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ABSTRACT

We_investigate a specigl model to see if it is possibl? to
extend the threezbody scéttering amplitude to complex values of the
tétal anguiar ﬁomentum J by an integral equationvwith completely
continuous kernei, or by eitending the Fredholm solution of the Fadeey
equations from integral J to complex J. This model is a helium )
atom with infinitely heavy nucleus, neglecting the interaction between

‘ electrons and replacing the Coulomb potentials by a superposition of
finite—fange Yukawa potentials. One finds poles and cuts in J which

depend not only'upon the total energy but also upon the subenergies of

the electrons. Accordingly, the problems stated above have no solution.
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I, INTRODUCTION

There have been recently several attempts to elucidate the

analytic properties of the nonrelativistic three-body scattering

) -k
amplitude as a-function of the total angular momentum J.l They

were motivated by the importance assigned in high-energy physics to
the Regge poles that are known to be present in the two-body case;
either nonrelatiiristic,5 for solutions of Bethe~Salpeter equations,é’7
oé iﬁ the strip approximatipn to the Mandelstam representaticn.

This problem pres%pts certain difficulties which are a?sent in

the two-body case. Notwithstanding the facts that the kinematics is

more involved and the collision: matrix is disconnected, two essential

" new difficulties appear when J 1s made complex:

PR

(a) The triangular inéqualities for the coupling of relative anguléﬁ
momenta, or inequalities of the form |M|.f J for the projection of the
angulér momentum 6n some axis, are no longer true.

(b) The full three-body scattering amplitude has complex. singularities
as a function of some angle cosines.

In thé previous papers, OI and OII,M this problem has been approached
through the Fadeev‘equations, which provide a good mathematicél formulation

9,10

of nonrelativistic three-body systems. In 0I, the Fadeev equations

for a given J were written using as a complete set of commuting

observables the three energies u we, and w_ of the particles in their

1 3

- total center-of-mass system, the total angular momentum J and its

projections M on a space-{ixed axis, and M on a "body fixed" axis
belonging to a reference system linked once for all in a well-defined

way to the triangle formed by the three linear momenta. In 0II, the



W.:result that 1t 1s not possxble to per;orm such

._2- e
econclnuatlon of theae equaulons to complex ‘J was dlscussed, w1th the

contlnuatlon because of.

'f:;dlfflculty (a)

. over |M"'| <J ‘wlvri‘en - J

. are two facts~tna€'forbid the conﬁinuation'

L o (USRI

l Vﬁ\fl

J i e
-the PMM' matrlx;for

 7With [M[

- Either using the Schrédinger equation in configuratidnl’2
. :momentum spaces,

’quantum numbers'which’completely'determine;theVeigenstates&cf.the total

- o e e otmpe Vo e

j‘. When J is complex the Fadeev equatlons look llke

J(l)

. 1 ,
o (uw, Q',z) = BMé,)(w w ,z) :
”ﬂ ) " J(le) | mJ(b) | o
+ 4““ Je KMNn_ (w w'yz)T MnM,(w s ?)"”
' fprv'li;j‘ = 1,2,3, . o(1.1)
niwhere z is:the,complex energy, which ie‘puﬁ on-the energy shell s
R o | Sy
oz =_%«wi‘= wif at the end of the calculation, and w represents the set"
'(wlwgwj}. .An infinite.summetion'over M" replaces the finite summation“A”

is no longer an integer; It has:shown thatvthere"

the kernel of (I l\ 1s

.unbounded because of 1ts exnonentlal behav1or in the ne11c1ty varlables

M wheh M > oy and yhenv J reaches.a physical value these equations couple '

nsensen

i

channels, 1 e., couple TMM'

J wlth [M[, {Mv[ > J 50 we do~noii *E%Peck‘

-and nonsense

| <o and T

MM!

‘the Dhy51cal set of equatlons used as a startlng p01nt.

It is convenlent to point out,herecthat these kinds of situetionsb

»are:present in all:thelnitherto_cbnsidered_apprcaches_to the_prcblem;

or in- -

or_using the Fadeev equations with another set of .

o



"Fredholm solution N
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angular momentum,3 one always ends up somevhere with certain unbounded
operators which spoil the mathematicél analysis, becagse of the presence
of difficulty (a). | |

| There exists in principle a way of avoiding the previously
mentioned difficulty, and it consists in extending to complex J the
MM,J(w,w';z)/DJ(z) of the Fadeev equations for
physical J, instead of extending the equations themselves. “With this

method summations over M" are computed before going to complex, J, and

. it was shown in QII that when this continuation'is carried out every

term in the series of the numerator and the denominator is an analytic

function of J in a certain right-half plane.__HoweVef, in order to be

'
§

able to say something rigorous about the scatiering amplitude TMM'

one has to solve the formidable problem of finding whether or not the

Fredholm series are uniformly convergent for complex J.

