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ABSTRACT
.The Kohn variational principle is used to caldﬁlate t-wave
phase shifts for the elastic scattering of electrons from a neutral
'hydrogen atom at subexcitation energies. |
The trial wave function is represented on a basis which .
simplifies algebraie and: numerical work. | |

It is found that a careful treatment avoids the usual pit- '

falls of variational scattering calculations and yields qpite accu— ;

rate results.

~ Singlet and triplet pwwave phase shifts are tabulated and ,3"

compared with other calculations. Similar calculations for s-wave

" and p-vave p051tron»hydrogen scattering are carried out and tabu-.f'

-

‘ lated.
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I. INTRODUCTION

| The_scéttefing of charged particles'fromvatoms has long been
'a fruitful technique in the'study‘df atomic structure; Rutherford
in his classic.scattering experiment not only‘depdsed the "plum
pudding" atom, but fqrgéd an indisﬁensable tool, whosé'usefulneSS'has
improved with sharpening. More recently the scattering of electrons
and protons from atoms has provided input to calculations .of kinetic
processes in gases. In the case of electrons scattered from ﬁydfogen __;
we . find applications in such fields as astrophysicsl and thermonucléar‘
reactions. | |

ﬁaturally an understanding of the theory of atomic'séattering;”

1s important, and in féct theoretical advances in the past fﬁirty i

years enablé us to give formal solutions to many scattering problems.2

'However, nany calculations, even for eiementary systems, remain to be‘v‘
. done satisfactori;y. Unfortunately; no experiments of éufficient

. accuracy to assess tﬁe varioﬁs approximations éo far applied to the
'e-H or e+H elastic scattering problem have yet been reported. The .
major reason for this dgficiency is that it is difficult to convert

the diatomic-hydrogen molecule iﬁto monatomic hydrogen vithout exciting
some of the atoms out of thé ground state,vthus making it impossible

ﬁo interpret the data with conf;dence. Improvedttéchniqu'es;3 however,"'v
- should soon.leéd to more accurate e#périments. |

 We will cbnsider_in this paper ﬁhevsimplésfvpossible atbmic

' scattering problem: namely, that of‘ah'electron (or,posifrdn)'incident .
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~ tion of the atom (or formation of postronium). We will assume that

and £herefore 1nfinitely massive‘compared to the electrons, that only

2=

on a neutral hydrogen atom with an énergyztoo 1ow'to induce ah'excita- . Al
the hydrogen nucleus is the center of mass of the three-body system'

Coulomb interactions are important, that the atom is in its ground
state when the incident particle is far away before and after the
interactioﬁ, that the electrons each have spin %3 and that the require- -

ments of the Pauli principle are satisfied. This last assumption means

- that when the incident particle is an electron, the wave function is

antisymmetric or symmetric under exchange of the space‘coordinates of
: , {

the two electrons according as the electron spins are aligned (tripleﬁ)

or anti-aligned (singlet). This is the only way in which electron

spin will enter the problem, and therefore the spin variables will -

- never appear explicitly.

This paragon among real prbblems has been the subject of inténf- o
| i ‘

sive study,h and we will presently mention some of the theoretical

schemes that have been applied to it. First we will consider an
intuitive physical picture of the scattering process, starting with =
the incoming electron still far away from the target atom. Ideally -

the electron would not interact while yet far away because -the atom

" is a neutral object. However; the orbital electron in the aﬁom does

. feel a repuision from the'incoming electron, consequently altering o .

its orbit and trying to hidé behind the prqton} This effectively , 
brings the positive chargé'of the atom dﬁ‘the‘avefage éloS¢r than -

TR




3
the negative charge to the. incldent pafticle, i.e. polarizing the atom,
" resulting in a net attraction between the atom and the electron. Sim-l
ilar'censiderations apply whenithe'incident particle is a poeitron.
- Various theo:efical calculationss‘have determined that this attractive
ferce between the atom and the'ineident (low energy) electron has a
potential of the form »q/éru, where «a 1s the polarizability, a
positive constant characteristic of the atom. As the incident electron.

: »

approaches apd penetrates the atomic electron cloud, it creates around
itself a bubble from which the cloud is excluded because of the electrons' -
mutual repulsion.l Naturally thie givesvrise to some bizarre distor-
tions.of the target atom from its,symmetiiéal ground state. At this!¥
".;point,the incident particle cannot be treated as if it were seeiﬁg: -
some averagevatohic field; the details”are clearly important. - Wheh}
the electron leaves the‘atom'and'moves'off to‘infinity the atom settles
'-down, and the interaction is again contrelled by the polarizatieﬁ .
‘Veffecf.‘ | | o
» From these crude intuitive conSideratione elone, it should Sefli:'x
| abundantly clear that solving completely even this simplest problem
- is a major task.\ If other channels are opened, that is, if the
incident pafticle has sufficient energy'to excite or ionize the atom,
. things get even ﬁorse. On the other hand, if we modify the problem
by assuming there cannot be any distortion 1n the atomic wave function, .

B then 1t is reduced to a single particle in & short—range central poten— f.

tial, and has a relatively simple solution.: This is called the static |




.approximation and has been usedlsomewhat,s but is sufficiently different .
'from'tne real situation that in most cases the resuits are seriously
- in error. |

The mostAfamous of all approximations in scattering is the
first Born‘approximation.7 The Born series is just the'expansion of
the wave function as & power'series in thehstrength of the scattering
potential. Truncation after the nth power gives the nth Born approxi-

: R _

mation. For incident particles moving faster than the orbital ,
electron(s) inithe atomn, the firat Born approximation generally gives
satisfactory resulta. However, in the.region of interest to us here
(1ess than about ten.electron volts) it is‘usuallg inadequate. In l%,,
“this region.the moétVPOpuiarbtechnique is the_eigenfunction exPansion.a -
:fThat is, the comnlete wave function ie assumed. to Be an infinite sun
of‘terms, each term consisting of the‘product of an unpertufbed atomic 1.
eigenfunction and a function (to be determined) of the positlon of the ‘»5.
-.inciden% particle. (This discussion assumes for simplicity the .
distinguishability of_the incoming particle and the atomic electron.)ddg-.‘
.Solving £he problen is thus relegated to determining theée functions,‘”'d
This is done by substituting the sum into the Schroedinger equation,‘
which results in an infinite set of coupled differential equations ﬂ
'for the unknown functions. At this point a decision has to be made,
"usually on physical grounds, about which and how many of the terms
- in the sum to use. One advantage of this method is its direct}

physical 1nterpretation because of the appearance of the atomic
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'jscattering calculations . performed since 1932, vhen it was introduced

5

‘ eigenfunctions. Different effects-(bolarization,-etc.) may be X

emphasized by judiciously selecting the terms to be kept in the

expansion. However, usually no more than the first one or two (at

most three)9 are used because of-the considerable effort needed to
solve the coupled equations, and it is always difficult to tell

a priori how good the answers are. Furthermore, the complete sum

‘referred to above is not only over the discrete bound states of the:

)Yy

atom, but over the unbound (positive energy) states as well, where it
is;actually an integral. This region, the continuum, is always neélect—"
ed in the eigenfunction expansion method.7 Nevertheless, this scheme

|
in one approximation or another has’ been the basis for most atomic ‘%

PN

10

-by Massey and Mohr.

