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We have applied ~he Faddeev equations to the calculation of 

resonances in a state of three pions with the quantum numbers of the 

0 
c.o particle. Only the kinem~tics is made relativistic and the pion-

pion scattering amplitude which appears in the kernel of the equations 

is approximated by the p-contribution alone. Two resonances are found, 

one of which has a mass and a width reasonably close to those of the 

0 
co 

I ../) 

~~e second resonance r~s an approximate n~ss of 1600 MeV . 
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In this Append.ix 1 1-l'e indicate hoi·T to se1)arate parity in' the Fadcleev 

. _.> -> -> 
tot us consider a vtavc .1ut:.ctiol"l. of three momenta _X(111 J P2.; P;). 

Its projection on a state of _vreJ.l defined an.sular momentur.1 J is c;iven by 

= ( 1) 

vrhere m is the projection of. the total angular mor:1entum on a space-fixed 

axis i..rhile 1vi . is its projection on an axis Oz normal to the plane of 

R is .tl1e rotation) i·Ti th Euler anc;les 

(a) ;3.; y) 1..rhich brings the space-fixed system of axis upon a syste:·n lir.J<eQ. 

to t~e mJmenta. dR = sin p aa- d~ dy . 

is given by 

(2) 

vrhe~~-.. R
0 

is the rotation of a;1 angle rr a:~ound the Oz axis and E: is 

the quotient of the intrinsic parity of: tl:.e t.l".::::-, .. -particle system by the 

:p:coduct of the component pa:.·".:-icles intrinsic :pari ties. Us inc; 
i 

r.YJ (a f3 y) "--l(R
0

) = PmH J : lv 

i·ie get 

= 

(3) 

(4) 

Equation (4) can be used to separate parity in any ~~uation of the 

type 

= ~. J 
'Xl-1'm (5) 

'\-:here the kernel K corr .. --nutes -vri th parity. .1..n fact) it is sufficient to 

keep g · and £.1 1 even uhen .:;: is positive and odd ~..rhen E: is nec;ative. 

He ,.,-ant to thanl< Dr. Haurice Jacob for a useful conversation on 

the. subject of this Appendix. 

.. 
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1~ INTRODUCTION 

One of the most important problems in strong interaction physics . 

is to find a satisfactory dynamical treatment of three-body systems. Two . t . . . 
methods seem promising, which we shall discuss for the special case of the 

ro
0-particle. 

... 

The first methOd consists in taking .full advantage of our under-

standing of the two-body system to reduce the three-body problem to a 

two-bOdy problem. The three~pion scattering amplitude has a pole when the 

mass of a two-pion system is equal to the p mass. The residue of the three-

body scattering amplitude at such a pole is essentially.a n-p scatte~~ng 

amplitude to which .one tries to apply the N/D technique.1 This method is 

well adapted to a treatment of the exchange of particles, i.e., of the poles 

in a crossed channel. (Rrom the.point of view of a three-particle system, 

such exchanges are three-body forces.) However, the three-body nature of the 

problem reappears in two ways: 

(a) 
i 

There appear very important anomalous ·-tr1resholds owing to the fact that 

one of the scattered particles is unsta"ole. 2 ..... .._, 

(b) It is difficult to take into account the three-body cut in the unitarity 

relation. 

T'ne second method is in many instances complementary:to the first one. 

It consists in using the Faddeev equations for the three-body scattering ampli

tudes. 3 It is an off-the-energy-shell method, -vrhich means that one must 

introduce form factors, not well-known nor well defined, which act as cutoffs. 

As a compensation, . there is no anomalous threshold. . This method: takes an 

exact account of the three-body unitarity. 4 Although it does not take crossing 

' ·! 
: 
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into account, it is possible, ·in J?rinciple, to introduqe the effect of 

exchanged ps.rticles as a three-ppdy force. 

