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. ABSTRACT
Velocity moments of the Vlasov equation are éXpanded,

systematically in m/e and equations obtained giving the fluié'velocity
transverse to.E'through second order. These equations include all
"finite gyro-radius" effects, No & priori form is imposed on the velocity
distribution. The transverse electric field E, is allowed to be 1arg§¢'
. For straight field lines the equatiéns for purely transverse motion

are closed, For weak instabilities (E, small) clbsed'equations‘are

obtained only for 1owlplasma pressure,
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I. INTRODUCTION

In spite of the interest in finite gyro-radius corrections to

- the hydromagnetic equations, no complete derivation of these eéffects has

been given for a Vliasov plasma. In particular;'the corrections to the

~ pressure equations of Chew, Goldberger, and Low (CGL)l have not been

discussed in general., Previous work has been either incomplete2'3 or

complicated by the inclusion of collisions and restricted to a local

Maxwellian velocity distribution in lowest order (e.g., references 4 and

and 5). Concurrent work by Rosenbluth and Simon6 discusses the éomplete

set of moment equations deséribing weak instabilities of a low-pressure
plasma in a uniform magnetic‘field. -The present work includes an
;lternate derivation of their basic équations.

We outline'here a systemétic expansioﬁ of the moment eqhatipns
for a Vlasov plasma in a strong magnetic field. This expansion is the
same &as the ﬁsual B-l expansioﬁ of the Vlasov equation, and is equivalent
to treéting the particle motion as adiabatic.. . No a priori assumptions
are mddelabout.form of the velocity distripg;ion. The electric field
transverse to B .is allowed to be large so that the "E x_g" velocity may
be of the same order as the thermal velocity.

In lowest order the resulting equations sre essentially those »
of CGL.l These equations describe the tr;nsverse motion of the plasma
through.firstiorder and the parallel motion in zero order,

Through the next order the equations resemble the hydrodynamicsv

of & nonideal fluid. Previous calculations of certain off-diagonal5comgcu

2,3

ponents of the pressure tensor P “*° are found to be incorrect if'Qg
. ~ahhe /

. v . /’ .
is anisotropic in zero order: The CGL ‘pressure equations are:modified
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by the appearance of transverse heat flows and other effects, The
transverse heat flows involve the fourth moments of the zero~order velocity

(0) (o)

distribution £' "', 1In the ébsence-of collisions f is not necessarily
Maxwellian, and at the initial time the fourth moments must be specified
independently of the density and kinetic temperatures. Their time
dependence is given by relatiéns similar to the CGL pressure equations.

This system of equations is not closed because, quantities such as
the parallel heat flows remain undetermined. TFér generality these un=
determined quantities are retained. In special cases, such as a plasma

independent of position along a magnetic field of constant direction, the
' moment équations for purely transverse'mopion together with Maxwéll's,‘
equations form a closed set, proiidéd that the frequency seen by a '
moving fluid element is not tco low. For weak instabilities, however, -
the moment equations qlose only if the plasma pressure is low or other
spegial conditions are satisfied. In more general cases the equations
may form a useful guide to the pfocesses that may be expected, even if
ﬁhey are %ot closed,

The method féilowed ﬁere consists of expanding the moment equations
directly.a’7 This is algebraically simpler thaﬁ finding these éqnations
from an expansion of f, as was done in reference 3, and gives results iﬁ
a form convenient for iteration to higher order.

The moment equations and expansion procedure are discussed in
Section iI;.and the finite gyro-radius corrections presented iﬁ Section III.
In Section IV ihese reéults are modified to apply to weak instabilities.
The relation of the equations obtained to those used by Roberts and

Taylora to discuss the stability of a plasma in a gravitational field

is indicated, and the Rosenbluth~Simon equation56 are derived,

!
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II, THE MOMENT EQUATIONS

" The first few moments of the Vlasov equation may be written

89/31'-“4' Voop =0 , o (1)
lag/ar)y +o7HVR), - (efm)E, =0, o (2)
"51 ».‘33 = 9-131 3-[(1_2/&6 + p-lV'”g]‘ - : a (3) . ' .