Within the last fifteen years, however, a surge of activity

.,has been directed toward the use of variational techniques in the
| - nonrelativistic atomic scattering problem. The Rayleigh—Ritz varia;
:'T tional principlel had established its usefulness for bound-state '1::l o
!‘. problems by 1940, but it was not directly applicable to scattering‘ |
..:phenomena for two reasons. “the wave fUnctions in scattering problems

- are .not normalizable, andﬂthe eigenvalues are in the continuous

' spectrum. These difficulties vere overcome in'l9hh by Hulthen;lwhen

]‘he invented the variational principle bearing his nsme. The principle -

was modified to a somewhat simpler form by Kohn in l9h8 l? and it is

m-.,,_ —

“this modification, called the Kohn variational principle, with which
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for them. Resﬁlts of our:caléulatidnsffor the evap wave and

the bulk of this paper will deal. A variational principle was devel- .

~oped by Schwinger in 191+7,13 derived from an integral form of the

Schroédinger equation. (Hulthen and Kohn began with the ordinary
differen%ial Schroedinger equation.) It involves 1ﬁtegra1 expressions
which are difficult to evaluate, howevér,;and has not.beén as useful
as the simplér equations of Kbhq and Hﬁlthen.

In part II after a brief sketch of the standérd'partiql vave

expansion to establish notation, we shall derive the Kohn principle

for partial wave phase shifts and discuss a trial” function appropriate

to elastic e*H and . e H scattering. The singularities noticed an%

. S T A
explained by Schmartzly will be reviewed, as well as his effective cure
the

e

e+H s and p- wa#evphase'éhifts are given'in part:IIIialong with a

discussion and comparison.with‘réSults,bf;bthef yorkersf_calculations. .

o
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Linto partial waves of definite angular momentum. In part B we will

~_of the electron), and e (charge on the electron) each have. unit

: the sum of the incident wave e T and the scattered wave

| T
II. 'THE VARIATIONAL METHOD

Our first task in this section will be to review briefly-the

standard (Faxen-Holtzmark) 1 expansion of ‘the scattering wave function

e v

derive the Kohn variational principle for the simple case of scattering |
by a fixed short-range potential. This will provide us with the
essentials to solve the elastic‘electron-hydrogen or positron-hydrogen :

scattering problem. In part C we will’describe;in some detail the

.actual procedure for calculating the p-wave'phase shift, an interesting
~difficulty encountered; and a resolution of that difficulty. Throughoutf

the paper we will use units such that A (Planck's constant), m (ﬂaSS'

_magnitude.

" A. Partial Waves

ASuppose a flux of particleS'of'momentum %X 1s incident upon
i ' ' . '
a spherically symmetric potential, V(r), that vanishes outside &

finite region of space. Taking the center of the scattering region

" as the coordinate origin, the total wave function at large r is

e ~ikr

1(e),
where f(a) describes the angular distribution and is called the.t

scattering amplitude." Therefore,‘
1' : .eikr'- E
: f+,' f(e) r

- -

- . o ikfr
: W(T)“-;f;fa;9 e

is the asymptotie solution to the Schiosdinger eguation




[‘ .5, V(r)] WhH - 0.

The angle & is measured from the direetion of X . If'wé define
‘the differential cross section - a(e) as the ratio of the number of
particles scattered per unit time into unit solid angle at 8 to

the incident flux of particles, then ~o(e) = If(e)l2 ;”:This follows

easily from the definition: R o S
ikr e 4 , E
. - £(0)| kr | PO o
- o(e)an = L = . |£(e) | an . |
' ' ikor| ‘ oo _ .
e k H

" .The differential cross section may be measured experimentally, and ‘
the quantity ]f(e)l is therefore the link between experiment and '
“theory. Another way to’ approach the problem is to expand the complete”

,wave function in partial waves of definite angular momentum & ,»f;g“;_

o © L _;v__ L | _
‘)‘@:0 . ‘ b
~ vwhere - i ,
| ¢ 4(r)

’%(?)_ - Yzo(e)_’.

T
(6) is a'sphericalvharmonic of Order' 2 and~magnetic quantum number
. zero, and will henceforth be written Simply Y, (9) The azimuthal

'angle ¢ does not appear because of cylindrical symmetry about k K

'Then ¢£(r) satisfies the radial Schroedinger equation




_g-9§ i-ﬁ’: _

P

[‘ R Tl f-""r)] Bolr) = 0. (1)

2 o
. There are two independent, real solutions of Eq. (1) if V=0.
” are called

A
,-respectively, the spherical Bessel and spherical Neumann functions

: They:are rJ (kr) and rng(kr), where Jz and n

e g,

of order 4. They have the following properties for small*anu~*~*i.v

large 1T : ' ' s f _itf::i':wv_ .i;f_',. s
| " o (kr) s f(
jz(kr)‘r.. > (2z+1)" SR
- ‘ H:sin(kr - ££ o cos(kr - ——) :'ﬁg
R 2 [ n)
£ r= o0 S ke t :f ﬁ:;_ _2. K .‘.i (kr)?
o) ey e e
ny(kr) o5 ,, 1
; _
A cos (kr - %‘-); (4 + 1) sin(kr - %) L
nz(kr) T - m‘\7 - e _ + v ‘ 2 .
o e : kr:;._vv’ 2 : (kr)= . -

If there is no scattering (i.ee V=0 everywhere), clearly rj (kr)
is the only physically acceptable solution of (1) since n (kr) blows
up at the origin. -However, if V is nonzero in some region then

outside this region the solution of (1) must be a linear combination

of the form _ ‘ L R &;
¢ (r) = Agrdg(k?)‘.**'?gf?g(kr)rif'nf L K



- The former>follows'from the asymptotic forms ofirjz and P and the

.': This just takes a few lines of algebra and yields

-0~

where .]'3‘e need mot be zero. The k-dependent ratio B /A obﬁioﬁsly

' characterizes the scattering of the Zth partial wave, and the phase
shift My is then defined as tan Ny = Bg/kg . Thexcompiete solution ':

'of Eq. (l) has boundary c0nditlons

. sin(kr - _ﬂ_:!_t_ - - cos(kr - -—) sin(kr - -glt- + 1 )
¢ (r) > 2 + tan 1 - 2 £
2 r-o = k , 2 .k e .~ v kecosn,

Yy

~and

PR 2>
¢£(r)> r4§/0 oo

4

* latter follows directly from (1) considered for r sufficiently small.

2

‘that k° and V. are negligible compared to the centrifugal term

24 + 1)
2r2 .
’ If we also expand f(e) in terms of spherical harmonics, we.

may detebmine the coefficients in terms of the phase shifts’ nz
S

2ik

~fk6) '= f E: | j/_—. W{;;—;f;" [ v “]Y égjsfsa

450

The total cross section Q fc(e)dxz j lf(e)l a = Z QB , where

" b
Q, = =z (2£ + l)sin g e

k ,
We have made use of the orthonormality of the Y (e) “in the

angular integration. The solution to the scattering problem is thus

LT S

e T



: | _li_

reduced to determining all the phase shifts, Ny - Fortunately in the
E lov energy region thevphase shifts for large 4 are usﬁallytsmall"”

enough to neglect when computing the cross section.