One obvious drawback of the Faddeev e~uations is that ~hey are true 

only in a nonrelativistic approximation. Hovrever, it is eS!-,SY to make the 

kinematics relativistic and to consider the equations .:as a convenient 

device for satisfying three-body unitarity.5 

Acdording to their complementary characters, the two methods will 
- .,: 

presumably not apply with the same succes.s. to any given J?roblem. For 

instance, the three-particle channel of a baryon resonance, the overlaJ?J?ing 

of' two resonances in a three-body final state can seemingly be treated by 

the Faddeev e~uation method. 

The present pa~r reports a preliminary attempt at solving 

the Faddeev equations. Our intention for doing that work was twofold: 

(1). The Faddeev equations, as origir~lly written by Faddeev in the momentum 

representa-tion, are very cumbersome. After se:paration o:' the total an-

gular mom~ntum, they contain an integration upon.two energies while the 

inhomogeneous term contains delta functions} In this form the kernel 

of the equation is not completely continuous although its square is. 

Unf'ortunately,.wheniterated once, the separated Faddeev equations contain 

a summation upon three energies which is practically beyond the :possibil~ · 

ities of a computer. We tried, therefore; ·to solve the .noni tera ted 
. ··-- .·· 

equations. 

(2). We wanted to lmow ;if the effect of three-particle unitarity, as 

em-obdied in the Faddeev e~uations, 1-1-as enough to generate a resonance 

in elementary-pa.rtj.cle interactions. Clearly, the simplest problem of . 
f'., 

,.:>.' 

1 .. ' 

. ,. 

. . 



.. 

':>1 

L 

• 

-3-

tl:ia.t type is provided by a 'three.:.'pion system with the quantum numbers of 

·.the w 
0 ·• Owing to the peculiar symmetry properties of this system, the . 

number of amplitudes to be introduced is small and each amplitude has 

symmetry properties with respect to the partial energies which reduce the 

domain of integration.· 

We have therefore tried to solve the equations with the following 

· ·approximations: 
~ 

·.(a) The pion-pion scattering amplitude is approximated by the contribution 

of the p-reson~nce, which is represented by a Breit-vl.igner formula. 7 

(b) Owing to limitations by the computer, the integrations are replaced by 

summations over a finite number of energies. 

(c) The r~nge of integration being automatically limited by approximation 

(b), the off-the-energy-shell dependence of the pion-pion amplitude was 

.neglect~d. ·This means that our choice of energies where the summations are 

made also defines a cutoff and, in this first crude attempt, we have not 

investigayed the effect of this cutoff. Qualitatively, it can be said 

. that our range of· energies is so small that we certainly underestimate the 

attraction due to pion-pion integration and we expect to underestimate the 

.. binding energy of ~he resonances. 

With these approximations, we have solved the homogeneous Faddeev 

equations and found two possible resonances, one being very similar to the·; 

physical w
0 , and another having a higher mass. 

In Section 2, we give the equations which have been solved and in 

Section 3 the numerical results. In the Appendix, we indicate how to· sep- · l' 

arate the homogeneous Faddeev equations according t~ d:i.ffer_ent values of ·parity • 

·' · .. 
......... ---.,--~-- ... ·.,;''. 
,I .,.:,,I;.· 

- ~~-~-.::-~~-~:r..-:-........ -_~ .. ~ .. --:~~:::::·-·r:·-:-~---.""~~...,.. .... ~·-:·,.--;;-~.~~--:--:::--~---.--~~-~;"('~~~~;-·-.. -·:------.-~---:---~~----. 
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2 • DER~VATION OF THE INTEGRAL EQUATIONS 

Owing to the relativistic kinematics, the equations derived in 

Reference 1 will be 'slightly modifi.ed. · It is convenient to take the 

pion mass as .unity and define the total energies of the particles in the 

center of.rnass'by 

.. 
(1) 

.where, as in Reference 6, p is the momentum of the !th particle in 

. the t.otal center of mass. We also have 

1 

(2) 

where is the momentum of particle 2 relative to the center of.mass 

of particles 2 and 3 • The total energy of particles 2 and 3 in this center 

of mass is 

(3). 

