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ABSTRACT

It 1s shown how macroscopic space-time correlations emerge from

a strictly mass-shell scattering'theory.ﬁ The i € rule for the resolution

- of pole singularities is derived from a macroscopic mass-shell causality

condition. The experimental and theoretical significance of form factors
are discussed from the point of view of analytic S-matrix theory. - They
are defined as constructs of mass-shell functioné, and the conditions -
under which they can be ascribed approximate experimental significance
are ekamined. The possibility that asymptotic field theory is contained

within ahalytic S~matrix theory is briefly discussed.
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I. - INTRODUCTION |

" The S matrix describes correlations.between: limits- of ‘observations

that extend in the limit into the infinite past. or future.. Because experience

has aspects associated with finite -time differences the question arises

whether S-matrix theory is complete in the sense .that all calculable correl=

'ations'betweenwexperienceé reside in, and can be calculated from, the mass-
shell scattering matrix.
The prineipal object of this work is to examine this question

and .to attempt to show how the space-time structure pf!experience.is

contained in, and is derivable fxom, the mass-shell scattering amplitudes.

As an incidental result the i- € prescription for. the integration over

-physicai region poles is derived from a.strictly mass-shell causality

condition.

A second object concerns: form factofs; Form factors have been

-used  in.dispersion theoretié.treatments}of electron-proton scattering.

The question arises whether the success of”these.caléulations indicates

“an inadequacy 6f‘pure‘s-matrix,theory. This question is examined and it

is shown how form factors arise naturally within.the S-matrix framework.

The -experimental and.thebretical significance of form factors is discussed
from the S-matrix viewpoint, and & preliminary look is given to the

question of whether these form-factor equations may be used to .construct’

the local fields of field theory from the mass-shell scattering amplitudes.

In the following three sections some of the basic ingredients of
Sematrix theory are summarized. These provide the basis for the work

given in the succeeding sections.
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2. SPACE-TIME'DISIEACEMENTSl

The 'S matrix is a function of momentum-energy vectors:

s = s(K)
(2.1)
where
K = {ki} . |
(2.2)
‘The energies are fixed by the mass constraints
k.2 = -m e 5
i i
(2.3)

together with the convention that vectors.of K for initial-particles.

shall be the negatives of the physical energy-momentum.vectors.

By.“the superposition principleg‘the transition amplitude associated

with a superposition ¢(K) of initial and of final momentum values is

A EAQS == fS(K)ﬁ(K)dK .

. (2.4)
Here the integration.is over the covariant momentum-space factor
- d5ki m:.L
dK = L “’.5 5
i (en)’ x| o
C 7 (2.5)

The basic property regarding space and time is that space-time dis-
placements are represented by the usual exponéntial factor., In particular,
if particle i 1is displaced by Xs 5 then the transition amplitude Aﬁ is

changed -to

a0 = [5(8) exp-tm) ok |
(2.6)

where
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t. - k. e X.) .
1 ~L

= N M = (1
I N 2

fxiu
(2.7)
All'quantum effects related to Planck'S’constant are.apparent reflections
of this basic connection between momentum-énergy and space-time displacements.
It 1is the connection formulated by de Broglie that has remained a basic
element in quantum mechanics ever since. The S-matrix approach skips
back over Schéoedinger to de Bfoglie and Planck, when space and time are
considered.,
The concept of a displacement is not the same as that of a'position;
one can renounce the idea that a "particle at a point" mekes sense and still

hold the idea that the displacement of the particle by a certain amount

makes sense, For instance, if a particle is represenfed by a solution of
-
the free-particle wave equation then it is defined over all of space-time.

One ‘cannot restrict the wave function to finite times and still have a
soiution to fhe free wave equation. In this sense a free particle  cannot

be localized in time. Yet there is no trouble displacing it by any arbi%rary
amount; multiplication by the displacement operator defined above would do
Just that. |

One can define a space-time S matrix by

s(x) = fS(K) exp(-iKX)dK .
| " (2.8)
f o :
It satisfies the free-wave equation. Because of the invariant form of the

. phase-space factor, and of (KX) , the invariance equation2
¢

-1 ;
. : _ s(K) = A S(AK)

(2.9)

implies
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sx) = A7t s(ax)
(2.10)

The . function 'g(x) defined in this way 'is the analog of the (free) field
quantities of field theory. : .

It is; however, not the analog of the coordinate space wave function.
The wave fﬁnction has the property that its absolute value squared integrated
over»three-dimensional space glves probability.' The field functions, on
the other hand, have the simple transformation properties. In a relativistic
theory these are generally different (unless one introduces redundantv
components) because integration over three-dimensional space is not an
invariant concept.

The S-matrix anélog of the wave function is

~ s | { KO \ 1/2
sp(x) = | s(K) exp(-ikKX) iﬁﬁ—) aK
) (2.11)
where :
ng_l 1/2 o If lki I\ 1/2 7
\M | = i / . A
' 1 1
(2.12)
‘Defining, in a similar way,
. " |0 1/
00 = | ) exo(ixx) *‘%) x® :
. | (2.13)
one obtains - %
/ A - ,.—-. ‘~ ~ 3 H,‘
= K) s(K)dKk = | X) s_(x)a’x .
Ay = | B(x) s(x) = ¢p( ) p( X -

- (2.14)
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Thus the transition amplitude is represehted‘byvan integration.over - d”X.

Thé,space.integration can be performed.at any .chosen time, because of the

translation invariance following from the opposite_sign§ in (2.11) and (2.13).
The factor lmi/kioll/2 relatingithe field Tunction and-the vave

function is just the familiar factor that occurs in (free) field theory’

when one expands: the field in terms of a(k) , which is the momentum-space

wave function. The distinction between fields and wave functions canrdlso

~ be regarded as the distinction between coordinate space and "position" spéce.

Wigner and'NeﬁtonA,construct a position operator in coordinate space, on
the basis of certain general requirements. The transformation from
coordinate space to the space built on position eigenfunctions is. just
the transférmation'fromvthe field to the wave function.

Spins have not been explicitly mentioned. If.they‘are treéfed.in
the manner. described. in Rgferences 2, 5, and 6, then the above formulss are
unaltered; one simply interprets the products to represent a covariant
contraction on the;spinorial\indices,

This is an appropriate place to describe the viewpoint here
adopted with regard to spacthime'functions. _The fundaméntal assumption
in S-matrix theory 1is that the elementary observables correspond to
ffeely moving physical particles.' Freely moving physical-particlés are
represented by solutions of the free-wave equation. Thus: the elementary
observables_of S-matrix theory are represented by solutions to the free-
wave equation. By Fourier transformation one can obtain equivalent
momentum-energy functions. It is the momentum-energy S'matrix,that is
the theoretically interesting function, because of its apparent analyticity
properties; The coordinate-space. functions are the ones most cloSelyz

connected to experience.
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Solutions of the free-wave equation extend to infinite times in
a well-defined way. Any attempt to localize them with more than a lt|"5/-2

fall-off introduces off-mass-shell components. Correspondingly, any attempt

>

to observe a physical particle in a finite time interval introduces off-mass-

shell components. Thus the observation of a physical particle should be - <

considered é,s a limit of observations that take place over intervals that -
extend in the limit into the infinite future or past. The result of such

a measurement . is represented by a mass-shell function, which can be considered
a solution of the free-wave equafion. The experimental significance of- these
space~-time functions and the way in which they are réléted to asymptotic
measurements can be determined by an analysis of the measurement process,

as we shall see in Section V. More specifically, it will be shown in

Section V-that the space-time functions défined by Fourier transformation

of the momentumaépace functions have, as a consequence of weak analyticity
propeirties in.momentum space,‘certain“characteristiCS'that accord with

our usuél notion of the meaning of space-time wave funéfions, and that these -
characteristics serve to impress on experience corrélations-correspondiﬁg |
to the familiar space-time structure of physical phenomena. This‘éorre5pon-
dencé bétweéﬁ-éhé épacé-time functibns defined by Fourier transformation and
space-time aspects of experience provides a Jjustification both for the iden-
tification of the x; occurring in (2.6) as displacements and for the view-

point regarding'spaCe-time functions set forth in these last two paragraphs.

pat 4
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 III. THE DECOMPOSITION FRINCIFLE

The assumption that A (X) -is invariant under'tfanslation.(all X,
e | ¢ . | o i

set equal) implies energy-momentum conservation:

T s - o .
‘(L’l‘ci)S(K) = 0 .