The aim of this paper is to present a particular three-body model

as a counter example which shows that the Fredholm denominator--or JQst
functionL-DJ(;) does not exist for nonintegral values of J. |

In order to investigate the existence of DJ(z), we examine
the 1limit where one of the particles becomes infinitely heavy while

the interaction between the two other particles vanishes. Since the

. Fadeev equations remain valid in that case, we presume that, if D;(z)

exists in the general case, it would also exist in this limiting médel,
which is introduced in Section II. It is analogous to a simplified
helium atom in which & superposition of Yukawa potentials repléces the

Coulomb potentialé, the interaction between the two "electrons being

J(ma‘;"§z)9
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neglecved. In Section IIT, the 51nbular1t1es of T%M‘ (m,m‘;i) in-the; o Lv oy
J plane for flxed M= N' O are analyzed. vThe information we can
get about the full three-body amplltude, using the Neumann series i _-: U

expansxon of the Fadeev equatlons is enough for obtalnlng euch °1ngular1t1es

using the generallzatlon of the Frolssart-Grlboveformula 2,13 pronosed . | :

in 0II. It is found that there are no Fegge poles—uﬁhet is, singularities
of'the'form J =YJ(z)-¥bﬁt there appeér for a given value of .z an

inflnlte number of singularities which depend upon the eubenergleg, and
'-ﬁhlch are restrlcted to a flnlte reglon near the orlgln.o

.Finally,‘tnese results are usedbln Sectioo IV tovprove that 

in ﬁhis.model the Jost function DJ(Z) does not exisf,for complex .J, ;

i ot

~and its relevence ‘with- resnect to the whole three—body Regge poles

'problem is also dis sed.
"II. THE MODEL

vv.Let us_consider a system of three particles,_with‘the following'

U S G S

assumptionsi

Sy m o S IV
(i) The masses are m, = m, = mj my = M : -

(113 If V,, represents the interaction between particles i and. j,v,_f

i
we take V # 0, V' ,# 0, 'but V.. 0. Moreover the nonvanlshlnﬂ_ ~ 

[T

12

'1nteractlons are taken to be superp051tlons of Yukawa Dotent;als.‘v 

Let us first discuss-the kinematics. Ve dencte by k (where'

Ny e e s mew et 6 e

a =1,2,3) the momenta of the uhree partﬁcles,'whlch satlsfy Ca

kot k, +k, =0 o (1TLy) v

- v e - B P - PR — e
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in the total center-of-mass system.' For the two independent momenta
© we can introduce, for example, the center-of-mass momentum 3& of the

(B,y) subsystem (here-a # 8 # y; a,B,y = 1,2,3 or cyclic permutations)

* _
.. and the momentum;aa of the particle o« relative to the (B,y) subsystem:
» ;
3 - - (o % =m % ] | - (11.2) .
Pa N, mY g~ mB v s .
(m, #* m_m
(mg * m )2mgn,
3, — (m (5, %) = (n, + )% ] f
L= : bt o~ m . - H
%o \/ .( Ba B - Ty mB Y o )
eam (m, +m )J){m +m, +m _ :
a8 Y)( o B8 Y) i (1103) ’
In our model,
& L _ -}-E ‘
P2 - ql - 1 H .
> o7 .1 (I1.4)
Py 7% T % o
The third particle can have any linear momentum, because of
" its infinite mass; its energy ué = p32/2M being always zero. In the
— R 3 : ;
initial state, we define its momentum by f
> = = -+ > = > -+ : . ' 1T1.5) :
kg (k, +%,) = ~(p, + p;) - (1I1.5)
in order to stay within the total center-of=mass system. Because there
is no interaction between particles 1 and 2, the angle between Kl
and Ee——or Ei and 52-—13 an irrelevant variable, so without loss‘of !
- generality we can choose both 51 and 52 collinear in the initial state. ;
. The same is true when applied to the final state, but of course not

when applied to both of them simultaneously.
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We must now definelthé angular variables in'the three—body o i