·. As in Reference 6 ... ... 
we have, for the angle between the momenta p

2 
• and p

3 1 . 

= 
2 2 2 

p2 + p3 - pl 

2P2P3 .. 
. , (4) 

... .... 
We also need :,r1 , the angle between ,P1 and %

3 
• We have 

' 
~- I 

• 
i 
i 

.i 

I 
I 
' i 

I 
I . . -,. ~~ w·----~~~-..• -~~-r:----~··,..-- -...-~-·"·--:~~-:::---~--:--:-:--;:"~·-r"'"-~-~-wr:-'-. ~-... -~-'"·~·~;··;~~~ ..... -,--- Woo--!'-..--.--· --' ., 
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cos r1 

Furthermore, ·the normalization .·coefficient. A of Eq. (24) of Reference Ei. 

will be changed to 

A = . .. 

(6) 

,·Finally, the inhomogeneous term of the Faddeev equation will be written as 
. • ~I 

ro'? u, 

-+ 
with the z axis chosen along p

1 
• 

. . ' ' 

z .. ~) 
i 'MJ_u . 

e 
6 (ro:i. - ro1 ) 

(1)1 p~ 

\ 

du 1 

. (7) 

For our purposes here, it is more convenient to choose the z axis 

perpendicular to the plane of the triangle defined by the three momenta 

p1, ~2, p) . This can be done by a· rotation or· rr}2·· around the y axis, , 
·a 

which has so far been chosen to be in the plane of the triangle. We have. 

= -~_M IJMi> 
. :r-i 

. . 
(8) 

J . 

·' 
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This rotation brings the x .axis along p
1 

and .the z axis perpendicular 
.......... 

·to the plane of'· p
1

, p2, p
3 

• In this new coordinate system we have,. 

instead of Eq. (7) , 

(CD! J 1 M! I t',.,
3 

(z) lCD. J M_ } = . (CD CD · CD ··m' ro' CD 1 )
1/ 2 

.l -"l c. -"l . l. 2 3~ 1 2 3 . 

CD' , 
6(CD 1 

- CD ) 

u, z - '1_) e11:1u du ~ pl 
1

' ~~ ~~ 
. . ~ 

Now, writing the partial wave expansion of' F
23

{ro, ro 1
1 u, z - ~) , and 

"6 keeping one term onl.y, we have 

(9)' 

F23(CD, CD', u, z .. E1_) - f23 Pt(cos '1! ~OS r]., sin·~ ·sin r:t, cos u)(2t. + 1) '. 

where t
23 

is given by the Breit-Wigner formula. We ~~e9 

·where in terms of the phase shifts we have 

Correspondingly we have 

1 
= vl/2 

i f) 
e sin 5 

(10). 

. (ll) 

(J2) . 
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and 

We identify v with _ ~3 
2 , · E with ~3 , E0 and r with the mass 

_and width of the resonance in.the tw~·body amp1it~e. We then have 

41( r 

Next we write E
23 

in terms of z 1 the total energy·of the system in 
'• 

the three-particle·center of mass. We have 

·I z = 2 -2 . 1/:2 . 
~ + (pl + ~3 + 4) 

or 

Therefore we have 

41( r 

[ 
2 2.- . ]1/2 

2 (ro2 + ro3, . ) -~ rol, - 3 . 
. ! 

--··--·--· ~------,..--

(13) 

(14) 

,(15) 

' 

. (16) 

(17) 
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Now, using Equations (9) and '(19), we have 

with f
23 

given by (17) • 

In our case, since the two .. body' amplitude is approximated by t(le 
. . . I . ' 

p , we have .t ,;. 1 · and, since the three'-body amplitude is chosen to have 

· the quantum .numbers of· the ro , we have J = 1 • In Equation (18) .let us 

··.·consider.; :the· ·factor_ 
. t . 

with J = 1 , .t = 1 

1 Using explicit values of Y and ~- and summing over 
. 1, ll r-1J..L . 

J..1., we obtain 

·~--..,---T~-- ... _ -· 
; . ~ ... :;: -- ~--~-·:.--·~ ~ -

(20) 

... --~~-:_-:-- --- -~~-----· --- ... ~-·-- ~H- --

' -" -- ~~ 

.. 

