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ABSTRACT 

The Kohn variational principle is used to calculate p-wave 
' 

phase shifts for the elastic scattering of electrons from a neutral · 

hydrogen atom at subexcitation energies. 

The .•trial wave function is represented on a basis 'Which . 

simplifies algebraic and numerical vork. 

It is found that a careful treatment avoids the usual pit-

falls of variational scattering calculations and yield~ quite. accu-

rate results. 

Singlet and triplet p-wave phase shifts are tabulated and 

compare~ vith other calculations. Similar calculations for s-wave 

and p-wave positron .. hydrogen scattering are earried out and tabu-
.. . .· 
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I. INTRODUCTION 

The scattering of charged particles from atoms has long been 

a fruitful technique in the study of atomic structure. Rutherford 

in his classic.scattering experiment not only·deposed the "plum 

pudding" atom, but forged an indispensable tool, whose usefulness has 

improved with sharpening. More recently the scattering of electrons 

and protons from atoms has provided input to calculations of kinetic 

' processes in gases. In the·case of electrons scattered.from hydrpgen 
1 . 

we firid applications in such fields as astrophysics and thermonuclear 

reactions • 

. Naturally an understanding of the theory of atomic scatterin~\ i 
I 
I 

is important, and in fact theoretical advances in the past thirty 

2 years enable us to give formal solutions to many scattering problems. 

However, many calculations, even .for elementary systems, remain to be 

. done satisfactorily. Unfortunately, no experiments of sufficient 

accurac~ to assess the various approximations so far applied to the 

e-H or e+H elastic scattering problem have yet been reported. The 

major reason for this d~ficiency is that it is difficult to convert 

the diatomic hydrogen molecule into monatomic hydrogen without exciting 

some of the atoms out of the ground state; thus making it impossible 

to interpret the data with confidence. Improved techniques,3 however, 

should soon lead to more accurate experiments. 

We will consider in this paper the simplest possible atomic 

·scattering problem: namely, that of' an electron (or positron) incident 

. 
' 

':• 

., 
I ,'' 

I -. ~ 



.. 

. -2-

on a neutral hydrogen atom with an energy'too low to induce an excita-

tion of the atom (or formation of postronium). We will assume that 

the hydrogen nucleus is the center of mass of the three-body system 

and therefore infinitely massive compared to the electrons, that only 

Coulomb interactions are important, that the atom is in its ground 

state when the incident particl~ is far away before and after the 

interaction, that the electrons each have spin t, and that th~ require

ments of the .Pauli principle are satisfied. This last assumption means 

that when the incident particle is an electron, the wave function is 

antisymmetric or symmetric under exchange of the space coordinates o~ 
. 1\, 

the two electrons according as the electron spins are aligned (triplet') 

·Or anti-aligned (singlet). This is the only way in which electron 

spin will enter the problem, and therefore the spin variables will 

never appear explicitly. 

This paragon among real problems has been the subject of inten• 

I 4 sive stuay, and we will presently mention some of the theoretical 

schemes that have been applied to it. First we will consider an 

intuitive physical picture of the_ scattering proce~s, starting with 

the incoming electron stLU far away from the target atom. Ideally 

the .electron would not interact while yet far away because ·the atom 

is a .neutral object. However, the orbital electron in the atom does 

feel a repulsion from the incoming electron, consequently altering 

its orbit and trying to hide behind the proton. ·This effectively 

brings the positive charge of the atom on the. average closer than 

-----------

. -
,If' 
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the negative charge to the incident particle, i.e. polarizing the atom, 

resulting in a net attraction between the·atom and the electron. Sim-

ilar considerations apply when the incident particle is a positron. 

Various theox:etical calculations5. have determined that this attractive 

force between the atom and the incident (low enez:gy) electron has a 

potential of the form -a/2r4, where a is the polarizability, a 

positive constant characteristic of the atom. As the incident electron 
.. 

approaches and penetrates the atomic electron cloud, it creates around 

itself a bubble from which the cloud is excluded because of the electrons' 

mutual repulsion. Naturally this gives rise to some bizarre distor-

tions of the target atom from its symmetrical ground state. 
1 

At this'\, 
I 

.: point the incident particle cannot be treated as if it were seeing· • 
I . 

some average atomic field; the details are clearly important. · When 

the electron leaves the atom and moves off to infinity the atom settles 

down, and the interaction is again controlled by the polarization . 

effect. I 

From these crude intuitive considerations alone, ~t should be 

abundantly clear that solving completely even this simplest problem 

is a maj.or task. If other channels are opened, that is,. if the 

incident particle has sufficient energy to excite or ionize the atom, 

things get even worse. On the other hand, if we modify the problem· 

by assuming there cannot be any distortion in the atomic wave function, . 
. t _·. 

then it is reduced to a single particle in.a short-range central poten-

t.ial, .and has a relatively simple solution~.: This is called :the static / 
• . . ·' •• ~- ' : • ...... - • 4- • • • ' ·• ' • 

·. . . :.~·· ;. : •r / 
~~ . ~ .. ·, 

'·' ·. l. ,j,.· ' • '. ..; .· 
. . .. ! ·~· ~ ~ i ~.' 

I~ ' .. ~.:- .I. ·~-· ~ ·. ' , .; 
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. 6 . 
approximation and has. been used somewhat,· but is sufficiently different. 

from the real situation that in most cases·the results are seriously 

in error. 

The most famous of all approximations in scattering is the 

f'irst Born approximation.? The Born series is just the expansion of' 

the wave function as a power series in the s~rength of' the scattering 

potential. · Truncation af'ter the ~th power gives the ~th Born approxi-., 
mation. For incident particles moving raster than the orbital 

electron(s) in the atom, the first Born approximation generally gives 

satisfactory results. However, in the region of' interest to us here 
II 

(less than about ten el.ectron volts) it is usually inadequate. In \'i 
' 
8 . this :r;egion the most popular technique is the eigenfunction expansion •. 

That is, the complete wave function is assumed to be an infinite sum 

of' terms, each term consisting of' the product of an unperturbed atomic 

eigenfunction and a function (to be determined) of the position of the 

incideni·particle. (This discussion assumes for simplicity the 

distinguishability of the in~oming particle and the atomic ~lectron.) 

Solving the problem is thus relegated to determining these functions. 

This is done by substituting the sum into the Schroedinger equation, 

which results in an infinite set. of coupled differential equations 

for the unknown functions. At this point a decision has to be made, 

· usually on physical grounds, about which and how many of the terms 

in the.sum to use. One advantage of.this method is its direct 

physical interpretation becaus~ or the appe~ran~e of the atomic 
... . . 

I • 

.. ~: .. ·~ .. · ~ 

~ -~ t,~ .-..,~~--~ I . .,. 
. ...... . ·, ,•, 11 
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eigenfunctions. Different effects (polarization, e~c.) may be 

emphasized by judiciously selecting the terms to be kept in the 

expansion. However, usually no more than the first one or two (at 

most three)9 are used because of the considerable effort needed to 

solve the coupled equations, and it is always difficult to tell ,. 

a prio~i how good the answers are. Furthermore, the complete sum 

referred to above is not only over the discrete bound states of the· 
,., 

atom, .but over the unbound (positive energy) states as well, where it 

is:actually an integral. This region, the continuum, is always neglect-

ed in the eigenfunction expansion method. Nevertheless, this scheme 

in one approximation or .another has been the basis for most atomic 

·scattering calculations performed since 1932, when it was introduced 
' . 10 

·by Massey and Mohr. 

Within the last fifteen years, however, a surge of activity · 

.has been directed toward the use of variational techniques in the 

nonrelativistic atomic scattering problem. The Rayleigh-Ritz varia-

11 ' 
tional principle had established its usefulness for bound-state 

problems by 1940, but i.t was not directly applicable to scattering 

I 
(\ ,, ' 

il 
'. 

phenomena for two reasons: t~e wave functions in scattering problems 

are.not normalizable, and the eigenvalues are in the continuous 

spectrum. These difficulties were overcome in 1944 by Hulthen, when 

he invented the variational principle· 'bearing his name. The principle 
. ' ' .·· ' ' 12 . 

was modified to a somewhat simpler form by Kohn in 19481 . · and it is 
... -. ....:.:,........;. ...... ,..., ... ~.-

this modification, called the Kobn ~ariatio~l·prin~iple,.with which 
' ' . ' . ! 

;_I', 

' ~ ':. 
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. . . 
the bulk of this paper will deal. A variational principle was devel-

oped by Schwinger in 1947, 13 derived from an integral form of the 

Schroedinger equation. (Hulthen and Kohn began with the ordinary 

differential Schroedinger equation.) It involves integral expressions 

which are difficult to evaluate, however, and has not been as useful 

as the simpler equations of Kohn and Hulthen. 

In part II after a brief sketch of the standRrd.partial wave 
~ 

expansion to establish notation, we shall derive the Kohn principle 

for partial wave phase shifts and discuss a trial· function appropriate 

+ -to elastic e H and . e H scattering. The singularities noticed and 
14 . . . ·_ - 1

\, 
explained by Schwartz . will be reviewed, as well as his effective cure 

.for them. Results of our.calculations'for the e-H p way~_and the 
. ---~,..._~-

e+H s and p wave phase shifts are given in part III:along with a 

discussion and comparison with results of other :workers_•. calculations. 
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II. .THE VARIATIONAL .METHOD 

Our first task in this section will be to review briefly-the 
11 . 

standard (Faxen-Holtzmark) expansion of·the scattering wave function 

·into partial waves of definite angular ~omentum. In part B we will 

derive the Kohn variational principle for the simple case of scattering 

by a fixed short-range potential. This will provide us with the 

essentials to solve the elastic electron-hydrogen or positron-hydrogen 

scattering problem. In part C we willdescribe.in some detail the 

actual procedure for calculating the p-wave phase shift, an interesting 

difficulty encountered~ and a resolution of that difficulty. Throughout · 

the paper we will use units such that -i:f (Planck's constant), m (~ss 
·I 
1 
I 

of the electron), and e (charge on the electron) each have.unit 
,. 

magnitude. 