B. Kohn Variational Principle12

e i, y
S,

We ﬁill nc& investigate a variatibnal method .for calculating:

TRV
i

the phase shifts Ny * The purpose of any variational scheme is to
provide a functional of the wave function which’ig exactly eqial to
'the desired Qpantity (in our case the phase shift):when_fhe wave'
:functidn is exactly correct and which is‘in'errer onLy bj termsAof"

. second order in the wave function error when the wave function is ‘h
| not exactly correct. . Roughly speaking, this means that a 10% error 3?2

:in the wave function will glve only a 1% error in ‘the phase shift._

Consider the functional _

F(y) = f v(?)(H-- E)W(T)ar
_ ‘ _ : , : o e S
where the integration is taken over all space. - If; ¥ is allowed to’

vary, 1.e. ¥(T) ~ W(r) + SW(r), then,ei. fJ

8F fsny(n - E)y dr +f¢(n - E)av ar +faw(H - E)s\y dr B '.-'(’,2,)‘. .

-1s the corresponding variation in F . For our single particle ina
central field .V(r), H= -v%? + V(r), and a partial integration of

 the second term on the right-hand side of (2) yields

GF fs\y(n - E)\y & Jv.[a\yw waw]dr +\/38ﬁ\1r(n7_;E)8v d?',»‘ : .




"+ since

18

W sy = V-(W o¥) = V-(5¥ W) + o¥ Fy .
' The second integral on the right-hand side may be converted to a .j
' surface integral over & sphere of. very large radius R ; thusm

'» oF = \/‘S\V(H-lE)vdr+-2-lf[5W5—\V w&:sw]

.. R=o
+ '_few(ﬁ - E)sw & . B (3)

' |
So far no conditions have been 1mposed on the function v(r) CIf ‘h
. we now constraln W and ®Y +to fall off faster than 1/r at 1arge
. r, then the surface integral vanishes as R-» oo, and we obtain the

ar

' viRaylelgh-Ritz principle for bound states. We have '
BF = 2 f:axv(ﬂ - B & j oW(E - E)oy & .

' Or, rewritlng it,

_F(wt) - F(w) - 2f(w ot - E)w & -f(\lft - w)(H - E)(quc - w)dr )

where W is the trial funcfion; whichAheed not satisfy the ' ,
Schroedlnger equation (H - E)w 0 and ¥ is the correct solution.

. Then the first integral on the right-hand_side of,(h) is,zero, and- . .

LR S :
: i t

 the difference H , ‘ .
F(Wt) - F(W) l='J[(thee?)(§ufJ?Z(?t - W)Qr;:ii:};ﬂ,'l (5)1

T

e
Yot




are each normalized to unity, ‘then if we define (E) = ‘jrwt H u

.gositive, as may easily be seen directly by expanding_the function A

s

is second order in the error Wt'- u : Ordinarily, the energy E is

the quantity to be calculated in bound-state problems.' If v and Wt h

o wa Hy, & wa By dr = ?(Wt):c F(W)_? (E)lé E

~ from the definition of F ; therefore from (5),

) ‘ ‘ . N ‘».v - : N . -l ‘- o :
@ = B+ [ - NE By -0E L
This means that (E) 1s correct to first order; furthermore if E 1is

the 1owest'energy eigenvalue, the second order error term is always

I

.W -V in eigenfunctions of the operator H. One procedure; then, i

is to guess a function ¥y » calculate the quantity (E) —\]rw H Wt _

and rest assured that it is an upper bound on the correct energy

‘eigenvalue E. Typically, however, we would expand Wt in a

0o

- Lconveniént set of functions Wt 'z:‘ C, u, determine the parameters .

’
155 i. i

i
det IH - (BN, I = O for (E) . where 3,'if.""

. -';f; .o

- C, by aFt/ac =0, and solve the resulting characteristic equation .f”*

LA T
v

SR AT '}'i*c;}fil
13 ='~/é ug Huydeoo e

g

~and o e

It is shown by MacDonald 15 that as N is increased the lowest eigena'.

Al

values of H .are approached monotonically by the solutions (E) y 80
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that we can always get‘ a better answer by doing more work.. This

state of affairs could hardly be more satisfactory, 80 we now drop

it and’ return to the more interesting scattering question. Now the L
remarks following Eq. (3) do not apply, since scattering wave functions ,

are not normalizable , and the energy is given, not calcula.ted,. The

quantity to be calculated is the phase shift 1 L We z;'ow restrvict.v\y

- 80 that '_1
v _ | | | .
_ sin(kr - 'é' " : cos(kr - %) o
Ll e T B Yc(e)
"_sin(kr-——-+'q) R
= 2 : o
- cos N kr Y (g)’ . ‘i‘
' : ‘ cos(kr-%—r-) R
S\VWS(WH 1) o Y&(e)-':. T I

and

) S ¥ 5520
- where the 2 subscript is henoeforth underst'ood. on ¥ and 1
Thus ‘lf must have the correct asymptotic form, except that n may

" pe varied. Now Eq_. (3) yields )

fB\V(H-E)W ar + % 8(ten n)f{co( g)cos( ‘ 2 )

SF =
R— @ -k R” cos 7 |
sin(kR - Lgﬂ + n)sin(kR - ---) o 5 g -
¥ + °( ) Y,; (S)R s +ﬁW(H-E)s¢u,

-k R2_ cos n

fﬁW(H~E)Wdr + —L—-’l)- jaw(n-m)svu

. “‘ 'i-"., ERR

-



"then &I

‘arbitrary excursions . Sw from' v y then ¥ is the correct solution

o(r - 20) - zfaw(n - g)’f’q“r’}_'fisy(n -..E)agk &. ().

" Equation (6) is the basis for the Kohn and Hulthen variational .

principles. Defining I = -———3 oF ’ we notice three things about

the equation

1. If ¥ 1ie the correct scattering solution of .(H . E)Y = 0,

u

0 to first order, and I = tan n/k where 17 is correct,

since F 0.

L}

2, If. I is stationary (i.e. 8I = 0 to first order) for_ih"
o e ) ol |

of- (H - E)¥ = 0, since the first term on the right-hand side of (6) -

" must.then be zero.. (H - EW = 0 follows by 1etting Sv G(Hm:;ElW»:

€ & small number.