·. ~ 

1 

I 
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Finally, using Eqs. (170, (18) 1 and (2o)·we obtain 

.. · 

... 

. .. 1/2 . 

+ 1 ) . - Ep + ii' /2] , 

~ (21) 

·· ·.· · · .where E = 5.4 and ·r = 0.7 ·in :pion mass units: 

· .. '•· 

. ··~ 

'. 
:p . 

·. : ,., ~ ... 
Now the Faddeev equations·will be (leaving out the inhomogeneous ·term) 

..... !i 
. (ro' ~ M' ~~~~ ro i M ) 

I 

' . ,. 

I . . 

I( . [(ro" J ~"1~2 1 ro J M ) + (ro" J M"lf:~l ro J M >]. 

r (ro" J M'; lt"2
1 !!' J M ) + {ro" J M"l~~ I (j) J M] ' . 

. - . . . . ~ (22) 

.·.··where KM'M"(ro' ,ro") is given by the right-hand side of Eq. (21) • We 

need not write the rest of the equations since, as we shaJ..l see, ·owing 

·.to the ·symmetry of the :problem, the matrix elements of ~ 2 
and G'3 ~ 

I '1 · 
. will be rewritten in terms of· the matrix elements of '(;', ·· 1 and Eq. (22) 

1'· . 
· reduces to an equation involving· (:g . · ·alone • 

.. ' .. 

~_;· ! •• 

·.,; 

.. ~. 
~· · .. 4··'"':: .. ~~-P ........ i"'::-·---·· ---~--....,- .. -.... ...,~~ ..... -,..~.---~-:-.-~-- ---~-----.. ~--~~- ·--:-:- ;~ ...... ·- ~:--... -~~--'··~·-"! ---.-~ .. -- - ··""- -.~----~-_,----:--~:o-~~-~-~:-·-:-·-

. ' 

... 
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From the symmetry of the problem we have 

(23) 
3- .· ' 

·where · ro = (ru2, ru1, ru
3

) and the state m J Ml) means the x axis 

is chosen along . ·p1 • We go from I m J Ml.-} to as J M'2} by a ro~ation 

.Q
12 

around the z axis. Therefore we have 

!J M2} 
-iM8 . 

= e . 121 J Ml) , 

and so 

= [ 

iM 1 8 1 
· .. iM'8i -iM"8" 

e 12(~" J M~~~~l~ ~ 1 J M') + e 3 · 13 

X (i5" J M"!~ 1 1~' J M')] 
(25) 

The state ro is antisymmetric. in the isospin space and therefore, 

' owing to the Bose statistic, it should also. be antisymmetric in ordinary · 

.. · ·space. This means that the states should· be antisymmetrized .according to 
··. '' . . ' 

. . . . iM 18 1 . 

-~'lro' w' ro'))+ e 13 (1ro• m' m'} .. _ 
. ! ~ 1 3 2 3 1 

.• 

(26) 

..-:.. -:-, ........ -.-c-, .,-------,.- . 
. · .. 
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'' 

and. so 

. -:1M'9' 
P1'A ' ' · ') = (-l)p e lip !A"'' "'' w' J M1 ' '1 001' 002 003 ' ""1 ""'2 ' 3 . l 

(27). 

- where P . is a permutation operator and the factor 
-iM1 9 1 

e lip m~ans that 

whenever the permutation involves particle 1 and particle i the coor-

'·.-di~te axes are rotated by' elip around the oz axis. 

Combining (28) with (25) and (22), we have 

·jr 
M' 

2 
-12n r 

1 
X(AW' J M' I G' I Aro" J M") 

The kernel is given by 

,, . 