A. Partial Waves 
.... 

. Suppose a 'flux of particles of momentum k is incident upon 
I 

a spherically symmetric potential, V(r), that vanishes outside a 

finite region of space.· Taking the center of the scattering region 

as the coordinate origin, .the total wave function at large 
.... .... . 

the sum of the incident wave.· eik•r and the·scattered wave 

r is 
.ikr 
~ f(e)· r . , 

where f(e) describes the angular distribution and is called tb~ . 

"scattering amPlitude." Therefore, . 

.... .... ikr' 
'''(-;) : :o..- eik~r + f(e) ~ , -r-.... -_-o:>-"?7 . r 

•. ~ . 

is the asymptotic solution to the Schroedinger equation 
. ' ' . ' . : ;_ ' ,_'; '.: ';; . '< .... /. 

' ~. ~ 
' •, _·;: . . /:: •' 

',\' 

' _ ... · ... f" 
·""· .· 

. ~-· 

. ' ·.•. ' 

,. 
; 

'· 

! ' 

. \. 

'· 
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· .... 't ; i· :- . ' ·~ .t-"/·. 
l ,. .• 

} .~ 

. ' 
' ·_;., '. ~ . .' . . . .. . 

• 't • . 
• , .I; ) ' .• • • ~ 

j.; 

.. ·(: 

:~ ' 

... a .. . .. :. 

··' 

[- t = 0 

The angle e is measured from the direction Of 
... 
k • 

j 

If we define 

the differential cross section a(e) as the ratio of the number of 

particles scattered per unit time. into unit solid angle at e to 

the incident flux of particles, 'then a(e) 

easily from the. definition: 

This follows 

a(e)em = 
. I ikr 

1
2 7 f(e) kr

2 em 
l l ...... 12 eik•r k 

2 . 
- . If( e) I . em • 

., 

· .The.differential cross section may be meas~red.experimentally, and 

,· ' 

iL 
i' 
'· 

the quantity . ·1 f(e) 12 
is therefore the link between e;XPeriment and 

•'theory. Another way to approach the. problem is .to expand the complete 

wave function in partial waves ?f .. ,defini te angular momentum . t , 
· ... ' :·: .. :;. . '. : . . .• ' : ~ '. . ·, ' .... ·. .. . : 

I CD . ·· ... ·.; ,.· •. 

'VC;> = I . 'lr~,Cr) , ... , ; t·.; ·'·~.·.r <~~ 
. ·J,=O .~. 

•.,'• 

l • 

.. ·~ 

where 

.Y£0(e) is a spherical harmonic of order J, and magnetic quantum number 

. zero, and will henceforth. be written simply . Y~,(e) ·• · The .azimuthal . l 

angle .¢ does not appear bec~use of cylindrical syminetry about 
... 
k • 

. • ~ \ ' ~· 

Then ¢ir) . satisfies the radial Schroed.{:nger. equation:;/··: r ••. :' 
' . ·. ·... ' i : '' : ' . j "I, • < •• ;· .. • ·: ' ' • - .. ~ :. ' • ~ J • ' 

' . . ' ' ,• ;, ~ ~ :. '. '· . '· ' 

r. ~ ,.·.'. 1; :.;·~< .. :r.·~· . .,~~; _,,1,.,.'_·,_:"~:~: .. ,•, 

·. ·. :·. ~- ~~-.' ~ <~ ··~·.: .~/. ·' : . .,. :'/ .·, i •. 
···" 

'' . 
'• ,. ·. ) . 

. ' . 
' . 

. ' 

·;, 
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[~ ~ 
d2 k2 .t(.e + ll +. V(r)] ¢/r) 0 - - + = dr2 2 2r2. 

. ( 1). 

/' 

There are two independent, real s9lutions of Eq. (1) if V = 0 •· 

They.- are r j / kr) and rn / kr) , where j .t and n .t are call:_e_d.!~ . ·. · 
.· .. ' . . -~--~:-, 

respectively, the spherical Bessel and spherical Neumann functions·· 

of order .t . • They hav~ the following properties. fo~. small~a:''.:;;.~:~ . 

large r 
~ ... 

J_g(kr),......;_~ 
r-+0 

~ . ( . 

•., •,t 

.. h. h 
Jn(kr_ )---~~·-.. sin{kr- 2):/ ·.e(;e + l) 'cos(kr- 2 ) 

1 ~ r ... oo kr .. ,. 2 : (kr)2 

J 

cos 
r-+ oo'>_ - kr 

\ • .g 

.e( .t + l) . 

2 

.t '-
sin(kr - ....!!.) 

2 .. 

If there is no scatteri·ng ( i..e. V = 0 everywhere), clearly r j / kr) 

_is the on~ physically acceptable solutioh of (1) since n.t(kr) blows 

up at the origin. Howeve!, if V is nonzero in some region th~n 

outside this region the solution of (1) must be a linear combination 

of the form 
. . . 

¢/r) - A .trjikr) · 

, .. 

. . . 

!,· 

'• .. 
~. •, 

~ . I .~ 

·. 
·, J,• , •• ,. : • • 

• ·. B.t~~lkr), ;·:·· :,:"·, . - ... 
;. '·· 

~ • A>~ • ·.~ J 

·, .. · .... ·; '.· t .' ! 

,., .. 

'·.!,5' 

:. 

. . . . . ' .· ·. 

. ' 

· .. 
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where. B£ need-not be zero. The k-dependent ratio B£/A.B obviously 

characterizes the scattering of the .&_th partial wave, and the phase 

shift ~.£ is then defined as tap~.£= B1/k.B • The comp~ete solution 

·o:r Eq. (1) has boundary conditions 

Sin(kr ..: £1!) co· s(kr ~ ~) 
2 . + ·, tan ~ . . . . 2 = 

sin(kr - .£1! + n ) 2 '1.£ .. 
¢p_(r) r ... oo> k · £ -~k-.......-._ 

and 

.£+1 . 
r 

k cos ~l 
~ 

\I. 
. The :former follows from the asymptotic :forms of j l and ~.£ , arid th~' 

.latter :follows· directly :from ( 1) considered for r sufficiently small~· , 

·that k2 and v. are-negligible compared to the centr~:fugal term 

.£(.£ + 1) 

2r
2 

If we also expand :f(9) in terms of spherical harmonics, we 

may dete.!rmine the coefficients in terms of the phase shifts .. ~ .£ • . . 

This just takes a :few lines of algebra and yields 

00 

:r(e) = L 
. .£=0 

. ' 
··.··. '. 

r ·.,· 

. 00 

The total cross section Q. = Ja(e)a.n =·J l:r(e) 1
2a.n = L Ql , ¥here 

41! ( .) 2 
Q.£ = ~ 2.£ + 1 sin ~.£ 

k· 

· .l=O 

We have made use .of the orthonormality o~ .. the. Y t<e). in the 

angular integration. The solut~.on to the scattering piooblem is ·.thus 
I,~.· . . ... . . ~ . . . 

. ]• 

. .... 

. ·.: 
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reduced to determining all the phase shifts 1'l 1- • Fortunately in the 

low_energy region the phase shifts for large· 1- are usuallY small 

enough to neglect when computing the cross section • 

B. 12 Kohn Variational Principle 

We will now investigate a variational method for calculating 

the phase shifts Tl.e • The purpose of any variational sc~~;~-'-i~.c.-.to 

provide a functional of the.wave function which is exactly equal to 

the desired quantity (in our case the phase shift) when the wave 

function is exactly correct, and which is in error only by terms of · 

second order in the wave function error.when the wave function is 
. . 

not exactlY correct •. Roughly speaking,. this means that a lo% error 
' 

in the wave function will give only a 1% error in the phase shift • 

Consider the functional 
... 

'. 
j., • .-. ' 

I 
·where the ~ntegration is taken over all space. · If. * is allowed to 

. ... ... . ... .· '• . 
vary, i.e. v(r) -+ v(r) * ev(r), then .· 

. . 

eF = J et(H - E)t d: + J t(H - E)et a:-:. + J et(H - E).~t a1. G2) 

is the corresponding variation in F • For our single particle j_n a 
'if . 

central field . V( r), H = - "'2 + V( r); and a partial integration of 

the second term on the right-hand side of (2) yields 

' '. 

''· 

,.. '. ~ . ... -
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since ... :. 

The second integral on the right-hand side maY be converted to a. 

surface integral over a sphere of. very large radius R j thus. 

aF = 2 J.8w(H .. E)w 0::.+ ~ j· .[ 8v fr "' .. '*· fr 8-Jf] as 
· R· ... oo 

( 3)' . 

So 'far no conditions ·have been imp?sed on the function y(;) •. If 

we now constrain v and 8-Jf to fall off faster than 1/r at large 

!I 
d 

. . 

r , then the surface integral vanishes a~ R .... eo; and we obtain the 

Rayleigh-Ritz principle 'for bound states. We have · 
• .· . t \ 

·., 

8F ~ 2 J8v(H;;. E)v' (£;,, :~: J 8-Jf(H .- .E)8t o1 '•: 
I . . .. . . , : . ··. ·., . . 

.. · 
·. · Or, rewriting it, '· ' ~. . 

' 
'' 

F(vt)- F(v) = 2 j<~t :.·v)(H -.E>v·a.r·+.-j~"'t -·vHH- E)(vt·~ v)ar, 
' (4)' 

where vt is the trial function, which need~ satisfy the 

Schroedinger equation (H.- E)v = o,. and v is the correct solution. 