-scaﬁtering amplitude.r ihe initial - conflvuratlon is given by a.t iaﬁyle’ E

'1'of 51des (pl, p2, ‘3) and the flnal one by another trlangle of sides ;

. (Pl : p2 , Esi); Then we choose the body-flxed axis’ z ald;ébpl;‘and :

.the  z° axis along-pl’. The initial triangle lies in the xz plane, and 1

: . S B BN : _ |

the final one in the x‘z' plane. The three-body'scattering amplitude is '2

. . . !

then a function of the subenergles wlwzml' 2' ‘and of the Euler angles : %'

v (aBy) whlch determ1ne the rotatlon necessary for taklng the Xy 2z system 2

of axis into the X y 'z! system. .One has : ....: ; ‘“ ‘,' : : R i

R _ . o - T i

where the notation p p/[p{ has been uoed When thervectors+plf“and*' )

p2 are colllnear, one also has i

%2;. p2( = co0s.8 = cos:0 .cos{B - sin 6 sin B cos «  , . (II.7) ;

) . S R S S ST - v ,2
where cos 6, the angle between pl'and Py is given by L v e

,'{. o N - e 5

et - - B I !

gos O = , : — (11.8) f

In this model the.two—bod&‘T matrix for particles 1 and 2 is . E

- identicallj:zero, so'TB(zT 2 0 in the Fadeev equations, and they look- ' E

like }‘

B -

o

i3 H 1 } ,Z‘I{



| T(l)(z)

T$l>(2)\\-

o{2) () 2(2) (4)

Md_ﬂo—

" (11.9)

The three-body collision matrix is given by the matrix element

LT T poiiong .
<Pl P, IT(Z)lplp2>» where

2(2) = @) e 2@y L (11.10)

It is convenient to recall here what the matrix elements of
- Co

i

'Ti(z), i=1,2, and Go(z) are: R

i # 3 ," (11;11)'

where the matrix element in fhe’right-hand_side is the off-the-energy- -
shell two-body scattering amplitude of the pair Jjk, and w, = pjz/Qm.

Also, in this particular model,

5,5, 16,(2) 5,5, ) = 3 -5, TFy (i)
1 P2 16gl2)IP Py 1ol 2. e
; . : wl + UJ2 - 2 - '

We will consider only the connected part U(z) = .U(l)(z) +

U(2)(z) of the amplitude, Qhere



The Fadeev e@uétionsvthén beccme f
ﬁ(;)(z) = -T (Z)G (7)T (z) + T (Z)G (z)T (z)G (z)l (z)

1

.' + (e, (2), (z)U(l)(z) L o

(2)(Z>

wlth a 51mllar equat;on for U
 III. SINGULARITIES IN'THE J PLANE

In this-particuler model, we analyze the'singularities in i
the J plane of the three—body scatterlng amplltude TMM' (w,w ,z) This.
.Wlll be performed in two steps: '

(a) . Using the Fadeev equaulon (11. lh) ‘we compute'in & certain
"approx1mat10n the connected part of the fuli'three~bodybSCatterihg;fk
' (1 ) o

amplltude, <ql q2 "fu z)lqlﬁg/

iA'(b); Once we: have~ computed dlfferent anprox1matlons for the U

natrix, we look at the 51naular1t1es in- J of TMM' (w,w 32), using the_}
'eyten51on to complex J pronosed in OII whlch is essentlally a |

generallzatlon of the Fr01ssart—cr1bov formula for the two-body case

_T‘;, (w,w ,z) : J( dadﬁé-d cos B(n 'p IU( )(z |5i§é>_,
ﬁéc— (G,B,Y) “ oo v";fféffIii)
M A

. Here.SMM,J(d;B;y)fare the rotation matrices of ﬁhe second‘kind

"introduced'in 0II, and the contour of integration in the‘cosvs

L (Tas)

e

ERR D U
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plane runs along the singularitiés of U Py p2 ’pl*2’ z), which, by

introducing adequauelv the notion of signature, can always ‘be mapped into

the right half cos B plane. It must be stressed Nere that these singularities

are in general complex, For simplicity, we consider only the case M'= M' = 0,

in which the functlon \o . (a B,Y) reduces to the more familiar Legendre

- MM
functions of the second kind, Q (cos B), and the o and Yy 1ntegrat10ns-‘
are not relevant. The generalization of the results to values of M and
M! different from zero is only a technical problem and does no? present

any new dlfflculty.