\9»5 dp/at + EVeu + VQ + H;’Vg]s . ﬂl[gf* 3113 R (L)

‘ ' . . ' . . & \ - 18 8- w
(dg/at + gry + TR ¢ [Qvu]® - [pTRVEIT = algxgl®, ()
dR/dt + RV*y + V*S + [ReVu]® = [p™Mqv+P]® = Q[R x e ]'5 (Q o
where p is the .dénsify mn = n(f), u the fiow velocity n-l(,'v’f),,g the
Q the heat flux tensor m(yyyf ),

A

pressure tensor m(yvf) with y = vo-u,

= m yunts § = m(uyywyt), /2t = 3/3t ¢ gt ) = 373, 8 = eB/me,

1
e and m are the particle charge and mass, and u, = cB'EE‘ X R. Projections °

perpendicular end parallel to B are indicated by the subscripts L and Il ,

L " The superscript s indicates that the quantity is to be symmetrized by .

adding to it all cyclic péfm};te.tions of its.vector factors (or tensor

L

v. V B - '.
: [Susl] mExSI-\?lx*g_ ’ 

and

i
i

 ireewal®) . a ~ | : sufox .
. {[Sh VB‘] }iJk ' 4313nauk/axn *ﬁkinauj/a_xn +3Jknaui/a_xn y

..Gravita.tional forces are included by letting'gf be the equivalent electric

~

field, .~qual to the actual field plus m/e times the gravitational accelera~

tion. . . ] : ! ) o . . _"lv
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Wevconsider’these‘eqnations in the large=B (adiabatic) limit
cofresponding to assuming the quantity m/e (i.e., ﬁfl) to be small. To
‘make the ordering of small quantities cleer, Egs, (lj through (6) must - _ ’
be written in dimenoionless form. This may be accomplished by expressing p ) .

'ry, t, B, E, and n in the units L, t, B characterisgtic of
Ve AT W i .

0* 0
the fluid motion and u in terms of a representative thermal velocity

EO' and n

v If the dimensionless quentities are indicated by primes end P

th’
written n mvthg » Eqe (3) becomes

i

. R o ) ‘41 a [] vl. ¥ . ‘
' o ' s — SR tety? ___&_ 4
NLT Vo BSLE TS B X "th‘ 37 AT Y . - -

St
'
T

f

The adiabatic expansion parameter ¢ = mcvth(eBoLQ-l <« 1 enters this
equation in the same vay as a1 enters Eq. (3). Equation (7) involves ,

two other parameters, cEq(v,, "and Litv, )'1, vwhich we assume

th 0) : R
independent of ¢ in this and the following sectiono The modifications - _§'

necessary when both these parameters are of order ¢ are discussed in- :
Section IV. - ' . ' ' : | 3.
The expsnsions of g,and 3 are found from Maxwell's equations in

dimensionless form. These equations involve the paranetersB = ndmvttho'aﬁ
and vth2 =2 4n addition to those appearing in Eq. (7). The appropriate

expansions at E and B depend on: the relative order of these parameters.

We now expand in € ell quantities appearing in Eqs. (l) through
(0) ( I

(6), writing them in the form p = o + seey €C, and.regarding

m/e and n,% to be proportional to €. To simplify notation, the expansion Q#
of E and B will not be carried out explicitly. The appearance of (e/m)E“
| in Eq. (2) indioates that E,, muet be of first order, since (eﬁm)E‘, is

then of zero order.'
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It will be noticed that Eq. (3) expresses ,g'(_?) in terms of E,
' Bs and quantities of lower order, but that {1) and (2) do not give a(n)
(n) '

and u,, ' directly in terms of lowerorder qnantities; This 48 a general

" feature of the moment equations: moments of the form (a(#)f), vhere #

N o L- . 38 the azimuthal angle of‘gkabout the_direction1sl and q(¢) is.a function’