Therefore we. have 

(28) 
l 

il ,, 
I 

\ 

·(29), ' 
0 
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This kernel should be symmetrized to ensure the symmetry of the solution 

.due to the Bose statistics which has .already been imposed •. Equation (30) 

will then .become 

where it is now understGod that the integration in Eq,. (29) is restricted 

to the condition ;p
1
1 < P6 ~ p~ • We should also remember that the 

. ~ J 

momenta Pi , P2 1 P:!; are further restricted to f'orr:J. a triangle. In 

Eq. (31) the permutation operator on ~~(~1, Yi) is defined to exchange 

the momeni(a defining Yi From Eqs. (31) and (29) we have an equationof 

·the form 

T' = K(z) mt 

{32) 

The solutions z which make the above equation satisfied are discussed 

in the next section. 

... 

, 
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III. NUMERICAL CALCULATIONS 

In Eq. (29) we choose a finite mesh size and. cqange the integration 

into a summation. In Eq. (32) K is then a matrix which is the direct 

·.pr.oduct of the matrix in MM' · indices and a matrix in m , m' indices. 

For a general z., Eq. (32) is taken to be of the form 

K(z) T' = ~(z) T' .. 

(33) 

Our numerical solution consists of finding all possible values of (complex) 

· z for which ·~(z) =:: 1 • We shall then interpret the real and imaginary 
'i 

' · parts of z as the mass and width of the three-body resonance. Owing to 

the practical difficulties we are forced to use not too large a matrix ('of 

·· the order of 100 by 100 ) • · This automatically leads to' a cutoff and a 

fairly large step size of integration. The mesh size of integration over '::;, 

each m! has been chosen to be 1/3 and a cutof~ at 8/3 • Once all the 
J. 

I 
matrix elements of K(z) are known for a given z 1 all the ei~envalues 

· .~(z) of Eq. (33) are calculated. For a small (real) z 1 say z = 1, 

.·the eigenvalue with smallest nonzero magnitude has a real part which is 

positive, but it is considerably smaller than ~~ity. This eigenvalue has 

a fairly small imaginary part. When z is increased to z = 6 this 

eigenvalue moves close to unity but with a nonzero imaginary'part. Next. 

z is allowed to become complex and the value of z for which· ~(z) is 

·clliose to unity is sought. We obtain the solution· 

6.25m , 
1!, 

-0.15m 
1( 

. . 

.. 

·' 

··I 
i 
J 

i 
! 
I 

I 
i 
f 
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. ' 
'I 

' ' .. 14-. 
.\ . ' 

· This solution corresponds to a calculated mass of ro particle about 
.; . :, . 

- 870 MeV and a width of about · 20 MeV • Of all the other eigenvalues for ... ,• i 

'i .... 

Zr. in the range of ·l to.· 6 1 none:is ciose enough to unity. As the. value ·. > :.' ' . ! 
·· of Zr is further· increased another eigenvalue~ which so far .had a large 

·imaginary ;par~., move~ closer to unity and we obtain another:solution, 

zr = 9·5 . and. Zi = -0.25. • This. solution would correspond to a. resonance 

at about 14oO MeV and a width of about 20 MeV • · As Zr ·is. further 

<increased this. eigenvalue moves away tram unity. ·We have not increased the· 

· .~ value beyond Zr = 12 .• 

Iset ·us now make a few remarks about the sensitivity of the solution 

... to the imput data: 

. (a) Increasing EP. . increa~es . Zr. 1 the Illf.I.SS of the three-body resonance. 