Let us now consider the flrst-order contrlbutlon to the connected

part U( )( )

T (5 ! 3'-2 -w )T (3..* p Z - Wy ) '
1'%1 **1? 1 2 o ' (IT1.2)

] . -
(L)l + 0)2 Z

Restricting ourselves to the case M = M' = 0, and putting =z
on the energy shell, we find the generalized Froissart-Gribov formula

reads

J - ] 7

2n 2% .
o
= [ da 0 & cos BTl(pl',pl, cos 8,w2')T2(p2',p2' cos B,ml)QJ(cps B)
ot =dy Joo ) : ’ | |

(II1,3)

vhere E = wy +'wé‘= wl' + w2*_; The contour of integration in the cosg

blane runs along the singularities of the function TlTQ'



e, -
o e T 3‘ - R !
| The 51ngular1tles.1n J of TOO (pl p2 . plp2, E) asvglvenva
by Eq.'(III 3) are determlned by the asymptotlc behav1or in cos: B g
i;cf»Tl.end T‘ Thls fact can be shown 1n the followxng way cwe can:.:,
T/rewrlte (III 3) as.
R I *p ' p"p E)
S 700 'Y T2 2 it o
TR —— T-Hine ] . 58 I Y t Y :
= . .dag{e ceeg.Tl(gl,pl{ cos 8w, )A?z(p2 sP,s COS B,ml)QJ(cos B) +
s R N PR e o :
['d coss AT (p L cos B m")T (p p . cos B, wy )Q (cosB)}
: 1 l 2 2
‘ (III n).
_This is of the form = AR
= J,'_dxf(x)QJ(x)_) ol T (IInLs)
'.,and[if:f(x)—e Xa‘When X‘4'”§Vit is known that“aj:haé'poles'at o R
- - c S . B T O i
J=a7‘n n=0 l.oa.' ’ R . E o
: Tne Regge pole analy31s can be extended to. the off-the-energy- “5*-f5' ?
ishell two-boay scatterlng amplltuae,;¥sso, when cos 8 ~+ ?, T(p,p 3 cos 5; 2)
' e<vexh1b1ts the. Regge behQVLOL.;vaW“f-;f
T(p,p'; cos. B;' z) ~ g(P_,P';Z)(cos 8)0‘ 25, 7 - (II1.6) f
o . T S ST ;
The discontinuities AT have'the'same power behavior as the H
' amplltudes in cos 8, "so both terms in bq. (III L) yield essentially- ;
' £
the ‘same 51ngular1t1es.i The agymptotlc behav1or of the’ flrst 1n+egrand .
. . . t

for example, is given by

Al
H
,
! H
.
V. O U PU g S U e e

<



a1l

. A . a(mz') i
: Tl(pl',pl"cos 8,w2')~v gl(pl',?l;wQ')(cos B) . (III.YQ
Y _ ' a(w)
’ATQ(PQ"PQ’ cos B,wl)n. g2(p2',p2;ml)f(6,ml,a)(cos 8) , (II1.8)
where
: ' . ale,)
f(e,wl,a) = (cos 8§ - i sin 0 cos 6) . . (111.9)
Then
- _ oc(wl)+a(w2') . :
TlAT2:~lglg2f(cps.s) v . | %6111510)
Therefore, we conclude that this first—order contribution to
the conﬁected,part yields poles in TOOJ'at
. ; ]
We consider next the contriubtion to U(l)(z) of the second
iteration,
“+'—> S
L, o0y sPpstm wy") o |
ne . " - . — (] 1] - 1 '__
P T . e+ e - 2) Fipy'spy"spys €05 Bz —uythz - uy)
1 2 1 2 ' '
(I11.12)
o~ ) ) . .
‘ where the function Fl is defined by o
R

TR

© e e et o
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. . :" . | ‘j‘ ,’.- . ‘. i ‘.- = A " . . "/\ '_ . A "' -. :',b 7
. Fl(Pl ’Pl ’pls cos B,Z ) wl »2 . wl) [dpl Tl(Pl ,Pl ’Pl pl 22 U.)l ) R

- X T (Pl ’pl’Pl i pl’z it wl) : '

(III 13)

Notice that in'(111.12) wé" /2m In order'to find out

the- slngularltles of the corresponalng TOOJ’ we need to know the asymptotlc

’ behaV1or-1nvcos B for T2>and‘Fl° _The behav;or of T2 is_immedidte:

To(py'sPps €08 Byz = wy') ~ ,5(0,"p,52 - 6,")F(8,2 “;‘ Wy G)(cos B)m(znw2 v .