" of v, which-averaées to zZero over ¢,-are easily expressed directly in
ftermscof momentsgof lower order., However, moments of the form .
<b(YLo ,,)f} are determined by differential equations which do not
involve a° 1
It is convenient to express P P and é 15 terﬁs of moments of the
above forms., We introduce unit vectors e and e such that Lir &

ne w3 129
form a right-handed orthogonal system. An expansion of theASi’ ‘which

and
B ‘
. . . -we do not carry out explicitly, is'implied by the expansion ofﬁg. The . .
quantities P, = (1/2)(P22 - P33), o3¢ Ppos and P, are, of the form
_ (h(¢)§>, and appear.on the right-hand side of Eq. (4). Inverting this

eqnation gives the relatione _f '.: ff; . [
Ps = =(M)TGI, . Bpy = WANTGL,

| (5103)".‘.8 . Q"'];sl x (51'/\?4) " ’.;_., | B (8)
. : . wvhere ’ '

. M?G: = S8 T33%3 and ,,I.\y = $o%3 "'.13332.‘ .

-

These equations express Pgs P 1o and P;g in any order in’terms of

23* F1
quartities of lower order. In particular, all these components vanish

> (0)

is of the usual anisotropic diagonal form.

[ _ \\J

in zero order so that P



T

B
The remaining components Of.F"pL = (.1/2)(13'22 + P33) and - Y o
do not appear on the right-hand side of Eq. (4). They are determined by

~ the enérgy equations obtained from the contractions of Eq. (&) with

B TR P 3v3 and £:8;° The results may be written
. ‘. < L ' M T . . o . ’ |
dpl/dt + pJ’V u+v & + (ﬁ V&) 1y ‘.',}:'-.\Eldsl/_d_t +8 va:Vgl 0 »(9) SR
~and - L ‘

'/; .
.

1 1 yegh & s
ap "d_t * 50, Tyt Vgl + (PeVu)iee

5 £18) = P:e de. /dt -2 -Q:Ve =0 ,

(10)
| where q* and q "are the fluxes of transverse and parallel thermal energy,

AW o :

(1/2)9:1, and (1/2)g:¢ s 8¢ | | ’
The usual energy equation of kinetic theory is obtained by ;' )

adding Eqs. (9) and (10), which gives one-helf the trace of Eq. (4). The , B
first four?terms in Eq; (9)>and in Eq. (10) are similar in fofm to this |
energy équétion. The/temaining terms occur with opposite signs in .J” S
Eqs. (9) ahd (10), aﬁh representvan exchange of eﬁergy between the
transverge'and paraliel thermal motidn. ‘The first of these terms ’
arises from the rotation of the magnetic field dlrection seen by a
noving fluid element;, the origin of the second is more difficult to |
viaualizg. A _ i o

" By use of the diagonal form of )3,(0) and the form of %(0) dem
rived‘in'Section III, the zero-order terms of Egs. (9) and (10) reduce.
to the CGL.pressure equations (see Eqs. 21 and 22), which in the absence

of heat flow can he integrated to glve the double adiabatic condltions.

The other eqpations of CGL theory are easily obtained from Eqs. (1) '_ '. :/

‘and (2) in zero order, (3) through first order, and Maxwell's equations.

They give u, through first order and the other quantities in zero order.

,“\



case; they have been given for an anisotropic P

~ authors. Thompsen's results for P

due to the zero-order heat flows, They show that P

o
1)' -7-

/

III. FINITE GYRO~RADIUS CORRECTIONS

b
Extension of theseuequatiqns to give the transverse velocity

through second order is straightfo}ward; Equation (3) expresses Ly ( )
(1) (1) (1)

in terms of -0y o B '; 5(1) is obtained from Eqs. (8) through

(10). 'From (8), using the diagonal form of P(O) (0)

s 8nd o

obtained:

» the form of/g'
below, and Maxwell's induction equation. we obtain
) el e o 4 i (o) R |
Py =2 ~(20) M%y'[P.va‘u +q, Ve ] ’ - i-(ll) :
‘(1) A ) ) L (). - -
P23','-z (20) *56'[2L23 +'q,,V31]‘ e C . (12)
), ), Bl . gl : :
P58 + P13 g5 = [e P, ] = 0 [(2p” - 31)31 Yu + p (vu) & .
. (24" = Ye Ve, + qu](O) .". o (13)"
U= Q3o Y Ly | , e
The parts of these'expressions proportional to pigz are- the.

