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ABSTRACT. 

A numerical model haa been constructed to demonstrate the 

propagation and abso!'ption of ion .... cyclotron waves in a previously reported 

experiment. Ion-cyclotron waves in a deuterium plasma induced by a 

radially applied 8.3-Mc electric field propagate in a magnetic-mirror field 

to a resonance region.where the ion-cyclotron frequency approaches the 

wave frequency_. The numerical model considers the wave propagation in 

the nonuniform. divergenceleoo magnetic field with spatially nonuniform 

plasma parameters, subject to boundary conditions modeled after the ex-

periment. The model is baaed on the macroscopic equation of motion, the 

generalized Ohm's law, the wave equation, an equivalent resistivity repre .. 

senting the effect of ion-cyclotron damping, and damping by collisions be­

tween deuterons and other particle speclea. The equ.a.tions are solved nu­

merically by a single-line block over-relaxation technique. The numerical 

results are compared with the experimenta.l wave measurements, arid also 

provide information regarding current distributions. wave polarizations, 

evanescent compressional wavea, and ro!lections from the n-esonance under 

certain conditions. 
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I. lNTRODUCTION 

A review of experiment on !on-cyclotron resonance in plaemae, 

has been published by Hoolte and Rothman. 1 In moot of these experimenta 

the ion-cyclotron wavQe are excited by an iri.duction coil (around the out:Jlde 

of the plasma chamber) that applies an rf magnetic field in the radial a:1c' 

a.'U.U directions of a cylindrical geometry. in our experiment tho wav0 \vn.o 

excited by the direct application of a radial r£ electric field to the plasma. 2 · 

A £ur~her d.iffel'enco lo in the aignificantly steeper magnetic -field grQ.dient 

eJmployed in our experiment for the traneitlon between the excitntion region 

and the ion-cyclotron rersonanc~. • 

A large literature exists on the th~ory of plaoma. wavee and ion-
. ' 3 

cyc::!otron damping. Mollt pertinent to this paper are the works _of Stix; 

4 5 ' Allis. Buchsbaum. and Bera; and DeSilva.; each of these contains a 

large bibliography on these topics. More recent theoretical studies of ion­

cyclotron damping have been on aspects such as the effects of collision~· 7 

an approximation by the method of geometrical optics, 8 and several studies 

of charge-particle motion near cyclotron r~sonances. 9, 10• i i 

In general the various theories are concerned with certain compli-
- . 

cations separately but do not attempt to consider all the interrelationships 

between the effects. In order to clarify certain aspects of this experiment 

a theoretical model is required for the propagation and absorp~ion of ion­

cyclotron waves in a bounded plasma in a nonuniform divergencelees mag-

netic field with provisions for collisions between species, propagation in 

various directions relative to the external magnetic field, and non-

uniformities in temperatures and densities of ion, electrons. neutral 
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particles, and impurity ions. Such a. model hao been constructed numer­

ically to oolve the magnetcbydrodynamic equa.tiono and thc:reby determine 

Ule rt'AD.tu:re of the· propagation and absorption of ion.cyclotron wav'ea in 

alxbitra.rily assumed nonuniform conditions. 

The numericm.l model lo baaed on an i~pedance tensor derived 

from the macroacopic equation of motion and the generalized Ohm's law~ 

Since these equations do not include the cyclotron daz:nping mechanism, 

an equivalent reeiativity tenser is derived and added to the impedance 

tensor to r\tpreaent the sffec:t of ion .. cyclotron damping. The reoulting 

tensor equation is combined with a wave equation and solved numerically. 

The solution ia determined by a cet o! physically realiatic boundary con­

ditions. 

B. Notation 

Vectora. unit vectors. tensora, and mntricea are indicated as in 

thes;e examples: vector, Et unit vector, !-: tensor or matrix, z • Vector - -
and tenaor products arc always dot products unless the cross product b 

specified. The dot h umually omitted • 

. Time -dependent quanUties associated with the wave are actually 

real functions of position and time, but are replaced by the real part of 

their complex Fourier transforms. When monochromatic time dependance 

is assumed. 

E (!. t) = Re[ _!E(!_) e ~iwt] • 
• 

ln keeping with common practice, we freely replace the real vector E(r, t) 

wi~h the complex vector !(!.), which consimts o£ three complex components 
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each with an amplitude and a. phase angle. The factor e Aiwt a~d the 

notation .R.e are dropped since they occur in every term o! the equa.tiono. 

Superscripts denote the components of vectors. The four epeciea­

ions, electrons, neutral atoms~ and heavy impurity ions -are indicated by 

the subscripts i, e, n, and 1. When the opocies is not indicated it is ao-

sumed to be ions. 

Since a nonuniform magnetic field h not everywhere parallel to the 

a.xia of symmetry, the terms "transverse'' and "longitudinal" refer to th0 · 

directions perpendicular and parallel to the external magnetic field. The 

term "axial" indicates the direction parallel to the axis of symmetry. 

