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CANALYSIS OF ELLIPTICALLY POLARIZED LIGHT

Rolf H. Muller and. J. Richard Mowat*

o . Inorganic Materials Research Division
v o o Lawrence Radiation Laboratory
. ' University of California, Berkeley, California

~ ABSTRACT

Thé meésurement bf,elliptically:pélarized liéht, a tool for the
stﬁdy.Of‘reflecting surfaces, resglts ih:quéntities from which the
" ’qhargcteristics of thgvpolgrization have to be computed.. Equations
are derived which furnish the‘geometriga; propertiesvof the‘eLlipse
(orientation and ¢llipticity)_and the.physicgl_paramet¢;§ of two
orthogonal component waveés (phaSe difference-aﬁd.amplitude ratio) from

,data.obtained using éompensator and intensity techniques.

Also with the Department of Physics, University of California,
Berkeley,. California. '
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INTRODUCTION

The reflection of polarized light from an. interface results in a

change of the polarization state which is characteristic of the optical

properties of the interface., Two cases of particular interest will be
considered in detail. They pertain to the usé of linearly polarized

incident light which results, in general, in an elliptically polarized

reflected wave and elliptic incidence which results in linear reflection.

In the-following:analysis, light is treated as transverse electro-
magnetic radiation with plane wave fronts. These conditions are met by
a parallel, monochromatic beam several wavelengths away from the source.
For considerations of the state of polarization only the eléétric vector
is considered although the mégnetic vector is equally important for the

wave propagation. (Fig. la)

A,  Polarization

In linearly polarized light propagating toward the observer the
tip.of the electric vector seems to oscillate along-a straight line
(Fig. lb). This oséillafion mayvbe resolved into two linear components
vibrating in phase along the coordinate axes x and y (Fig. 2). When
the tip of the oscillating electric vector as seen by an observer look-
ing toward the source appears to trace out an ellipse the light is said
to be eliiptically'polarized. Elliptiéally polarized light can alsc be
decomposed into two linear components along perpendicular axes, but the
components, do not oscillate in'phase'(Fig.'B). The instantaneous répre-
sentation of the wave is a helix in space moving in the propagation
direction and hereby'fracing out an ellipse in a fixed plane normal to

the propagation direction. If, to the observer, the tip of the electric
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vector travels around the ellipse in a clockwise fashion, the light is
said to have right-hand or negative polarization. A counter-clockwise
rotation is called left-hand or positive polarization. The handedness of
the oscillation depends upon the phase difference A between the. orthogonal
components, as shown in Figs. 5 and 6 and Table I. -When A is an integral
multiple ofhﬂ} the vibration is linear.

Table I. Elliptic polarization, sense of rotation and
Phase difference between orthogonal components

Phase Difference

g2ﬂ'< A< =K A<O
Oo<A<T T A 2T

2w < A< 37 M <A< by

ete.’ ‘ ' ete.
Ellipticity

left handed - right handed

counter clockwise clockwise

positive : negative

i

.. B. Definition of Elliptic Parameters

An elliptic polarization can be specified by the physical para-

meters phase difference A and amplitude ratio

Eé%— = tany >,0

of the x and y cemponents. The phase difference A ig defined in terms

of the absolute phaee of the EOmponents'as

@
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aqd can assume positi&e'and negative values, while the amplitude ratio
of the y and x components .is always positive.

An alternate description of the ellipse is possible in terms of
its geometric parameters 6 and <, expressing its orientation and .shape.
© is the angle between the x axis and the major axis of the ellipse, and

b

= &=
. tan Y 3

is the ratio of the minor and the major haif-axis of the ellipsé. The
plus sign is used <for left-hand polarization, and the minus sign for.
right-hand polarization. Figure 7 shows how the parameters 6, v, 7, are

related to the trace of the ellipse and the x~y coordinate system.

C. Analysis by Compensation

Two devices for analyzing elliptically polarized light inVolve a
compensafion of the phase difference A between the x and y components
until linear polafiZation is resﬁored, which is recognized by complete
extinction with an analyzer.