E collisionless viscosity terms, They are well known in the isotropic

(0) bY-Kaufma.n2 and by

{

Thompson.3

Disagreement exists between Eq. (13) and the work of these
iz and Pl3 are incorrect because of
an algebraic error. Kaufman's result for these components is incomplete

because he assumes a constant B. This is inconsistent with a nonzero

(e 'u( )) and Maxwell's induction equation.

The remaining terms of Eqs. (11) through (13) represent stresses
' (1) '

need_no; Be

(o)

diagonal even if u vanisnes. .

!

We consider now the determination of Q, which is needed through

‘first order in Eq. (9) and (10). This tensor has ten independent
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components which are conveniently represented in terms cf q s q_
| % 57(1/2)a§*6? and Q123._ All these quantities except‘q1,and q'lare of ‘; |
 the type (a(ﬁ)f>>and appear on the righthand side of Eq. (5). Inverting  [ ‘
this equation gives expressions for these quantities of the same form - ,: ;
as the rela.tions (8); ‘I'hese qua.ntities therefore vanish in zero order .
4 i
- and the only nonzero components of Q( ) are proportional to q, (0) _ “f'
'vq“(o), This fact has'already veen used. Invarsioq of Eq. (5) in first
order gives - |
(L) poy=d: - o vitial
G =) ey [viRa =0 7B P+ (R) = BRy)e; Ve, .
o | (0) o
+ 2(2q“ - q”)e Vu + 2q”(Vu) ] ’ ' (14)
. ) ) . / . Lot - " .yv )
1) o (2)"Ye. x [VR, - bo~Fp v-féua nem<°>_ O 1)
b oMl 3 Tl w o Wl Wt T
. : - . P A S ooy
S(1) o aaylr pp(0) o g
and L ',' , ' ' ., I i.j.,/»
- . : (. v ¥
(l) Q -l (0) . !
Gz = (BNTLILT P |
' where i ‘ ]
¢ = R % R, Ve S+ Vu o
.o~ {27F 73 S o
R = ( > R d R.=:-1'-<h o S
Ry v » m(v“i » and Ry 2mv1_v> .
: 9 R S
The transverse components of % are not required. The three scalars Ri : >
charae;erizegg(o), since any component oflgfhot proportional to one of

these appears on the rightehend side of Eq. (6) and therefore vanishes

in zero order.
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If the terms in qg and qtﬂare neglected, the:;ransverse‘heaﬁ

_ (i
. flows given above ggree with those given by Thompson;3

the q,fo)'s vanish., Thompson's fluxes appear to differ from (14) and (15)

who assumed that

-because they are referred to the zero-order-velocityﬁE + u1}° e

whereas ours are referred to &. The corresponding difference inlg is
S

L of order [u - u(o) 2
. : £ A

AR

» heénce does not appear in Eqs. (11) through (13)..
If the distribution of vy (the integral of f over vy is
Gaussian, R} = oR /3i>”2 = 1; if the distribution of v is Gaussian,

t = k
Ry pRB/h p2 -.L = 1, The quantity R,' =

For ar-isotropic Maxwellian f(o), Rl'(o) Ra'(O) = Ry '(0) -1, qi;l)

and Qlé3(l) vanish, and Eqs, (14) and (15) add to give theewell-knownw

' = pR /p”gi~¢ 1 if £ = £ (v,)f (vl).

i . collisionless transverse heat flowh

a, = g: +q|= (5/2)(pmﬂ) pe x V(p/n) . | (17)

- R 5

(0)

need not be Maxwellian, however, and independent

(0)