(1)

Experience suggests thét an interaction'involving many particles has parts

that can be regarded as interactions between subgroups-of particles, and

~that the interaction between a.subgroup is independent of the other particles

in the senses that (a) it is independent of the position ofthe subgroup
relative to the other particles,.and (b) it is indepéndent of what the
particles not in the subgroup happen to be. It is these apparent features

of elementary particle phenomena that allow us to make any sense at all of

‘the situation, either experimentally or theoretically.

The assertion that the S matrix has parts satisfying-thesé cluster

~ decomposition properties is now generally taken as a basic assumption in

2. 8 - _ , .
S-matrix theory.7’ s9 Since each part is translationally invariant it also
must satisfy a conservation law analogous to (3.1) .

Because of the constraint (3.1) the S matrix must éontaid, as a

factor, a momentum-energy delta function, in order that the integrations

'contribute anything. The pérts of the S matrix corresponding to interactions

of subgroups of particles are translationally invariant and must also have
corresponding conservation delta functions for the individual subgroups

of particles., The part of S that has only the single. overall conservation
law is called the connected part of S and is written as >Sc . The decom-

position postulate states that

s(K) . = S _H 5,(k. ) ¥

P 3 . Jp
(3.2)
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. .

Where Kﬁp is the jth subset of the pth partition of X . There could be
a . phase factor aP(K)_ but this can be taken to be unity by writing the

variables in "normal order" , provided the usual connection between spin

6,7

>

and statistics is maintaiﬁed.
If the connected part of S 1is represented by a circle with external
lines'coming from the right and going to the left for initial and final
particles, respectiveiy, then the decomposition principle can be represented
diagrammaticaily. for insfance, for a three-particle reaction, with the

same particles initially'as,fihally, one has Fig, 1 .-

S
- A - S
—— s R -
_.Qi\-—«‘:s i
‘ S
4+ .
e

S : ‘Fig. 1. Decomposition of § for a simple case. T

]

-«



29 UCRL-11766
IV. TPOLES AND PARTICLES

;The connection of'fhe .8 matrix to physical phenomena at finite
A | times is-closely tied to the pole-particle association inherent in - S-matrix
theofy. The pole-particle association was well know from earlier theories.
It also emerges-quité naturally in a pure S-matrix theory. The relationship
-is contained in the péle-factorization theorem, which states that if the
external wvariables of a multiparticle reaction are éuch that a one=particle

exchange reaction‘of'the.kind‘indicéted in Fig. 2 1is physically possible,

—_——
— |

Fig. 2., Physical one-particle exchange reaction.

then in a heighborhoodvof a point k? T= p? ~that has no singularities

other than those associated with Landau single-particle exchange dlagrams,
the scattering amplitude is the sum .of an analytic function pluS‘a pole

contribution that is just the product of the scattering amplitudes fepresented

. by the two individual reactions repfesented in Fig. 2 times a pole factor
k7 - p + 1€

(5.1)
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Here 'u is the méés'of'thg exchénged particie-ahd k -is the sum of ‘the ¥
momenta, aésociated‘with.external-lines‘of'either:of the.two bubbles-in ‘Fig. 2.
This factorization-property.is a consequenceﬂof-the‘ﬁnitarity rélafion, the

-decomposition principle, and the assumption that the physical scattéring

function is to be regarded .as the limit of the furction from the:upper-half “
k2 plane, near this .point k2 = u? « A proof of this theorem was first

given by Olive,9 for simple cases. A general proof is given in.Referénce.6r.
The importance of these polé contributiOns, with residues given'by
,thé product of the two scattering amplitudes, to the physical interpréﬁation

9,10,11 They evidently correspond

of the theory has often been emphasized.

'to the ‘contribution to the scaftering amélitude:associated with the

possibility of two independent sequentialISCatterings with fhe exchange of

a physical particle, as-illustrated in Fig. 2 . | |
That the scattering . amplitude should be considered as the limit

from Im k2 > Q (i.e., that inAan.integration over-the physidal region’one

should disforf-th;.contour'slightly upward around the singularity) is

presumably associated with the fact that the seﬁuentiél scattering-éan occur

only -if the twd reactions haVe the'proper'temporai relatipnship,.llt has

offen been éﬁggested thaf.to.understand such;Questions régarding’céusality

condition§ it is necessary to go slightiy;off.tﬁe mass shell, in order to (

obtain the temporal localization of “the wave packets needed to define the

time order. This idea is used’ in a recent paper by Eden and Landshoff,

*

ﬁho, in order to discuss causality conditions in = S-matrix theory, abandon
the strict mass-shell constraints. However, it is not necessary to go_off
*thé mass shell to obtain:the'COnﬁeétion between the'pole i. € prescription.
énd.causality_requirements. This is shown in the next. section, in the

general context of a study of the space=-time .correlations residing in .the

mass-shell scattering matrix,
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R V. CAUSALITY AND SPACE-TIME CORRELATIONS

Suppose a,one-parti¢levexchangé reaction of the ﬁype shown in Fig. 3

-

.is kinematically possible.

Fig. 3. A kinematically possible reaction.

That is, one can satisfy the relations

kl + k2.+ k3 +k = 0
S - o (5.1)
and-
-k + ku + k5 + k6 = 0 3
(5.2)
with
k.2 = m 2
i i
(5.3)
and
k2 = }.12 *

- (5.14)
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The four-vectors k., k., and kh' are the negatives of the physical energy-

1’ 2
momentum vectors of the initial particles.

Our physical idea of causalityvréquireé that if initial particle
and ké cdme.togefher and

overlap appreciably. only in the neighborhood of- the origin of space-time

wave packets with momenta . centered around kl
and if the final particle with momentum k5 ‘is obsérved, then the intermed-
iate particle should move out from near the origin of space—time with &
veiocity centered about Ve o= E/lkol . If then the measurements on the
final particles 5 and 6 define frée-particle wave packets with momenta
centered respectivély around k5v and kg diverging.from a péint (% ,t) ,
. then the transition probabiliﬁy should be appreciable only if % ~ yﬁ and
t >0 ; It will how be verified that the contribution from the pole term
has, in fact, just the expected propertiés.

The problem. can be formulated in the following way. Let w(g) be
a function invmomentum space that is infinitely differentiable and of compact
support.. Let the support be a very small neighborhood of the origin. Let
Q(g) be real and shaped so that its Fouriervtransformvis a smooth function
in cqordinate space centefed at the origin. Because w(g) is infinitely
differentiable itsvtraﬁsfo;m falls off faster than any inverse power,

The support in p space defines a velocity?cohe. The solution of
tge free wave equation corresponding to @(E) has, for large t and
(x, t) = (vt , t), the following behavior: it decreases faster than

C e ~

any inverse power of t if v 1is outside the velocity cone and it decreases

like |t’-5/é‘ if ‘v is inside the velocity cone. The properties are
obvious from the consideration of |@(x , t)l2 as a classical probability
. distribution. They have been proved by Ruelle15 in quantum theory.