The device to be empioyedlhere is the Sénarmont compensator.dr
"quarter wave pléte". The feature of this compensator is that the
optical paths for polarization along two perpendicular axes differ by
A/4.  If the elliptic vibration is considered to result from components
along.the major and minor axes of the ellipse which oscillate out of
phase by 7/2 or A/L4 then, introducing a quarter wave compensator with -
axes which coincide with the €llipse half-axes (u-v coordinate system in
Fig. 7) results in a phase difference of O or T, Thus; the elliptic
vibration is transformed into a linear 5ne. The settings, with respect
to the x axis, of the compensator axes and anicol prism adjusted to

extinguish the linearly polarized light give the parameters O and +.
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An alternate compensating technique, not to be discussed.in detail,
employs a variable BABINET or SOLEIL compensator which allows the
-infroduction of a phase difference between x-and y components which can
~be adjusted until linear polarization results and, thus, allows to
determine & directly. The aﬁgular position of the quarter wave plate
can, however, be determined with much greater accuracy than the linear
~ position of a variable compensator.

. Compensating techniques are very precise but slow because the

correct instrument readings have to be found by successive approximation.

D. Analysis of Intensity

Since the intensity of linearly polarized light is proportional to
the square‘of the amplitude,‘thé amplitude ratio taﬁw can be‘directly
determined from an intensity measurgmént of thelgomponents along the x
and y axes. A rotating analyzer (nicol prism) followed by a photodetector
can be used for this measurement. The transmission direction of the
ahalyzer at maximum intensity also gives the orientation O of the major
axis of the ellipse. Intensity methods have the practical advantage of
yielding valueg for & and ¥ quickly, which is important for the observa~
tion of transientAphepomena. However, the accuracy is lower than that

possible by compensating techniques.

L1



CHAPTER’ ONE. ‘ LINEAR POLARIZATION“INCIDENT»“

I. DETERMINATION OF RELATIONS®/BEIWEEN
A, ¥, 6, v BY USE OF CONJUGATE RADIT

When linearly polarized light is reflegted from-a metalvsurﬁace,
the reflected light. is, in general ellipticélly.polarized. Tﬂiéi
elliptical oscillation is characterized By-the anglg 8 ‘betweeﬁ“the
x axis (chosen to be parailel.fo.the_planeuof.incideﬁce) and the
major ellipse axis.and by the.ratio of minor to major axés defined
»fo be £an v (Fig. 7).

The componentsvbf thé elliptical vibration parallel to the.major
and minor axes of the ellipse oscillate with the same‘frequency -w 
bﬁtvthe component along.the major axis differs in phage with that
along the minor axis by /2. .Thug,.if.théulight'is passed through
»évquarter"Wave plate (Sénarmont Compensator) the fast axis of which
is parallel to'the minor axis of the:ellipse a phase difference of
W/E will be added or subtracted producing linearly polarized. light
along the restored direction 6+y from the x axis (r in Fig. 7).

If the quarter wave plate is followed by a linear analyzer, extinction -
of the beam will result.when the éxtinétion direction forms:ithe angle
6+y with the x axis. The measured angles G_ang Y can be related to
the phase difference A between the i and j-cbﬁponents of the ellipti- .
cal oscillation parallel and normal to the plane of incidence, znéd.
to-the: ratio . tany¥ 16f the . émplitudethalanglfthéw ydiréction tov

that.along - the: x' direction. . cot’ nu

: _ v N
A. Buperposition of Linearly Polarized Light
An elliptically polarized wave propagating in the z direction

can be interpreted as the resultant vector of two orthogonal linearly

A similar discussion is given in references 1, 2, and 5.
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polarized sinusoidal compenents in the -x-z and.y-zplanes, as indicated
in Fig. 3 and described by the parametric equations (1) and (2) below

. The coordinates x and y ‘are used to designate the two orthogonal
componenfs of the eiéctric light vector parallel and normal to the |

plane of incidence.’