- PR
AP

{3 "If some incorrect ¥ , call it. vy ,kis_uséd5%5¢zﬁléﬁiéfe.1“2'

| 'It (the error in,the wave'funcﬁioo being &Y = ¥, - v), then I,
1.'vdiffers from I (= EEE—H ) by'”O(GW)ev; To see this, notice that w
' in Eq. (6) is replaced by Wt , that. Wt W + SW ,and that |
m-EN- S ,
'Conclosions i and 2 say:that‘ 8 = O “and f(ﬁ - E)W‘=AQ are completely
'equivalent; cooclusion 3 is an'imporﬁant feature in'calculationsa .'
--vAnalogous to the Ritz procedure, we equate wt to its aqymptotic form

.~ Plus a sum of functions chosen to approximate the correct solution for

small r . :‘__‘:x’k<='“




; | N [
v, = Y,(8) [J&(kr) ~ tan 0, n,(kr) s(r)] -+'§:fci ui(r).,

~where wu,(r) are the "close-in" basis functions. The function .g(r)' .~ . . =

12

" and go to unity at large r, and ig of no interest to us now (in fact

1s just a device~put in to squash thefsiﬁgularity of n, at the origin =
. will be found later to be ﬁnnecessary because of a slightly different"'v
asymptotlc form) There are N+1 - parameters'to be'chosen:v'namely.
. C, for i=1, 2,°-°,N, and tan nt/k .

i

Before continuing, we point out that it 1s not possible to ‘f
v {
~ determine the sign of ‘the (second order) error as we»did for the bound
‘state problem except in the case that E = O. (The zero energy case

is important for s-wave scattering and has been extensively“studied;

however it will'not concern us here.) - Therefore, we never know whether'

we have an upper or lower bound on the phase shift; and in fact we mav""j'

_ [ o ) _
.. have neith.er.16 Consequently it is no longer clear that the correct -

way to chose the C,'s and tan ﬂf is to set the first'derivative ;

i
vof I with respect to tan nt “and each of the C eqpal to zero._1  |
e Nevertheless, this is what Kohn prescribes, end we believe that it is
 ~a reasonable prescription to follow, particularly since-we find

respectable convergence in an actual celculation as N is increased.

A simple example may dispel some doubt about the scheme.. '

" Suppose that through some preposterous Btroke of luck we were

to choose as- the trisl’ function for the s wave_:w;,je?ﬂ




4 ) '
. FI
: I -
. A ’ o
7 L
N J-
[ M
¢ 5 ,{. .
3

coskr ]+gtan'nt cos kr ".
Ygt . kr . bge . kr

i}

vy = [ ¥ - g tann
That is, the correct wave function except for an undetermined phase
" shift. Does our recipe yield ‘the correct phase and hence 'bhe correct

wave function? c Ty

: R L Y coE. ...’ tan'ﬂ
RN ='-.2j{xv -_ga7°—"-"e-fk-’-‘-}(ﬂ E)[w @ '-—°9-""’—,—k5--}dr dond

>
%
r——
LSy
«
B
4
W
=
4]
&1
+
-

e ' A [ [ cos le'.(,Bv_"sin('kR +1) _ sin(kR + 1) B .cos kR}
| '_ T2 J | TKR. R cos n KR . . cos n kKR ﬁ KR

o I --~2A20 +o— 1-, L

‘.'(
3

;where a partial integration has been used along Wi'bh (H - E)iy = 0, and -

the integral involving g2 is’ just ‘some number C'

A cos' ‘ B 2 :‘a;ef_ :
g = F k cos.n 2Ac+

e
1

~and

as. o
bw o



-Therefore

 where7 wt contains N constants C

‘where the C, and - tan Ny are determined by o

_ d Then' I, is expected to be very close to the correct tan n/k .

,tan nt are determined by

“in our example.'.'I O yields L

 tan n, = ten q.ie‘ Ik, .

- giving us the exact solution.

1. In sumary, the Kohn principle specifies_that,we'ceicuiate.,

- tan ﬂt B :" h *j."ff
--It = — - 2\/‘\31_;(1{ - E)Wtd.r s

_ ) IR T
i_’as well as the phase*’-'qt , and

RV
\

R S
> T2 M iy ge), e

vy r - 00"

i
. aIt - o . | a-it}-. "_:;;‘f 0 _—
L] _ |
The Hulthen principle is identical except that the Ci d;;:f;,ﬂ :

_::_

It is harder to use. because the second condition of (8) is qpadratic

vin tan nt ; whereas (7) is linear.;;f'::

Notice also that the Hulthen principle gives the wrong answer r
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o L ‘- / tan
tannt = tann - ‘\/Cg.
Of course this 1s not proof that Kbhn's principle is always more
 accurate. Some counterexamples are given in the article by Makinson

and‘Turner.16, We will do all our calculations with the Kohn principle '

- because 1t is simpler to use, and ‘because there is no a priori reason

to prefer the other. {W Sreo Mobb Wofﬁﬂym 2o )4«64-%790%%
(f«ﬂLJVKJLWWP%M-ﬁﬁummﬁuwﬁ ,;@Hhﬂ,dgwauba) -

C. Singularities

It has been known forvsdme timeu that a straightforward -
. \|"

[
A

- application of a variational principle to scattering problems often i

, .yields unsatisfactory results. A detailed study of this "inadequacy
'Was made by Schwartz, 1 and we now review his arguments. -
- We start by examining the variational scheme closely‘,* s.till-.‘

restricting ourselves to potential scattering. : The trial function :

*

- for. the &th partial vave 1s R
wt(;) = go(r) + Ay ¢1_(-17) + Z

CERESL R stn(kr - %;Ii'
%(r) T T &
0 r- o “kr

\b cos(kr - ——-)

Y = Yoo

t . ok

. a0

- and where the ::ui(ii :go to -:_zerc for 1arge randapproach 2’;ero;~(as" do ¢0 B




T - . : Tt

v,_ao_..
and ¢, ) as r=0 at least as fast'as fL . Ail quentities are
taken to be real. The variatlonal principle 18 “ | |
SIEEE A -ajw(n-rs)wtdr,
where [x] is tan n/k correct to. first order. Substitution of vt

into the integral yields

- _ X R R T
IS BO + N Bl + x ?B }Z -exi‘f . C, R

R B N LA S ;h
A Z O CyMgehg, oo N

. 'wnere " \‘ ‘
5 - . .

;‘Bi =

Roi =
'Rli' = s

and

8 I e A ,’ : 3f,;’*. D
As usual, the integrations extend over all Space. Since the functions

i

<7

\““.

u, - vanish exponentially for large r, it is clear that H-E 15
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Hermitean with respect to them, and thus M L, o In ﬁeétor-
notation (9) becomes - |

= Bt hgdy +~’~ﬁeﬁ 20R A TR AT s hy ()
setfing . D R ST ) o

n

yields

'.

=

QA
it

.Rl |

i}

¢
N z-‘
. a’

Thenﬁ(ll)‘bécémésnafd}
T = B, +c ‘R +x[B +C, R +C'R'+‘1]+)\. [B_:+,_c

0°0 1°0 0] l]

| "Makihg [h] sationary with respect to x

. then’gives

: -[B + C "R+ C, +"1]f -'-"1

l

2[13 +C R

- and finally

: | [)\] = BO + CO.RQ g,




app.

- which we hope is close to the correct A= tan q/k P since it differs

only by second order in the wave function error.

