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ABSTRACT 

UCRL·l.l634 

Velocity moments of the Vlasov equation are expanded 

systematically in m/e and equations obtained giving the fluid velocity 

transverse to B through second order. These equations include all -
"finite gyro-r~ius" effects, No a. priori form is imposed on the velocity 

distribution. The transverse electric field E~ is allowed to be large. 

For straight field: lines the equations for purely transverse motion , 

are closed. For weak instabilities (E~ small) closed equations are 

obtained only for ~ow plasma pressureG 

. t, 

I 
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I. INTRODUCTION 

In spite of the interest in finite gyro-radius corrections to 

. the bydromagnetic equations, no complete derivation of these effects has 

been given for a Vlasov plasma. In particular, the corrections to the 

pressure equations o£ Chev. Goldberger. and Lov (CGL)1 have not been 

discussed in general. Previous vork has been either incomplete2•3 or 

compllc'ated by the inclusion of· collisions and restricted to a local 

Ma.xvellian veloc;.ity distribution in lovest order {e.g., references 4 and 
6 . 

·and 5). · Concurrent work by Rosenbluth and Simon discusses the complete 

set of moment equations describing weak instabilities of a low-pressure 

plasma in a uniform magnetic field. The present work includes an 

alternate derivation of their basic equations. 

We outline here a systematic expansion of the moment equations 

for a Vlasov plasma in a strong magnetic field. This expansion is the 
. -1 . 

same as the usual B expansion of the Vlasov equation, and is equivalent 

to treating the particle motion as adiabatic •.. No a priori assumptions 
i 

are made about form of the velocity distribution. The electric field 

transverse to B is allowed 'to be large so that the "E x B" velocity may ....... ... "'-~' 

be of the same order as the thermal velocity. 

In lowest order the resulting equations are ~ssentially those 

l of CGL. These equations describe the transverse motion of the plasma 

through first order and the parallel motion in zero order. 

Through the next order the equations resemble the hydrodynamics 

of a nonideal fluid. Previous calculations of certain off-diagonal; com~-~ r·. 
2 3 . . 

P • are found to be incorrect if P 
..... I ~ 

. I 
The CGL· ·pressure equations o.re:,modified 

ponents of the pressur~ tensor 

is anisotropic in zero order. 

. .... 

( 

, .. 



by the appearance of transverse heat flows and other effects. Tbe 

transver.se heat flows involve the fourth moments of the zero-order velocity 

distribution f(o). In the absence.of collisions f(o)· is not necessarily 

Maxwellian, and at the initial time the fourth moments must be specified 

independently of the density and kinetic temperatures. Their time 

dependence is given by relat~ons similar to the CGL pressure equations. 

This system of equations is not closed because.quantities such as 

the parallel heat flows remain undetermined. F6r generality these un~ 

determined quantities are retained. In special cases, such as a plasma 

independent of position along a magnetic field of constant direction, the 

moment equations for purely transverse'motion together with Maxwell's 

equations form a closed set, provided that the frequency seen by a ' 

moving fluid element is not too low. For weak insta~ilities 8 however,. 

the moment equations close only if the plasma pressure is low or other 

special conditions are satisfied, In more general cases the equations 

may form a useful guide to the processes that may be expected, even if 
. I 
they are not closed •. 

The method followed here consists of expanding the moment equations 

directly.2 •7 This is algebraically simpler than finding these equations 

from an expansion of r, as was done in reference 3, and gives results in 

a form convenient for iteration to highe~ order. 

The moment equations and expansion procedure·a.re discussed in 

Section II,.and the finite gyro-radius corrections presented in Section III. 

In Section IV these results are·modified to apply to weak instabilities. 

The relation of the equations obtained to those used by Roberts and 
8 . 

Taylor to discuss the stability of a plasma in a gravitational field 
. . 6 

is indicated, and the Rosenbluth-Simon equations are derived. 