(III lh)

)

 The behavior of Fi,can'be obtained by using the unitarity integral

(II1.13), .In fact, introducing the expansions in Legendre polynomials,

(l) R --! . ( ) -|' n o,y /\' ‘A'tl

(2)
Tl

e
one has_f

T N S N PRI S
Fl(pl_’pl ,pl,pl‘?pl,szl,'22>.v 2(21 + l)AlA (Pl ’P:l"'zl')AQ" (Pl 9?1?7‘2)_. .

£
;:: A  ~/\ o .
X ,R(pl  .2 . o SR (;11.17)

(ITI.15)

o RSt A VR EA
(py"sp5D, "2y 52,) = 1 (20 *:l)Az‘ )(pl",pl,zg)Pz(pl".ﬁl) ; o (I11.16)

R e e W

P A 2 o5 A

o

R R

oot e

(;’!
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By making a standard Sommerfeld-Watson transformation, 6ﬁé"sees
“that Fl has contributions from the Regge poles of both Tl(l) and ' v ‘ o

Tl(a); so the Regge formula looks like
-2ai(zl) + 1

: . . ﬁb " " . '1 - g (l) " [}
v : . *l(pl ’pl :Pla €os Bszlzz) . gi (pl ,pl ’zl)
o sin nai(zl)

" .
4

-

L@
a

X

(plngplyz2)Pa . (COS_B)
i(z » i Zl) s

1

20 (z,.) + 1 ' ;
zg: L - (2)(' " P 22,) |
€y Py 2P%) .

sin ww (z2) .

~+

J ;j " ‘.‘\
(1) "
x A (py'sp,"s2,)P (cos B)
aj(zz). 1 1 1 ad(z2)
-+ background integral . (I11.18)

i
It is convenient to notice here that A
. a‘(ZQ)

(1) (Pl' spinszl) and

(2)

A (z )(pl",pl,zz) are analytic functions of the p variables, with only the
l . .

o,
B R

left-hand cuts in thém, and the right-hand cut in the =z variable., As . ¢

a function of z., A(l) *y has the form _ : f
1* “a (z,) _ . : !
3 2 ,
. . ; ] 1" v )
(1) sy R L
AGJ(Z2)(pl.’pl ’Zl) = ( ) ) (z ) # backgrpund 3
- . ' PR AL K R | .
(I11.19)
v, (1)
so A has also a pole at z, =

1 %



S _1ntegratlon upon wy

A ‘to A a(-m) = —l, is shown in Flg. l Next one can see what the slngularltles-‘-

E left~hand cuts in the pl varlables, then we’ conclude that in the

B,
e v e

;.':Con 1aer1ng only the leadlng Regge trajectory ‘in (III 18), wev;;7_”ﬁ“_}jjf§
flnd that as- cos B > ey Fl behaves 1n the follow1ng way .
T , a(z-w ') Ce L -f;
. ~ = - - v
) Fl (COS B) o G (pl vpl :Pliz wl ,Z (L) ) o

o alz=w. )

+ (cos B) l G (pl ,p1 ,pl,z - wl,z - ') . . (IrI.20) @

The technlques used in the analy51s of the flrst Born term 3

_ cannot be annl;cd here at once in Eq. (III 12) because of the® addltlonal:

l

5 It is necessary to make use of another trick before,‘

17”

2

‘n'Wthh consmsts in Changlng the,varlable in the W
to o mev variable A defimed by . . H

1ntegratlon, by g01ng

Av'=‘ a(z - w,

"y -..vv”"[ t‘ SRR (III 21)
. Suppose we have a typlcal Regge trajectory a(E) for Yukawa potentlals,_

'fthen the contour C of 1ntegrat10n, g01ng in the’ x nlane from k = a(z)

‘of the 1ntegrand of (III 12) are in the A plane. The propagators yleld

'xpoles at 7 - w2 = ml and z - w2}- 1', sllghtly dlsplaced from the real-?f-

axis when z 1s put on the energy shell, 50 they map into poles at

’flA = a(w ) = i and ‘A # a(wlf)7= di If we now remember that uhe
,‘functlons Gl and G2 are proportlonal to A N ,)(pl ,pl,z -y ) and o
(1) , |
a(z w )(pl ,pl ,z - wl ) respect1vel3 and that these functlons have

n2

= . to some -
2 ,

2" plane the 1ntegrand of (III 12) has cuts from w

value wl E(Pl ’Pl) < 0, 80 this glves a cut in- the A plane from B N}

o ¢ vy A g et v e B - e e o S et PR e e e
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alz + &) to a(+«9} "All these Singuiarities are also shown in

Fig. 1.