. equétions are required for the R . These'equations are the contractions

In general, f

-

of Eq. (6) in zero order with e Iit and I, I,, The results

S1%1% 1?1' $1
_are

|

(aR,/at + R (5V°u » b7 o) = 8q/lg(veR) + ks veg - v.(s ), a8y

l 1

o Ly .
R /At + Rp(3Vey = V) = 24jpT (V) + (85 = 83)7g) = (8282) s

(19)

v . \‘ ) . ] N . . - . c . ‘
7§R3/dt + Ry(Voyi+ 2& u) = 253Vee - 20¢ (S3el) T (20)
vhere all quantities are taken to zero order;
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(o)
i

vIn the absence of collisions, the S
moment équations. It f(o) is assumed to be an anisotropic Maxwellian,

are not determined by the
Eqs. (18) through {20) yield no new information, but are consistent
with the CGL pressure equations.

By use of the results (11) through (16), the energy equations:

(9) and (10) through first order ‘become

y . RN V6 T R () 2 |
dg./d‘l.;-i-p&.(vl\&‘ﬁ-&_x)i-VS_L D ul+c.t2=?’_¢+.0(€) (21)
and
L 3 ge . L) (0) : ' 2
.5 dp,fat +_p"L2 R/ R RS MU -r, +o0(e} ,
' e (22)
where s
V ooy = (Vu)sI, , @ = 2Q'le s[{e,*Vu) x (Vu)ee ](0) :
Lo m a1 wl Al . il § ’
-1 -1 o (0)
ay = 8 e [(VRy = 07"p¥p)) x (g °Vg,)] J
1 ' ' :
’ 0
To= _3v~(n ml) + 2071 [q (;'7gy) * (Vu)ee; + (e -Vu) % Vq"]( )

and

romve(at ¢ qllg 207 {q”(Vu) (13, - 11410781

el g,y ¢ (g, x [(ad) = gy B ¢ v

The zero-order terms of Eqs. (21) and (22) give the CGL pressure

equations. In first order these equations are modified in form by the

appearance of 3:(1) ”(l), 01y Gy and the parts of T and I, proportional

to 0”1, Adding together Eqs. (2;) and (22) gives the rate of change of

the total thermal energy.

‘r
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The terms dn o, of Lqs. (21) and (22) and their sum are somevhat
analogous to ordinary viscqus dissipation in that thg§ arise from the
contribution of the collisionless viscosity toksivg‘and~g?$1dgl/dt in‘
Eqs. (9) and.(10), are quadratic in u, and represent a transfer of
energy bgtween the fluid and thermal motions. The net transfer of .
energ& from the flow to thermal motion produced by the coilisionless
viscosity does nof vaniah~in'general, as might be expected for a
collisiénlesS'system, but is equal to (p"- gi)nl;vand may have either
aign.‘ : v ‘

The 52 terms of Eqs. (20) and (21) ;epresentaa transfer of
energy between the parallél and transverse;thermal motions which comesx
from 5 -Q:Ve in Eqs. (9) and. (10). The.parts of T, and T pr§pdrtionai

-l _L{0) n(O) (1) (1)

io 1 7 are due to the contributlons of q” and q; to P and Q
Because zgro-order heat flow can not occux in the presence of strong
collisions, these terms have no‘analégy in ordinary hydrodynémics;

Except for q,,and q" through first order and the § (o),'Egs; (1)
through (3), (11) through (15), and (18) through (22) for each component,
togethér with Max#ell's‘equations, determine the transverse motion of
tﬁe plasma through.second order and the other quantities through firsﬁ
order. \

These equations simplify considerably'if & ig‘constant in'space
and time'gnd if the properties of the plasma are 1ndepéﬁ&ent ofjpoéition

along the field lines; the equationS'form & closed set if Uy » qj(o), and

">q”(o) vanish initially. These quantities then remain zero, and’ g, l'

/

" and’ Si are no longer reqniredo

‘i‘ o
1

'»
t
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Equations (15) and (21) then become