. . 
( 

·--
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II. THE MOMENT EQUATIONS 

The. tirst few moments of th~ Vlasov equation·mar be written 

{l) 

(d~/dt)11 + p-1(V~.f)n - (elm}E 11 =- o , . (2) 

. . -1 . 
'~ .. fu; a 0 ~1 ft [d~/dt + p·lvzl • (3) 

• .(4) 

where p is the density mn a m(f), u the flow velocity n·1(vf), p the """ ,., ,., 
' 

pressure tensor m<vvf) with v = v - u, Q the heat flux tensor m~~~f)1 
N fl . W .>Jo iW't ""'' 

Ram (vvvvf), Sa m(vvvvvf), d/dt a a/at+ u•V, e1 = B-~. 0 
fN.40 tJ ... ,..\l ~. -1'\J ol' ./OVJ "VV N ..... . 

• eB/mc, 

e and m are the· particle charge· and mass, and u_ ~ cB-2E ·~ B, 
"".1!,; "" """ 

Pro·j ections 

perpendicular and parallel to B are indicated by the subscripts .1. and II • 
I ..,. 

The superscript s indicates that the quantity is to be symmetrized by·. 

adding to it all cyclic permutations of its.:vector factors· (or tensor 

indices). Thus 

and 

Gravitational :forces are included by letting !, be the equivalent electric 

fie.ldll -~quai to the actual field plus m/e times. the 'gravitational accelera.~ 
·~· . ' 

tion. · 

. ,• 



•.; 

-4-

We consider these equations in the large-B (adiabatic) limit 

corresponding to assuming the quantity m/e (i.e., n~1 ) to be small.· To 
" 

·make the ordering or small quantities clear, Eqs. (1) through (6) must 

be written in dimensionless form. This may be accomplished by expreuing 

·r, t, B, E, and n in the units L, t, B0, E0, and n0 characteristic.of ..,., ~ - ·' ' 

the fluid motion and J. in t~rms or e. represe~tative thermal velocity 
I 

vth• If the dimensionless quantities are indicated by prim.es and P 
/ ,.., 

wtitten n0mv~h~', Eq. (3) becomes 

u' 
~.J,. 

a &. - )( - ~ + U •V U B • v t at • ..., ., th 
+ p' • (7)· .. ~1 . [ L au I ' I ' 

. It, 
-1 . 

. V'•&'] 
The e.diabatic expe.nsion pe.rameter £ = mcvth(eB0t} « l enters. this 

equation in the same way as o-1 enters Eq. (3). Equation (7) involves 

two other pe.ramete~s, cE0(vthB0)-l and L(tvth)-1 , which, we assume 

indepe~dent of £ in this and the-following sectione The modifications 

necessary when both these parameters are of order & are discussed in·· 

Section i.v. 

The expansions of E and B are found from Maxwell's equations in 
i\1' . #1 

,• 

. . 2 ~ 
dimensionless form. These equations involve the parameters 8 = n0mvth B0 · 

2 -2 ( ) and vth c . in addition to those appee.ring in Eq. 7 • The· appropriate 

expansions atE and B.depend on·the relative order of these parameters. 
. - "" . . . 

We now expand in,' & all quantities appearing in Eqs.· .(1) through 
(0) (1) . . . 

( 6) , writing them in the form p = p + p + ••• , etc • • and. regarding 

m/e and o7.~ to be proportional t;·& ·• To simplify notation, the expan~ion 

The appearance of Cel1i1)Ej1 

i I 

of E and B will not be carried out explicit;l.y. 
'+'I ...,1 

/ ' ....... 

in Eq. (2) indicates ;that E 11 must be of first ·order, since (e/1\l)E/f is 

then of zero order. 

' .. 
.. .;; 
·• 

. . 
~ 

.~ .. 

. . 
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It will be noticed that Eq, (3} expresses ~(j_) in terms of !,t 

~· and quantities of lower order, but that (1) and (2) do not give p(n) 

and u~~) directl;v ~n terms of lowe~'-order quantities. This is a general 

feature of the moment equations: moments of the form (o(~)f), where ¢ 

is the azimuthal .angle of ~ about the direction "
1 

and o( ¢) is a function' 

of " which ·averages to zero over ¢, are· easily expressed directly :1.n ..,. 
· q·terms:.,of moments.) of lower order. _ However, moments of the form 

<scvf, v11 )f)! are determined by differential equations which do not 

,. i . ; n•l . 
·1 · nvolve ... • 
•' 

It is convenient to express P and Q in terms of moments of the 
~ ""' 

above forms. We introduce unit vectors e2 and e
3 

such that e1 , e28 and * 'i" ..., ., ' 
. . 