» . S . g o - ‘ ] I
— LI —
E = A cos Lw (t = ) + 6Xv_ (1)
. r z 7 o : T
E =B co £ - = + B 2
v cos |w ( =) y | y ) (} )

Wwith ‘the phase difference A between the two waves being

A= 6X-5y - (3)
~and by redefining the origin of time such that

)+ W

wt = w(t' - z
v ¥y
“the components become
E_=Acos (at +4) o o (1a)
Ey = B cos. wt S R - (2a)

The dependence on time.is eliminated as»follows

. B
cos wt = EX
| (ev)
E 2
sinot = 1- E—
B
E =A (cos wt cos A - sin at sin &)
R Ey . o . Ey?_ _
EX = A <T§ cos A - .l- - sin A'>

. B



A Ey Ey?- :
B cos A - EX = A 1~ 55— sin A
#°p 2 s o, 2AE_ -E cosA 5 5 ° -
J cos A+ x . - g »=A-<l-v—y—_>sinA
2 B : 2
B B
A?E 2 .E,2 2EXE cos A o o
2y + X - i = A sin A
B
B » , L
Ey? EX2 2EXEy cos A 5 »
-l = - = = sin” A - (5)

The ellipse described by (5) is the projection of the tip of the
resﬁlting electric vector (a helix in space) on the x-y plane normal
to the propagation direction, looking toward the light source (see

Fig. L).

B. Conjugate Radii

From equations (la), (2a) the electric vector in the x-y plane
can be expressed as
E = A cos (ot + A) T +B cos wt J ' : (6)
where T and § are unit vectors in the x and y directions respectively.

Rewriting (6) results in

E = A (cos ot cos A - sin wt sin A) £ + B cos wt §
N | A (7)
E=(AcosA T+ Bj) coswt - A sin AT sin at

or = Ez cos wt + E; sin wt . (8)

s
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where
EZ = AcosAT+ Bj : ' (9)
E”2 = -A sin A % (10)

= .

*
The vectors E} and E, are conjugate radii of the ellipse. iof

2

is the real part of .

B - (8 iB)e™ - (8a)

Another pair of conjugaté rgdii are the principal radii EL, E;
shown in Fig.'8. They have the property that EL . E; = 0., At some
time to the electrié vector coincides with the wu axis. Then

from (8),
| E; =‘E1 cos wt_ + E; sin wt_ o : (11)
At u$ = &té + ﬂ/2 the electric vector coincides with the v axis,
and . |
T - E1>cos (amo-+ 7T/é) + E

» sin (amo + 7 /2)

ﬁ =-f sin wt + T cos wt
1 o) 2 e}

C. Dependence of Handednesé Upon A

~From equations (la), (2a) it is seen that at wt = O, E, =
A cos A, E_ = B and as shown in Fig." 8 the ellipse:is tangent to the
v €
circumscribing rectangle AB (also tangent to the circumscribing

parallogram determined by E, and Eg).: From (8) it is seen that

¥ A reference for this treatment is 11. The choice of enldSt instead
of e+la¢ is arbitrary, but is in keeping with the current practice.



= - aﬁz sin wt + QEZ cos wt = afF. .

aE
dt
g =0 . v t =0

That is, at time zero the change in the electric vector is parallel to

Ey,.= -Afsina o (10)

Thus the oscillation will be left-hand as shown in Fig, 8 for
sin & > 0 and right-hand for sin A < 0 . In terms of A, the ro-
tation will be left-hand when -2 <AL=, 0< AL T2 <A <‘5ﬂ,
‘etec., and right-hand when -T < A<K0, T <A< 25 3. <A< Mﬂ, etc.
as summarized in Table 1.

The influence of the phase differerice & on shape, rotatioﬁ ahd
orientation of the ellipse; together with-its sense of rotation is

further illustrated in Figs. 5 and 6.