In this way, the integral in (23) transforms into an expession

of the form (we suppressed irrelevant variables)

. ' . ' : 1
Af : . /, ax o , {_ X+a(z—ml'¥ Hy Hy
) d cosg QJ(cos 8) | m—=—————_¥(}) (cos B) \ +
. . _ ) - - '
Jb | ai ol . A @y A &y
§ alz -_m2")J -
. : -" R
wa(z-s) T2 T2 ]
+ (cos B) . ' + J
1]
A-al _ A—al A

Next the contour C can be distorted into the contour C' plus

‘the contribution of the poles‘al'and al?, which can be explicit

evaluated. These poles yield the.following.contributioné'to To

vhere z is put on the energy shell:

| { s ' | w(@l) al+aéz—wl’)
a) 04 cosBﬁQJ(cos B)- Hl(cos B) :
j‘ T ' (e ' '
| .v‘d(z - weéjlli_ o
' AT
' ::i:;\ pole at J = a(w,) + a(Q ") |
AR R 2 ’

1y
Ji
O)

t(1I11.22)

\

e s € Nt iam e

i o o g



, Ca '+a(z%uﬁ )
_H‘(cosB):L ) L

= ,>Ibpole‘ at' J a(w’l ) ,f a(w2 )

'qt(a .) -

e SRR } . » al+a(2-wl)_
d cos B"QJ(cos B)' (cos 6) SRR

Ld( z - 92" )-c

::L‘)pole at J = a(wl‘), + “(‘A"z)‘-" S
SRR N ¥ (o ') e L -“'i'+a(z-wl)
@ cosBQ {cos B) '(cos B) i
AT BRI V) |

| SV |

" In consulerlng the rema:mlng 1ntenral along the contour C' |

" we can 1nterchange the order of 1ntegrat10n 1n (III 22) and get
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H

B!

fl‘ : Y(A) | + ‘i a cgsBQJ(cos B)(cos B)
;j’! X R NP
! ,
: ' 1 . .
ax _ ( 1y i ‘}‘ fo atalw )
T A —— S O + | 0 @ cos B4 (cos 8)(cos B) 2
| ax ] W ma A=ati] J o
. . b
d(Z - wgn)j v 
and the contribution ﬁc TOOJ is of the form
, ' v i
Ty ™~ ax + ar- . ‘(111.23)
¢ Arale)) =g o A+ “sz).' J S

so this gives two cuts in the J plane;

{1i) a cut from J.

(ii) 8 cut from J

a(z) + aluy') to 7 = a(==) + aluy’) .

a(z) + alv,) to J = a(-=) ‘ alu,) .

In a completely analogous way we can analyze the contributiOQS'

of the third iteration term:

-

"2 1] 1"
Py 4py P,

2

dp,,"

Jo=

2

- z)%ml" + W

"

2.

- z)(w

Mo w ! -z)

2 1

; L n .y. s ¥ ey M
Pl(pl 2Py 2Py cosﬁB,z wy "y 2wy )

L x Eé(pe',pg",pg, cos B,z~w ",z-we),

(ITI-2k)
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 where _

. ‘ Lt N "A . s ) . ] . . ‘ ] . o . : " A ;! o
Fo{p,'s0 " oD, DD, b2l 425). = @B " (b, ',p, "D, " B, sz
Vl\pl ,pl 9p1 ’P‘l“l‘)iszl,’éa‘)—v T . ' Pl 1(pl ’pl ’.‘pl. ).l .’. l)

This term gives, besides all the»singulafities\which have beeh‘
got before, the following cuts:
(i) cuts analogous to those already obtained, but in the vatiables :

“i’“l'ﬁ

i

(ii) a cut ffoﬁli ka(OQ + a(wﬂ)'ﬁdiJ‘= é(m),+ d@dé);