~3 form a right-handed orthogonal system. An expansion of the .!i, which 

we do not carry 'out explicitly, is'implied by the expansion of B. The~ 
. 1'1'\1 

quantities P
6

: (l/2)(P22 - P33), P23 , P12 •· and P13 are.of the form 

(o(~)rj, and appear on the right-hand side of Eq. (4). Inverting this 

equation gives the relations 
. ~ I I 

-(4o)-1G:I p6 Ill 
. II.IWI ,.y 

and· 

where 

and 
.. 

• p23 = 

(e •G) 
:.Pl ""'· 

' I . 

.. · -1 
'40)·., G:I6 

. / ""' 1(1 

! 
' I 

' 

• 

These equations express P6·, P23 , P12, and P+3 in aey order in-terms of 

qu~~ities of lower order. 

in ze;~ order so th~t·P(O) 
~ 

.I 

-tn particular, all these components vanish 

is or the usual anisotropic diagonal :form. 

~ 

(8) 

I 
/. 
I 
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The remaining components of ,.,f-"91 = (~/2)(P22 + P33) and Pu· .= p11:-.:·. 

do not appear on the right-hand· side of Eq. {4). They are determined by · .... . : 

the energy equations obtained from the contractions of Eq. (4) with 

.J.1- • ;2?2. + .!~3 and .,!1.q1• The results may be written 

and 

where q~ and q 11 are the fluxes 
NY' ...,.. ' 

I 
(l/2)S:A.J. and (l/2)_$:~h~l· 

of transverse and parailel thermal energy, 

The usual energy equation of kinetic theory is obtained by 
. ' . 

adding Eqs. ( 9} and ( 10) , which gives one-ha.lf the trace of Eq.. ( 4). The ·• 

first four' terms in Eq~ (9) and in Eq. (10} are similar. in form to this 
. t ' 

I energy equation. Therremaining terms occur with opposite signs in ·J 

. I 
Eqs. (9) and (10), and represent an exchange of energy between the 

I . ' transverse and para.llel thermal. motion. The first of these terms 

arises from the rotation.of the magnetic field direction seen by a 

moving fluid element;. the origin of the second is more difficult to 

visualize •. 

By use of the diagonal. form or ;c,< O) and the 

rived in Section III, the zer_o-order terms of Eqs. 

form of Q(O) de
W\/ 

(9) and (10} reduce. 

to the CGL.pressure equations {see Eqs. 21 and 22), which in the absence 

of heat flow can be integrated to give the double adiabatic conditions. 

The. other equations of CGL theory ar.e easily obtained from Eqs. (l) 

and (2) in zero order, (3) through first order, and Maxwell's' equations. 

They give~~ through first order and the other quantities in zero order. 

./ 

• • 



/' 

., . 

) .. 

I 

; -7-
/ 

III. FINITE GYRO-RADIUS CORRECTIONS 

Extension or these .. equations to give the tran~verse velocity 

through second order is straightt'o~ard~ Equation (~) expresses ):.L( 2) 

in terms of ~ ll) • ,g(l), and "(l); J,(l) is ob.tained trom Eqs. (8) through 

. (0) (0) 
(10). From (~), using the ~iagonal form of' 1!, , the ~orm of' :a obtained: 

below, and MaxWe~•s induction equation, we obtain 

• 
p(l) 1 . .J. (0) 

a -(20)- I : (p...LVu + q11 Ve1] • 6 '""'y ""' '"' 
; ;; ~ 

.. '. (1). ( ) -1 [ . ..L ] ( 0 ) 
p23 . .a. 20 J6: I!L.v~ + q Jtv~l . . • 

= o-1~1 X [.(2pl/ - p'l)el•Vu + p (Vu) •el 
~ "" . /V . :.L ,...., .... 