The function

Als;') = ok’ - k)

~ ~1

-y

»
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corresponds, then, to a wave packet centered about ki which passes through
the origin in space time. The action of the displacement operator displaces

the origin to a new position.

3 If we write
ki' = p, kK | for i = 1, 2,5, 6
(5.5)
and
k' = p+k -,
(5.6)

then the amplitude of interest can, with the help of (5.1) and (5.2), be

written
.‘ . . | ) é" dBEi . . ) 6
A = /?_ jIT -é “3 @(Ei) exp(-ipixi) ]]T exp(-i kj Xj)
Jo1a,3,5,6 L@y T 1=l
. [ a% Lk T
K famy (2x)” 87°(p) + by + p)(21)" 8°(pg + Pg- P)
T L
e
¥ ip
AP e -
- ‘ - (5.7)
43 3 o
, (37 - p) s - pg) a'p. 1 T
| Tremttegr)] @0 66,0 + 5.0+ 5% (o) 82, + B0 -
b4 { 1] exp(-ik x, j n) 8(p;” + b, + P 1) P5  + Py - D
oy 2100
X .

(k + p)° - u2'+»i§ | ; o (5.8)

O)



-1k-

UCRL-11766

The M1 and M2 represenf‘thé two (méés-éhell) amplitudes COrresponding

are

to the subprocesses. In the second eqpation the Pi
functions of gl - 22 s 85 - 26 and of
P =2+ = B5+P -
‘Because the ;pi are all very small we can use
O = r(k +p,° + om 2]
i = R 1 i
ki
0 ~
="k, + —= < p., +
i k.O ~l
i
0
= kP Y Bt
That is,
O ~ v'ra
Py itE '
Thus we have
exp(-1i 1 xi) ~  exp [1 D, * (Ei

and also

o .1
D0+ Dy .~ 5 Do (v + ) +-_(pl ) *
and
o .0 _ 1 o
Ps *P T 3 {B'(l%*%)*(?s'lje)'

considered to be '

(5.9)
1/2
(5.10)
(5.11)
-ut)]
(5:12)
s Xé)]
(5.13)
(v5 - X6)j .
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Inserting these expressions into (5.8), for the special case

Xi L= yl : for -1 =1, 2,3
(5.15)
and
X, = ¥, - for i = h; 5, 6
- ' - (5.16)
. one .obtains
- £ (p).exp [-1(k + D)(y, - v,)| £ ()
A =~ {g_P_,E(giu).Q - [ 5 ‘22 l} 1
~ (2n) o o {k + p)” -+ i€
(5.17)
'Where
)
fa’(p, ~ pg) r N
£(p) = | ——-ZE—-gﬁz— 2 & (v, +v,) *p+ (v - v,) 0 (p - ) + EPJ
“ (en)” L™ ST ~ o7 _ g
; .
X o(p,) (o,
(5.18)
and

S .
d"(ps - Dg) o _
o ] ~5 =6 z . - v,) -1 )
fp(p) = A[ (2n)? e 1_‘35 tg) 2t (5 - ve) 0 (25 - pe) EPO}

7 o(ps) olpgh, -
| - (5.19)
] Thé functions Ml'.and Mé ére evaluatéd.on'their mass shellé at
points in a small neighborhood of (kl; ks k3, k) and -(ku,‘kS? ke, -k)
that is-deﬁerminéd by the supports of 'Q(gl) ¢(22) and ¢(g5) ¢(B6)
respectively. If the Mi and ”Mé iare‘analytic.in these neighbofhoods then

the functions 'fl(p) and fé(p) will be infinitely differentiable functions

-of compact. support, provided |
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(=) 7 0 F (- 7)

| (5.20)
These conditions are implied by the physical formulation of the problem; the
wave packets were required to‘be converging or diverging from their region

of overlap. This means their relative velocities are not zero.

ané. hig

Combining fl 5 into a single function f , one has -
' s exp |-i(k + p)(y, - ¥ )}
. d- . i 2 1
A~ o= =R i) £(p) ———p——p ,
[ (en) (k + p)° - u° + ie

(5.12)

where £(p) is a C function of small compact support centered about

p = O . Invoking the convolution theorem for the energy part, one obtains

(P -
l; p g ~ ~ '~
AT = / “— | at! f(p,t") glp, t - ') exp(-ik,t')
."j' (27() 4) ” - .
X exp [+i(l§ +p) - (3, - 3:1)},
(5.22)
where
~ _;"pdpo . _ o0
£(p,t') = [ 5— f(p) exp(-ip t') ,
’ : o (5.23)
and
~ o fdpo 2ip exp ;r-i(ko + pQ)tl
g(p,t) = ' - ) ’ '
- j 2 e + )P - 12 4 ie SR
(5.24)
and
e 0
t = y2 - Yy .

(75'_.25)

£l
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~'G¢ing,.for'simplicity,.to'a,frame in-which ~k :is purely timelike,

. one .obtains

‘glpt) = B -[e(t)exp(_-imt) ,+--6(-t)'-exp‘(i<bt)] P
(5.27)
where
o = (F + 132)1/2 :
(5.28)
.Thus
S L
A= e @l pm) jat flp )
K 48l - 51) exp(-1t) exp [-10° - w)e]
+ 8(t" - t) exp(+iwt) exp [-i(ko-»+ w’.)tﬂ'] .
- (5.29)
‘Where
SRS/~ R A R
(5.30)

The .original wave packets in‘space-time have tails falling off
.faster than any inverse power. ThuS’the_causal properties, and tle
space-time correlations that we expect; should hold only to within tails
that fall off'faster“than.any_inverse power. - Since ig(g,t’) falls off -

faster than any inverse power in' t' one can, for-large positive times,

- keep only the first term in the square bracket, and for'large negative

times keep only the second term; the other term in -each case is an

integral over just the tail of £(p,t'):. By the same approximation one
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can in the term that is retained;ignore'the e functiOn;-the'éxtra tail added
to the integral contributes only terms that drop off faster than any inverse-
power of t . With the © functions-omitted the t' intégration can be

performed to give S

P, g 0
A' = j,(.")B - &XP i(px ¥ at) f(p, +w=-k )
o ~ o~ _ -

for +t > 0.

'- (5.31)
In the case -t >> 0 the integral is identically zero because f is
zero; f has compact support in the variabie Py s and this support is
-near the origin. Fof the case of'large'positive_ t the factor
w - ko = - p= pg/éu
i (5.32)

is approximately zero in the small p limit. Thus A(x) is, in this
approxiﬁation, Just the wave function of the freely moving particle of
mass whose momentum-space wave function is f(g, BE/Qu) . This gives
exactly the dependence on the displacement vector x =I:yé_4 yl' that we
‘expect,. The oniy approximations have been to omit terms that fall off
faster than any inverse power of 't and to drop higher-order terms in B
in slowly varying functions -of g . 'The latter -is justified by the facf
that the.suppért in kp space can be téken arbitrariiy small.,

The use of thesé approximations was not fequired'by-principle; the
neglected terms are given by definite expressionS'that could be -calculated
‘numerically, if not analytically. - Thus the maSsthell functions provide
for a detailed calculation of the dependence on x , not just for the
asymptotic and limiting forms, - For small values of 't one would have to

include contributions other than the simple pole. term, of course. >.
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Although. this: calculation is for the simplést'éxample; the method -
is quite general. The result shows clearly'hoW'sbace-time'cdrreiatibns |
. of.the.type'observed in the maéroscopi§7world are contained in, and
described'bygvﬁhe pure mass-shell scattering matrix, " In particdlaf, we‘
see that the scattering matrix'for a very-many-particle situation would
be dominated by contributions corresponding to many sets of:interaétions
of subgroﬁps of particleSasepafated‘by_freely'moVing particles. That is,
the asymptotic transition probabilities would be dominated by terms that
display the space-time structure of macroscopic experience., |