Then the first integral on the right .. hand . side qf ( 4) is .. zero, and·. 
,.···: .··· 

the difference : ,. ,•· 

= ·jcvt ... vH~ ~·~~.<v~~~ v>&.; ... ·'. ··. 
- •. # .• · .• •' 

(5) ' 

~. ~ . 
~ . . t • • 
\ .• -... , . 
~ -"":'.. ~ 

. rT. • ·. 

' .. . · .. ...: .. ~' 
·. 

:·). 

··"'• 
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is second order in the error vt·- v •. O;rdinarily, the energy. E is 

the quantity to be calculated in bound-state problems~· If v and· 'ITt 

are each. normalized to unity, then if w~ define (E) = j'v t H v ~ a_-;·., , · 

from the definition of F ; therefore from (5) 1 
\• 

This means that (E) is correct to first order; fUrthermore if E is 

the lowest energy eigenvalue, • the second order error term is alvrays 
1.\, 

positive, as may easily be seen directly by expanding the function 
1
• 

. 'l!rt - 'If in e
1
igenfunctions of the operator . H • One procedure, then, 

. is to ~ess ~ function 'ITt , calculate the quantity ·(~) =]'Itt H 'Itt 

and rest assured that it is an upper bound on the correct energy 

·eigenvalue E • Typically, however, we would expand 'irt in a 
~ . . . 

. conveniJnt set of functions 'If t ::: · L C i ui , determine the parameters · 
i=O . .. ·. . < 

_ci by oFt/oci = o·, 

det jHij - (E}Mij j.-

and solve the resulting characteristic equation 
. ~ - ' . -

. . 

o · for (E) . , .wi?-ere .' !: •, ' . 
' ,. . • -~ .. ' :_~ j-

··.·::; 
~ (r •• . .' . :- ~- .-. . 

t· ··-
~ '. _: 

:~ 

and 

Mij = j ui uj 0:: 

. . 15 
It is shown' by MacDonald that as N is increased, the lowest eigen• 

values of . H are approached monotonically by the solutions · (E)· , so 

---------·- ---------·- ---- -----·-----

\ . 
' ~ . 

.. '·· . ' 
,. 

· .... 

•. ··.,. ., .·r 

., 

·,. ~ 

.. 
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that we can always get a better answer by doing more work.. This 

state of affairs could hardlY be more satisfactory, ~o we now drop 

it and'return to the more interesting scattering question. Now the 
. ' ,, 

remarks following Eq. (3) do not apply, since scattering wave functions 

are not. normalizable, and the energy is given, no.t calculated.. The 

quantity to be calculated is th~: phase shift 'fl.r, • We now restrict V 

so that .. ·· 

~~, sin(kr - 2 ) cos(kr - ....!.) 
'I' =? + tan1) 

2 
' [ t~ . t 

r-+cx:> · kr . kr 

( 
. · tre ) ... 

sin kr ""' - + Tl · 
= . . cos Tl . ~ . . • y t ( 9) , . 

, t . • 

. · .... 
·. I 

. t~ 
cos(kr - -) 

ov ~ o( tan 1)) ---,---2;;;._ r ... oo .kr 

and ·;, 

·~ ' 

·where the t subscript is henceforth understood on v and Tl • 

Thus v m,ust have the ·correct asymptotic form, except that 11 may 

oe varied. Now Eq. ( 3) yieids 
. . 

· . J. · . j'[to~(kR .. !!)cos(kR .. ~ + '!')) ·· 
oF = 2 ov(H-E)v a; + ! o( tan '1) . · · · i . ·2 

· . R-+ CD k R cos T} 

1' 

. - . 

+ 
sin(kR - ~ + ~ )sin(kR .. ~) . .]· ·, . · · · · 
---.. -k-R""'=22~co_s_T}_· -· __ 2_ + 0(~ ) y i_2( 6 )R2cill + .fojr(H-E )8Vdr' -

.\, .. ·.~-

= 2J8jr(l! • E)jr rJr. + e(t: 1)) +, j ~.(~ ~ ;E)8t rJr , 
' . ~ . . ·• . 

. . · .. / .. ..; ..~~..· . 

.... \. 

. . ', ~ ... .. ··, .· 
... . . • ~ . : !. : ~ 

,. 
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·,; 
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or 

e(F - ta~ 11 ) = 2 J ev(i:I - ~)·v ·a; + J. ew(H .. ·E)ev ax ( 6) . 

Equation (6) is the basis for the Kohn.and Hulthen variational 

principles. Defining · I = t~ !l - 2F 1 we notice three things about 

the equation: 
., 

1. If w is the correct scattering so~ution of .(H- E)t = o, 

then 8I = 0 to first order, and I = tan: 11/k where 1) is correct, 

since F = 0. 

2. If. I is stationary (i.e. 8I = 0 to first order) for I i 1 ·· 
. I 

arbitrary ex?ursions 8t ;from v , then . v is the correct solution 

of ( H - E )w = 0, since the first term .on the right-hand side of ( 6) · 
"'.t',_, 

., 

must then be zero. (H .. E)t = 0 follows by letting 8t = e(H._-. E)t 1 • 
' ···~- ~~--~~-~--

e a small number. 

13· ·If some incorrect t , call it. Vt 1 is usedtO't:al~tilate 

It (the error in _the wave function being. 8t = tt- w),_then It ' 

differs from I ( = ta~ . ? ) by .. 0( 8'11) 2 • To see this, notice that .• v 

. in Eq. ( 6) is replaced by vt 1 that Vt = w + 8t 1 .and that 

(H - E)'i! = 0 •. 

Conclusions 1 and 2 say that ~I.= 0 and· (H- E)v = 0 are completely 

equivalent;. conclusion 3 is an· important feature in calculations.; 

Analogous to the Ritz procedure, we equate v t · to its asymptotic form 

small r .. 
' 

. ' 
.. •: 

·, ... 
. . :. ' : . ' ., . ~ 

:' .·· i .' .. : ~ .,: . ,•. 1 

. ' . .. ~~ . 

• f· 

""·--·------ .. -·-·-"'"------· ---

.. ~. 
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where ui{r) are the "close-in" basis functions. The fUnction ,g{r) · 

is just a device·put in to. aquas~ the singularity of n, at the origin 

and go to unity at large r, and i~ of no interest to us'now (in fact 

·will be found later to be unnecessary because of a slightly d:i_fferent 

asymptotic form). There are N+l parameters to be chosen: namely. 

I . 
II 

determine the sign of the (second order) error as we did for the bouna 

Before continuing, we point out that it is not possible to 

·state problem except.in the case that E = 0. (The zero energy case • 

is important for s-wave scattering and has been extensively studied; 

however it will not concern us here.) Therefore, we never know whether 

we have an upper or lower bound on the phase sh~ft, and in fact we may 
I .16 

have neither. Consequently it is no longer clear that the corr~ct 

way to chose the Ci's and tan ~t is to set the first derivative 

of I with respect to tan ~t and each of the Ci equal to zero. 

Nevertheless, this is what Kohn prescribes, and we believe that it is 

.a reasonable prescription to follow, particularly since we find 
. . . 

respectable convergence in an actual calculation as N is increased. 

A simple example may dispel some doubt about the scheme. 

Suppose that thro~gh some preposterous stroke ot luck we were 

to choose as the trial function for the s wave 

... .. · 

•. ;J'' 

... ,, 

... 
;~ '· 

. ''• 

. ) ·. . .. ·:··. 

' , . 

.... , 

•'' .. 
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[ 
cos kr ] v t = . V - g tan Tl ~ _ kr . + g ~n Tlt 

cos kr 
'{4;. kr • 

. . . . 
That is, the correct wav.e function except. for 8.1?- undetermined phase 

1,. " ~ • 

shift. Does our recipe yield the correct phase and hence the correct 

wave function? 

where. 

b. = tan T) .. ..tan ~t • 

' " . ·• ··'. ..... 
'!I!. -; 

'-· , .. •, 

> i 

. ·, 

' ' . . ~ . . 
. r·. 
~. 

"l ..... _ 

> • 'i [
• cos kR ~ 'siri(kR + !)) • sili(kR + n) ~ ,'cos kR J dS. 

kR dR cos Tl kR > > •• cos 1l kR .. dR _·. ~ 4;{ 
'J .' 

. '(. 

.. 26.2 c 
tan Tlt . 

+ 
> k' 

... , . ' 

.. 
·' 

. where a partial integration has bee~ used along with ~.(II -~ E)'lf .. =· 0,- ·and 

the i~tegral involving g
2 is· just 'some number.C~ 

. '. '·~· : ' 

I = · '+·~ cos !) 
t k cos T}: 

. . ·, 

> •• 

·and 

0 
>. , .. 

. · .. ·~ .. .., " ' 
·~-:~~~~ ...... ,_ .. : ·~·~··~-~ .. ·:. 

, . .- '' ~" ';,: ·.' ., cf~. : .: · .• ~ '.. . .. 
' ' ·" . ·. 

"'.:·)',, ·, . 
-· ·"- t; 

., .. , ~ :: •! • r • . :.[; ·, • • • ., ·~ 

·:: .. 
\: ! ' ... ~ ~.· ,: ~' • --~ ) : ,• '. 

;"• .. ' ~· . .~.._ ·. :· 

. ' 

. ,/ 

' . . . . 



,~.. . : ' . ' 
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') 

~: .: 

,"t.: 
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Therefore 
.·. \ ·, 

... 

giving us the exact solution. 

In summary, the Kohn principle speci~ies ~hat we calcu:i.a.te . 

tan 'l'lt 

k 

.. : ! '. 

where 'if t contains N constants . C i as well as_ the phase ' 'l)t , . ~d 

t1C ... fl :'. ·~ 
' ' 

sin(kr - 2 + 'l'lt) .. 

"'t r ... oo> 
'l'lt kr .. 

