spln index in: ‘the 51ngle—part1cle'f7' L

VI

'1: Green s functlon in the second term of H i If we' wrlte‘h

M:ﬁéﬁlf415e1fr** '



St

UCRL-11541
65~
The total number of particles is ‘N - =. gig pFE‘. Tpg,single-

particle energy is’

2, oL 1

'..‘. o 2 : 2k 1 N
.E/N,~5 F/em_+~x =

.~v"7' 3 " f. o . S 1 sin 52 coslﬁz
- X |/ . _(2z+1) + 3 - (28+1) — .
E % even - 4 odd - Co- m ’
P | (18)
vﬁ

. T

. If ‘m" =z T-1is used and &(m*) s éubstituted_in:(IB),_we have

Q

E/N = E/NQ -1.®) = -2.8°K.

We are ndt'able'to calculate E/N' for_a rénge éf density to
see whether it is the minimum poiht{ since:it involves adjustments
of pp, and m*-jatwo_variables;ivWe.hotiée in Refs. 1 and 4 the
minimhm.point is not locatéd at the pF-{ which giﬁes.theAexperi~.

mental value.
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| =66-
The corréction due to a statistical factor makes the value
of E/N smaller, but the correction is much less for'effective mass,

because of the different phase-spsce factor in (18) .

-1
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’ * APPENDIX I ,
Equations (6) and (8) are derived in Ref. L; an outline of
‘ how to obtain them is given here. Using 'i:he Fourier transform of
5 G and T and integre,t:ing rover time, “Eq. (6) becomes ((6_') is. -
similar to (62)  ; - zf‘ el L
I . : ; s . - S g
2/2m - i 11 - -.e'givrv/-iB)TéM R _'.- >
l S M st
- T=0 '
o ’ 3 ' o ,‘ . \ R . . | ,} o
X T2 (x| ﬁff};f_iél x) « G e -G ' fﬂﬂ I
() T ! b1 keffis 1{%0 -nﬁ g
(A1)
We neglect T here . The “1lim .is equivalent to t.' = t
12 N | 2 T %
in Eq. (2) . T, T,, &re the self-energy due to He” -He?;.,z HeB-HeLL
scattering. Let us consider the part Hé3 -He? only, to simpiify.
the notation: o _ |
( [ - A(kz, Z
Z , :
kl iﬁ (2:r)5 . »
.2
- s (kT k) . A.2
X, arve/-lfs -y ;(_ \ -1~ l ) - v ( )



f To evaluate the summation over Vé 5 ‘a disper31on

v:? relation for T has to be introduced"' m : fiia." fabéa'i 1: -;' o

s

-

#



_l ' - _t "t "‘ . .
o 4 ( 1 1[
, g [ v i iny, e -iﬂﬁ/ iﬁ iﬂﬁ(t
":%'5?7 2:—%'-%} e 1 B L e
el \ H . .

= ill+e

and if v is teken to be odd in the summation, Eq.. (A.2) becomes

)V
2 (k, —=)

) <t (gﬂ)5 6~ (icyy w)-@ﬁmm‘ 5 + } k)

i il - G 'f]k @ - .I.t_v_ﬂ '
| ex) | o 1\\ 2 D & -

(k|T(w, + 1€)]x) - (x|P(w,-1€) k) AT
)( 1(0)2 - 2}-‘-)/"13 g - . o (A.)-l-)
1l =e B o

The second term may be regarded as the correction to the Boson

behavior of one pair of fermions, and this term will venish for

®, > 2p and in the region ®, < O, Where (T) has no cut.-

/8| (2]
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5

”J!" small for ¢ ﬁ where the phase shlfts of hlgher £ are large.

We notlce in the approx1mat10n of T(k) =

Furthermore, since the contrlbution for m

e

%

; It 1s easy to calculate for higher £, but the con%rlbutlon 1s tOO

"is positlve 1n (16), “but. thls is not necessarily true in our case.

largely comes from

‘a that the correctlon

t,
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Cuii Table I

‘The phase shifts of the Y-S potential with
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various mwass numbers.
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Table I. continued .'

For m =.8

'kc

0.2 . -0.61 L ,'f“_;‘ff“~'7 7 o

O - -1i15 ;" ]!f‘  _ _I';“ 1.2u
0.6 12 - 6.04,‘Vi'; LT

0.8 :"i.12 .‘v ’ 0.16 - ‘;~'V' B '1.69 ~ 0.01
1.0 ;11,0.77 038 . - | 1.51 0.03
22 ods o . oo . 1.2 0.7
: 1,u'j‘" 0;16'f-’7',o.97T  '_0.65' o S.1a1 0 015 - 0.01
‘1.6 - -0.11. ;l;”'1.07i : .fo.os o '  o.9d ) 0.27 .0.02
| 1.8 -0.38 'ft. 1;075Hw;€'o.09 ) 9401 0.68 0.13 0.03

|  ;2.0";'10;63; o101t 0abk o o0.02 fo.h7 0.60 0.0k
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) For m = 5.
. o
kd A
-0 2 ﬁ“h 6 1 3 5
0.2 -1.08 ©0.02
0.h 1.6 0,01 0.21
0.6 . 1.05 0.03 0,59
0.8 0.72 - 0.09' 0.87 © 0.01 B
1.0 0.3 0.19 0.95  0.02 '
1.2 016 0.3 © 0.01 0.87 0.0

1.h -0.02 0.51  0.02 0.75 © 0.10
1.6 -0.3k4 .'0.62 " 0.0L 0.60 . 0.17 0.01
1.8 -0.57 0.68  0.06 0.43 - 0.25 0.2
2.0.. -0.80 0.67 . 0.10 0.01 0.26 .0.3%  0.03"
2;2;:'..}1,02 - 0.61 ‘:O.lh 0.02 -~ 0.08 1o.uu 0.05
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.