The oymbola uaed in thilll paper are listed below alphabetically: 

b wave magnetic field 

B externally applied magnetic field 

c velocity of light 

e electron charge 

E wave electric .. field vector 

z' f(u ) distribution function for longitudinal ion velocities 

l wave current density 

k wave number 

m particle mass 

n particle denoity 

!'tj rate ot momentum transfer per unit volume £rom species J to 
I 

epecieo i 

P = VX(VXE) defined by (Z. iS) - -
P eye power absorption per unit volume by cyclotron damping 

!. e cyclotron reaictivity tensor 

.,.· 
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t time 

u velocity of an individual particle ,' : 

!. macroscopic velocity of a t!lpecies; .: ' 

X. - qua.ei-reactlve tensor 

z impedance tenaor · -
z:r..x' z:rty' zzs m.a.trix elements o£ !• defined by (Z. 14) 

j3 + defined by (2. f. i) 

y momentum-transfer coefficient 

f.l.
0 

permeability o£ free space 

vni = n1 u111
i u ion-neutral collision frequency 

l ohmic resistivity tensor 

.., 1 transverse ohmic resistlvi~y . 

'Vlu longitudinal ohmic resistivity · 
. . 

'llc magnitude o£ cyclotron relistivity tensor 

p. 8, t nonorthogonal coordinates defined in See. II. F. i 

p 1 = n1m 1 ion-mass density 

p 1 complex maaa density 

crni c::harge-trano£er erose section 

w wave frequency 

w
0
= eB/mi ion·cyclotron frequency 

0 = ~ ~Pi' (This pa.ra~eter approaches unity at the ion-cyclotron 
~ pi . . . . . . 

resonance) . 

• 

.. f:l 
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·u. THEORY 

A. Megnetohydrodynamlc Equations 

The set of equations describing the propagation of nonresonant 

magnetohydrodynamic (MHD) waves in a med,ium consisting of singly 

charged ions, electrons, neutral atoms, and heavy impurity ions consists 

Qf a macroscopic equation of motion, a generalized Ohm's law, and two 

linearimed Maxwell equations: 

a vi 
nmi.a;- = l X B +Pin+ Pu: 

E + !. X B = i • l + l X JY en, 

VXb= iJ. j, 
- o-

8b 
VXE=- ~. - at 

I 

(2.; ia) 

( 2. 2.) 

(2. 3) 

(2. 4) 

5 . 
DeSilva ham derived this set o£ equations under the following ap-

proximations: 

a. Linearity (i. e. , b << B), 

b. Charge quasi-neutrality (i.e., n1 ,::: ne = n), 

c. Neglect of vp, 

d. Neglect of terms of the order me/m1 , 

e. Neglect of displacement current; this is valid when the plasma 

dielectric constant (K = 1 + (nmA/€ B 2)] is much larger than unity, 
;a. 0 

f. Neglect of !. · V!, terms. 

The Hall-effect term in (Z. Z), lX B/ en, is the term through which 

the effect of the ion-cyclotron resonance enters these equations. This 

term is often dropped by authors who. reatdet themselves to Al!v€n waves 
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of frequencies far below the ion•cyclotr(ln resonance. However, we have 

not yet inserted the ion-cyclotron damping mechanism into these equations • 

.. , . 

B. Collisional Damping Mechanicms 

Three typos of collioional damping mechanisms have been intro­

duced by momentum-transfer terms, ·each of which is considered propor­

Uonal to the Irelative macroscopic velocity of ions with respect to some 

other species: 

z 2 
P = en vt • j = e n 11 • (v1 - v ), 
- ei """' - -.~. -e 

pi -I 

-iwp 

= 'Vn <!..t. .. !.n) = i-iw/v:U ..!i ' 

Transfe!' ofmomentum from ions to any other spedea is a vh::cosity 

e!£ect that inhibits the transverse wave motion. Momentum transfer be-

tween electrons and other species is qualitatively similar, but ia smaller 

in ma.gnitude·by the ratio me/m1 and is therefo~e neglected with the 

e::~:~:ception of the ion-electron momentum transfer. Since P i = - P ~ , . - e -e,. 

these terms cancel in the equation of motion (2. ia), and generate the ohmic 

resistivity term (!!.. J.) in the generalized Ohm' a law (2. Z). The ohmic 

resistivity is a tensor of the form 

,.l 0 0 

, = - 0 ,.1. 0 • 
0 0 'lu .. 

where , 1 and , 11 , the ohmic reaifltivities across and parallel to the 
.· . il 

magnetic field. have been computed by Spitzer. 
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Since the ion velocity perpendicular ·to the magnetic field can 

become large at the reson.a.nce 0 the rate of momentum transfer and conse-
. 

quent damping due to all three collision. processes becomes large at the 

:resonance. In an ion-cyclotron-heating experiment it is necessary to as-

certain which process is primarily responsible for wave damping observed 

at the resonance. 

DeSilva has shown that the effects of ~ . may be represented by a 

complex maae density. 5 The complex density can alao includ~ the effect 

of Pli • We can therefore rewrite the equation o£ motion aa 

(2. ib) . 

where the complex ma.so density p 1 includes the effects of neutral atoms 

and heavy impurity ions 

(2. 5) 

C. De.rivation of lmP:edance Tenaor from the MHO Equations 

The set of equations (2.1b), (2.2), (Z.3), and (2.4) involve four 

complex-vector unknowns asaociated with the wave: E, b, th and vi. 