. . 
( 0) 

The parts of' 1;hese expressions proportional to p .L,JI are··the.:. 

collisionless viscosity terms. They are well known in the isotropic 

.case; they have b~en giv~n f'or an ~isotroplc P( O) by Kauf'man2 and by 
{ . IJ,/ 

Thompson. 3 Disagreement exists between Eq. (13) and the work of' these 

(ll) 

{12) 

(13) . 

authors. Thompson's results tor Pi2 and P13 are incorrect because of' 

an algebraic error. Kaufman's result f'or these components is incomplete 

because he assumes a constan~ B. This is ·inconsistent with a nonzero 
\\I' ' 

(~1 ·~( O) )J.' and Maxwell's induction equation. 

Th~ .remaining terms of' Eqs. (11) through (13) represent stresses 

due to the zero-order heat flows •. They show· that P(l) need not be .,.,., 

diagonal even if' u ( 0) vani.shes. 
Wl • 

We consider now the determination of Q, which is needed through 
. ¥ 

·first order in Eq. {9) and {10). This· tensor has ten independent · 

i 
'. 



i. 

components which are conveniently represented in te~s ~r q.J... q''· ' j[" ,,,..... ... ... 

~~ !i'i (l/2)S.,:~·-' and Q123 • Al~ these quantities except ·q~ and q~: are of 

the type (a(~)r) and appear on the· right-hand side or Eq. (5). Inverting . 

this equation gives expressions for these quantities of the same form .. 
as the relations '(8). These quantities.therefore vanish in zero order 

and the only nonzero components of s:o)' are proport~ona.l to ~fo)_ and 
, I 

q1

1
1

1
,< 0). This fact has already been used. Inversio~ of Eq. ( 5) in first 

' ' 
order gives · 

' I, . 

~~1) a (2n)~l~ ~ (~R2 .• ,•1p11v·~ + (R1 '. 3R2 )~~ •V~1 · 
. ' 

and 

(1) ' 
Q123' 

.where 

R = 1 

;• r • 

• 
. ' 

' 4> m(v 11 .. • 

.. 
i 

• 

• and 

,., 
( 

. '""· 
;. ' . 

. :i 
I.·.;.' 

I I. 

. ,'•. 

• 

' (15) 

(16) 

'.l. 

-~ . 
The transverse components of ~ are not required. The three scalars Ri 

chara~erizec:R(O) • ~ince a:n::r. component of R ~ot proportional to one of· 
'"--"' -.1 . M/' . 

these appears on the ri'ght-~d side of Eq. (6) and therefore vanishes 
I 
• 

in zero order. 

" I 
~~ 

I 
• I 

·' 

'· 

. I 

'' 
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II . J.. • 
If the terms in q(l' and q

1
\' are neglected, the; ~ransverse heat 

:tlovs given above ~ee vith those given by Thompson!~ vnp assumed that 
'·: 

the q 11( 
0) 's vanish. . Thompson's fluxes appear to differ from ( 14) and ( 15) 

. because they are referred to the zero-order velocity u_ + u 11( 
0 ) e, 1 ..... J!; . ..~~ ... . . . . . 

vhereas ours are re:terred.to u. The corresponding difference in P is 
1~ ~ 

of order (u- u(0)] 2 , hence does~~~ appear in Eqs. (ll) through .. (13). · 
. .'l~ rw 

If the distribution of v11(the in.:egral· of :t over ~..U is 
. . 2 

Gaussian, Ri = PRa./3pl/. = l; if the distribution of v~is Gaussian, 

R
3

' : P.R
3

/4 Pla l. The quantity R2• E pR
2
/p

11
p...J. "* 1 if :t ~ :t1(v 11):t2(v_J. 