.Yt(e)J 
li cos 

'. l' ,, 
. I· 

. where the ci and· tan 'l'lt are determined by . 
oit 0 I . ,, 

0 and t 0 .. ( 7) 
. aci 

= a .. tan T)t = 

t 

Then I~ ·is expected to. be very·.· ·~lose to the correct · ta~ Tl/k · ·• 

The Hulthen ·principle is :f.denti.cal' except 1-hB.t ·the ... Ci · ~nd, . 

. tan 'l'lt are deterniined by . 
-;.'. ····: · .. · .. 

~- - ' o;; •. ' •• ' 

· .. · .. 
' ' '•''. 

0 .and (8) 

. It is harder to use because the second condition of (8) iS quadratic 

in tan 'l'lt , whereas (7) is linear. 
.·· :!': 

' 

Notice aiso that .the Hulthen principie give's ·the ~ong ans~er " 
. . . ..' .. ~:- . .. . .'~ ..... . ·:~. ~·.. ·. . .. 

in Our example •. · I 0 yiel.ds ... · ···.· <-.:.;r' '· <'·,:_:~~: .. · ····· ,.. 
t = ·:·;.~~;· ·~··" ·•·· .. 

. . ~ ; .. 
.·• I. 

'· 

... 

. ' 
' . t '.. . ,..t :; '·'. ~' '· .. -•.. 

, .. ·.-· 

.. 
.. •. 

. 

'11 
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./ 

- ~{tan T} ~ tan 'l)t = tan T} - - · . 2k c .. 
' J. 

Of course this is not proof that Kohn's principle is always more 
•t 

accurate. Some.counterexamples are given in the.article by Makinson 

16 and Turner. We. will do all our calculations with the Kohn principle 

because it is simpler to use, and because there is no a priori reason .. 

to prefer the other. f ~: ~ M~;~';fO'~~ 2D-J~4-ti86969 
c_M~~~.~~'Jl~o!-~),. ·. 

c. Singularities 

. 4 
It has been known for some time that a straightforward 

l application of a variational principle to scattering problems often L 
i' 
I. 

yields unsatisfactory results. A detailed study of this "inadequacy" · 

i4· . 
was made by Schwartz, . and we now review his arguments. 

' "' 
We start by examining the variational scheme closely, still 

restricting ourselves to potential s~attering.: · The ~r.i~l. fu~ction · 
~ 1: ·~.-. • 1: . "'! • ' :. ·-.. • • : ,. ' 

. for the tth partial wave is· . r . . . .. · 

where 

.., -. . r.t. - , ' i • • ' 

. ,: . .... ' 

' .. ,· 
; .~ .• ." 

• ' I • ... ,,·, ......... 
~ ' .. 

_-:; ''· 
; . 

.i·.·.··· .. ' ... 

. ~··· ' ... 

'· ... 



·I:": 

. ;. 
' ,"· <' 

·. ' ~ 

·-20-

r ~ 0 at least as fast as ·t. 
r • All quantities are. 

taken to be real. The variational principle is 

[~) = It = ~t ... 2 j' ~t(H .. E)~t .dX 1: . 

where [~] is tan ~/k correct to first order. Substitution of *t .. 
into the integral yields . 

N 
.·, ..... 

·' :" 

+ I ci cj·rij '+ ~t· '. 
. II 

. (9) i( 
.· . ~· 

where 

.·. '.· .. 
i_,j=l :; '. 

' . 

..... I'{ 

B. = .·-2 
0 

·-· ... 

j ¢0<n - E)¢0 dr ': . ,:'> 

= -2 j ¢0(H - E)¢1 ~ .o',~J~1(H ·~ El'¢0 ~ / ' .•• 
. . ... t;: . ·f ~ '. l;: ': . . . . ; ... i ''· 

. '·; .. : . ~ .. ' 
~2 J ¢1 (H ·- E)¢1 dr ~- .,.: : ~ :, ; .. 

~ .-.~ '"! ' '";' 

ROi· = -2j.cf. (H -·E)u dr·,.~;,' ~·.·t···.·.'·:;~\>,.·· 
.. 0 . i ·.' .. <1 ',-,·~::::•.· 

.;i'-. 

.. _: •, ~ 

R .. li = -~1 ¢l(H .. E)ui a_;', . . , 
. ·.' " 

and 

. ' ·, 
·.; .. ' 

I. 

•. ; 

As usual, the integrations extend over ail space· •. Since the functions 

ui vanish exponentially· for 

'· 

.... 
~-- ·--------·· ___ .. , ____ , 

. -., ... 
,•. 

·, . / . . ~ .. ~; ' 
!.I'. 

;, I·~, 

·. 

- .:' 

.. 
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,· 

,,· 
'•• .. • I 0, 

'· '·' 

. ' 

__ :·." 

Hermi tean with respect to them,· an~ thus :·Mij = Mji .• In vector 

notation (9) becomes 

setting 

yields 

o[>..J 
dCi 

= 0 

= 

,., 
·'· 

. '· 

. : .. 
•.' : ~. 

. ' 
-···· 

.• . ! ~ .. 

.. ~ . 
'· .. 

' Therefore, set c = c0 + >.:tc1 , so that·.;;:· 
·j. 

: .'-....... · .. 

= 
··; 

~ ~, . 

,·. 

·'· 

.... 

·,·· 
.. ,,, 
. '· .~ 

. /~ . 
~. -· .. ;' "~:._ ·~ ·. 

.•""· 

... ·,..· 

. ... . _.,·. 

'• "'-'« .-

·-.· . 

' 

(11) 

(12) 
.. -~.""';~·o:-~-..;..,7·~--" . 

Then.:.('J:l) 'becomes -.. ~r ... 
i 

.. ' 

[>..] BO + Co·Ro + >..t(Bl.+.Cl·Ro + Co•Rl .. \1] :. 
. ' 

= 

_Making 

= 

and finally 

= 

. . ' ~ ' . ·, .. :. ~ 

sationary-with respect to ~t:.:then~g:Lves 

-[B 1 

l . ..... '. -~ !_ ·'.., . • .' •• 

+. C1 ·R0 + c0 •R1 + ll' 
.-_ .. 

'·' 

. ,. ;:' 

·' .; c ~ .,. , 
'· ~ .. _.,. .:. 

f ' • ~ ' 

, 

. ·. 
,J. ' ~ , . 
. -r ·,, .. 

:,_ '· 

,/> ; 

f .... f. '·· . 

;' ·.· ... ': -~~ ,-::-,._ 

' . . --~ ' 
·.:-

.. _ ~ .. ' . 

. - .. _. 

(1)) 

: . ..,. 

l . 

. r, 
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which we hope is close to the correct.;>...= tan 11/k' since it differs 

only by second order in the wave function error. 

The Hamiltonian H is an operator that has a continuous 

spectrum (the scattering stat~s) as well as (possibly) a discrete 

spectrum of eigenvalues . (the bound states). The continuous spectrum 

contains the eigenvalue E ; hence the spectrum of the operator H - E 

includes zero. In this scheme H - E is· represented on a basis of N . ., 
functions u1 , and as N goes to infinity we expect the matrix M 

to become a complete representation of H - E. We therefore also 

expect that.as N grows (but remains finite) we may occasionally run 
. . . . !I ,, 

across an eigenvalue of M t~t is very close to zero. While it is 

not likely we will hit a zero eigenvalue e~ctly, it .!:! likely that 

the number of eigenvalues within any neighborhood o~ zero will increase 

as N increases. This means that the matrix .M may become nearly 

singular, and therein lie the va~ries of the variational method. The· 

effect o~ [;>...) may be traced f;r:-om the .solution of Eqs. (i2). Suppose 

... ' 

M has eigenvectors . sm c~z:responding to eigenvalues Em , i.e. 

M; Jm ~ .. :em,}.m 1 m = 1, • • • ,N. Then th:e soi~~ion :to· ( i2) ~s : . 

N 
-+ I c . -

m=l 

and 
·N --R•C :: I 
m=l. 

. <ii·t ) . m 
E 

·' . '. 
·• ... 

m 

',i 

. •• . :~-1 

. . ~. ~-~ .. :> :1 .• 

. . ' ,. ~ ~ 

• -~· . -~---~~-~--'J ·./ 

' ' 

' ... : --- .. :,.. 

'"'-, ... _· 
~- .. 

~ ... ·::l· 
.,, :• . 

. '\:· .. 
. .. _._ 

·. 
. " 

, ... 

• t! 

' .. 

.·./ 

. \ 

(14). 
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Terms of this form occur in the stationacy eXpression for [A.) ' 

Eq. (12) •. If some €m becomes very small, the magnitude of the 

corresponding term in (13), and therefore of [A.] ; my become huge, 

and the resulting error in [A.] very large~ · We still need to examine · 

w the . numerator of . the right-hand side of ( 14) to see· if 'R • i' :ts !! 
. m .. 

automatically small when €m it:J. s~ll, thus eliminating singularities 
, . : . . . ·N . . .. 

of this kind. Suppose .Efm·=.O.: ·.'.Then, '[·:.·M1k(Em). = o , .. .. 
. . . . . ' ' k=l·· k 

• ' ,.: ~ • • • • < .. :· 

i= l;···,N •. That is; 
!'. 

N "' 

I f . -+ . 

ui(H .. E)~(sm)k =. 0 • 

k=l .N 

This says tb4t the function . (H - E) L: 
k=l 

each of the functions ~·; ·however. we have no reason .. to expect it 
' 

to be orthogonal to ¢~ or ¢1 ,·since they.are•unrelated to the 

ui•s. Therefore the numerator need not be zero. ·If we were using . 
-+-+ . 

then R·s would have tobe zero, since we ---- m . . . a complete set of ui's, 

could imagine the ¢•s expanded in terms of .the ui • With a finite 

set of ui , however~ we are always. ~n.danger of a possible infinity. ; 

Nevertheless, as· N' grows and the basis b~comes more complete, we 

·hope for weaker singularities (i.e•. · smaller R•s ) and reasonable 
. .: .. m 

convergence.; ' t, ' 

,_:. ·. ·:- :~, > ~ . .1 

.This plight is --~···c the·' st_ationary value of 
.l•·. 

the· quadra.tic expression. 
. .. . , 

. :·, . .. , . . ,: -~; ·-

.. -. 
... 
-~ . . 