The £our equations can be solved analytically if the parameters pi' !'.' and 

B are spatially homogeneous and if purely axial propagation is assumed 

{i.e.. with solutions of the !orm f(r) exp[i(pz - wt)]}. In the present exper .. 

iment these co~ditions do not pertain, and it is necessary to solve the 

equations under the more general assumption"' that the pa.ra~etell's pi' !1.• 

and B are arbitrarily specified functions of positon with axial symmetry, 

and that the propagation will be in unknown directions [l. e., .with solutions 

of the form f(r, z) e -iwt]. These generalizationa require numerical tech­

niques for solution. 
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The set of four equations may be combined into one equation with 

one unknown. For the numeri-cal technique it iG convenient to eliminate 

aU unknowns except E. This ia _accomplished first by conibb~ng.~q.s.:(z~ ;1b) 

and (Z.Z) to eliminate v1, thereby obtaining another form of generalized 
' .· . ' . 

Ohm's law. We then combine Eq"· (2.3) and (2. 4) to eliminate b and 

obtain the wave equation, replacing the time derivative with .. iw. After 

son1e algebra to express the firot result in tensor !orm, we have the two 

equations 

(generalized Ohm's law) (Z. 6) 

and 

(wave· equation). (Z. 7) 

Here the impedance tensor ! is defined by the new generalized Ohm' a law 
. . 

(2.6); its inverse z .. 1 is ~he conductivity tensor used by some authora.4~ 6 .... . . . 

It is related to the pbema dielectric tensor by the relation 

K = 1 + (1/ WE J z. -i. 
- - 0-

The impedance tenaor is composed of a Hermitian part and an anti­

Hermitian part. The Hermitian part includes all the damping mecha.niomsp 

whereas the anti-Hermitian part describes the purely reactive impedance. 

D. Equivalent Cyclotron Resistivity 

Before proceeding to the solution of Eqs. (2..6) and (Z. 7), we must 

insert the ion-cyclotron damping mechaniom into the impedance tensor. Vle 

do tb.is by computing an estimate of the power absorption per unit volume 

by ion•cyclotron damping following Stix, 3 Sec. 8.2. We then express ~his 
• 

power density in a form analogous to Pcyc = rcj 2, thus defining a resistivity 

' _, 
i 

! 
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tensor r to introduce the effect o£ cyclotron damping. In this model we 
-c 

are considering only the resistive effect of phtl.se mi.Y.J.ng, ignoring the re· 

active effect. Stix3 finds that the reactive correction due to finite ion 
. z · · -z• z. 

temperatures may be ignored if a_1 ·» i, where o:_1=[w-wc/k u ] and u 

h the ion thermal velocity parallel to the magnetic field. Sachs 6 fJ.nds an 

almost identical criterion that justifies the use of moments of the kinetic 

equations, which is essentially the method used here. We find that for con­

d\tiona of this experiment thh criterion is satisfied e':cept !or a region 

w;.thln about 2 em of the e%act resonance. Moat of the .cyclotron power ab-

sorption occurs before the wave ·propagateo into this region. 

1-"'ollowing Stix' a computation, 3 we find the power absorbed by ion .. 

cyclotron damping per unit volume is 

(Z. 8) 

where 

~+ = f 
-~ 

We are using e Cartesian (x• • y'- z') coordinate system such that the z' 

axis ia parallel to the external magnetic field at a given point. 

The integral t3 + is a function of the time for which an avero.ge ion 

remains in the conditi-ons described by the equation of motion. In a non­

uniform magnetic field this is usually the tirp.e required for a resonant ion 

to move into a significantly different magnetic field due to its axial velocity. 

It is impractical to determine this time accurately, but the integral can be 

evaluated when the time is sufficiently short or su!ficiently long for the two 

limiting cases: 
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z' a. If ((&)•We • ku ) t << il the sine can be replaced with its argument, 

and ~ + is linearly proportional ~o time: 

~+- t ,zt zi ,. · · kuz' ~ 
· du f(u . )( i · -) • . wt · (2. 9) 

•CO 

· · In this limit the relative phase angle between the circularly polarized E+ 

component and the ion gyro velocity is conotant • 

. · . . 

b. if (w-(1,) .. ku.z ) t>> 211'. we can consider that the factor . c: . •' . .·· . . . 
z 1 z' · · 

£«u ·) (i .. ku /wt.) ia virtually conata.nt in a velocity interval over which 
. . . t G 

the sine function oscillates several times. The ratio[ein(w-wc-kuz)t/~..wc cltu~ )] 

behavee like a delta function, and the integral approaches the following reoult 

for. asymptotically long times: ·· 

1\'W W•W 

~+- ~ !(~). (Z. 10) 

For times between these two limits, the integral wUl oscUlate for 

several cycles. It is out of the question to compute details of the oscillation 

without knowledge of the time t. so we simply el<."tend the two limiting case a 

(2.9) and (Z.iO) until they in~ersect. The damping power is computed by 

each of these equetiono, ·and we use whichever is smaller, usually (2. 1.0). 

The propagation conota.nt k is eaU.rm.ted by the phase velocity of tho· to:rGional 

mode 

. w J ~oP i 
k = tr 1-d • 

(T~e estimate can be checked after solution of the equations. ) 

• 

.. 