(0) (0) (0) :. . . . . c5(1) 
For o.~:~.isotropic Maxve1lian :t , R1 ' , = R2 ~ = R3 '(O) a l, q// 

a:n~ Q123 (l) vanish, and. Eqs·. (14) and (15) add t.o give theevell-known. 

collisionless transverse heat :t1ov4 

• 
., 

(17) 

In general, :t(O) need not be.Maxwel1ian, hovever 1 and independent 

equations are required :tor the Ri(o). These equations are the contractions 

of Eq. (G) in zero order vith ~1s1~1E.3l' ~I~rl.L• and ..!.t!.L• The resuits 

are 

and 

~3/dt .+ R3(v·~)+ 2~ ·~) ~ - 2S3V•;
1 

• 2V•(S3~1). 1 

0 
vh~re all quantities are taken to zero order; 

I . 
i 

I 
/ ~· 

(18) 

(19) 

{20) 

. ' 
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In the absence of collisions, the s1(0) are not determined by the 

moment equations. If f(O) is assumed to be an anisotropic Maxwellian, 

Eqs. (18) through (20) yield_no new information, but are consistent 

with the CGL pressure equations. 

By use of the results (ll) through (16), the energy: equations~ 

(9) and (10)' through first order become 

dP. /dt + p (V•u + VJ.. •u) + v·-l·(l<) ... p {O}a + a
2 

• r,J.: + O(t2 ) (21} 
_;.a. :.&.. M --'('<~" >JJ. ~ . l · 

and 

-1 .1. ~ / ( 0) r a V•(q.J. + q!1 )e + 20 {q11 (Vu}:(-I.ri -I I.r]:Ve_.,} 
II II IWl M /Vu"''Y "'tfl'(lff\u "11'.1. 

+ 0-l,~l.·{[_.!h"U~ + (V~}·~l] x [(2q':,- q~}~l·~~l + Vq~/J}{(O) 

The zero-order terms of Eqs. (21) and (22) give the CGL pressure 

equations. In first order these equations are modified in form by the 

.i.(l) u{l) appearance of~ , iL , a1 , a2, and the parts of r and r~ proportional 

to n-1 • Adding together Eqs. (21) and (22) gives the rate of change of 

the total thermal energy. 

• 

.. ,., 
,--
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'l'ht; t~rmt~ ~n a1 or 1~1.0. ( 21) and ( 22) and. . their sum are somewhat 

analogous to ordinary visco~s dissipation in that the; arise from the . . ' ~ 

contribution of the collisionless viscosity to PiVu and P'ie.,de
1
/dt in 

. .... "" ~ "'• "' 
Eqs. (9) and.(lO), are quadratic in u, and represent a trans:fe~ of . w 

energy between the fluid and thermal motions. The net transfer of 

energy :from the :flow to thermal motion produced by the collisionless 

viscosity does not vanish·in general, as might be expected :for a 

collisionless system, but is equal to (p
11 

• p-L)a
1

, and may have either 

e:1gn. 

The a2 terms or Eqs. (20) and (21) fepresent a transfer of 

energy between the parallel and transverse thermal motions which comes 

from e1•Q:Ve:l in Eqs, (9) and (10). The parts of r.J. and r proportional 
-1'4 oJI" .!•; 

. . •l ..1.(0) t(O) (l) I (l) .. 
to n are due to the contributions of q and q1 to P and Q • 

II II NWI ..wr 

Because zero-order heat :flow can not occur in the presence of strong 

collisions, these terms have no analogy in ordinary hydrodynamics~ 

Ex~ept :for q11 and q~~ through first order and the Si (O) 1 Eqs~ (l) · 
I 

through ( 3) 1 ( ll) through ( 15 .> , and ( 18) through ( 22) for each component 1 

. . 
together with Maxwell's equations, determine the transverse motion of· 

the plasma through second order and the other quantities through :first 

order. 

These equations simplify considerably if ~l is constant in space 

and time and if the properties of the plasma are independent o:f.position 
. . . ..L( 0) 

along the field lines; ~he equations :form a closed set if Uy 1 q 11 1 and 
I ·• I 

. q11(0) vanish initially. ~hese .quantities then remain zero, and p
11

, R1 , 
II . 

. II . 
R q and · S are no l.onger required e 
2' :;:)-' i 

i 
j 
' 

' ; 



Equations (15) and (21) then become . 