We seé also that the sign of i € 1in the pole denominator is
determined by a macroscopic causality condition, within a completely mass-
shell framework; a =1 € term would give an acausal macroscopic connection
between the space-time positions of the two scattering centers. The 1 €
prescription determined here ig for the caiculation of physical matrix
elements of the S matrix. It refers therefore also to the evaluation of_
the S matrix in the unitérity equafions. | |

Iﬁ-is no& possible to examine the original assumption that the
initial‘and finalvparticles are represented,by_solutions to the free-wave
equatioﬁ, and to understand the experimental significance of these solutions.
The larger reaction that ihcludes-the measurement processes has a multi—polé
contribution with a pole for -each of the initial and final parﬁicles of the
original reaction. As the measurement process regions tend fo infinity
~the overall reaction is dominated by this multi-pecle contribution. A
‘direct generélization of thé above analysis gives, és the‘generaliéation of

(5.31) , the dominant asymptotic contribution.

o ;}fs;,(K) ﬁ(K):d.K' .
(5.33)
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Here S(K) is the S matrix for the original process and #(X) is a product
of functions ;zfi(ki) . The function ¢i(ki) is the generalization of the
function 2fi(ki) e#p(flkixi)j ' of (5.21), where fi is the funcﬁlon
defined in (5.18) for initial [or i’n.:(.5;19) for final'  particles. . \-The

sign of k, is fixed now by the "original' reaction.

| SUS—— Y

The exponential factor in ¢i(ki) ~can be reincorporated into the
wave functions of the measurement process. This takes them to their actual.
forms, which are centered in coordinate space about Xy . Reconverting

r . 3 e
(5.18) jor (5,19)J back to the original form one obtains (see-(5.7)]
L 4 i .

gy k)

‘l Ir

= 8,(x]) j (en)* (%! - k. )M,
(Qn ' J R

5

‘[{ H (2 ¢ (k' ] Mifdux exp [.- i_.(zj{v - ki:) X]

~ MJd”x HI g (x)] exp( + ikx)
I | o (5.34)

Where in the last line M, is assumed to be almost éohstant over “the small
.moméntum region of iﬁtegratioh. The function 'ﬁi(ki) -is, then, essenfially
the Fburief-tréhsfbrm of the product.of the_solutions-of the ffee—wave-
equation cérresponding to the particles that participate in the measurement
of particle i . The intersection region of these solutions acts as the
effective source region of particle i .

Thélspace-time regions defined by intersections of solutions of the
free-wave equation Wili be called ‘"locaﬁioﬁs."“ These locations have
.experimental significance because the overall reaction proceeds. only if*

the location defined by the intersection of two of these solutions lies

L~
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within the wave péckets of the other particles with which they interact. One
may usé two solutions whose intersection défines»avrathér small space-time
region to pfdbe thefwave function of particles with larger wave packets,
etc. In.this way space-time relationships emerge from S-matrix theory even
though the locations having experimental sighificance are the.spéce-time’:
regions of intersections of solutions to the free-wave equation rather than
space-time points. It is easy to show that the location of a particle,
as defined by the region of intersection of iﬁs space-ﬁime wave packet
‘with that of another particle, is never spatially_confined in its rest
frame ﬁo less than its Compton wavelength.

In summary, then; the result of the asymptotic measurement of a
particle is representéd by a mass-shell function, Ihis.fuhction is -
expressed in terms of the functions that describe the particles that
participaée in the‘meésurement process. The’coordinate-space'forms of
“the mass-shell fuhctioné, which cén be considered as defined by Fouriér
~transformation, have the significance that a .process inVoiving the'particleé
proceeds only if the space-time regions defined by these solutions to the
free-wave equations overlap°>vMoreover, the overlap regionsfaséociatéd with
the various subprocesses must be related to one another by a causal space-
‘time connection. These results about thelspace-time structure of the
domihant multilee contributions,follo% from weak anélyticity assumptions
about the momentum-space functions; no initial aésumption“regafdingwthe
physical significance of the coordinate-space functions is‘needed.

The wave funCtioné‘representing the initial and final particleé‘
of the‘ofiginal reaction are expressed in térms of the initial and final
wave functions of the lérger process., If these latter are known then one
has an expression for the contribﬂtibn ﬁo the overall proéess, The

meaning and form of the initial and final wave functions for this larger
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_process:is,explored.byiconsidering a stiil larger processain~whichifhe
initial and final particles;of'the original largerfprocess:areﬂobserved.-
This situation.in-which‘the significance .of the wave functionswat:eaéh .
_stage.is?detérmined by examining reactions in which the .corresponding
'particies.are measured is a completely reasonable and natural one. The
connection to experience is obtained by‘includingsthe»observerﬂin'the'_
system under examination. It should then be pessible to terminate the
.infinite regression, because the :quantities to be .calculated, which are
.correlations in the memory pattern of the observer, should not depend on the
_experimental significance of the initial (or final) wave function associated
with a particle whose source (or destiny) is unknown to the observer. That
is, the iﬁteractions that provide the source of these particles, being
“unknown, are not.correlated to the memory_of'the observer, -and hence the
meaning of the wave functions explored by the source reaction should not
be relevant.

To see this more clearly consider the model shown in Fig. 4 on- the
‘following page for the measurement of an-electron-electron scattering
‘experiment, The observer particles'at A and B are assumed to be in
wave packets whose forms are correlated to the memory pattern of the
observer (e.g.{,through‘retina.position).. . If these wave packets are
-considered known then their -intersection:regions A and B ‘are defined,
and hence the momentum of electron  AB is'eSSehtially_knoWn. The wave
packet of‘thevelectroﬂ from B to x isftheréforevalsq'determined.
Similarly the. direction of the incident wave packet is determined. Thus
‘the dependence on the source S 1is-only through a factor that determines
the :overall normalization. That is, the observer may -or may not "see"
the electron at both ‘A and B, but if we normalize to the case that.

he . does see~the.electfonuat A and B “then:the dependence.on S drops out.
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Fig. 4. Diagram for S-matrix theory of measurement of
~electron-electron scattering. The dotted lines represent
the two electrons. The solid lines represent the observer.
The zigzag lines in:the observer, who is broken. into two
pieces for -diagrammatic convénience, represent his memory
and physiological clock. '

This may be stated the other way around: if one considers the overall
reacfion, then the connéction‘of'the?ﬁomentum variable of the electron
inéident on A to the experience of the observer is not obtained by

‘examining the reaction that is thevsourcerf the particle. Rather it

is directly;correlated to the observer experience: ‘if'the'observer sees
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the electron at both A and B. then the momentum variable is essentially
, determined° There is no need to invoke the idea of an:initial wave
function for this particle at all, provided we consider -only the subset
-of ‘memory patterns in which the dbserver'definitely sees the eléctron at
both A and B, for this fact effectively redefines the initial wave
- function anyway. The same gdeSvfor A' and B' .,

Suppose_fhevfinal interactions are suchithat'the dbserver_records
various alternative possibilities. If the observer'is»subjected to a -
.succession of a large number of suchréxperiments then the ratiosof th¢
numbers of océurrences of the various possible alternativgs, as recorded
in his memory pattern, will, by virtue of the space-time.correlations
discussed above, be-determined bygthé e-e scattering matrix in the
usuval way. Final electron wave functions, like initial ones, play no
role; one deals only with the S matrix itself, and its internal space-time
structﬁre. | |

Vo attempt ﬁili be made here to trace the flow. of information
into the memory pattern of the observer. If the dbsérver'were diffuse
so that pole contributions werendominant’then thé space-time :correlations
of the type discussed above would evidently»carry.over-tq the .observer,
Since the long-range photon interaction is in fact the.dominant one, one
might expéct results simiiar‘té_those obtained in the pole‘approximation.