UCRL ... H.6i9 Rev. i 

By use of the generalized Ohm's law (2.6) and the hermiticity of 

the resistive and reactive tensoro, Eq. (2. 8) can be put in the following 

form after some algebra: 

(Z.ii) 

The eydotron reeistivity tenoor ia therefore defined as 

i i 0 

.!c = "lc: .. i 1 0 (Z. i2) 

0 0 0 

where 

= ~Z~+ we 2 
'l'le (- .. i) • 

nm w 

Examining this reault, we first find that !c: is Hermitian and that 

consequently the cyclotron power absorption computed by (Z.1 i) is renl. 
+ . . 

The factor (3 causes the cyclotron resistivity to be large near the c:yclo~ron 

reaonancer and vanishingly small ebewhere. The brec.r.dth of the resonant 

regime is determined by the ion thermal velocity through the dist:ribution 
z• . 

function f(u ). The o!f·diagonal matrix elemente have the effect of applying 

the cyclotron damping only to the rotating component of the transverse wave 

~hat is left•circ:ulady polarized; 1. e., in the direction of ion gyration. It 
. z 

may appear that the !actor [( wc/w) -1] introduces tho incorrect behavior 

when we- w near the resonance, but this is merely due to the. definition 

. • . . z 
P = 1/Z j • r ·l· The factor [(w /w) ·i] ia cancelled by the great eye - -c c . . 

increase in the tranaverse current at the resonance. Near the reeJonance 

the cyclotron resistivity is one or two orders of magnitude larger than the 

ohmic resistivity for typical conditions • 

• 



. . 

UCRL-1i6i9 Rev. 1 

E. Total Impedance Tensor . 

We now add the cyclotron resistivity to. the impedance tensor 

previously derived, thua inserting the mechanism of ion cyclotron damping 

into the generalized Ohm' EJ law (2.6 ). The total impedance tensor iQ now 

the sumo£ the ohmic resistivity tensor, the cyclotron reaistivity tensor, nnd 

the quasi-reactive tensor multiplied by 1. 

zxx z 0 xy 

z=!l+r +ix= -z z 0 
- .o.c - xy XX 

. . (2. 13) 

o: 0 z zz 

where, for abbreviation, 

l .. 
= 11.1. +Ttc + i:a / wp 1 

= i 'lc + B/en 

= 'l'lu. 

F. Numerical Solution 

The numerical techniques are briefly outlined in thia section and 

described in more detail in reference 13. · 

Having derived the impedance tensor m, which is assumed to be a -
known function of position in an inhomogeneous plasma, we are ready to 

commenee the numerical solution of the equation formed by combining (2.6) 

and (l. 7): 

(2. 14) 

[Here we have defined the vector Pae a.n abbrevlation £or vX(V XE).] 

• 

i' 
i 
i 
i 
I 
I 
f • 
i 
' I 
J 

f 
I 
f .. 
t 

L 
I 
I 
I 
I 

1 
I 
1 
r 

l 
I 
I ,. 

f 
·I 

I 

' I 
I • 
'· 1 
I 

!. 

f' 
.' w 

' ,, 
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1. Coordinate System 

In a cylindrical ge~metry it is normal to use cylindrical polar 

coordinates. However. this results in a c?mputational instability drive~ 

by the axial component of the wave, since the flux lines are not parallel 

to the z axis in a magnetic. mirror. The instability can be eliminated .by 

choosing a coordinate system such that the transverae wave has no axial 

component, i~ e., such that the transverse coordinate linea are orthogonal 

to magnetic flux liries. The .axial coordinate lines ar~ specified parallel to 

the z axis to simplify the boundariea. This combination of transverse and 

axial coordinate lines defines the nonorthogonal curvilinear coordinate 

system illustrated by Fig. i. The coordinates are designated as p, (), and 

1;, in analogy to the cylindrical polar coordinates r, 9, and z. Equation 

(2. :13) must be transformed to this coordinate system. 

2. Mesh System 

A. mesh system illustrated by Fig. 2 is established in the p - t 

. plane along coordinate lines, in preparation for conversion ofthe differen­

tial equation. (2. 14) to difference equations. The mesh should be as fine 

as possible to improve the accuracy and the computational stability. The 

limitations are the computer's memory and the time requirement. These 

requirements impose a limit of about 1400 meah points, which determines 

the mesh interval. The mesh system consists of 14 axial mesh Hnes at . 

intervals (Ar) of 0. 762 ern o.nd 99 t:ra.nsve!'tHl mesh lines at intervals (6z) 

of about 1 em in the plasma and 0. 5 em in the end insulator. 

3. Conversion to Difference Equations 

Vle now convert the differential equation (2.14) to a set of finite 

difference equations, in which the derivatives involved in vx (v X E) at 

each mesh point are approximated by the differences in_E. at neighboring 

points. • 
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At each me~h point we have three complex linear difference equations 

resulting from the three components of (2.14), and three complex unknowns 
9 . r, 

(EP, E , and E · ). The system of about 3300 simultaneous nonsingular 
.·. 