.L(l) II 

j.l (cn)-12:13.~ x [ (2R3 - l}nV(n-
1

p..L.) .·+ (R3 - l)n·11l.Vn. 

and 

+ p VR'](O) 
l. 3 t (23) 

• . (24} 

The zero-order terms of Eq. (24) yield the CGL adiabatic condition 

for p~ ( 0 ). In certain cases, such as perturbations of a uniform 

equilibrium, a configuration depending on only one spatial coordinate, 

constant.B and P, or constant n.and {~n}(O), ·~~(l) vani~hes and the 

adiabatic condition holds through first order. In general, however, it 

is modified in fir~t order by the transverse heat flow. 

Under these conditions Eqs. (18) through (20) reduce to state-

ments that .in zero order the Ri' are conserved by the motion. E~uations (1),. 

(3),. (11~ .• 1

(12), (23)', and (24) and the co~serva.tion. of R
3

'(0) for each 
l . 

component and Maxwell's equations form a set which is closed for pure.ly 

transverse motion, 

This closed set of. equations differs from those obtained on the 

assumption that f(O) is an isotropic Maxwellian9 in that the sc~ar pressure 

is replaced by p .L" and that· the heat flow :i.J. of Eq, (17) is r~placed 

by 5± of Eq. (23) with R
3

' conserved. The conservation of the R1• 

implies that f(O) will remain Maxwellian (but not necessarily isotropic)· 

if it has this form initially. The two energy equations then differ 

in form only by a f~ctor:~ 5/4 in the expressions for.the heat flows. 

v 



.... 
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I 
i IV • WEAK INSTABILITIES 

·~ 

For weak instabilities (t-1
--v t

2n), the ~a.ra.m~~ers L{vtht)-l ~d 
-1 . . . . . 

cE0(vthB0) are of order £ and the preceding discussion must be modified • 

Since ~ 0 ) ' ve.n.ishes in this case,. both ~and H-E are now of order £ • If 

q',',C 0 ) a o it follows from Eqs. ( 8) that P 
6

, P 
23

, P 12 • and P 13 aJ.l vanish 

in first order. They are nonzero in second order, however, and make a 

contribution to p-1v·~ in Eq. (3).which is .of the same order (,..,t3vthn) as 

du/dt. These terms must be retained; ordinary hydromagnetic theory is .... ., 

thereflore not·applica.ble.10 

The components P
0

, P23 , P12• and P13 are foUnd from Eqs. (8). For 

simplicity we restrict the discussion in this section .to straight fiel~ lines 

and purely transvers~ motion. Only the. transverse components of .t, a.re 

then .required •. They ma.y be written in the form· 

20 

* s 
( ) (1) ... (Y;g. ) 
I I..o • I~I :Vu . 2n 
<~>~Y:"'u Y(u'h>y ¥'> u .:i.J 

where 
(25) 

I 

q*'7:::n""l[p -lP' . Vp • 
WI# . J.. .. J.:.. 

(l/4)VR ]{O) = (l/2)e x.q (l) 
3 . JJNl wJ. • 

The second term of Eq. (25) can be obtained from Eqs. (12) and (13) by 

changing u(O) to u(l). The terms in q* arise from the-contribution of 
'"' ...,.. '""" 

V0 Q(l) toG in Eqs. (8). Equations (3) and (25)give. ~through order 
""J\1 f('O " . 3 .. 

£ vth• 
2 2 . (0) 

Equation (25) requires p-L through order t pvth and R3 • Since .. 
both a/at and u are small for we8.k. instabilities the zero~order temus. 

oft 

,. 

of Eq. (24) vanish. 
' I 

The first-order terms give the equation of state for . 

(0) . 
. p~- .• 

'! • 
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• {26) 

Note that the calcUlation of p~O) now involves R
3

(o). 

First-order terms, analogous to those arising from V•~{l} in 

Eq. (26) and neglected in Eq •. (20), must be included in the calculation of 

n/O). These term~ introduce th~ si~th mome~t m(v...L6r(O}). Determination· 

of this quantity brings in still higher moments. The mament equations are 

not clesed, even for straight field lin:es and purely transverse. motion, 

unless 1,this ·:sequence terminates. 