The Hamiltonian H is ‘an operator that has a continuous

spectrum (tne scattering states) as well as (possibly)'a discrete

spectrum of eigenvaluesv(the bound states). The continuous spectrum
contains the eigenvalue E ; hence the spectrum of the operetor H»y_E
includes zero. In this scheme H - E is~represented on'a basis-of‘pN.
functions uy ,,and as N goes to infinify we expect the natrix _Mvp‘
to'become a conplete representation of H =~ ﬁ. We'therefore also |

expect that as N grows (but remains finite) we may occa31onally run
. -l

across an eigenvalue of M that is very close to zero. While it is |

H

not likely we will hit a zero eigenvalue exactly, it is likely that .-

the number of eigenvalues within any neighborhood of zero will increase:"

as N increases. This means_that the matrix;AM may become nearly

- singular, and therein lie the vagaries of the variational method. The

effect ohn [h] may be traced from the solution of Eqs. (12) Suppose
M has eigenvectors g corresponding 0. eigenvalues eﬁ ; i e.'p~’

Ml,g-ﬁ1 :s__:,:em,.-_‘gm , m= ,1,----,N. Then the solution o’ (12) is e

..“

and



e
Terms of this form occur in the stationary expression for (A,

Eq. (12).  If some €, becomes very small, the magnitude of the

corresponding term in (15), and therefore of" [h] ’ may become huge,

“' and the resulting error in [h] very large. We still need to examine' ]

“the numerator of the right-hand side of (lh) to see if R g is h*

automatically small when 'e is small, thus eliminating singularities‘&fl'

: VN -
of.this'kind. Snppose:lsmn=‘of ‘ Then ,é;i ik(gm)k , o ’s Foa
1= 10« No That ds, ; . Loooc onoe Sele U T
. ' ' ; T R S
| BT X a,
This says that the function. (H - E)‘E: uk(gm)k is orthogonal to
' kel -

: each of the functions nk'; however we have no reason to expect it

':<to be orthogonal to . 3 or » since they areéunrelated to the
) . 0 1

i

a complete set of ui's, then R- g would have to be zero, since we iJ

could imagine the ¢'s expanded in terms of the ui With a finite

set of ui y

u,'s. Therefore the numerator need not be zero. ‘If We were using ,'“* B

however, we are always in danger of a possible infinity_ Lo

Nevertheless, as N grows and the basis becomes more complete, we e

hope for weaker singularities (i.e.; smaller R g ) and reaSOnable ‘“l S

convergence.'

-.\"w o



.when a .becomes small. For'nonzero‘ a}:'it'is'?"'

s a
If “a = 0 , a stationary value exists only'if b- is also zero, and
_ if. a approaches zero the magnitude-of “ys becomes.arbitrarily large;
In this analogy, a corresponds_EO"M‘, - X corresponds_to ¢ ;, and b
'corresponds to ﬁ'. | | | |

_ S . .

The upshot of this analvsis.is.that by working harder we mav
_ athany stepvonly succeed in climbing a pole and getting a worse
1‘answerAthan we already had. Wevsolve this problem bv parameterizing
i'the subspace of functions u (r) by a single parameter a (not thelb
;polarizability) Varying a allows us to vary the subspace in a
continuous fashlon and thus map out the behavior of [x] 5 exposing
the Singularities as well as_regions of good behavior. _We look for
convergence with increasing-'N in‘these "good" regions; This method
- was devised and tested by Schwartz 7 in calculations for e “H and r
e'H , S-wave, elastic scattering, and worked beautifully. (Aswanll;?i'
; l( 9Ty "in an s-wave calculation _

e

example, we might use u (r)

G A

" for our one- -body, potential scattering ) Our own. calculations of

';bp-wave scattering display similar qualitative features and appear-to '

~yield good results, as we will see'later;_ In practice wve fix o,

' calculate [h] for several values of N, then increment a and

)"

’ repeat. We' find that a plot of [x] vs. a for a given energy gives

¢

a set of curves corresponding to the set of values N K smooth except




l’becoming flatter and more closely spaced as N 1is increased.

=25

.t

for the (expected) singularities, containing stationary regions, and

Examples

for specific calculations will be given later.

" We turn now to the problem of interest:

scattering potential by a hydrogen atom.

D. Electron~Hydrogen Scattering_

we replace‘the

This introduces three °-

{complications SR - v

1.

o,

' In reply,

1.

E b

-4The potential is no longer short range; its leading .

: termh(iﬁ the adiabatic approximation) goes as’ 1/%h

be examined in aetail in the next section. *j%

There are now three additional degrees of freedom.

'The Pauli principle must belobserved if.the,ihcident'*

particle is an electron. 4 . .‘u

)

for large ;.because of the polarization effect.

We select as coordinates rl, 91, Ty 92, an@ ?12,

- where the coordinate origin is taken to be‘the hydrogen SR

nucleus, aed Tip = [rl_g ral.__The angles el and 923»

are measured from the initial direction of motion of - s

the incident electron..

The trial function for e H is constructed to be anti- .

I‘ HI"

symmetric or symmetric under the interchange 1 P

for trlplet or singlet states..-” 

The wave function is no longer simply a linear combi- _}

nation of j& and n, at large r.v This qpestion will

JURE ]
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The complete Hamiltouian-becomes_:  
2 g2 o
goo ol .2 ¢ 1 .1 1
= - - , -
. 2 g r rl Ira

'where_upper'signs correspond to e H, lower to efﬁ.f We next look at
_the trial function.

- 1. Asymptotic Wave Function

4 . . - ) .
We seek the appropriate asymptotic form for the trial function . .
18 ' |

2 ]

. using a method suggested by Schwartz. For the moment assume that .

the incident and atomic electrons are distinguishable, so that we can .

->

neglect the Pauli principle. ' Let  ‘be the coordinate of the inei~

l,

“fdent and '?2' the coordinate of the atomic electron. In the lowest b\_‘

_approximation‘there will be no interaction at large separation between

~the incident particle and the atom in its ground state. This amounts ﬂ:f.‘

to simpiy neglecting the interaction term ,—lﬂ - ;L- for large r. . .
: . Ty 1Ty . 1

- If ¢(r2)' represents the unpertp?béd atomic.wave :t‘unction.,j.the_'l:'vrl_cl-‘~
body wave function Y will then be - . . _Tf_: ' ;l-"'”
oy T - Hep [0 - wmnn, mep] v0)
VolTys Tp) = ¢r2 [j& 1) - 'n.nt n, ry) [ Yp(0)) -
' : . L . ,,;,‘,-'. 0 R B - -“
AJ ét large r

;+ As 1, - ®, this approaches ;?ij,,

S ir ’ :
sin(kr; - = +1n,). - .
-¢(I‘2) . - Yc(el)‘




1 | 1, -~ £(4 +11) P NN
7, (g B + —(Hy-Eq )X + S5 f sinliry - 304 0,)Y,(8)) + =
o 1 . S l S T s ‘.‘;Ci"* . el

. ;-27~:h;.‘ ,;:f S

. | (k cos n&)rl w(ri, ré) ';- ¢‘sin(kr1 - %§.+ nL)Y&(el)v’

3

o WE,T) o X(r,r)
d— e,

 vwhere the functions W and Xv_satisfy"f;

2 ) - B : " » 2 ; S. ) . ., ‘
a 2 . “ka W &nd . o a 2x = R "k2 x ’ M "
or, "~ i R ,5?1 :

=
"