complex linear equations is (in principle) solvable. The solution is per-

fo1·med by an iterative method that converges to a solution within the desired 

accuracy, provided that the matrix representing the system of equations is 

computationally stable. 14 

UI. EXPERIMENTAL APPARATUS AND BOUNDARIES 

The plasma. ia produced from deuterium gas at 5.0X 10-3 torr pres-

sure and is contained in a copper cylinder 1.9.8 em in diameter and 94.0 em 

long, as shown in Fig. 3. The external magnetic field is supplied by the 

coils shown and is normally adjusted to provide a mirror field of a.pprox-

imately 1. 9 teslas at the enda and 1. 0 tesla in the center. These fields 

correapond to Q = 0. 45 and 0 = 1.1, where n is the parameter that np-

proa.ches 1. 0 at the resonance~--.., The axial and radial magnetic-field inten­

sities are shown by Fig. 4. The copper cylinder is closed by insulating end 

plates in one of which is mounted a coaxial molybdenum electrode of 6.25-cm. 

diameter and 7.5-cm length. Inside the copper cylinder at the driving end is 

an outer electrode, the radius ofwhich is designed to intersect the magnetic-

'-"' 
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(a) Electrode surfaces were ascumed to be in contact with the 

plaama because of rf currents at these surfaeoa. The electric-field com­

ponents parallel to theee aurfacee are therefore constrained to be zero. 

(b) The end screen is intended to be in electrical contact with the 

plasma. and there is evidence that contact iB actually established. The 

electric field parallel to the end screen h also constrained to be zero. 

(c) The side wall is evidently insulated from the plasma by a layer 

of cool gao perhaps a few millimeters thick, according to wa.vc measure-

men~s near the side walla. DeSilva ha.o chown in his Appendix F ahat the 

condi~ion at the interface between _the plasma and the insulating layer is 

Er = E 9 = Erz = 0, provided the layer thickness fallo betwe~~ certain 

limite. 5 

(d) The axial center Une must have conditiona ouch that the diver­

gences of ~· b, j, and v are not infinite. This results in the condition 

Er = EG = Ez = 0. 
r 

(e) The quartz in.oulator and ita boundarieo wer~ believed to have 

an ef!ect on the wave excitation, and were therefore included in the computer 

model. The mesh eystem illustrated by Fig. 2 was extended into the insu­

lator, where the mesh interval 6 z was reduced to 0. 5 em because of the 

ateep field gradients in the insula~or. The wave equation in the insulator 

takes the form 

z z 
V X (v X~)= .. ( w /c ) K 1£, (3. 1) 

where the displacement current io considered but the conduction cul"rent is 

not, and where K is the dielectric constant o£ the insulator. This wave 

equation was converted to difference equations and solved with Eq. (3. i) 

used in place of (2. 14) in the inculator. 
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(f) The boundaries around the insulator were treated appropriately. 

Tangential compcnants of electric fields a.ra required.to be zero at conduct-
... 

',. ..._ 

ing surfaces. An rf potential of 1000 V was specified between the· electrodes. 

The inner electrode io at the same potential as the conducting ourface at the 

outer face of the ins\J,~ator, 

potential am the out·er wall •. 

and the outer electrode is at the same ground 

· r 9 · · 
It was required that b, E , E , and the B.ld.al 

component of .the dillplacement be continuous across the interface between. · 

.the insub.tor and the plaoma. 
·) . 

IV. . NUMERICAL RESULTS 

·A. Presentation of Rcoults 

After a solution for .§ at each mesh point wac found. the solution 

was converted into .£ and j_, by (2.4) and (2. 7) •. The solutions were con .. 

ve:rted to polar form and precumted in the form of conto1.1r ploto produced 

by c. plot9;er as part of thc..:output. Each contour on Figa. 5 through 8 

rep:resenta a line of equal phase or o£ equal amplitudes of b or zk The 

t~bular output must abo be consulted in order lor one to understand some· 

aopecto of the:ae plots. 

The contour interval for phase angles io 300 • In the absence of 

reflections, the wavelength can be determined by measuring the opacing be ... · 

tv>~een contours and multiplying 'by tl. ·The contour interval lor amplitudea 

is iCP/o o£ the maximum amplitude found in. the chamber, and is. therefore 

different for each plot, as noted on the figures. 
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· B. Solution of Equations for a Moderately High Denoity 
I 

Figures 5 and. 6 show a solution that is fairly.easy to understand becauoo 

o£ the lack of complications that are discussed in Sec. IV.C •. The plasma 

parameters pertaining to this solution are a.a follows: 

ion density 

neu~rnl-particle density 

impurities 

ion temperature 

electron tempr.nature 

magnetic field 

location of resonanceo 

0 

0 

50 eV 

10 eV 

standard mirror £ield described in Sec. Ill 

z = 46 em and z = 54 em. 

A complete set ot graphical resulh ohowing phaseo and amplitudes 

o£ all components of E. b, and .J. consists o£ 18 plots. However, aome 

of thiGJ information J.s redundant, and we shall the:refore not reproduce all 

18 plots. 

1. Wave Currents 

Wave rf currents originate a.t the center electrode following an annular 

tube o! tlux defined by the electrode rad!ue. A similar annular current sheet 

is defined by the inner radius of tbe outer electrode. Moot of the current flows 

longitudinally to the vicinity o£ the ion-cyclotron resonance before flowing 

transversely to complete the circuit between the two current sheoto. The two 

current sheets are moat clearly seen on the plot showing the amplitude ol 

/~. Integrating over area, ws find that the total. axial currente at the ends of 

the two electrodes are eqw>.l in magnitude. (about 4000 A) but opposite in phase. 
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The transverse wave currant contJiats o£ p and 9 componem.tc that 

are almost equal in m3.gnitude but 90° out of phase. This io bccauce moot 
-

of the transverse ct~:rrent <:Onsbts o£ ions. following d.reula!" or spir~l or bite. 
. . . " 9 ·. . 
The difference between J P . and j is 'due mostly to the transverse electron 

#10 

current, wlo..!eh is almorafc ~ntiraly in the 9 direction and cancels some of 

. , .e ! ~ · t.oe J ,on curren~~o. 
·. I ' ' ~ .• 

Tha effect of indu.o:tanec .iG to minirilize the volume enclosed between 

the annular rf cuP:rent sheets. This ia the reaoon the current enterc and 

leavea the electrodes at the outer edge of the inner electrode and the inner 

edge of the outer electrode. 