¢
kS

311(1) = (o8)"'2pg x [(2R] - 1)n'v(n‘ip_L) + (RY - 1)5’1&,Vn'
vng](ov) ’ - " | - (23)
and
'd&/dt + 2p.\.v1..3-+ v,gi(i) i ‘0(82) . . . (2}4)
‘The zero-order terms of Eq. (2k) yielo the CGL adiabatic condition
for p’(o); In certain cases, ‘such as perturbations of a uniform

equilibrium, a configuration depending on only one spatial coordinate,
(1)

constant B and p, or constant B and (gl/n)(o), *q, vanishes and the

adiabatic condition holds through first order. In general, however, it

¢

- is modified in first order by the transverse heat flow.
' Under these conditions Eqs. (18) through (20) reduce to state=

if are conserved by the motion, Eqpations (1),
(3), (ll), (12), (23) and (24) and the conservation of R (0) for each ’

ments that in zero order the R

component and Maxwell's equations form a set which is closed for purely
transverse motlon.
This closed set of. equations differs from thoee cbtained on the

assumption that f(o) 9

is an isotropic Maxwellian in that the scalar pressure
is replaced by P» and that-the heat flow %J'of Eq. (17) is replaced '
by %j;of Eq. (23) with R,' conserved. The .conservation of the R,

3
(0) will remain Maxwellian (but not necessarily isotropic)-

implies that f
if it has this form initially, The two energy equations then differ
in form only.by a'factory's/h'in the expressions for the heat flows,
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&V
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_/ IV. WEAK INSTABILITIES
, i |
For weak instabilities (r ~ € Q), the parameters L(vth )'; and

ch(vth o) are of order ¢ and the preceding discussion must be modified.

Since u( 0). ‘vanishes in this case,vboth u and U, are now of order ¢ « If
n(o) _ s e
) 0 it follows from Eqs. (8) that P, Py3s Pyne 8nd Pyg all vanish

’

in first order. They are nonzero in second order, however, and make a-
contribution to p J‘V ‘P in Eq. (3) which is of the same order G»c v Q) as

du/dt. These terms must be retained; ordinary hydromagnetic theory is

o there@ore not applicable.lo

are found from Eqs. (8). For

The components ?5, ?23, P12’ and p;3.

-and purely transverse motion, Only the transverse components of P are -

¢

then required. ,Théy.may;be written in the form'
. * . : N
20 |
(25) -
[T '51 "l ’ ] (0) (l)
*"'3;‘ 3 . - p X . .
gviEaTle Ty p (1/4)VR,]. = (1/?);31 xa,

The second term of Eq. (25) can be obtained from Egs. (12) and (13) by
(0) (1)

The terms in q* arise from the contribution of
v

on(l) to G in Eqs. (8). Equatlons (3) and (25)81"e )3 through order
"o

changing u to u

w
. 3 :
th'

Equation (25) requlres RL through order ezpvthz and‘R3(0).

both 3/dt and 3' are small for weak instabilities the zero-order terums.

Siﬁce_ ‘

v

| ‘éf Eq. (24) vanish. The f;rstaordér terms‘give'the equation of state for |

o). e T

<

“simplicity we restrict the discussion in ﬁhis_sgction.to straight field iines j

e



"'lha

- A

(3/3£ + A\}fI)OV)p_L(O)l-o- 2p_L(°)V " uo +'§-‘l-2- -(lg- x VR3(°) - o . (26)

~ Note that the calcﬁlation of pifo) now involves RB(O).