‘but are otherwise undetermined. Let 'HO: and E, be the Hamiltonian

~ and energy for the ground state atomic wave_functionwéo that .~’ JL

A

- (H, - ) ¢(r2? -0 |

_Theri the Schroedinger equation for "rlw. is :. o

o L2 |
[(Ho?f.Eo) f ?.3 2 - :; * 2 ’--(;I f r ) 'rlv = 0, :
o , o o , »

where L12 is the angular momentum'operatOr; Substituting the

'.expansion'(ls) intov(l6)’and keeping ‘terms throﬁghatb(i/flz)T,yields '

=

H

oW




‘Multiplying this‘by“¢(ré) and integrating dver";é:iyields =

Therefore

=28

1 T o .

where use has been made of LT
' B S

Tip

_ Equating coefficients of".l/rl “gives j(Ho'é E W vﬁf'd.ﬁ 'Th;s implies'

that

O | - :.:;,%
Equating coefficients of 'l/rlze.gives '

(5, -E)x+-£‘_"t-1l¢sm(kr s +nz)Y(e)+¢Y(e)

CAA s in : o v'.:'; T
= -, rlf?2 ¢ sin(krl -5 * nz) Yi(?l).fn RN :l!,

since =~ ‘»~;¢" S w}ﬁv“»ﬁ RIS

and : 5 Co Lo e R ;af-i. .
Jr T2 ¢ T2 ¢ AP EEN

" e + 1) Cm .
o(r) = === cos(kr, -~ F + n&) 3

" and we have obtained the asymptotic wave function correct to O(l/r )

11

 In fact, we see. that turning on the interaction e = — for large

T r
12 1
ry (allowing the atom to polarize) has not changed the form of the -

far-out wave fﬁnction through order l/r (i.e;;_it“is the sameﬂas-

. Do o e :
. R R ’ v,

[
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:J&w- tan 1, n, through 0(1/r12) ). -In order to find the -l/rl3
_term, however, we would have to;solve the remaining'equation

(HO - EO)X = -r, l-r2 ¢ sin(kr 2 +1 ) Y (e )

which clearly does involve the polarization. We will instead be content -

'to take for the asymptotic part of ¥ something that goes for large rl as
o etatier - Een) yes 1) cos(kr ——-+'n) ,
. #xp) . = s | Y4(0)
- 'krl cos My ‘ 2(kr1), f . cosm, 3 ;
.._ ) &T{
- sin(kr, ~ &) (4 + 1) -
= Y (8) ¢lzr,) —t 2 5 cos(kr -2
. keyp o 2(kny) Il
oy I |
. cos(krl - ——) (e + 1) Cwmd L
‘+ tan n, [ . - 2' sin(kr 2)] ,
. - kry S 2(kr ) : = '
(17)

and let the (variationally determined) close-in functions take: care of

- |
the polarization.

In practice we'could ﬁse'
. [ (kr) tanntn,'(kr)g,'(r )]¢(r>x(el)
"_4_ close-in functions -
foi a trial fUnction, where gé isvconstructed»toAShield the singu«

larity of 'n at the origin, but the integrals then become difficult C

i

to evaluate numerically for L l because of the n& g& term. We




.p;3°_"

; have invented the following_morelcdnvenient_fuﬁctidn:

#I:= 'jz(krl)'- tan My [Jz+1(kr ) + Lp;i :,+2(kr )] Yz$éi) ¢<r2)

-

~ + close-in functions,,

- which enables us to do the integrations with relative ease, yet has
‘Tthe required-asymptotic form (17). . Of course ¢(r2) = [WJH;',.
the normalizedlhydrogen ground state wave‘functioa.x«For e’
scattering, ¥ is operated upon by l tp 2)/\[_~, where P12 .

-exchanges coordinates rl and r2 , 80 that - : o |
R »‘2(1 £ P ) R | ' |
R - L+1
Y, (F,T,) = {z;(kr)-tann (k)+ 3 (kr) .
1 i‘ l' W/——_q’ 1 t[ & 1 A | k?l £+2 | ] ..
.'4ré-';; . .
: ?(Yt(el)e -©" + close-in functions.

- The uppér/lovwer sign is used for the eingle/tfiplet_caee;;g;‘V

”2. Close-in Functions ;”}

" The close-in functions (the ui

';  l. be a complete basis when N -+ oo,_

of section IIB) should ;f‘=

2. vanish for large r or r

1 27 _
. 3. be able to describe the electron correlations,\
., =contain the non-linear parameter o,

' 5. have the correct properties under a rotation, that is, -

' a p-state must rotate 1ike a vector, etc.
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6. -be explicitly symmetric or antisymmetric under rl e—ara

'

:" _ 3 for e H. scattering._?:

In his s-wave calculations, Schmartz used the function

o . '.f‘.;fg- oo +f o m 5
".e’xp[" %(r.l;-&- ra)} rfa(rl ”1'2 : '-, . Itl 2 ) 3mn -

JHmin <N

For our p-wave calculation we use - . . 0 s s

Gy rm R f n B
~Jd 7172 "1

J4m+n <N

- [

Calculations are done for N l, 2, 3, L, . and 5, yielding.

h 10, 20, 35, and 56 terms respectively.

the function becomes 'ﬁ;j_'f;ﬁ*_ﬁfﬁjf'xiiﬁﬁl“ P

? - L S .
: -t EE N N

- o

DR SR M B S
Z | ,e-"_p[ 2Tt vra;)} 12 [Camn Ty T

1
LN

Cand N = 1, 2, 3, and u yields 8 eo, Ao and 70 functions

"”respect1ve1y Twice as many as the e H case for a given N as a _

R -
emLéﬁ*%ﬂﬁav< Yz

n

4
4

For the positcrn p-wave v




sz

. 50 that K discussed in part 1IC becomes tan n/k : rather than -}n

- kept away from the atom by the centrifugal barrier.

| -32-
' ITI. RESULTS AND DISCUSSIONS

The numerical'work consisted mainlf of doing'the integrals,

in Egs. (10) using the trial ¥ i(;l’; )A described in.section IIC, and

solving Egs. (12). Restricting the asymptotic form of ¢+ %o the
regular functions jm(kr) enabled us to° do all the integrals exactly,
in the sense thatvno cutoffs in'the integrations.over rl and r2
were introduced, We now exhibit and discuss,some typical‘calculationSs

Figures 1 and 2 represent p—uave'triplet and singlet."maps"i
_ 5 '

for the lowest e H energy studied, k° = 10.01, about o. 136 e.v.

-

(The wave functions are normalized with an additional factor l/\/

.tan n/k . This has no effect on the final answer, it was done simply

',because the p-wave phase- nl ~ ka a8 k-0 ) = The parameter a

defined in TIC is measured along the horizontal axis. These curves

l have a pleasantly smooth parabolic behavior, with no apparent
1singu1arities. There may well be singularities that a finer partition_:‘
4>Tof a would uncorer,ibut.the structure is"clearfenough_for our purpose;"'
"If k .were aero; we would expect'Strictly no singularities, because‘.