'  {i31) a cut from Jv; <1 + a(®) to J = a(E) + a(0) >.  _ ' 'j'~ , b
| | 'If'we'ﬁrﬁ'td»gélto higher crders in ﬁhé iterativé expansions .
_ of th Fadeev equations,.we can See-thaﬁ in a.givén diagfam all the
"blobs™ cohnécting nafticles'l énd 3 can be colle;£ediia'arcertain |
_functlon Fl which exhlblus a Regge vehavior Qhen cos B -+ w, énd'aiso

the "blobs" connectlng part¢c*es 2 and 3 in snother fuqotlon ¥, with'

2.
. .
"-the same'orope*ty. For cos B -~ w, anv arbltrary 1n+egrand shall behave
R S S S .
as. (cos B) 2, and there w1¢x neve: ‘be 51ngula¢1u1es in uhe rlgbt-half

plane dpflned bg

J > -2 max LRe a (w)]

N
i

IV. CONGLUSIONS

We are now able to discuss the extension to complex J of the.

'rredholm QOlUulOD NNM' (w,m'gz)/Dd(z) of the Fadeevw equations.: We

x 2.(p,",p,,5,"-B;.2,) . . (1IL.25)
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know that for a given value of z the scattering amplitude TOOJ(w,w';z)

has an infinite number of singularities which depend upon the subenergies.

Let us take, for example, the poles at J = a(w,) + a(wz'). Although we

1

have considered only a Newmann series expansion of the Fadeev equations,

that type of singularity appeared in ény term. considered before and one

'intuitivelyjexpects those poles to survive after the series has beenn

summed because they actually are intefpolating singularities between

bound states and resonances in our system. Then the question arises:

b

Are they poles in NOOJ(wl’,wi'z)? The answer is no, because for the

particular values of Wy and w2' which give a bound state in each sub-

system, we know that NOOJ is nonsingular, and that the singularity in TJ

l
arises from a zero in'D;(z); J -being, of course, the physical value of:

the total angular moméntum of the degenerate bound state of the
three-body system. Thérefore,all those singularities hust arise from
zeros in DJ(z) vhich for a given‘value Qf the total energy has therefore
continuous lines of zeros, so that it must vanish_idenﬁically.

| We can conclude that this model pro&ides a Qounter example in
which the exfension of thé_NJ/DJ solution of the PFadeev equations is

not “expected to exist., The results of»this analysis also shoﬁ that any

'

attempt at reduging the -three~-body problem for complex J to an integfal

fequation with compietely-continuous kernel must necessérily fail.,

The facf thaf we did not find Regge poles in this example must.
not be takenvaé a proof that Regge podles dq not exist in general 'in
three—quy systems, because tﬁis nodel is a very simplified version
of an actual system, and it can be shoyn that in more realistic models

unitarity yields Regge-type singularities in TMM'J‘ Nevertheless, as

N T T LI
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realrlife'situations are dsually more complicated than simple models,

We'cahnot'helpvfeelihg-that_they'aré not goihg'ﬁo'be the -only singularitiesvl

) in:the J plane, because the non-Regge sihgulafities that we found depend

S e s

Vs1tuatlonse

-"ugoh eo many subenergy.parameters that it seems very difficult to cancel -
them in general andbget only clean Regge,singularities. If this is the
',caee, then the'Regge pole concept will;not_be very useful_in analyzing

_the propertieSiof'three-boay systemsi

Forethebsake'of complefeness,-let ds note that the same analysis
. . . o s

coﬁld.be'done if, in place of fixing the values of M and M', we were to

‘fix the relative angular momentum of one of the "eiectrohs" with the

"nucleue."' (That ch01ce has been made by Newtonl and Choudhury.h) 'Here

agaln, and in a much more elementary way, one could get poles dependent o

73upon the subenergles. The same conclu51on, namelj that no Fredhoilm

‘equatlons can glve thls result would stand

vFlnally, let us. say w1thout proof.that.the pfesent model.gives »

only Regge poles when one analyzes the scattering of'one'"electron"

" on the "hydrogen atom." Obv1ously, the’ most 1mportant problem in this

' fleld by now is to flnd 1f thls is. also the case 1n more. reallsth'”w
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FIGURE CAPTION .
Singularities and paths of integration

typical Regge trajectory a(E).
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