In éfder;to appi& Srmatrix fhéory to the~calculation of the
.memory~pat£ern one would in principle .evidently have to let the particles
cdnstituting the observer disperse at least.to thelextent fhat the pole .
approximation becomes valid. But sinéerthe-memory,pattern.correlations
in question ‘should be‘independent.of'the parts of the history of the
dﬁserver.before and after the period of the experiment, one Wou;d expect

the relative probabilities in question:to be independent. of those parts
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- of the observer's history. That is, those parts should bécome irrelévant
by,the-saﬁe reﬁormalization'procedure-t£a£ removed the dependence on the
external electron variéble° :It may'therefore.be\poséible.to calculate
- these relative probabilities without actually tracing the observerfs
history to the stage where the particles constituting the observer are
-dispersed.

| It should be stressed that in calculating the relative probabilities
of memory patterns one does not invoke the idéa_of a temporal development
of memory. . All one deals with is the S matrix, which refers to infinite
times. A memory is such that it contains’a‘record.of'ifs history,
including a record of the order in which the events of its history
occurred, - What one calculates is not .a detailed history of the develop-
ment of the memory in time but rather certain correlations in a memory
pattern as disclosed by a pole approximation., That is, if the pble
approximation is valid for a certain particle then the S matrix can be
expressed by folding the S matrix for a subprocess into a wave function
Tor this particle., If at some stage each particle is treated in a pole
approximation then the entire S matrix is represented by folding avfihal
wave function into some internal S métrix. Certain correlations in the
memory pattern will be determined solely by this- internal S matrix. They
will, because of the gross space-time propertiés of the S matfix discussed
ébove, reflect the gross causal features'khey’imply. Because‘memories
contain a record of their histories the pertinent information regardiﬁg
the history,shouid be contained in, and'derivable-frong the infbrmation
contained ip the memory. at the later stage. Thus what one calculates in
S-matrix tﬁeory is not the.detailed development of the memory with time
‘but only a record offthatidevelopment‘as revealed by corfelations‘in the
memory pattern in situations where:thé pole-approximation‘is valid. The
peculiar aspect of experience that makes evepts appear to be "happening in

time" is not explained.
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IV. FORM FACTORS

-The electron-proton scattering experiments have been interpreted
in terms of form. factors which have been calculated by Frazer and-Fulcolu
and others using dispersion relations suggested by field theory. The
apparent success of these calculations has been cited as evidence for the
validity of the field concept. Their equations follow, however, also from
a purely maSSesheli approach. i

Let us, for definiteness, consider electron-proton scattering in
the two-pion approximation used by Frazer and Fulco; the intermediate
state summation will be épproximated by the photon and two-pion contri-
butions. And let us for reasons to be discussed presently. ignore the

contributions. from the. cross cuts. Then thé dispersion relation for

e - p scattering is represented in Fig. 5 and given in Eq. (6.1) .

: ; o
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Fig. 5. Representation of terms in e-p dispersion relation,

y T ro(sT)y T (sT)
_ e D et 1’ "mwp'Tl
Tep(s) = 5-85_°* j’Q "5 -85 a5y
(2x)

(6.1)

1
16)' .

The SP would be zero for a photon pole, and dS, incorporates a factor

(En)"l‘. These T's correspond to (-2 sind e
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- Similarly, one has

T_ (8 )"=-'—Z955—— + J( Tex'%) T““(Sg) as,
ert' 1 S.,- S : - 8, =95 2 o
_ . S (6.2)
Equation (6.2) can be rewritten as
l S, - S ’
1 D
(6.3)
Where-_Pﬂ(Sl) is defined to be a solution of the equation
f r(s5) (sg)
T (8)) = T o+ (8 -8) G, -5 5 -5,) as, -
. . 2 2 P
(2x)
(6.4)
SR N -y L .
One sees this by multiplying (6.4) on the left by ye(sl.- Sp) and
comparing to (6.2) .
Inserting (6.3) into (6;1), one obtains
7. T r (s7) T_(s])
e p sy f T8 Top
'I,'e.p(S).‘ s * (s sp) ’(S ST T S) ,
b 2 71 P
: (2xn) . :
- (6.5)
which can be written as
© oy T (8)
T (S) - & P
e'p S -8 K
p ‘
(6.6)

with Pp(s) defined by

, pp(s) = fp + (s - sp)

S (6.7)
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Equations (6.3) , (6.4) , (6.6) , and (6.7) projected onto a
partial wav%'state,vare.the‘form factor -equations used by Frazer and Fulco.
Since.theyvére-simply fofmal re-expressions of the mass~-shell equations
(6.1) and (6.2) the success of the Fgazéf-Fulqo calculations is not
evidence for the inadequacy of the mass-shell framework but evidence rather
for the validity of the approximat_ions represented by (6.1) and (6.2) .

The restriction to two-pion intermediate states is completely
inessential to the above discussion. The essential approximaﬁ;on is the
neglect of cross cuts.

The‘cross cut gives'the t dependence. Experiméntally_there.is
little t© -dependence; Thus - the approximation can be supported by exper-
imental éOnsiderations. The reason for the absense‘of ¥ dependence is in
the ‘dominance of the one-photon exchange contribution; which has no .t
dependence, The dominance of'tﬁe.one-photon exchangevcontribution is due
- to certain perculiarities of the electron:interactioh--its weakness and its
selection rulés.

TO'seevwhat is héppening one can-look at the iterative solution to

(6.1) or (6.2) . Tt reads, in a generalized notation,
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_ 7 Yy ‘$nf(sl ) ,
5 -8 (s] - sp) (8 -8,)

ds,

. 1 S +
(s2 -'séj' (sl-- 52) (s -_sl) 1 ”2“

: + +
7e Tn 'Tnp(sm ) Cees qu(Sl ):
M=

* .j’?§= - s;)’ T§"l-; 5,) (s -:sl)-dsl h dSm

=]

+ oo'o.

| »  7ePn | tm) _ ,
'EZ f dsmw [-.Tnf . (sm,vs)]u - |
’ o 68

The'iﬁerationuformula can be looked at as the result of displaying

~explicitly the photon-pole»cohtribution.to Ten"’ wherewer.: it occurs. The

form.factor”approximation says; in‘effecf, that -the entire electron inter-

action is traceable in this way to the interaction:through the-photon pole,

'and furthermore that only the first-order'contri‘butions-matter° This .last

restriction is evidently just aniapprdximation resulting from.the.smallness

. of the coupling constant. -That the electron interaction over a wide range
of ‘energies is actually well representedwbywéontributions‘traceable to the

photon pole is-an empirical fact, which may ultimately be understood in. terms

of consistency requirements. But at'preSent the dominance.of photoh‘cbntri-
butions. ‘must: be taken as'thevworkihg:assumption’régarding"the:electron

interaction, whether'one:startsyfrom aAfield.theoretic»or S-métrix.framework.
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The formulas (6.3) and (6.5) for T and Tep are not
symmetric on the two sides;:the 7e ‘remains the simple vertex whereas
the T' on the right becomes T'(S) . This is because the photon pole is
always required to involve.rthe‘.elec»troh° If one had considered é contri-
bution:éoming from a pole in Tﬂﬁ or TjTP on the right then'the'remain-
ing -factor 'Teﬁ' would make.the‘conttmutipn:Of-higher‘order, since Tejt
is itself small of order a . |
" On the other hand if one were to look at the photon-pole contri-
bution to Tﬁﬁ “then no such seléction:rule would intervene; in collectiﬁg
all terms first order-in the pole contribution one could take the pole
-contribufion from either ‘side. One might expect, in this case, that the
net conribution first order:inithe pole.contfibution ﬁould have the form
TP(S)=7.—“(—$)%F“—(S—)-,,'
E1518 S = Sp
(6.9)
where .rﬂ(s) is the form factor determined by (6.4) , andivyﬂ(s) is the
.similér quanﬁityvthat faces left. This»expectation.is, in fact, borne out.