·,·, ,· 

'. -~ ' , ' . ,. 

·-,· 
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vThen a becomes small. For n9nzero . a , ·'it is 

+ c • 

If ··a= 0 , a stationary value exists onlY if b ·is also zero, and 

if a approaches zero the magnitude of '·y beco.mes arbitrarily large. 
. - S ... 

In this analogy, a corresponds to M , x corresponds to C ,· and b 
... 

corresponds to R • .. 
The upshot of this analysis is that by working harder we may 

at any step only succeed in climbing a pole and getting a worse 

answer than we already had. We solve this problem by parameterizing 

the subspace of functions 
. II 

ui (r) by a. single parameter a (~ the ; l 

.polarizability). Varying a allows us to vary the subspace in a 

continuous fashion and thus map out the behavior of [~] , exposing 

the 'singularities as well as regions of good behavior. We look for 

convergence with increasing· N i:t;l these "good" regions. This method· 

was devised and tested by Schwartz17 in calculations for e-H and 

e +H , s-wave, elastic scattering, and worked beautifully. (As .an~.:.... 

example, we might use ui(.r) = ri-l(e-ar) in an s-wave calculation 
..;:.!!,~ ... :::-__ ~· 

for our one-body, potential.scattering.) Our own calculations or-· 

p-wave scattering display similar qualitative features and appear to 

yield good results, as we will see 'later• In practice we fix a , 

calculate [A] for several values of N,:then increment a and 

repeat. W7 find that a plo_t of.· (X] ·_,vs·. a:, for~ a; e;iven energy gives 
. ·--·~. "'t• i-· ... ·. 

a set of curves corresponding,_ to the set pf values ... N , smooth except 
' ! ~ 'c 

:. :; ~- 1 :.:: ·.--., .... -~ :_ •• ~: t ' 

....... 1 ~ : ' •• • ••• 

, . ... . , 
.. : ~ . . ,";.. ' ... ''I' 

. ·,· , . 
• f.' . 

:' . 

_, ... _ 

-~ . " 

~·· 
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for the {expected) singularities, containing stationary regions, and 

.. becoming flatter and more closely spaced as N .is increased. Examples 

for specific calculations wi1l be given later. .. 

D. Electron-Hydrogen ~.catteri~ 

·We turn now to the problem of' interest: we rep.lace the 

scattering potential by a hydrogen atom. This introduces three 

.complications: 

1. There are now three additional degrees of' freedom. 

2. The Pauli principle must be.observed if the. incident 

particle is an electron. 

. ; •. The potential is no longer short range; its leading 

term (in the adiabatic approximation) goes as· l/r4 

for large r. because of the polarization effect. 

In reply, 

We select as coordinates 

where the coordinate origin is taken to be the hydrogen · 

•I. 

~re measured from the initial direction of motion of 

the incident electron •. 

2. The ~rial function for e-H is constructed to be anti-
~ ~ 

symmetric or .symmetric under the interchange. r 1 ~r2 
for triplet or singlet states. 

;. The Wa.ve function is no longer simply a linear combi-
. . 

nation of· .jt and nt at large r •. This question will· 

. be examined in aetail 1~ the neXt section~ .. ,, · ..... . 
. . 
; '' ., 

%. ' ·~ 
., 

t . 

·, ' ' .. 

II_ .,, 
! ' . 



~ ~. > ~ • ' 

' . ' ' . \ '~· ,;:~ . . 

j"' ~ J • 

. -26- ~· 

T!le complete Hamiltonian becomes 
.. .. 

'V'2 \72 
1· 1 1 H 1 2 + -= .. - - 2 - - +· - - ' 2 rl2 . rl r2 

whe.re upper· signs correspond to e -H, lower to e +H.· We next look at 

the trial function. ·'. 

1. Asy:nptotic Wave Function 

We seek the appropriate asymptotic form fdr the trial function 
.. 18 . .. 

. using a method suggested by Schwartz. For the moment assume that · 

the incident and atomic electrons are distinguishable, so that we can 

-+ . 
negle.ct the Pauli principle. . Let r

1 
be the coordinate of the inci-

of the atomic el~ctron. In the lowest· l \\ . -+ 
... dent and r 2 the coor~ina te 

' 

. approximation· there will be no interaction at large separation between, 

the incident particle and the atom in its ground state. This amounts 

1 1 to simply neglecting the interaction term --- • --- for large r 1 • 
. · · r12 ' rl · 

If rj(r2 ) represents the unperturbed atomic.wave function, the two-

body waie function v
0 

· will then be 

.... .. . ~ .. • .. • 
' .. 

at large r 1 • As .. r 1 -+ oo , this approache~ 

l.,·' 

.. 
t . ~- ! 

Now expand the wave function . for large .~~~>,as; · 

' :' :. · .. :.: (, 
-· >. ... _. :- •• ··::..:,' .... _-<: 

r- ,• ·,. 
·. -.;, 

.... : J. f :.; \ -~~--
; 

- . .. . ' 1 . ·:." •• ~. ±· ... ••,• 

~ :~,.r-~~~\· . ,. 
,•_ • ... ' _:1 i. ~ 

'· < -. ;· 

~.. . ' . ".: .. 

·•, 
' ""} __ ·' .... 

"'~. '• : 

.. i 

· ... ·' 

'I ·, 

·. -~. ' 

', 
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·• J, 

= ¢ sin(kr1 - ~; + T)~)Yt(e1) 
. . 

( 15) 

where the functions W and X .satisfy· 

. I 

and 

but are otherwise undetermined. Let ·H
0 

and E
0 

be the Hamiltonian 

and energy for the ground state atomic -wave function so that . l \ 
1 

. Theri the Schroedinger equation for r 1*. is 

L 2 ] 
. + ~ - (d.. - ..!.... ) r1w 

I\ «:; . rl rl/'\ .:;;rl. c:. 

0 , 

where L 2 is the angu1a~ momentum operator. Substituting t~e 
1. 

( 16) 

. . . . 2 .. .. 
·. expansion ( 15) into ( 16). and keeping ~t~rms through·. _o( 1/r 1 ) .·yields 

• I ( 

•. ·.l 

·· .. · . 
•·. . ·j.J ,; '· 

'. ~·. : .. 

II 

\ . 



.... · ... 

.. .. 

' \ ; r 
· 1 1 ·2 ··A 

where use has been made of - · = · + :--2 ~ • r + • • • 
rl2 rl . 1'1 . 1 .. 2 . 

. Equattng coefficients of. 'l/r
1 

gives · (H
0

· '- E
0

)W = · 0 ~ This implies 

,that 

. 2 . 
Equating coefficients of l/r1 , give.s '•.' 

.Multiplying this ~Y .. ¢(r2 ) and integrating over r2 . yields 

. . (' • • .(.1( . ) ' . ' do.> 
sin krl - 2 + Tl.c. . ~+ drl = . 0 , 

since .··' .\:· . ":. . . . 

j ~(Ho- Eo)x IG2, = J x(no ~ Eol~ IG2:.~ '6,~ 
and . 

···. i·'. 
· ... .; •, 

J r 2 ¢ ~ 2 ¢ o;2 = 
'· ,' 

0 • '' 
.. 

Therefore 

ro(r
1

) = t(t + l) cos(kr • t1t + ~.) 
.. 2k ·1 ·2 ~ ' 

and we have obtained the asymptotic wave .function correct to O~l/r1
2). 

1 . . 1 
In fact, we.see tba~ turning on the interaction --- - -- for large 

. . . . . . . . r 12 r 1 · 

r 1 (al~owing the atom to J?Olarize) luis not changed ~h~ form of the ·, 
- . ~ . . . . . . . . . 

. . .. 2 . 
. far-out wave function through orde7 · l/r1 _ . (i.e~, it·'is the same .as · 

,. 
· .. .... 

. . ~ : 

. ' ... 

-· 

. . 
:, ' 



-·· 
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' J .e. , • tan 1'l t n .e. through 0( 1/r 1
2

) ) • -In .order to find the 1/r 1~ 
term, however, we would have to soive the remaining equation 

which clearly does involve the polarization. We will instead b_e content 

· to take for the asymptotic part of v some~hing that goes for large ~l as 

rl.(r ). [sin(kr1 • ~lf + l'lt) ., -t(t -+ 1).- cos(kr1 - ~lf- + l'l.t,) ·] 
'f 2 · + 2 - ., Yt(el) 

. kr1 c~s l'l.t, - 2(kr1) · '- . cos T}t -

. -- { t~ · - - sin( kr ... - ) 
= Y t(el) ¢(r2). . .1 2 . 

- k~l . 

[
cos(kr1 - !:f> 

+ tan T}t . 

. krl ---

and let the (variationall.y.determined) close-in functions take:care of· 
I 

the polarization. 

In practice we could use -' . 'r.. 

+' close-in functions 

for a trial function, where gt is constructed to shield the singu

larity of ri..e. at the origin; but the integrals then become difficult 
• . i . ~ • 

to evaluate numerically .for .(. ~ 1· _beca~se of the· nt gt term. We 
• J •• • ::. " • • • ' ' ·~ ' ' t .~ ... ' • ' -

..... '. 
'·:·.. ',\! . .... ~ ' . ..~ . .. .. · 

,·,: ... 

. - - ) . 

.... {' ·.:. 

. . 

·.' ' . 
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have invented the following more convenient function: 

+ close-in functions,. 

which enables us to do the integrations with relative ease, yet has 

the required .asymptotic form (17) •. Of course ¢(r2) = 2e-r2l~,. 
the normalized hydrogen ground state wave fUnction. For e .. H 

scattering, 'if is operated upon by (1: t P12)/'-f2., where P12 

exchanges coordinates 
.. .. 
r · and r , so that 1 .2 

. ' 

+ t~~ jt+2(kr1)]} ... 