-~· 

· ·. This result is expected from the energy denominators,: of ·the ·kernel in Eq. (31) • 

.. (b) Increasing the width of the· p makes Z decrease. 
r 

This effect can 

be inter:prete.d as an increase in the force and ther'by an .increase in th~. 

binding energy of· the three ... bOdy system.· 

(c) When a larger mesh size (1/2 instead of 1/3) 1 ~ild therby a larger 

· ::cutoff (7/2 instead of 8/;) 1 is chosen, the solution for · · Zr ·is also· 

increased. We obtain Z ~ 7.25 r 
instead o:t" Z = 6.~5. This.result . r .. . 

is in coritrast witP. (b) and we believe that it is due to the crudeness ·of. 

approximation (too large a. mesh size) rather than the sensitivity to the 

cutoff. 

Although the method used in this ]aper is entirely crude, we believe 
·1 

~ ·: ·.· 
~. . 

. .; 

. \ 
'· 

thAt the present.results are very encouraging for the use of Faddeev equation 

•. ! ... 

·,. 

\ .. 

! . 

. :. ! 

.I 

·. l 

i 
I 

. i 

i 
. J 

I 
I 

~ 

l 
l-

~ 
I 

i 
I 

I 

l 
I • j 

·I 
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to solve analogous problems. The next step will be to use better approx-

imation techniques, and particularly variational techniques, and to explore 

other. channels of the· n - TI .. n , K - K - n , and K - K - n sys~ems. 

Also ·a better understanding or·the properties of the eigenvalues of the 

Faddeev kernel will have to be gained. 

·. 

.. 
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APPENDIX 

·In this Appendix we reduce the Faddeev equations according to the 
. . 

two parity. states. . We shall call £.. the :product of the parity of a bound 
• 

state by the intrinsic parities of the three component particles. Let 
(1)-+-'-+-+ . . . 

·. X . (p1,p2,p:r.) be the bound state or resonance wave~functions. They 
·. ;; . ' 

·._·satisfy the homogeneous Faddeev equations, the first of which is 

... 

= 

. ' 

x. ''[x<2 ><pi,p2,p3) + x<3 )<pi,p2,p:P]. d3Pi d3P2 t
1 
:'(A.l) · 

The reduction of angular momentum is made through an eigenfunction expansion, 

(A.2) 

· · · Here (a, ~~ r) are the Euler angles of the·rotation which brings a space-

fixed system of axis to the body-fixed system. The index J.l. , which is the 

·. projection of the total angular momentum upon a fixed axis, is a dummy index ·. . 

and we shall put it equal to 0 • In abstract fovm Eq. (A.2) reads· .. · .. · .. ;, 

J' 

•· 
. -i· 

(A.3) 

Introducing Eq. (A.2) into (A.l), one gets the reduced Faddeev equation 
.• j 

i . ' 
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.. 

·' .-~ 

(A. 4) 

·where V is the rotation of Eq. (9) and A
23 

a kinematical factor. 

In order to use parity conservation, let us write. .. 

,·,: 

' ~ ' ., 

(A.5) 
! : 

·where P is the parity operator. 

When z is real F
23 

is a real function and so is X , therefore 

(J M OjPX) = £(J M ·ojx). = (-l)J+M (J, -M oi*X} 

( )J+M 
= -l (J>- M ojx)* . . . 

(A. 6) 

For complex·values of z, Eq. (A.6) reads 
. , 

J 

(A.7) 

and it is indeed easy to verify that the right-hand member of Eq. (A.7) 
. . . 

'satisfies Eq. (A. 4) • 

Equation (A.6) can be further reduced by introducing the new function 

~~l)J = ~J + ~(-l)J X:lJ(z*) J 

(A.8) ·: 

where M~O • 



... 

In fact, using the .relation 

(A.9) 

··one gets 

. 
where M,) o , · a0 = 1/2 , and· '\1 = 1 for · M f. o . 

Equation (A.lO) ~an be further reduced when same of the particles 

are identical as indicated in Section 2. 

·• 

..... -
•. ' '~ .. - _.' .. 

- -~ . 

.. . 

. ' 

.J·, 

. ~:·_ - ·' 
- ~ .-. ·, 

' ;.·_,~ ~. ' . 

. ' 

l 
! 

·, 

~. 
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