- To see how. this works, consider the general form of the dispersion

integral
y, T 1. (s,) T (s}
T (s) = AL, in'"1’ "nf "1’ oo g
Tift §- 8, s8] Sl ’

(6.10)
where R is the éa?t'coming.from phe cross cuts and other pafts-of‘the
contour.‘ The objeet is to isolafe all contributions that are first order
in the-photpn pole. As one iterafes he_couid always substitute into both
T's -appearing-on the righff: At some stage one.of the T's - is replaced by

its pole part. To get rid of the various terms containing R , and hence
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“to get expressions involvin only ! S g ‘Oné can: "de-iterate" and. recon-
) g s
;

stitufe-the .T's +that were not along the path leading to the T fhat

- was finally replaced by the pole part. One;is left then with an expression
‘containing only T's . ‘Some.of these will be to the right of the pole and
others. to the left. There are generally many ways that one :could have
arrivéd atrcontributions_with, say, n T's on'the left and m ‘T's on the
right of the.pble.v One would expect that if one adds these contributions
‘(having n :on the left and m on the:right)'thén-one would  obtain Just

the contribution to the‘quantity

7 (8) Tu(8)

‘S =8
P

‘that has n T's -in‘ﬂyi(S) and m T's -in rf(S) . This is indeed the
case, as will now.be»shown.' | ‘4 |

Let ‘th be -the contribution to T(S)  first order in the pole and
having ‘n "Tis on:the left of the pole-and m '‘T's on the right of the

pole. For example, one .obtains from the iteration procedure
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_jT(s;) yr (s})

. : ds, as, - .
- - + . ’ -
11 §-8 5-85, §-85 1 2 |
- o
, T(s,) 77T T(s
RN (L "1’ 45 as
8 -5, S5 -5, 5-85 172

) - + | o 1 1 B 1 ’
= fT(Sl) ¥y T’ T(Sg) [(S n-Sl) (S§ ~ S_p) (Sil_- - ng

1 1 -1

+ (Sé’ = Sl) (S{ = Sp) ) 5~ S2) ] dSl d52

{
J‘ 2(s]) 7 (s - 8,) T 2(sy)

B85 6 -5) (5 -5,) G-5,) ds, ds,

n(sp) 7 (5= 8) T (s} o
= f -8y Gr-5,) Gy -5 G-8) ©1%1 -

- (6.11)

Thus this term is all right.

The general_proof'is by induction. - Suppose we know.that for

m + m S N

(n)

7 (s - sp)-r Tf?)
(S;f- SP) (Séf- sp) g

P ()

(6.12)
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(1)

where T ..1s-the ith-order term with appropriately arranged deriominators.

+
[ef. (6.8)] This means that the replacement of the (n + 1)th term T(Sn N m)
by a pole and summation gives |
(s -8) L
LR sl (s'+-vé)(s"? 57
n+m P n " Tp/Vm T Ppl
' (6.13)
where the second arrow represents the effect of summationvover all ways
of achieving the separation (n,m) .  The outer variables are also appro-~
priétely arranged by the summation. - The prime and double prime variables
are variables relabeled so as.'to correspond to those -associated with the
T's appearing to the lefﬁ and right of thé pole term, respectively, as
for‘example; in the last line of (6.11).
The th(s) is a sum of two terms:
P%m(s) = Cn,m -1 +'Dn-'-,l,m S
' S (6.1L)
The term 'Cn,m ., 1is the result of replacing ﬁhe (n + 1)th term
T(Sn +m -‘l) .in the manner |
r T(s!
R T S"7 -5 _ s %(Sn +T>s
o n-+m P n+m-~1 n-+mn
| (6.15)
‘and summing over all ways of achieving the separation (n,m-- 1) . Since
Sy 4 p IS fixed in this summation one cbtains from (6.13)., with
Sh iy = S"m in place of Sp-,

ffn) 7 (8 _'s&),r T(sgﬂ_mﬁm - 1)

C = ’
: (Sl’l Sm) (Sm Sp) (Sm-l Sm) .

(6.16)
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Similarly,
o™ = Up(s1) 5 (s - g7) )
D _ n n’ T4+
n-1,m 1+ -1 " _ v-_ gt
(557 1= sp)(8yF-8,) (557 80) |
(6.17)
The result then follows from the identity
. . .-'" ‘ ) ,
(s - s7) . (s - 8])
[ m n - [ o i - []
& - 5,005, - 5,) © (8L - 8.)ey - 51)
(s -s_)
(s! -8 )(s"p- s)
n p’tm P
(6.18)
This result is not deﬁendent on the validity of the iterative
expansion. What is desired is the term first order in A, at AN =1,
of the solution of the integral equation
- +
o T(s.) T(s.) ,
_ yI' . 1 1
T(8) = NgTg ¢+ J[ = ds, +R .
TP 1
(6.19)
Taking a derivative on A, at A =1, one obtains
- | 7(s7) T (s )as 7' (s7) T(sT) ds
T (3) = y T + f 1 17771 +j' 1 1 1
' S - Sp S - Sl S - Sl
(6.20)
One easily confirms that
gy - 2(8) T(S)
T (S) - s - S >
Y
(6.21)

with (S8) and T(S) satisfying their integral equations, is.a solution
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- of (6.20) . [After‘ substitution use the identities ‘I‘(SI) = T(8) |
+"(F(SI) -iT(S)) and 7(81) = ¥ +-L7(S£) - 7) ].

This derivation of the form-factor expression shOWS-tﬁe'éighificance
of form factors within an S-matrix framework: in addition.to the primary‘
pole contr;bution'tb the ‘dispersion integral there dre indirect pole con-
tributions céming from the pole terms in the functigns that determine the
multiparticle discontinuifies, in the polé-energy channel. If one system-
atically cqllects all the contributions, direct and indirect, that contain
as a factor the pole comtribution in this channel, then the result is
equivalent to replacing the mass-shell factors 7fPi by the form factors
lyf(S) Pi(S) , Where these factors are the solutions of the form-factor
integral equations. It is reasonagble to call the form-factor expression
&f(s) ri(s?(s - sp)'l the "complete .pole' contribution." |

The complete pole contribution represents a certain part of the
dispersion formula‘expression for the scattering amplitude., The question
is: what experimental or theoretical significance does this particular
contribution have?

In the case of e = p scattering the complete photon~pole contri-
bution wduld be expected to have an approximate experimental significance.
This derivés from the fact that the pole contribution is émall yet dominant.
Because of the smallness, the term first order in « 'Will dominate - the
terms of the higher order in "o . But in spite of 'its smallness the pole
contribution is a large part of the complete e - p inﬁéraction.

This experimental significancée is of an'approiimate rather than
fundamental chafacter, Since the twin characteristics of smallness and
dominance do not appear to be satisfied in:the strong intéractién situvations, -
an experimental significancerfor form;factor-expressions in strong inter-

actions would not be expected. Stated differently, there seems no particular
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‘reason to believe that the part of the multiparticle;contributions'eoming_
from the pole term in a factor that determines the multiparticle .discontinuity
,should‘contribute a 1arge part ofithe-corresponding multiparticle .contri-
bution. And to the extent that there is large "t dependence” the.possibility
. 1s experimentally ruled out. |

A theoretical significance for the formffactbrg-expressions'could
arise in various ways. If the complete pole-eontribution'wereva good
representation of the entire amplitude over 'a certain range of variables
“then the expression might be useful in practical calculations. Such a
significance would.again be of an apfroximate rather than fundamental kind.