The annular current oheeta were experimentally indicated by dis.-
9 . 

continuities in mea-surements of b and by direct evidence of plaama hom·_ 

bardment at the Gdges of electrodes .. 

The transverse wave current becomes large at the resooo.~ce· because 

of the large ion orbits and consequent low impeda-nce. All type a oi wave 

damping are therefore enhanced at the resonance. By comparing the equiv· 

alent cyclotron resi~tivity with the ohmic resistivity and with the equiva.leilt 
. . .. 

13 . 
reZJistivities due to other species, we can ascertain that ion-cyclotron 

damping dominates for this set of conditions. 

Z. Wave Polilrization 

The relative phase of bp and b9 may be deduced either !rom the 

tabular output or from tho dashed phase contours o£ Fi~. 6 which deaign.n.te 

the contours of 0° phase D.ngle. We lind a 90• phase difference between the 

two transverse components of ·~ b, and . .J.. at all point a between the two 

. annular current sheets. Tb.~ wave is elliptically polarized in the "left'' 

·direction (the direction of ion gyration) in thio region. The major axis of 

. ' . 
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. the elliptical polarizQ.tion is in tho p direction !or the ! and l wave £ielda 
A 

and in. the e direction !or the b wave field. As the wave approrr.chea res-
. -

onance, the polarization becomee nea.dy circular rather than elliptical. 

ThiG is evident in the amplitude plots ahowing bp and E 8 increaaing ae 

rG:6ona.nee is ap~roachcd. All this io charaetcriotic of the torsional mode, 

aloo called the T mode or the dow hydromagnctic mode, whicl". is the mode 

this expettiment waG designed to excite. 

From the contour phase plots of Fig. 6 we can see a large dheon­

tinuU:y in the phase of 't/1 at tha am:mla:> current ehceta, but no dirleontbiuity 

in the phase of bp. Thia ohowe th~t the ~relative phaae of bp and b9 under­

goes a large change at the current sheet. ThG wave is elliptically polarized 

in the right direction within the magnetic imageo of th~ two el<echodes, but 

in left direction in thea annulus betwoen the elactrodes. (The volumeo defined 

by the fiux lines interl!aeting the electrodes are called magnetic imageo. ) 

Next we notice from Fig. 6 that that bt ira large only within the elcc­

t:t·ode images .. The combin~Uon of large bt and. right elliptical polArbation 

io charactericti<: of the -c:Jmpreosional mode (aloe called the TLA mode o:r the 

fast hydroma.gnetic mode), V..:hich has been studied by Swanaon15 a.nd by 
. 16 

Spillman. 

Since the comp:reasiona.l mode is cut oif for the denoitiea o£ this ex ... 

pe:d.ment, the ,wave in the electrode imagos muat be evanescent, not prop~ 

ngo.eing. It ia alxeited by the tangential currenta (J9) in the annular current 

aheets, as a consequence of the finite gGometry. The energy in the com­

prescdonal mode (estimated by integrating b2 /Zp. over the volume) is 10o/o 0 ,. 

or less than the energy in the torsional mode, £or this set of conditione. 

The comp:-essional mode is a.n unexpected .finding in the numcric()J model. 

but is consistent with the experimen~al measurements of b9• 
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3 •. Wave Amplitudes· 

The radial ,.tariatidn of the wa.ve amplitude is determined by the 

boundary conditions and by the annular current sheets. Between the two 
8 . . 

current sheets the dominant wave components (EP and b ) are p:ropo:rt:ion~l 

The wave !s strongly damped near the resonance.· For this set o£ 

conditiona the da.rrtping m.echamsm io ion-cyclotron damping. since ncutr.al 

particlec and impurities· are a.oaumed to be absent and tha electron temper­

ature :i,g high enough that ohmic damping is. unimportant. The very small 

wave ~ranemitted through the resonance is attenUa.ted by 'two orders of rna~­

nitude and ill too weak to appear on an amplitude plot of this contour interval. 

al{;hough it shows up on the pha.ee contour plots. 

Some very small reflections in the :region iO em < z < 40 em can be 

seen in the amplitude plots for transversa components o£ .£_, · Fig. 6. (Tho 

contour. presentation i.s a very sensitive indicator for standing wave a. ) The 

omall standing waves wh:h wavelengths of about 9 em are generated by reflec­

tions from the resonance. The wavelength o£ ~e ion-cyclotron wave in this 

region (determined from ~he spacing between 30°, contours) is about 18 em. 

This hl consistent with tht!!: wavelength computed from the an&lytic theory for 

the torsional mode. 