“in that case we are guaranteed a minimum principle. For'low energy, hfr—

therefore, we're not surprised to find the singularities relatively

scarce. (Each of the arrows in the figures point to the best value :

cof  [A] for corresponding N ) At this low energy the interaction B '

is mainly due to polarization effects, since the incident particle is
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Fig. 1. A\ vs. @, triplet p e H' at k = 0.1 atomic unit: The arrovs
. indicate the best [A] for each N.. . . .~ . MU-34734
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| Fig. 2. A vs. o, singlet p ¢ H &t k = 0.1 atomlc unit. Symbols
. are explained in Figu{re . s :



have a maximun st r

decreasing amplitude as: r increases, which the u1 find hard to'.\

g¢35f._jv

As k is increased, the character of the curves changes, as

‘may be seen in Figs..5 and 4 for k = 0.5..-There'is a marked.flattena

ing as N is increased, singularities appear (the dashed portions),.

'and convergence (ignoring the singularities) 18 better than that at

1ower k .' This improved convergence»with increasing - k may be

understood by looking at the basis functions ui"_;='_-e_ar ri-. They -

o = 1/a and then rapidly tail off to zero as r.

increases. The dominant error term &Y in the-wave function is
something like sin(kr)/r3 , &8 we saw in section IID, part 1. For .

small k +this error term is a slowly oscillating function with "' k

),

;imitate. At larger k the oscillations are faster, and-successive -

oscillations more nearly cancel to give an "average" function that

vanishes more rapidly as r - co. The uy , whose purpose is to
" remove the error, therefore»have an easier task.,
IIn Figure 5at k= O. 8 we find an embarrassment of singular- = -

i‘ities, but as before the flat regions are mot difficult to recognize._f'

As the energy approaches the threshold for.excitation to the first

- excited atomic state, convergence becomes worse for another reason,

pointed out by Schwartz.l7 For' k2

qk'r 2 ' . .2

> 3/k , the asymptotic part of the.

- wave function has a term e - o where k' = 3/4. .. For k
‘slightly less than 3/4, k' isa small imaginaiy number i€ , dnd the
wave function should have a term which behaves as e er‘ . For small

positive € this is a; long tail and not easily constructed with our

short-range functions. For k O 866 the singlet p results thus -

u .. .
N "..'f,' PO s e B [
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Fig. 3 %. vs. Q, triplet p ‘e’ H at k = 0. 5 atomic uni'b. Symbols -
. are explained in Figure 1.‘
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Fig. k. A vs. @, singlet p e'Hat k =0, 5 atomic unit._ Symbols -
. | , T are explained in Figure 1, o S ‘ -
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Fig. 5. A vs. Q, triplet p e H at k = 0.8 atomic unit. Symbols
' - are explained in Figure 1. e SR ’
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failed to converge as: N was increased to’5. The triplet calculations
wereibetter behaved and“hence more‘aceuraterin.general, probablyl o
because of the (well-knoun) disposition.of antisymmetry to account
rjautomatically for electronwrepulsion. o R o

| | We were unable to find any resonance effects in the e‘H ‘
vsinglet or triplet P wave such as were reported by Burke and Schey O
near threshold, only a moderate climb (about 0.04 radians) in the~y‘i
‘singlet phase. Some brief calculations_at kz = 0.68, 0.70, 0.72{‘ _
.';and 0.7% also.give smootn, monotonic behavior. Of course we may -

~simply have failed to resolve a narrow resonance vhich is really -

T

“there. (For example, the singlet s-wave e H resonance reported by i R

{Burke and Schey20 takes“place in the interval k2

= 0.70 to 0.715.. :
_This s-wave resonance iS'supported by some recent (unpublished) - |

| vpreliminarylcalculations'of Schmartz; and we believe it is actuallysa
:lthere.) e | ‘

lExactly the same procedure was followed for positron-hydrogen ffl“

,,vscattering for s and p waves. The first inelastic channel appears at df”’

( 'i‘fso calculations extend only up to k = 0. 7. The positron results are -

= 0.5 in this case,~when it-becomes possible to form positronium,-ﬂ;ilﬂ'

.not as accurate as the electron results, because removing the svmmetryt:_-d"

:;requirement doubles the. number of close-in functions for a given N

- (hence quadruples the size of the matrix M) and forces us to*stop at .2

-

a smaller maximum N . For the 8 wave, _NA{ 5;; while for the p wave L

k'. Otherwise the same remarks as for the e H apply to the f Q

l 'behavior of [x] as a function of “a L



_ fh°;_,
The complete results ere tehulated in Tabies I and II. Row a
E _refers to.vht calcuiated using on;y the asymptotic_wave function
v(no ui's)? and row b to the corresponding 2] ; It is'easily'seen‘v
that row a is just the partial-wave Born approximation,h and it was.
hoped that'row b, a "Variationailr—improved Born approximation” might
' yieid good results and save the (considerehle) lebor in solving
Egs. (12) The p-wave corrections--those large enough to detect—-vi
iare all in the wrong direction, however. AtAleast the failure is
“unequivocal. | l : _ R | - |
| 0'Malley et'al.;9 have shown that when polarization effects
" are taken into account, vr\, o l f'_. '.*A”if'.ﬁf{t.u~"””u"f:i>; t

o 2.25 x | $2
tan “& = (éz m 3)(2& T 1)(2& - 1)

o+ ao.c"

for L 21, which agrees reasonably (within 20%) with our "full-

treatment" for small k. The Born approximation (voth straight

U
~and variationally corrected) with no allowance-for-polarization effects

is apparently quite inadequate, however, giving the dependence (from S

2&+l

;;Table_I) e~ as k »‘0‘.

The complete s~wave e+H 'results are'essentially'identical

17

.to those of Schwartz,” who used a different asyﬁptotic function. We

also did e H s-wave Singlet and triplet-calculations (not‘shown here) =

at k= 0.1, >O'h and 0 6 and again reproduced Schwartz s results. ,

. In all cases . [x] increases monotonically with N .’ See, for

, -

’example, Figs. l through 5. Therefore, while we cannot prove it, we, f'
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TABIE I. Electron-hydrogen phase shifts (in radians), singlet (nz ) and

triplet (nt ) for total angular momentum t=1, 2 3.

Row (a) is the

- Born approximation, (b) the variationally corrected Born approximation,

“(¢) the probable lower bound, and (d) the most probable value.