. ·-r . 2 .. 
?< y .t. ( e 1) e . + close-in functions • 

. " .. 

· The upp~r /lower sign is used r~r the single/triplet case; · 

'',•·, ' 

2. · Close-in Functions 

The close-in functions (the 'u1 of section IIB) shoUld: .; 

1. be a complete basis when N -+ co , . 

2. vanish for l~ge r 1 or r 2 1 

). be able to describe the electron correlations,.· 

4. , con~ain the non-linear parameter .· a , 
. : .. 

5· have the. correct properties under .a rotation; .that is,. 

~ p-state must rotate, like>'a vector;· etc.,, • ·· 

, ... 

' ' ' .-..-. · .. 
I.·~- ~ ~- : .\' •. t: ' ' . • . • ·. 

... .. . .. . .' . 
• . f > • ; :~ - . :·~ .. ·: ' 
. ,· . 

'~· t, :·_. ·] ••. . 
,<~ •• 

~ ... I ·: 

·~.' J.. '. 

' .. 
,. 

.. 

\ !' ' ••• ;· ~- .• ,. • 
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6. be explicitly symmetric or antisymmetric under 
.. 

for e -H. scattering. · . 

In his s ... wave calculations, Schwa.rtz~used the function 

I. 
j+m+n~N 

For our p-wave calculation we use 

I 
j+m+n~N 

., ' ' . 

., 

II 
\I 

Calculations are done ·for N ·= 1, 2, 3, 4, . and. 5, yielding '· 

4, 10,-20, 35, and 56_ terms :respec:tively •. For the positorn p-wave 
.·-·. 

the function becomes 
;_ 

. ~ : ~ ; ' . . . . . ·,. : 
., .· 

and .N = l, 2, 3, and 4. yields 8, .20, 4Q, .and : 70' functions_ . 

respectively. Twice as many as the"': e ;..H -case for ~ given · N as a 
. . ' ... 

result 

·" ... 

· . .: 

. ~: .. 
. -··. 

'· .. ( 

... : 

~-- .i 
'·' -r:. ,; 

.• I";;~ 

-~ .:·_; (.; 

t·' 

,_lJ';· 

c~ .. 

·-· 
. ···. . . 

-, 

'·· 

'it' 
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III. RESULTS AND DISCUSSIONS 

The numerical work consisted mainly of doing the integrals 
. ~ ~ . 

in Eqs. (10) using the trial v±(r1,r2) described in.section IIC, and 

solving Eqs. ( 12) • Restricting the. asymptotic form of v ± · to the 

regular functions j (kr) m enabled us to'do all ~he integrals exactly, 
~ ~ 

in the sense that no cutoffs in .the integrations over r 1 and r 2 

were introduced. We now exhibit and discuss.some typical calculations • ., 
Figures 1 and 2 represent p-wave·triplet and singlet "maps" 

for the lowest e""H energy studied, k2 = 0.01, about 0.136 e.v. 

(The wa~e functions are normalized with an additional f~ctor 
. . I 2 . so that ~ discussed .in part IIC becomes tan ~ k · rather than 

.tan T)/k This has no effect on the final answer; it was done simply 
2 . ''19. 

·.because the p-Wave phase ~1 ~ k as k ~ 0 .) The parameter a 

defined in· IIC is measured along the horizontai .axis. These curves 

' 

have a pleasantly smo~th, paraboli.c behavi~r;; with no apparent 

singula:hties. There may well~ singularities that a finer partition 

of a would uncover,.but the structure is clear enough for our purpose.' 

'If k .were zero, we would expect strictly no singularities, because 

· in that case we are guaranteed a minimum principle. • For low energy, 

therefore, we're not surprised to.find the singularities relatively 

scarce. (Each of th~ arrows in the figures point to t~e best value 

.of [A.] for corresponding N .:) ·At this low energy the interaction 

is mainiy due to polarization effects; sin~e the incident particle. is 
. . . .. . ~. 

kept away . from the atom by the .centrifugal barrier~ e. ; ;' ":. 
• • • "'. • • • 1- .• ' - .;;· ·~ • ~ • ~-- :; 

. . . . •. •. .· . : :; i x: :?·:r.'.: ::E '·· 
~' . : 

... ... 
' 

··'' 

.•, .. ·-' 

' '. 

,. 

. -· 

.! 
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0.6 1.4 
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• -2 
a ...; I 

1.8 

A. vs. ex, triplet p e"'H · at k = o.i atomic unit .• 
. . . . 

. indicate the best [A.] for each N •. 
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ora meters 
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Fig~ 2. A. vs. a, singlet p e·H·. at k = 0.1 atomic unit. Symbols 

are eXplained in Figure 1 ~ · 
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As k is increased, the character of the curves changes, as 

may be seen in Figs. 3 and 4 for k = 0.5. There is a marked flatten• 

ing as N is increased, singularities appear (the dashed portions),· ~· 

and convergence (iguoring the singularities) is better than that at 

lower k • This improved convergence with increasing k may be 

-ar understood by looking at the ba~is functions ui . = e 

have a maximum at r 0 = 1/cx. and then rap~dly tail off to 

i 
r ·• They 

zero as r. 

increases. The dominant error term ev in the·wave.function is 

some~hing like sin(kr)/r3 , as we saw in section IID, part 1. For 

small k this error term is a slowly oscillating function with 

decreasing amplitude ~s ·. r hi · h find hard to · . 
1
1
1 

\ increases, w ch t e ui . . .~ . 

• imitate. At larger k the oscillations are faster, and successive 

oscillations more nearly cancel to give an "average" function that 

vanishes more rapidly as r ~ oo• The u1 , whose purpose is to 

remove the error, therefore have an easier task •. 

irn Figure 5 at k = 0.8 we find an embarrassment of singular

·ities, but as before the flat regions are not difficult to recognize. 

As the energy approaches .the threshold for excitation to the first 

· excited atomic state, convergence becomes worse for another reason, 
17 . 2 . 

pointed out by Schwartz. For k > 3/4 , the asymptotic part uf the 

ik·'r "'"'/, 2 2 wave function has a term e . , where k' = Vk ~ 3/4 For k 

slightly less than 3/4, k' is a small'imaginafy number ie ; and the 

wave function should have a term which.behaves as 
. '-El:' . e · •. For small 

positive e this is· a· long tail and not .easily.constructed with our 

short-range functions. ':For k = o.866 .. the' singlet. ; .·.resu;J..ts thus 
I . . . , , . , 

.' ... ... ( 

• ' r ,· ~ • ' 

·- ' • • ~ ~ . 't ' ,. ' 

, . I 
.. 

. ;· 
i -'1. 

. ' 

,/ 
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.. 
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.:.:. 
'1~07 .........._ 

1-
f::'" 

c 1.06 ' 0 ' -
. 1.05 

.. , 
1.04 .. 

1.03 

I. 0 2 '-----'--~-"----'-_.____.. _ _.___...__""---~..----' 
0.2 0.6 1.0 1.4 1. 8 2.2 

Q 

,_~'M &:r::-3·" 73 6 

Fig. 3. ~ vs. a, triplet p e-H at k =: 0.5 atomic unit. Symbols 

are explained in Figure 1. 
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MU·34737 

Fig. 4. A. v:s. ex, singlet p e-H at k ·=\0·5 atomic unit; . Symbols 

are explained in Figure 1 •. 
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Fig. 5. A vs. a, triplet p e·H at.k ~ o.a atomic unit. Symbols 

are explained in Figure 1. 
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failed to converge as N was increased to 5• The triplet calculations 

were better behaved and hence more accurate in general, probably 

because of the (well-known) disposition of antisymmetry to account 

automatically for electron repulsion. 

We were unable to find any resonance effects in the e-H 

20 singlet or triplet p wave such as were reported by Burke and Schey 
i • 

near threshol~, only a moderate climb (about 0.04 radians) in the 

. . 2 68 singlet phase. Some brief calculations at k = 0. , o. 72,. 

· and 0.7~ also give smooth, monotonic behavior. Of course we may 

·simply haye failed io resolve a narrow resonance which is really 

.there. (For example, .the ·singlet s-wave 
lj, 

resonance reported by i' 
t. 

. ro . · 2 

. Burke and Schey takes place in the interval k = 0. 70 to 0. 715 •. . v 

This a-wave resonance is supported by some recent (unpublished) . . 
preliminary calculations of Schwartz, and we believe it is actually 

. . ·. 

there.) · ·· 

iExactly the same procedure was followed for positron-hydrogen · ·. · 

. scattering for ~ and p waves. The first inelastic channel appears at 

2 k = 0.5 in this case,· when it becomes possible to form positronium, 

so calculations extend only up to. k = 0.7. The positron results are 

. not as accurate as the electron results, because removing the . .symmetry 

. · requirement doubles the number of close~in functions for a given N 

. (hence quadruples the size ·o~ the matrix M) and .forces u-~ ·~~""';top-at 
; ·_ ~ . l . 

a smaller maximum N. ·For the s wave, _N~ 5 ;'while for the p wave 
. ·. . . ,.., : ~ : 

N ~ 4 · • Otherwise the same remark~ as for the ' e ""H:·; app)j. to the · 
"I.' 

behavior of [)I;]· as a function of:· a·. ·: ··~. ~· 
; .... '· • ,h '• 

; . ·,,._· .... ' 
'•. ' • o }>.."".~" ~~ l' ' ' 'I 

( • t .· . {._. :,,· ~; . .. . .. .. 

. . ~-. 

·. 

.... ·. 
'·' ·. •. :. -. 