A possible fundamental significance of the form-factor expression
arises_from,eonsiderigg_the question of why the complete pole contribution
dominates e = p -scattering, This domihance can be understood as an
expression of the requirement that the electron interaction be purely
electromagnetic (asi&e from week interactions) . The S-matrix form-
ulatien of this requirement would be the statement that all electron '
interactions can be "ultimarelyytraced"'to the electron.interaction
viaAthe_photon pole; This is, if one syStematicallygdisplays.the‘photen
pole centributien in every factor of a'dispersion.formula for electron
scattering-then the entire function consists of . terms in Which‘the electron
ultimately appears only in photon-poie terms.

Whether the electron.interaction is indeedbpurely electromagnetic
in this sense is not known. But the,first_few terms_of'the iterative
expansien'based on this assumption give a,good representation of'the
‘ electrdh interaction over . a wide range efrvariables.

If this selection rule is indeed valid then the operation. of
displaying and collecting the contributiQnS'that are traceable to the)photqn

pole has a basic theoretical significance; it is through such operations that.
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‘the basic selection rule for the électrbn;interaction is expressed. The

form factors, being the result of collecting terms in which the photon pole

.occurs once, would acquire an important theoretical status as the vehicle

for expressing the selection rule,
Whether all lepton interactions are ultimately traceable to just a

few basic interactions is problematical. For strong interactions the

_possibility_that interactions are traceable to a few basic ones seems

even less likely. The basic interactions in question refer to physical
particles, which are understood as eigenstates. Even if there were

somehow some basic interactions expressible in terms of = "basic entities"

- it is not clear that this would imply that the Physical particle inter-

actions.would be traceable to a few interactions between certain physical
particles, If there are not such basic physical particle réactions to |
which others can be traced then the formnfactor-expressions would not
acquire the corresponding basic‘theoretical status, |

In the bootstrap philosophy, one discards the ldea of tracing

interactions back to certain fundamental ones but regards them as mutually

- self-gupporting. This view would not provide form factors a status of the

kind described above., - ‘ .
A second way in which the form factors could acquire theoretical
status would be through causality conditions. The integral equations

defining the form factors are just those suggested by local field theory.

CIf it is‘possible to solve the form-factor equations for all particles

simultaneously, and hence to define the simultaneous extensions of all
amplitudes off their mass shells, then one would obtain by Fourier -trans-
formation just the basic space-time functions of asymptotic field theory.

It seems not implausible that the off-mass-shell momentum-space fuhctions

onuld, if they -exist, contihue to satisfy the maximal analyticity property,
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eitendéd now off the mass shell., That is, they might have no physical-sheet
singularitiés other than those of the terms éf the perturbation solution.
But since the perturbation terms satisfy locality their singularifies cannot
be in the regions forbidden to functions satisfying the coordinate-space
microscopic causality condition. Hence the space-time functions- would
satiéfy the microscopic causality property. Thus, if the existence of
extensions satisfying the extended maximal analyticity property could be
proved (assuming maximal analyticity on the mass shell) , then local
asymptotic field theory would be shown-to be contained within analytic
- S-matrix theory. There seems no strong reason to believe that such solutions
do not exist, since there are no divergence problems in these dispersion
equations and the linear integral equations to be solved are evidently
simpler‘than'the bilinear equations that the mass shell functions must

satisfy.15

The pursuit of this interesting but difficult-looking question
. 1s not within the scope of this paper. |

It is probably unnecessary to mention‘thatAasymptotic field theories
are built on a Hilbert space corresponding to the physical particles; every
physical particle whether composite or not!is represented by a state
orthogonal to those representing every other physical particle; the idea
of some particles' being built out of others is not reflected by a
corresponding relationShip between states. Such a theory is rather similar
to S-matrix theory in that both build upon physical particles._ That
asymptotic field'theofy should be contained in S-matrix theory, .and that
its locality property should follow from maximal analyticity, would not
be cdmpletely’unreasonable. The idea of basic underlying fields and of
a more basic Hilbert space, of the kind occurring in Lagrangian theories;
and geherally visualized in axiomatic‘field theory, is not implied or
suggested by the above considerations.

' In the next section the form-factor equations for channels contain-

ing several particles are congidered and their formal solution discussed.
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-VII. THE CONSTRUCTION OF FIELDS OF COMMUNICATING PARTICLES

The form-factor equations are

1—‘if(s) _ Pif(si) + I‘in(sn) Tnf<sn) as

5 -5 5 -8, J (8, -8,)E-8)"n
(7.1a)

and
ea(8) e (8y) T (8D 7 (s)
§-85 "~ §-8 Y |G-s)6 -s0%. -
1 . 1 n n 1" .

(7.1p)

If there are several stable particles in the S channel then these will be
exhibited explicitly:
' Typ(S) Fip(8) j{:_ Ty 3(85) Typ(Sy)

- 5, -8, 7, B8, -8 -5,
s E 5 -85 g Z1 By =8 5/

1

Pia(%&) QQf(S;)

t T, 75,06 - 8) Sy
| (7.2a)
7a®) 7)Y TuE) )
5 - 8, 55, * 371 -8y Zsj )
, - +
. .Tfa(Sa) A 2
(s - sd?(sa - si) (0%
o (7.2b)

‘The .functions TaB(S) EE.T(%x,.S, QB) are functions of S and
of..dimensionless parameters specifying‘the'angles‘and ratios of kinetic -

energies of the initial and final particles. All T's must satisfy
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the dispersion formula,(éflo) in order that the arguments establishing the
mathematical significénee of the form factof:be valid. Now the Tja and
Taj are originally defined only at S - Sj‘, sinée.this constraint is
imposed by the mass shell conditions. However, they can be considered de-
fined at. S # Sj by the form-factor equations (7.2a) and (7.2b) with J
in place of i (and j' in place of j). They will theﬁ satisfy (6.10),
as 1is required, because the férmffactor equations are Jjust a special
case of (6.10). [The term R in (6.10) contains the contribution from
thevcohtour at infinity; and hence any necessary subtraction terms.]

The equations contain a set of constants Pij(sj) and 7ji(sj) .
Conditibns on these constants are imposed by the equations themselves
with £ = J . These latter eqﬁations have additional constants Fij(Si)
and 7ji(si) .

If one uses the identities

Pip(8g) = T3.(8;)
(7.3a)
and
(7.3b)
and the fact ,
T55(8;) = ©
(7.%)

(which is true because the unity part of the S matrix has been subtracted
to give T), then (7.2) gives

r(8,) - 7,8 = L) -y 6)

(7.5)

. ¥
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V The two sides of these equations vanish if. one requires that

r..(s.) = T,..(8,
Jf( J) Jf( J)
(7.62)
and
(S, = T_.(S; .
7fJ( 3) Tes(85)
(7.60)
These equations are. true by definition when f .is a several-particle
index. By taking them to be definitions of the left side of the
equation for single-particle states f one ensures the validity of the
consistency requirements (7.5) .
In terms of the functions
I, .(s)
- _if .
ﬁ;f(s) T 5 -8, (i £ 1)
(7.72)
and
’ 70s (8)
. i .
(7.70)
and the definition
(7.7)

Eg. (7.7) become, for i %uf.,

- Bi.(8) = %— _@j(sj>ij(sj)/(s - 85)

| P .
o B, (80T (s2) .
- 5 -8, a

(7.8a)
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and _ S
B = L 8,8/ - 8))
[ Tea(385:(83)
' ds
+J/— §- s, o
. For multipéfticie states fﬂ=VB Eq. (6.8) can be written
| B, (s2)r (s
Z)riﬁ(s) = Fya(s) +[ 10‘8‘2‘8;“5‘- % as
and v
- Too (83 (55) o
L Fyy(8) = ggy(8) 4 55, as,
where
Fig(8) = ) F;5(8))1,5(5,)/(5 - 5,)
J
and

)= Y 1 (s)8,,(5,)/(5 - 5,)
J

These are equations of the Omnesvtype. Solutions are given by

| F. (s))T (shHF '1(s+)as o
iﬁﬁ(s) - FiB(S) +‘jf “io o g7f‘g;f78 o ar a‘g;B(S)
and
- g, "HsT)r, (s0)e . (s)
ORI SO éss(s.?;f s,

2
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(7.8pb)

(7.9)

(7.90)

(7.10a)

(7.10b),

(7.11a)

(7.11b)
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where ‘2( and ¢ are solutions of the homogeneous equations (F, £ = 0) .