D.: - Derivation of Equationsl

Expressions will now be derived relating the measured para-
meters O and <y to the physical quantities ¥ and A, It will be
assumed that the light incident on the reflecting surface is linearly

polarized at 45° to the plane of incidence. Then

B, .
tan ¥ . . = ~incident -1
incident A, . . c
ihcident
_ © _ o} ' _ 0
incident ~ _‘Xincident yincident i

And the measured phase difference A and amplitude ratio tan ¥

B reflected-

tany T
reflected

reflected =

are determined completely by the reflecting surface. For incident

linearly polarized light with general polarization direction the
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relative amplitude ratio of the reflected light is
tan ¥
tan ¥

reflected

tan ¥ = (13)

incident

. In order to arrive at a self-consistent treatment it is im-

[

portant to carefully define all quantities. The definitions of

€ and ¥ given below are compatible_with the representation of

N
elliptic oscillations in a Poincare sphere fj' on-which lati-

tude and longitude are used to represent 2y and 20 respectively.

6 = angle between positive x .axis and major axis of ellipse,
measured counterclockwige 0< 8 <
.Y = angle between major: axis of ellipse and restored polariza-

tion measured in the same sense as the rotation of the

. -7
ellipse T S7v:s T
Thus, ¥ 1s negative when the oscillation is right-hand and

positive when the.oscillation is left-hand. From (12) and E_=b,

E =a
u

F.F +8 - & =b2+a2=E2sin2wt +E2c032 wt
v v u u 1 o 2 e}

Ef : f cos wt  sin wt +I432cos2 wt
1 2 o} o} 1 e}

+ E° sin®wt + 2F - E. sin at  cos ot
o 1 2 o o)

=‘El2 + E22 = A2 cos2 A+ B2 + A? sin2 A
_ A? + 2
et = A% L F o | (14) ¢

A second relation between a,b,A,B with K being a unit vector in the

z directionmcan be obtained as follows:



w]l] -

= o T = L
E, X E; =a b sin /2 R = - Ez x E] cos wt_ sin ot
+f X]? (cos wh + sin® wt ) +f xf sin- a)to cos awt
= .
=B X E; = AB sin A K
.. ab’ = AB sin A (15)

with the relations illustrated in Fig. 7,

. b & o .
siny = — - cosy = —— : (16)
v 'a?+ b? v _,a,2 + b2
one obtains from the trigonometric identity
sin 2y = 2 sin 7y cos 7y S (17)
_ 2 ab
APt

which is transformed with (14) and (15) into

. ‘2AB sinA
stnEy = o5
A B
=2 sind A B
“/A2 e '\/AE ¢
=2 sin A sin ¥ cos ¥
= sin A sin 2 ¥
.. sin2y.= singysina . . (18)

The following calculations 'are based on the relations shown

in Fig. 8. From (9 - 11) and t =t

E

u

- F

u

e}

(AT cosA + BY) cos wt - AT sin A sin wt

A(cosA coswb_ - sinAsinq&to) IE | cos 9 = a cos 0

.". a cosB= A cos A cos wt - A -sin & sin a)to ' (19)
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2P T o g)=a sin 6 =B co ,
g,fu—acqs (_2 0)= a sin 6 =.B cos wt E : (20):

From (9), (10), and (12)

E_)v = -(AT cosA + BJ) sin wh - AT sin A cos wb
£+E = -A(cosfAsinwt + sinfcoswt ) = 'f'vlcos(e + E) = - bsind :
TV -0 0 viT 2
.". bsin® = A cos A sin wt + A sin A cos wt ' (21)
3E = - B sin wt_ =D cos 0 . . (22)

Elimination of ‘wto from (14) and (21) is achieved as follows:

a cos 0 = A c’:o‘s'A cos (bto - A sin A sin wté . - (19)

]

b sin 6 = A sin A cos wt_ + A cos A sin wt, (21)