.. .. ·" 
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The complete results are tabulated in Tables I and II. Row a 

refers to A.t calculated using only the asymptotic.wave function 

(no ui 's) ·' and row b to the corresponding [A.] • It is easily seen 
. . 4 

that row a is just the partial-wave Born approximation, and it was 

hoped that row b, a •ivariationally-improved Born approximation" might 

yield good results and save the {considerable) labor in solving ., 

.Eqs. ( 12). The p-wave corrections--those large enough to detect-- . .. 
are all in the wrong direction, however. At least the failure is 

'. 
unequivocal. 

O'Malley et a1. 19 have shown that when polUization effects · · ' . . . l 
are taken into account, 

.... · .. · . ·.. . ! .·· . . · .. ·. k 

tan T}~ - ••• 

for t ~ 1, which agrees reasonably (within 20%) with our "full- . 

+ 
treatmel)t" 1}1- for small k. The Born approximation (both straight 

' l· 

.. 

and variationally corrected) 'n.'th no allowance for polarization effects 

is apparently _quite inadequate, however, giving the dependence (from 

Table I)~ N k2~+l as k ~.0. 
+ . . 

The complete s-wave e H results are essentially identical 

to those of Schwartz, 17 w~o used a different asymptotic function. We 

also did e-H ·a-wave singlet and triplet calculations (not sho~ here) 

at k = 0.1, . 0.4, and .0.6, 'and again reproduced Sch~rtz•s' results. 

·. In all cases .. [A.'] increases ~not~nicaliy with · N ~: See, · for 
- ' ~ . . ; . ~ .. -. . -

' ~ . - • •, . '). ·~ ' 'I ~ .' . 

example, Figs~ 1 through 5~· ·Therefore',· whiie ·.we cannot prove .it;. we . 
. -.· .. ··:-:· ·,r':.~ • :· : ·, ··_:·:.~,"'.·,"..,-· .. -~.of".' ·=.···· .. ~:·~ ,- -'.' 

-~ ,. < T' ( • .> ' ~ ' • ', 

,,~ :r,; ~. ·',_:·-.-:- --~;;~_'l.'_:·~ .. ; -~:~t· !" ·: ....... ·,-/j,p._. -, ~ .. ·, _, ('', 

. i ~ ... : •• : 1,~ ' ·'. 

,· 

.·.·, i.,.' ..... ·• 

... (' 

~ .... . ·i. 
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TABIE I. Electron-hydrogen phase shifts (in radians) 1 singlet ( fl.t) and 

triplet ( Tl -) for total angular momentum t. = 1, 2, 3. Row (a) is the 
t . 

· Born approximation, (b) the variationally corrected Born_ approximation, 

·(c) the probable lower bound, and (d) the most probable value. The 

number in parentheses is the probable error in the preceding digit. · 

k 
(atomic 

units 

+ 
Til 

0.1 

0.2 

Q.4 

0.6 

(a) 
(b) 
(c) 
(c) 

(a) 
(b) 
(c) 
(d) 

(a) 
(b) 
(c) 
(d) 

0.0017 
0.0017 
0.0101 
0.0114(6) 

0.01)0· 
0.0130 
0.0448 
0.0450(1) 

-0.0013 
-0.0013 

.. o.oo6 
'0.007(1) '• 

-0.0092 
. : ~0.0092 

6.0146 
0.0147( 2) ... 

0.0385 -0.0266 
0.0385 '-0.0266 
0.1059 0.0163 . 1 

0.1063(2) . 0.0170(4) .· 

0.000004 "-0•000003 .. 
o.ooooo4 .. ; -o.ooooo3 ... _ 

0.00012 -0.00008 
o.ooo12 .; . ·-o.oooo8 

. ' ~ " 

'; 

0 0 00079 . 'I -0 0 00052 
0.00079 '. '-0.90052 .• 

• .·!., •· (. 

-(a) 0.0771 · ;, · -0.0510. · <-~0.0027 >'\ ~0.0017 ··: ·.: 0.00010 
,(b) I 0.0769 -0.0512 : · . 0.0027 ·'.. ;;,0 .0017 : , 0.00010 
(c) 0.1866 ··.: 0.0096 · ·;. .. . · . , ·· .'_:, · 
(d) 0.1872(3):;;., 0.0100(2):: :' .. ;;.-.. ·. ' ' ., . 

, ~, '· . I . ·. ' 

II .. 
... \' 

'. 

-0.00006 . 
·. -0.00006 

(a) 
(b) 
(c) 
(d) 

0.1229 
0.1220 
0.2695 
0.2699(2) ' 

·.,- ., ~ 

•. -o .0772 . . .· · o .oo67 ·~:· ·.:. -o .oo40 ·' ··:. ·· o .ooo38 · -o .ooo22 
-0.0778 - · o.oo61}\ :~o.oo40 ~" .,· o.oob38 · -o.ooo22 · 
-o ool4 ·, · ':'··\ .. .: ·. t · .. ,: · . 
-o:ooo7(5)·<·~.- ·.· :>·· · d.; .. :··: · 

(a) 0.1694 · . -0.0994 ·-: -0~0129 '; .. · -0.0071 ... : 0.0010 · -0.00055· 
(b) 0.1667 . . -0.1008 . '.· 0.0129. ; .. ·. -0.0071 ·. :·. ·6.0010 -0.00055 

~~l. g:~J(3) ... :g:g~{l) ' ·:::-\:~(. 
. , '· .. :- ... ~: . :. ; 

. '" 
't-~- \ ::. : \ ·•,; ... 

';: , . . :• . 

• • ;r )' • •• 
...,. ; • ~ ..... ·' • : •• _. > ' 

' ,._ . •'i',·',; ' ,I 

-~- >·._· i' ~ •. '< . ' ••. 

': .. ' .: -~: .:~ . : -: . . "::'( ··. 
··•· ~ i. -.:l_. :..~ :_ •. ,'·. ' • . : :_ ·>. _-: .- .. • ' 

_... ·,.· [! .. ~' 

.... ,.. 
. ' .. 

.- .. .. . 

. ' ·~ 



k T}1 
{atomic 

units) 

0·1 (a) 0.2112 
(b) 0.2058 
(c) 0.3918 
(d) 0.3927(5) 

0~8 (a) 0.2447 
'(b) 0.2367 
<c) 0.425 
(d) 0.427(5) 

o~86o (c) 
(d) 

0.866 {a) 0.2630 
·, 

(b) 0.2524 
(c) 0.44 
(d) 0.44( 2) ' 

/ ' 

... . ., 

. ( . I ~ 

· . .._. 

. I 

.'(,' 

-42-· 

TABLE I (Cont. ) 

-0.1137 
-0.1164 

·~ + 
l]; T}2 

. 0.0211, ·. : .. .;.0.0107 
' . 0.0211 :; ;;. -0.0107: 

T}3 

.. 0.0022 
. 0.0022 

-0.014 . ..: .. 
_ .... t 

,· .. 

-0.013(2) 
-~ . 
..... 

''•,. ',.; . -: ~-

.I".: • 

+ 
T}3 

-0.0011 
.. 0.0011 

.. o.0017 
-0.0017 

-0.1190 ',' ' 0.03<)8 '• . ~ .. 0.0141 ,, 0.00~9 
•0 o 1227 . . ' ; -~ .0307 I ,' •0 ,0141 ' ·' . 0.0039, ; =~:~~~ 1) · .. ,,, ·, ·.·:';if:;:' ,,,· . ,~ . . ' ' 

' ~ ., . ' ' .. ,_,. . . ' '· ' . 

+0.019 
. +0.03( 1) ·•. . '· .. 

-~ <J . • .. ' 

•0.1172 
'.,,,~·~· .. d·_.l\, . • ·----.-...:_;_,..._ I' 

! . 

-0.1218 
+0.054· 

·, t,;; 

.. 
~, . . ~ ·. 

.L 
.. ·,t . 

'· 

• ~ I -~ ,•I. ~ . • . 

_'!.'· 

. !. 
·-·.·· 

' 

... 
~-- :. 

''.· 

·' ' .. ,' ' 
.•., 

,. . 

' ' ·.: 
.,-' ' .... , 

~ .. : 

. ~- . . . ::.:._ < . ·' ... •, 
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• 
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TABLE II. Positron-hydrogen phase shift~ for t = o, 11 21 3· The rows 

have the same significance as in Table I. 

k 
(atomic · 
. units) 

0.1 .. {a) 
. (.b) 

(c) 

(d) 

·o.2 (a) 

(b) 

(c) 

(d) 

0.3 (a) 

(b) 

(c) 

, ... . ' 

(d) . . .. ' 
'~ .... 

-0.099. 

-0~099 

0.142 

. ·o.149(2) 

-0.192 

-0.192 

0.186. 

0.189(1) 

-0.274 

-0.275 

'1\2 
:< . · . 

· o· ·65 -6 -8 
·; •0.00025 . ': ,, . .., !>. X 10 :

6
·-.: · •0.17 X 10 ) 

"- . · -o.ooo25 .·. · · · -o~65 x 10.. . . · -0.17 x 1o·8 
L,: ·. 
: : ·. · o .oo8 · . ., · 
; '; • .> • 

. : 

.0.009(1) 
" • t 
. ---· .;' ... 4 

-0.0019 . . ... 0.19. X 10 .. 

·> · .. 0.0019 < ;, ;,;0.19 X 10_.4 
'· 

•. 0.032 ' 
... 

0.033(1). ; ! '., . 

. ' ... 

-o.oo6o 
~ : -0.00014' 

· -o.bo6o .. •0.00014 

., 

. . -6 

. -0.21 X 10 
·.· -6 

.. -0.21 X 10 
II 
. ~~ \ 

.. -5 
-0.32 X 10 . . -5 .. 
-0.32 X 10 . 

0.165 . ' . 0.064 ·. 
' . ·.. ~ 

' 

0~168(2) > '. 
j '· . ·r. 