The‘

' -number in parentheses is the probable error iﬁ the preCedingidigit.f

s E Lol

k N, o n, ) n," ' fx ‘; *
 (atomic l_ ' 1 . 2 2 ?: ’5'3
units) L
. 0.1 (a) 0.0017 -0.0013 . 0.00000% ., -0:000003 . - PR
(b) 0.0017 _ =0.0013 . 0,00000% @ -0.00000% . . ~~. . .
(¢) 0.0101 . 0.006 E R A o
| (e) 0.0114(6) - 0.007(1) . | | )
0.2 (a) 0.0130 - -0.0092 0.00012 © -0.00008 .. - !
- (b) 0.0130 - =0.0092 . 0.00012 +.:=0.00008 & Rt
“(ec) o.ouk8 - - 0.0146 . SRR e s
- (a) 0.0450(1) 0. 01u7(2) |
0.3 (a) 0.0385 T 20.0266 "o 00079{f»*-o ooosé~'
R (vb) 0.0385 .= - =0.0266- o ooo79a{v;-o 00052 S
. (e). 0.1059 - 0.0163 S ,
S (d) 0.1063(2) , o. 017o(u) | v
" 0.4_4‘(a) 0.0771 ,[,'7-0.0510. “0. 0027 -o 0017 0.00010'.-0.00006"f“
oo (b))l 0.0769 - =0.0512 '“;; 0.0027 " =0. 0017 © 0.00010 ° ~0.00006 "
7 (e) 0.1866 - .. 0.0096 'Ail . R ”,; S
4 (a) mﬁm@h;oomdﬂ P ke ,
0.5 (a) 0.1229 - -0.0772 oL0067 lJ4O.OOhOf%f;;b;00058;“90.00022
“ . (bv) 0.1220 .. . -0.07T78 0.0067 =0,0040. ~0.00038 .
- (e) 0.2695 . -0.0014 . G o R P D R
o (a) : 0.2699(2) =0, 0007(5) S SR -
0.6 (a) 0.169% - -0. 099k ';0129-iks,-o.6071f 10,0010 . ~0.00055
-~ (b) 0.1667 - =0.1008" 0.0129‘h%1‘-o‘oo71 o 0010 . =0.00055 -
(e) 0.3405 - Ceo.010r' 4 ‘ g o
(a) Qgshl?(B)t;,fO-OQQ(;)f f

-0.00022 .
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Ul believe that [X] calculated for the largest N (5 in the e “H case)

1 o is a lower bound on the correct k and hence gives a lower bound on

.the phase N . Accordingly, this number appears in rov c. Row d is,,w

. the most probable value for ‘the phase,'obtained by extrapolating to;,f

N é'oo. A crude analysis of successive maxima shows that where
convergence occurs, it is faster than l/N2 Iy but probably not as _3'

fast as xN . Each sequence of-stationary_values is therefore

]

- extrapolated in three vays: _assuming geometric’ convergence, assuming =

.l/Nh » end assuming l/.N2 s 'In general'the average is "taken asstheﬂig

h most probable A , and the average deviation as the probable error.. -
: : H
{

The number in parentheses represents the probable error in the““““~'1

preceding digit.

It has been suggested that the difference between [h]v and ‘
A, might be a reliable measure of the accuracy‘of a variational l‘~”
calculation. It is usually-true'that ‘|Xf- x | is smallest7in the;’;‘;

regions‘(of a ) where the curves are stationary, however, as in f>

earlier calculations}hthis quantity actually passes through zero

occasionally and could easily lead to an overestimate of the accuracy.fypfi{:'

In Tables I and II, for example, the ordinary and the variationally ::h |

"; improved Born approximations are in all cases very close, yet quite
wrong. |
In the p-wave calculations the value of a at which a f

stationary value of [x] occurs for given _N increases (with some -




- =b6-

This is probably because higher energies allow the incident particie

to approach the atom more closely, thus pulling in the wave function.

The value of & +that permits an optimum reproduction of the true
wave_functioh then increases as 'K 1s increased, since this decreases

the value of r for which % ™ fas its maximum. Near zero

energies this behavior is quite pronounced, becoming less so as k-
exceeds approximately O;h_(2.2 e.v.). In the positron.s-wave calcu-

Y

lation, the effect was not observed, which is quite reesonable since

there is no centrifugal barrier in that case.

In some instances the'variationél coefficients Ci were

)
| , - ),
monitored during the calculation to see if they converged. That is,l

. to see if as N wés'increased, a particular Ci might approach or
‘stabilize at some comstant value. If the . u, had been chosen orthog- {1
* onal with the operator H - E then each Ci ’ once‘determined; would

:never'change, since the matrix M would be diagonal. The u ‘were not

i

,éo chosén,-there is no"epparent reason to expect such convergent

behavior, and it did not occur.

The e H p-wave phase is compared with some other theoretlcal

'calculations in Fig. 6. In Fig. 7 we plot the theoretical e “H. cross"

a7

section calculated from Schwartz 5 s—wave and our p-wave result

according to

-k

for unpolarized‘beams.:

Qg = j{: Q, - yhereenllﬁ SRR o
* - . . ! >;' N ]
QL = ga‘& +2121f'. [3 SinQ 'ﬂ& + sin n&]

f .
L
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Fig. 6. Our phase shifts alongside theoretical calculations of Bransdon,

et al. (a), Malik and Trefftz2) (b), Temkin and Lamkin22 (c),

Burke and Schey 6 (d), Smith et al.2 (e), John? (£), and pu.27

Each .curve represents a different approximation. The eigenfunction- :

expansioﬂ calculations are labeled by the states that are retained
" in the expansion (see the introduction); e.g., John retained only
“the 1s state of atomic hydrogen in his calculation.

21
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Fig. 7. ‘Electron-hydrogen cross. sections computed from L= 0, 1
phase shifts. Cross sections are in units xaoa' (ao the
Bohr radius), and ‘k° is in atomic units.
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In Figﬁre BIthe experimental resultg of Fite et al.?7 and
" Neynaber et al.es‘are shown with our. Qp «  Our results are in
‘agreement witﬁ the experimentai dafe,.brt there is éuch a lerge'scatter
in the data that it is iﬁpoesible'to confirm the theoretical calcula-
tions on that basis alone. - Other calculations yielding significantly
dlfferent phase shifts from our own also fall inside the experlmental
limits. |
.These calculations were performed on en-IBM TO94 comp;ter,

using single precision (8 decimal figure) arithmetic. The number ef
- variationel parameters used was liﬁited by the solution of Eqgs. (lé).

;For & maximm of 56 parameters (corresponding to N < 5), our code i{
~takes 0.10 minute of computer time for a given k and @ . About a
dozen points (a &ozeﬁ av).are ﬁsua;ly needed4to resolve the etructurev
.at a given eeergy,~so a‘complete-calculatioh at one eeergy takes

_ approximately 1.2 minutes. Taking N g < 6 means 84 parameters and

. increases the total time to approximately (81&/56)3 x 1.2 = 4.0 minutes.

" This is st111 within reason and vas tried, but it vas found that

-vvnumerical roundoff errors in solving (12) then grew 8o large that the ;‘

" answers were unreliable. So we stopped at N 5 for e H P wave,

and. N g <4 for e H. 5ie

R T
R
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Fig. 8. Comparison of theoretical and experimental total cross
sections for elastic e;éctronfwd:ogen scattering.
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IV.‘ CONCﬁUSIOKS .

‘ In carrying out ihe complete vériational calculation, we find
that the eingularities are somewhat annoying, but easily tolerable |
since we know their origin and can ignore them. We believe that the
'varlatlonal principle for elastic electron-hydrogen scattering pro-
vides the most accurate partial-wave phase shifts of any method avail-
able, when applied'as aboce with a_sufficieotly rich set of functione _
;" 'While it may not ‘be practical for direct epplication to more |
complicated systems (e.g.vmany-electron atoms), it should serve as a

, 'useful standard against which other approximations may be judged "1
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