The small wave that propagates through the resonance ie reflected 

from the conducting end screen, setting up a standing wave pattern in the 
'; 

downstream end o£ the ch;unbor. In contra.sot; to the standing wa.ve13 previously 

discussed, the incident and reflected waves are almost equal in a.mplitudo. 

Consequently the phase undergoe11 a discontinuity of almost 1.80• at the nodes. 

Thl.a standing wavo pattern appea.ro on the phase plote. :ao closely grouped 

I 

I 
l 
I 
1 
I 
1 
f 
i 
' 

~· :t. •• • 
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contours at the nodes in the downstream end of the chamber. The irregular 

contours near the outer wall at the downstream end arc cauoed by the tendency 

of the wave to follow flux lineo in the magnetic mirror field. 

As the toraional wave propagates in the nonresonant region between 

the driving electrodes and the coordinate·~ = 40 em, we find the amplitudes 

of the trano'Yerse wave change as follows: 

bp increasing 

EP decreacing 

8 . . 
b increasing slightly (Fig. 6) 

E8 increasing 

(For brevity, we will not reproduce the graphical solutions for E 

ltn this paper.) 

Fer these conditiontS ther~ are effectively .no dD.mping mcchanirJms 

in the nonresonant portion of the chamber, so we muat expb.in thcoe am­

plitude changes. by the nonuni!orm magnetic field. The amplitudes of E 9 

and bp increase no resonance is approached because the wave pola:rb~tion · 

is changing from ellit>tiea.l ~o circular. The amplitude o£ b9 is increaoing 

slightly because the phase velocity !a decreasing in the decreasing ma.gncUc 
·. . . 2 • . 

field. (This is because tho wave-energy density b /2tJ.
0 

io inversely pro-

portional to phase velocity if there is no damping. However, the wave io 

spreading radially as it propagates. This competing effect rcdueeB tho wa.ve­

enc;:rgy density, so the net increase ol b(J is amall. ) 

The decrease in E~' may be under$tood by replacing v with i k ~ 

in the Maxwell equation (2.4) and oolving for E: 

E = T ~X z. 
':' ;: ,'-'' :', ~· :. ,; ' ... -.·:· 

This shows that the amplitude of ! is proportional to the phase velocity if 

the ampUtude of ~ doea not ·change. Since the phase velocity is docrov.aing 
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in the decreasing magnetic: field.. EP is eloo dec:rea.oing. 

4. Phase Veloc:itr 

The phase velocity b proportional to ~e spacing between contours 
I 

in the absence of reflections. In the downstream end of tha cho.mbcr ~be 

phnee velocity can be deduced from the half ~ave length between nodes. The 

phase . velocity conforms to the analytic theory for the torsional modo where 

the magnetic field ic aoove resonance.' Near the midplane where the magnetic 

field is below reeonanee, the torsional modo is evanescent with a large phace 

velocity. 

The compreasiona1 mode in the electrode images iG excited by the je 
' . . ·. 

currenh in the armul&r current ehee~e a~d ia not propagating due to the wave .. 

guide cutoff'. Ito apparent phase velocity is therefore primarily determined 

by the phase of {1-and is almost equal to the phase velocity of the ~oreiona.l 

mode. 

. C. Solutions !olt" Low Densities (ito 3X1019 m·3) 

Figure 7 shows a solution with an &~.asumed denaity of ;.OX 10~9 m '!' 3• 

which is about one·fifth that of the. prev1ouo1y diecuesed density. AU otmai' · 

parameters are un.cha.nged. Thia result is comewbat clooer to the exPerimental 

wave measuremento, and iB complicated by larger reflections £rom ~he reo-

ona.ncc. 

The reflecUons are excited by an in~cresting mechanism. The trans­

verse current ie concentrated in a toroid near the ion-cyclotron reconance. 

The j 
9 component excites ~ fairly large aXial rf magnetic field ·(b t) near 

6 (J t . . 
the j toroid. (The j and b plo~e aro similar to those of Fig. 5, but are 

spaUally more concentrated.) The energy.associated with thio bt magnetic 

field cnnnot be absoroodi. by ion-cyclotron damping nor can it propagate in the 
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compresaional mode in this !ow denaity. This energy is reflected a.e o. wave 

pro~aga.ting S.CrOGG mtlg1.1etic -fiel~ linec from the concentrated b'(. oource. 

The result io a diagonal patt:orn of atanding waves moat clearly oho .. ~nl by the 
e . . 

a.~plitude of b • Fig. 7. Thio pattern is formed by the interacUor1 of the 

incident wave propagating a:rlally and the reflected wave propagating in a 

direction with a large tranaveroe component.. It should be noted that thio 

u1.echaruam would not bG found by a theory that a.G aumes either an unbounded 

medium or purely axial propagation. 

The effect o£ refiecticna upon the phase can be large even when the 

l"Cflected power is amall, &a illuatratcd by this example. . By comparing the 

amplitudes of the .. nodes and a.ntinodec in thia otanding .. wave pattern, it is 

. found that the amplitude of the l"efiiscted wGA.ve is about one-half the incident 

amplitude and that the re£1ected power ie therefore about 2.5<7". Similar 

aolutions have been obtai.ned for lower plaama denoitles, and it is found that 

x-eflections are larger and the results a.re therefore more complicated in &p• 

pea.ra:nce. For densities below 10 i 9m - 3• most of the energy is reflected 

from the resonance. Thie io basically because the wavelength of the torsional 

mode becomes too long ret,ative to the dimensiona of the magnetic mirror for 

efficient ion-cyclotron damping. 