The determinant of the coefficients of sin wto and cos coto is

A cosA ~A sinj ‘
o = A2 c’os2 A+ A2 sin2-A = A2
A sinA _ A cos
Thus :
1 8.cos0 -A sinA V‘Aa._cosé cosA+AB sinfsinA
cos (Dto = —= = 5
: A ‘ _ . A
b sind A cosA
.. A cos a)to" = a cosB cosA + b sinb sinA (23)
also
S, 1 A cosh  a C.OSQ ~ .Ab cosfAsinf® -aA cosBsinA '
sin wto =~ = S
A : : A
A sinA b sin® L . : v ®
L', A sin Wt =b cos Asin 6 - a cos O sin A : (24) s

Multiply (20) by (24) to get ™

AB coswt s.inwto = ab isihze'cosA -agsihe cosd sinA (25)
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Multiply (22) and (23) to get

-AB sin wto cos Amo‘¥léﬁ.cosge cos A + bgsine cosb ’siﬁA

Add (25) and (26)

(bE_aE X
0 = ab cosA + —s sin 26 sinA
a,e-—b2

S sin 20 sinA = ab cosA

with

% = tany (Fig. 7)

sin 20 tanh = gabe S = tan 2v
a"b-  1-1b°

tan 2y = sgin 20 tanA

tan A = Ei&j%x_
. gin 26 -

Squaring equation (27) yields

2
tanEA _ tan 21

sin~ 26

With the use of the trigonometric identity

It —— = —%
tan 260 sin- 20
tanEA = tan2 2y <l+————§i———— >v
tan 26

s'n22 1
=;2_L<l+___>
‘cos 2y tan~ 20

(26)

(@1)

(28)
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,taneA cos2 2y = sin2 2y < 1 +._;%§____ )
o ' tan 20 7.

. . 2
tan A (1 - sin227) = sin227 sin 2y
tan 26

; .2
tan“A - tan“A singgy = 539521 Sin227_
tan 20

: : . 2
sin227 + sin227 tanEA#v§3£§23L = tangA

tan 26

< 1+ tan“A + > sin® 2y = tan°A

tan2 26

1, _ 1  tan“A _ sin“A

cosEA tan°20 sin22y cosEAsin227

1+ cosgA _ sin2A _ 1
" tan“e0 'sin227 sin22¢

" where the last step follows from equation (18). Agin applying the identity

(28),
2
1+ EQEE;Q__ =1 + __7%____
tan 20 tan 2y
cosgA _' 1
tan229 tan22w"
tan 26 = * tan 2y cos A . . : (29)

From (18) and (29)

SinA = EI..:n_gl_
gsin 2¢

tan 26
= Ttan 2y



A is
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eliminated by squarihg and adding
singév +‘tan229

l=.2 —
sin 2y tan 2y

Sinezz// - sin“2y + ‘tan"26 cost2y
l-cose2w

1= sin227 + cosEEwl(tan226¥l)
the trigonometric identity -

tan229 + 1 = %

cos 20
2 co 22

1 =sin?2y + ——Eg—il—

cos™ 28

vcbs229 = cos229 sin227 + c6522¢

; cQSEQQ (1 - sin22y) = cos?2¢

" o528 cos227'= cos22w'

cos 2¢ = *cos 2y cos 20
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E. Discussion of Equations (18), (27), (29), (30) and =~

Determination of Ambiguous Signs

. Case of A 3. B

-With the angles defined as in Section ID

and the restriction that B be smaller than, or equal to A, it is readily

seem from the ellipses of Fig. 5 that the,only'possible values of - ©

and ¥ are
m is
0 < < - 0B <= B <A
<sv<l <e<T <
=>tan21//>0'b . ﬁ<9<.7’i’