0.065(1) '·,··t ' 

0 •. 4 

. i 
(a) . 

(b) 

(c) 

(d) 

~:' '· 
: . -0.343 ;:.~·;.;'· .. :-0.013 . :-_:; :. -0.0005:2 ~ ' • < 

... ". .~ i-". 

-4 ... 
-0.20 ·X 10 · . 

. -4 
•0.20 X 10 

0.5 (a) ,, 

(b) 

(c) 

(d) 

... 

•0.346 ., '.( -0.013 .. ' :,'_":_:' -0~00052 ·.:-. -~ 
0.118 ; / 0.099 · .. <·.·-~-·: 

0 .121( 2) ,; . ::: .::. 0 .102( 1)'. ;; •.. 

-·' 
:/ .. . ···•· 

,:.> • 

0 l : • • ~- • • TO •" 

. · .. "'\ 

~-· .... ~ .~ 

,. ,.t· 

·.·, ., 

. ·) 

... i ." 

, . 
.<' 

'. 

.. ;: 

·., 
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TABU: II (Cont.) 

k 
(atomic_ 

1lo 'Ill· 
".,( ·11 113 . . \ ..... 2 

uni_ts 

o.6 (a) -0.444 't'; -0.036 ': t; 

.-0.0029 ,-0.00023 
~!;", 

(b) 
.-':• ~0.453 -0~036 ' 

,, 
~0.00023 ,• 't •0.0029 ·;;: 

(c) 

(d) 

0~002 .!"· O.l53. .. 
·_;{! ~ .. _.c . \ 

0.007(2) 0.156(2). .. 
' .•.. 

0.7 {a) -0.417 ,, -0.050 -0.0052 -0.00055 .. 

(b) -0.492 ·.:.0.050 .. -0.0052 -0.00055 
(c) 

(d) 
-0.053 

i~ 
0.175 I 

'-0.051(2) 0.178(3) \. ,, 
;t .. I .. l 

,···. 
'· 

' :_ ; ·.1. 

·'··.~ ; . 
..•:/;t: ' . 

.. '•. ;, .. 
:". 

., 

., 

... 
,i 1.· • 

.... _,.:· 

·.•;. 

·., 

,. • ,J. ~~. ; ., :· ,. 

.. .. 

•, .. 
. -~ . 
.. ·-· \ . 

\. 



. ~ 

,_ ,· 

,·,1' ... : ... ". 
) . 

··.' 

. -45-.' 

believe that [A.) calculated for the largest N (5 in the e""'H case) 

. is a lbvrer· bound on the correct .. }... . and hence gives a lower _bound on 

· · . the phase 11 -~ . Accordingly, this number appears in row c. Row d is · 

. the. most probable value for the phase,·_ obtained by extrapolating to

N =· oo. A crude analysis of successive maxima shows that where 

convergence occurs, it is faster than 1/r, but probably not as 

fast as N 
X 

., 
Each sequence of stationary Values is therefore 

l 

extrapolated in·three ways: 
4 . ~2 

1/N , and assuming 1/N- • 

_assuming geometric·convergence, assuming' 

In general-the average is 'taken as the 

most probable A. , and the average deviation as the probable error •. 
. \1 

The nillllber in parentheses represents the probable error _in the:_c-'--~-...;,;;.~ 1 i 

:preceding digit. ' . i 

It has been suggested that t4e difference between [A.] and 

A.t might be a reliable measure of the accuracy,of a variational 

calculation. It is usually true that 
; . .'• 

lA. ·_- A.t I is smallest in the.-- . 

_regionsi(of a) where the curves are stationary; however, as in 
. . . 

·. '. . 14 . . . . . . 
_earlier calculations, this quantity actually passes through zero 

· occasionally and could easily lead to ari overestimate of the accura·cy,; ~ · 

.In Tables I and II; "tor exami?le, the ordinary and the variationally 

improved Born approximations are in all cases very close, yet quite - -
: . . . . 

-wrong. 

In the p-wave calculations-the value _or·· a at which a 
' .! ' ~. .. 

· ... 
stationary value of'· [A.]· occurs for given:~ _N increases (with some . 

• ~.- . t' . ' ' • '· ~ . .' -' ' • 

exceptions) w1 th iiJ.creasirig .: k _;' ~s _may be seen from Figs. l through 5. 
r . . . . . " ~ • . ' ' ,. f. ' . ~ • •, • ••• ~· ;.., •• : • •. :' • , ~ • • • 

. ,., , ·; ·7' • ' I" I.~ ' ' ' ·,.,_ 

. _.·: -·: -(~·. '· 
·v.~' . · ~\ 

.... _._·.·. 

·': , .. 
' -~ . ~ .. 

"',; 

.. 
• •.• • <(,. 

.. ~ . ' ~-.:( '. 

·. ~ . 

'· 

... 
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This is probably because higher energies allow the incident ~article 

to approach the atom more closely, thus pulling in the wave function. 

The value of ex that permits an optimum reproduction of the "jirue 

wave function then increases as k is increased, since this decreases 

the value of r -o:r m for which e r has its maximum. Near zero 

energies this behavior is quite pronounced, becoming less so as k. 

exceeds approximately 0.4 (2.2 e.v.}. In the positron s-wave calcu-

lat~on, the effect was not observed, which is quite reasonable since ,, 

there is no centrifugal barrier in that case. 

were In. some instances the variational coefficients Ci 

monitored during the calculation to see if' they converged. 
!1 

That is, ', \ · 
I 

to see if as N was increased, a particular Ci might approach or 

• 
· stabilize at some constant value. If' the had been chosen orthog- · 

onal with the operator H - E then each Ci , once determined, would 
. . 

never· change, since the matrix M would be diagonal. The ui were not 

so chos~n, there is no' apparen~ reason to expect such convergent 

behavior, and it did not occur. 

The e-H p-wave phase is compared with some other· theoretical 

calculations in Fig. 6. · In Fig •. 7 we plot the theoretical. e-H cross 
. 17 . 

section calc;ulated from Schwartz's ·.a-wave and our p-wave resul~~s 
· .. 

according to 
00 

~ = I Qt ' 

.· .. 

where. 

t=O 
) 

Q = ~ 2t + l~rt 
t k2 '. 

l, . 

[ 3 sin
2 

T}t": :- ~ _sin
2 c~t +] .~. 

. :_ 

·.· 
for unpolarized beams.· . ' 

.. 

-· 

[./ 
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Fig. 6. 
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0.5 

0.4 

0.3 

0.2 

10.1 

0 
0.2 

--~ls=-=2=s~eL-~~.f 

' 0.4 

_-J----b 
I_~~~-=-- c 

0.6 0.8 1.0 
2 

k (atomic units). 

. MU-3.739 ' 21 
Our phase shifts alongside theoretical calculations of Bransdon, 

. . 23 22 
et al. (a), Malik and Trefftz (b), Temkin and Lanllcin (c), 

26 . . 24. 25 ' 27 
Burke and Schey (d), Smith.et al. (e), John (f), and Pu. 

Each.curve represents a different approximation. The eigenfunction

expansion calculations are labeled by the states that are retained 

· in the expansion (see the introduction); e.g_ •. , John retained only 

· · the ls state of atomi1c hydrogen in his calculation. 
! • ' ,._ • 

;--~.-~ .. 
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Fig. 7• Electron-hydrogen cross sections computed from t = 01 1 

phase shifts. Cross
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sect1ons are in units ~a02 · (a0 the 

Bohr radius) 1 and · k is in atomic units • 
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In Figure 8 the experimental results of Fite et al. 27 and 

28 Neynaber et al. ·are shown with our-~. Our results are in 

agreement with the experimental data, but there is such a large scatter 

in the data that it is impossible to confirm the theoretical calcula

tions on that basis alone. - Other ·calculations yielding significantly 

different phase shifts from our own also fall inside the experimental 

limits. 
., 

These calculations were performed on an-IBM 7094 computer, 

usj.ng single precision (8 decimal figure) arithmetic. The number of 

variational parameters used was limited by the solution of Eqs. (12). 
II 

For a maximum of 56 parameters (corresponding to N ~ 5), our code '• 

_takes 0.10 minute of computer time for a giveri k and a. About a 

dozen' points (a dozen a )_are usually needed. to resolve the structure 

at a given energy1 ·so a'complete calculation at one energy takes 

... 

approximately 1.2 minutes. Taking N ~ 6 means 84 parameters and 

increases the total time to approximately (84/56)3 x 1.2 = 4.0 minutes • 

This is still within reason and was tried, but it was found that 

numerical roundoff errors. in solving (12) then grew so ,large that the 

• answers were unreliable~'-: So we stopped at N ~ ·5 ·:tor · 'e -H.. p wave,· 
. t ' h ' > • ' I • • 

and. N ~ 4 for 
•'' . +. .. ' ' 

e H •. 

'• I . 

.. 

.. · 
~· . 

... : 

"': ' j :·. 

. ' 

'' .. 
... · 

,· . 
•' :. 

. i.:· ·, . > ' 

. . ~. ~ 
..... 1<~> . f 

~. ~ ~· ..... " .. ; 

·'·' .• 
•ro 

-'' 

. ·~ ~ . ~ , '' ; \ ·~ .. 
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Fig. 8. Comparison of theoretical and experimental total cross 
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sections for elastic electron-hydrogen scattering. 
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IV. CONCWSIONS 

In carrying out the complete variational calculation, we find 

that the singularities ar~ somew~t annoying, ?ut easily tolerable 

since we know their origin and can ignore them. We believe that the 

variatiOnal principle for elastic electron-hydrogen scattering pro-

vides the most accurate partial-wave phase shifts of any method avail

able, when applied as above with a sufficiently rich set of f4pctions 

ui • While it may not be practical for direct application to. more 

complicated .systems (e.g. many-electron at~ms), :it should serve as a 

useful _standard against which other approximations may be judged. 
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