The reflection pattern disappears when some other type of damping 

is introduced.· Figure 8 shows the phase and amplitude of b9 for conditiono 

identical to those o£ Fig. 7 • except that a. density of neutral particles equal 

to the ion density hao been opeeified. (Such a pessimhltie condition could 

conceivably arise if the experiment were dominated by eha.rge-trano!er 

.. collisions·. ) No reflections occur in this condition because the b t wave is 

damped by neutral damping but not by cyclotron damping. We find that the 

damping near the resonance is almost entirely caused by neutral parUcleo. 
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D.. Comparison of E!'ferimental and Numerical Reouits 

Experimentally meaaured wave amplitudes agree well with results 
'• 

· o£ the numerical model pro~ided refloctions are not too l&rge. The ampU.-
.. 8 . . .: ~ ' . . . 
tude of b was numerically-found to be insensiUve to plasma densdty except 

.fot· the effect of reflections. The experime.ntal data contain Guggectious of 

small reflections. but the reflected amplitude is at most ZOo/a ol the ,incident 

amplitude. · (This is the ement of amplitude va:dations in the nonrooonant . 
i ..• 

portion of the experiment. which may have masked the standing waveo.) 

The high .. phase ve_locity (7.5X106 m/see) deduced fr~m the exper• 

imental d~ta2 implies. a oubsta.ntial. reduction o£ plasma density. The density 

reduction is probably not entirely reapon~lble for the phase velocity measuro­

m~nt, since the density. a~d temperatura 'maasuremento by diamagnetic probe 

.. ·~d Doppler broadening are ineonsiotent with densities below 1.01.9m .. 3• 1. 3 

Possibly the phase measuremenb·were affected by small (ZOo/c) 
' ' 

reflections or by density nonun.!formitiee that were net detected experimentally 

be:cauee of ohot-to-shot di££erencca. Some numericsl solutions have been · 
: ">•-:·:-· . . 

obtained with radial density gradients that indicate complicated effect a on the 

phase that would have been imposdble to.meSloure in detail. 

A self-conoisten.t oet of parametero that rGa.oona.bly satbfies the findings 

of the wave measurements, the numerica~ results, and the diagnoGtica ie lioted 

below. 

ton den::lty 

· Neutr.als and impurities 

Ion temperature 

Electron tempet."ature 

ZX1019 ~-l 

10~o 

50 eV at the re~onance, 
2S eV elsewhere 

ZO eV .g.t; th.e resonance, 
10 eV ebewhcre . 
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The lack of large reflections at this density could be accounted for 

by the presence of neutrals and impurities. Thic eet of parameters io not 

a unique set of values sa~isfying the reeulta; but is reliable within a £actor 

of a bout four. 

V. CONCLUSIONS 

.·.·. 
From a combination of the. experimental and numerical· resulto, we 

may conclude that the dominant damping mechanism i8 ion-cyclotron damping. 

A omall port~on of the wave energy may have been reflected, but large re­

flections would have been experimentally oboerved. · Damping by neutral 

particles may be ruled out ao a dominant mechanism since the energy ab-

sorption by neuhalll would not have produced the diamagnetic oignal. Thic 

implieo a high ionisation maintained by electron temperatures of about iO eV. 

For ouch electron temperatures the ohmic resistivity is several ordero of 

magnitude below the cyclotron reaiotivity. For the reaaonGJ given in ref~remce 

13, we must believe the damping by impurity iona to be leas than the neutr~l 

damping. 

The points of agreement between the experiment and the num~rical 

model indicate that the physical principlec on which the model is baGed a.re 

generally correct. Some of the assumed conditions do not conform precisely 

to the experiment; and some of the experimental measurements may have 

misaed some complications ,found by. the numerical model~ The model has 

improved the understanding of the excitation and propagation of the two hydro-. . . 

magnetic modes and of the damping and reflection mechanisms at the ion­

cyclotron resonance. 
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.FiGURE LEGENDS 

Fig. i. Nonorthogonal coordinate syotem. The transveree coordinate 

lines are orthogonal to magnetic nux lines, whereaG the axial eoordi-

nate lines are part1llel to the centerline. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Nonorthogonal mesh oyatem. 

Experimental apparatus. 

z r · B and B &s functionm of poGition, !or the standard mirror field. 

The three curvea on ca.ch graph indicate the magnetic fields at t."tree 

radii: 0. 76 em, 5.3 em, and 9. 9 c:m. 

Fig. 5. Solution of MHO wave equations for conditions of See. IV. B. 

Wave currents and mal-wave magnetic field are ehown. 

Fig. 6. Solution of MHO wava equations for conditions of Sec. IV. B. 

Amplitudem and phases of transver£ie-wave magnetic fields are shown • 

. Fig. 7. Solution o! MHO wave equationa for conditions of Sec. IV. C. 

Amplitude and phaGe of azimuthal wave magnetic field arc obown. 

Fig. 8. Solution of MHD wave equationo with neutral c:lamping. Amplitude 

and phase o! azimuthal-wave magnetic field are ohown. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
m1ss1on, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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