First-order terms, analogous to those arising from V'gjfl) in

. Eq. (26) and neglected in Eq. (20), must be included in the calculation of

R3(0).. These terms introduce the sixth moment m(yisfgo)}. Determination

of this quantity brings in still higher moments, The moément eqnétions are

not cldsed, even for straight field‘lings and purely transverse motion,

unlessithis sequence terminates,

Termination occurs for low B8 . Equation (26) is then independent

. . 4
of R, and, since only ¥ x (v:g):will be req,uifed,8 the first term of

3
Eq.'(25).is not needed. Thus R3(°) and the first- and secopd-o?der
'corrections to p, do nét enﬁer the calculation.

The situationlis.considerably more complicated for'finite B+ The
first term of Eq. (25) must then be evaluated and thé:gfore the equation
for R3(0% and the higher-order corrections to'pJﬁ(through order 2i). are
needed. Termination of the sequence of homeﬁt equations occurs forl
one-dimensional geometries.’ Lipearization about an equilibrium for which
31 is uniform aiso produces a élosed set'of equations, These‘séts of
' (o) . '
3

equatibné include R as a variable, For more general finite 8

configurations the moment equations are not closed,

The single fluid equations of motion and generalized Ohm's lawll

-are obtained in the usual way from Eqs. (3) for ions and electrons, These
.equations, which now include the nonscalar contributions tolg, are of the

~same form as the single fluid equations thainéd by Rosenbluth and Simon,

with their unknown scalar function now determined. They differ from the

c

X ]

-

=



'
i,

divergence of Eq. (27) then givés

«l5=

!

equations used by Roberts and Taylor8 to discuss the,finite gyro=-radius

i

' iy
stabilization of plasma in gravitational field, however, because the

latter do not include the contribution of q¥* to gz"(These terms do not
affect the caloulation of reference 8,) The Ohm's law of reference 8 is

unnecessarily éohplicaﬁed because the plasma velocity enters the equation

* ' of motion only in first order (vhereas the current enters through order

h);' The nonscalar contributions to“g_and the acceleration term

therefore are not required in.Ohm's'law.

€ nev
t

' 'Rosenbluth and Simon6 have found a very simple set of moment

equations describing weak transverse instabilities'for low B and uniform
magnetic field, Their set consists of Maxwell's equations for E, the

equation of state (26), and a form of the continuity equation derived:

E

from Egs. (1), (3), and (25), For low B; Viu
to dpl(o) /dt = 0, which is Eq. (A.13) of reference 6, To obtain Eq. (A.1)

= 0, and Eq. (2§) reduces

of reference 6 we substitute Eq. (25). into Eq. (3) and obtain, after some

manipulation,
S U e fwa® e U
. . wal ’0) dH ~1 - SN 1 . AN
AW = pup + o= !'{;(_‘ - tT [(vu) ¢ vp &' (vp,)V 3}(‘1 *17?}4’ (2m)
»‘where , . '
= .' : amlos o - .l.v
v 5Py *(29), [v gf + by (si x'&)J( ) | ,

!

vThe right-hand side of Eq. (27) may be simplified by using ﬁhe relation

o(o) -g?t; . - B,.)(l) = n-lg’l x [,(V&)GVP‘L- (vp)v‘g—](l) . . ’,~

~ obtained f;om Eq. (26) and the first-ordér'tefms of Eq. (3)s The



=]lf=

Lo

1

pr:gEon'l-Q Velp at (glx"%E) +0(§Qp) .

H

- Equation -(A.1) of reference 6 is obtained by substituting this result into

Eq. (3).  This calculation isvessentially the inverse of the derivation of

€

the single fluid momentum equation given by Rosenbluth and Simon,

" The equatiohs found by Rosenﬁluth and -Simon from an'expanbion of
the Vlasoy‘equation are thus easily obtained from an m/e expansion of the
familiar consérvation equationgoflmass,‘momehtum, and energy. The
."finité.gyré radius" terms ofnthis expansién,'expressed in Eqg;(25) and
(26), are easily obtained from ihe exact momeht equations if the special
assumptions‘of‘this section are made at the outset, Thig procedure provides
an alternative derivation to that of referencé 6. This alternative defivaﬁioh
emphasises the relation of the Rosenbluth~Simon equations to equations
describing more general configuraﬁions. In pérticular we have shown that
the momenﬁ'equations do not close'f&r weak insfabilities at finite B except \
for one-dimensional configurations or, in the linear approximation, if | |

the equi&ibriqm magnetic field is Qnifqrm.

- &
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