Inserting (7.10) into (7.11), one obtains

-giﬁ(s) ) 2 ¢1J 3

“(7.12a)
and
| ’ (7.12b)
where
and (7.13%a)
PByo= By(85)

(7.13b)

(s) are functions of the mass-shell

BJ
. a + 5 - -
functions ij(uj) an@ Tay(ﬁﬁ) , and Tyj(sj) and Tya(sa) s rgspect

The functions GJB(S); and g

ively.

The solution (7.11) is not unique. There is a question of
whether the homogeneous solutions are unique,: And one can add solutions
of the homogeneous equation. We shall suppose that analyticity require-
meﬁts and asymptotic conditions will specify”fhe'bhysically interesting
solution and that, as 1n the case treated by Omnes, the solutlon is Stlll\

linear in the inhomogeneous term, so that (7 12) remains valld

The insertion of (7.12) into (7.8) gives, using (7.4),

Fug

(7.14)
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where

it a’ta) o

= 513 + JfG (s™)g_.(sh )dS

and N is a diagonal matrix with elements

I‘11(8)

S - 8,
: i

=
1]

ii | 1 - 1lim

1}
[
]
o]
e
B

Inspection of (7.2) shows that

ii

The Hermitian analyticity property of the T's ,

*

+ ' -
Tozf(sa) = Ty (Soz) ’
impliés
e
lgaa(sa) = Gy, (8,)

provided the homogéneous solutions are chosen to satisfy the analogous -

property

(s jfga .

UCRL-11766

(7.15)

. (7.16)

(7.17)

(7.18)

(7.19)

(7.20)
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‘The matrices H and N are then positive-definite Hermitian matrices,

and one can write

() (ptut)

as}
1]

=
-
|

(7.21)
énd
N = Bt
(7.22)
whefe the dagger ‘denotes Hermitiaﬁ conjugate. The matrix D . is a diagénal
maﬁfix with‘positive.elementS‘and U 1is the unitary matrix that trans-
forms the positive-definite Hermitian matrix H 'from.diagbnél form.

If the j{‘and ¢ are assumed to satisfy

(7.23)
which is:the analog of (7.18) ; then (7.14) becomes
C(F) @) - 1 |
| : - (7.24)
The solution of'ﬁhisfis .
F oot
(7.25)

where U is an arbitrary unitary transformation. The A 1is completely

~determined by the mass-shell scattering.amplitudes and B is a . diagonal

matrix defined by
-1 -1
B,. = (UA 7)..
2y (UA ), ,

(7.26)

N
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which is the normalization condition .

(7.27)
The ambiguity associated with the U . in (7.25) can be eliminated
by identifying this U with the U in (7.21). If one takes this

particular solution of the problem then

5 - wlv? .
| - (7.28)
This makes the “unrénérmalized field" B-%ﬂ- a . positive definite
Hermitian matrix, and gives |
B - ¢3'1 .
(7.29)

. Thus gor this particular solution the "unrenormalized" J and ﬁv are
identical. |

| The.term "unrenormalized" cémes from compéring the above results
to corresponding field theoretic ones. Thé relationship to field theory

is given by the identifications

Bi:(8:) = (o8, (0)]£(s,.))
(7.30a)

and

B0, = (2518, (0)]0)
(7.30b)
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where Jﬁi(x) and ¢i(x) are the renormalized field operators of field

theory. The normalization conditions

(olg;(0)]1) = 1 = (ilg,(0)|0)

(7.31)
on the renormalized fields are conditions (7.27) . The ith diagonal -
matrix element of (7,14) is
-1
£,(88,,(s)) + [ WS (sas, = = 2T
| (7.32)

where Zi is just the wave-function renormaiization:constant of field theory.
The interesting equations are the'off-diagonal elements of (7.1k4).

They say that if the field matrix elements are constructed by our form-

factor equations then

(0l (034, (0)]0) = o CHF I
(7.33)
That-is, the fields for'different particles are not just multiples of
‘the same. field, but are fundamentally different, and in the sense of
(7.33), orthogonal. That is, if the action of p’i'(o) and ;z{j(o) on
the vacuum is taken to define (renormalized) bare particle states
(olg (o) = (g] ’
' (7.3ka)

and.

(7.3W)
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then‘tﬁese states are orthogonal for i % J » It had seemed from a- ... . v
cconsideration of Zimmermann's work that a. single field, apart from..
normalization factors, shoﬁld serve ‘as the field for all particles with
the same set of quantum numbers. But we see that. if the fields are
constructed from the mass-shell quantities by means of our form-factor ¢
‘equations then the fields for different particles will be essentially -
_different. | \
Although we have started from é mass-shell theory involving
only physical quantities, the form factor equations have brought in,
- quite natpraily, the wave function renormalization constants. Zi . These
equations evident;y make sense only if Zi >0 forall i. This
suggests that‘fields could be constructed from the mass-shell S matrix
if the renormalization constants were finite, What happens when some of
fhé Zi are zero has not been examined from the present viewpoint.l
The question afiseé, Wwhat happened to the expected solution in -
which the fields for different particles are just multiples of each
other., Equations (7.8a) appear to be linear in ‘c,h.e’ug‘;.;‘j and hence one
would expect that}a solution would be given by taking all -ﬁéj to. be
-multiples of a s%pgle solution j&d . The asymme£ry comes .in the
normalization qon@ition -ﬁ;i = 1 . The ng fof i % J .are the
limits as S goé_s to sj “of jij(s) . This is not true for * = j .
In this case the limit is in fact necessarily‘negative. The asymmetry in
these definitions means -that a multiple of‘_ﬁgj ‘'will not satisfy the Tk
equation for ;ﬁkj for ‘k % i
The origin of this asymmetry lies in the fact that the subtracted "
dispersion relations for the Ffs ensure that Pij<sj) "is the limit as ‘
S goes to Sj of .Pij(s) . The same does not hold for _ﬁ;j(s) = »Pij(S)/(S - Sj)

for the case i = Jj.. The same situation would occur in a field theoretic
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freatment, prdvided,the PijA_dispersion relations require only one’
 subtraction. This requirement is essentially equivalent to the require~
ment that the fi§1ds ber”ofthogonal"‘in the sense (7.33) . |

 The convdivtions I‘ij(si) = 7;5(8;) enma Ty(8)) = 7;4(8)
that we have imposed wduld genérally be.assumed also in fiéld fheory, as

Pij(S) and 713(8) are both once subtracted versions of the same function

Fy(8) = 5 {01, (0) k) (xl, o]0} (+1)/(s - 5,)

ij
R

+ fdsa (b’lJi(o)laMa]Jj*(o)|o)(-'i)/(s - 8,) + Const,

(7.35)

which is the negative of momentum=-space foﬁm of the time=-ordered product

of the currents Ji(x) and th(y) .
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