Termination occurs for low a • Eq~ation {26) is then independent 
. 8 . . 

of R
3 

.·and, since only V x {v•E) will be required, .the first term of 

Eq •. {25) is not needed. 'l'h':ls R
3 

(O) and the first- and second-o~der 
corrections to p-L do not enter the calculation. 

The situation is. considerably more complicated for finite e. The 

first term of Eq. (25) must then be evaluated and therefore the equation 

for R
3 

{O)l and the higher-order corrections to p..L. (through order £2 :~).: are 

needed. Termination of the sequence of moment equations occurs for 

one-dimensional geometries. Linearization about an equilibrium for which 

B is uniform also produces a closed set of equations. These sets of -equati~ns include R
3

(0) as a variable. For more general finite· 13 

configurations the moment equations ar~ not closed. 

The single fluid equations of motion and generalized Ohm's law11 

·are obtained in the usual way from Eqs. (3) for ·ions and eiectrons. These 

. equations, which now include the nonscalar contributions to~· are of the 
. . . . 6 
. same form ·as the sing;J.e !luid equations obtained by Rosenbluth and Simon, 

with their unknown scalar function now determined. They differ from the 

.I 

•' 

. ,, 

•••• 



~Yll.ffi~ ... 
~~~· !·-·~-·+. 

• 

• I 

... 

8 equations used by Roberts and Taylor to discuss the~finite gyro-radius 
,~i 

stabilization of plasma in gravitational. field, however, bec·ause the 

latter do not include the contribution of q* to P. ·(These terms do not - """ 
affect the calculation of reference 8.) The Ohm~s law of reference 8 is 

unnecessarily complicated because the plasma velocity enters the equation 

of motion only in f~rst order (whereas 
3 

t nevth).· The nonscalar contri~utions 

the current enters through.order 

to P and the acceleration term 
W't-

therefore are not required in Ohm's law. 

· Ro.senbluth and Simon6 have found a very simple set of moment 

equations describing weaktransverse instabilities ·for low 8 and uniform 

magnetic field. Their set consists of Maxwell's equations for~· the 

equation of ~?tate ·{26), and a form· of the continuity equation deriv~d · 

from Eqs. (1). (3), and (25). For lows; v.~E = o, and Eq. (2?} reduces 

to dp}O} /dt = 01 which is Eq. (A.l3) of reference 6. To obtain Eq. {A.l) 
'. 

of reference 6 we substitute Eq. {25) into Eq. (3) and obta~n, after some 

manipulation, 

e 
+ ::1 x [ { Vu} ~ 

n -
.. ' ' {.} } '. ' :. l . . . '.• 

VpJ. ..o (Vp..L)V ~J . ' + .Vljl · 1 {27) 

where 

t 

The right-hand si(ie of Eq. {27) ·may be simplified by using the rel·ation . . 

., 
. 

obtained from Eq. (26) and the first-order terms of Eq. (3). The 

divergence of.Eq. (27) then gives 
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• 

· Equation .(A.l) of reference ·6 is obtained by substituting this result into 

Eq. (3). · This calculation is essentially the inverse of the derivation of 

the single fluid momentum equation given by Rosenbluth and Simon. 
I 

· The equations found by Rosenbluth and·Simon from an expansion of 

the Vlasov;. equation are thus easily obtained fDom an m/e expansion of the 

familiar conservation equationsof·mass, momentum, and energy. The 

"finite gyro radius" terms of this expansion,· expre.ssed in Eqs;(25) and 

(26), are easily obtained from the exact moment equations if the special. 

assumptions of this section are made at the outset. This proaedure provides 

an alternative ~erivation to that of reference 6. This alternative derivation 

emphasises the relation of the Rosenbluth-5imon equations to equations 

describing.more general configurations. In particular we have shown that 

the moment· equations do not close ·for weak instabilities at finite a except 

for one~dimensional configurations or, in the linear 

the equi~ibri~ magnetic field is ~iform. 

/ 

\ 

approximation, if 

. ,, 
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