The corféct signs in the Egs. (18), (27), (29),‘and (30) can be deter-
ﬁined by considering the resulting polafization as A'ig varied, using
Fig. 5 as a check.
 Case I. When A=nm n any integer
(18) sin 2y = sin 2y sin A becomeé
sin 2’\/.= => Y =0
which is true by Fig. 7 whenever b = 0 (linearly polarized light).
(27) becomes

tan 2y

Sin 20 =>Y = 0 as before

tan & = 0 =

(29) tan 20 = * tan 2y (-1)"
but for linearly polarized light © = ¥ always. Thus tan 20 =

tan 2¢¥ and (29) should employ the positive sign to read

»



case’II;

Case TIT.
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tan 260 = tan 21,0 cos A
(30) cos 2¢ = % cos 2Y cos 20

1=72%cos 2y since 6 =1

cos 2y > 0 always since -

S E

SvE

+13

Therefore, the negative sign has no physical meaning.

T
When A = 5 + nm n any integer
(18) sin 2y¥ = sin 2¢¥ sin A
= * gin 2¢ when n.is even
-~ when n. is odd
b

=>7Y =% % which is in agreement with Fig. 5.

(27) becomes tan A = @ or sin 20 = 0, 6 = 0 as in’Fig.vi, .

(29) tan 20 = O since cos A = 0 true since 6 = 0 by Fig. 5.

(30) cos 2% = £ cos 2y cos 20
1 = % cos 20 since cos 2¥ = cos 2Y
but cos 260 = 1 since 6 = O

Therefore, again, the positive‘sign only has physical meaning.

0<A< L
>

(18) sin 2¥ sin A= sin 2y

sin A> 0.

since 0 < ¥ < or sin 2¢ > 0. Therefore, sin 2y > O

=13

or 2¥ > 0, which cdrresponds to left-hand polofization as seen
in Fig. 5.

‘ _ tan 2y
(27) tan & = Sin2e

tan A > 0.
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2y > 0 => sin 2y > 0

0<B<Y< 1 =>sin20>0

} See Fig. 5.
L

(29) tan 20 = * tan 29 cos A

"tan 20 >0 , since 0< 6 <

tan 2§ >0 o<y

cos A >0

thus tan 20 = + tan 2 cos A = 0 <A<  the positive
- S 2

sign has physical meaning.,:
(30)'cos oW = £ cos 2Y cos 26

cos 2V, cos 20, cos 2y > 0, thus the negative sign has no

meaning.

i

A<

(18) sin 2y¥ = sin 2¢ sin A
Sin A>o0
sin 2¥ > 0

=> giny > 0O

' ] _ tan 2Y '
(27) tan & = I

tan A < O

tan 2y > 0 Dbecause Y > 0 for lgff hand‘polarization implied
by_g <A<T | |

sin 20 < 0 as shown in Fig. 5 % m </6 <

Therefore, positive sign as written is confirmed.

(29) tan 20 = % tan 2¥ cos A

tan 26, cos A< 0, tan 2¢ > 0

. il
Thus, tan 20 = + tan 2¥ cos & - g<A<m

. the positive sign only has physical meaning.
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(30) cos 2y = * cos 2y cos 26
cos 2y > O
cos 2¥, cos 26 both > 0 thﬁs the minus sign has
no meaning.
2

Case V.7T<A<-2——

(18) sin 2y = sin 2¢¥ sin A
sin A< O . v T
sin 2¢ > 0, sin 2y < 0

_ tan 2¥
(27) tanA = 50

tan &A > 0

sin29<0 ]5:7T9<"7T

tan 2y < 0O right hand polorization.
(29) tan 28 = * tan 2P cos A
tan 20, cos A< 0
tan 2¢ > O

{

."e tan 20 = + tan 2¥ cos A <AL Z—ﬂ the positive sign

only has meaning.
(30) cos 2¢ = * cos 2Y cos 20
cos 2¥, 'cos-29> >0
| cos 2y >0
.. negative sign has no neaning.

Case VI. gE<A<27T *_

(18) sin 2y = sin 2¢¥ sin A
sin A< 0
gin 2y < 0
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_ tan 2y
(27) tan A = S50

tan A< O
: ‘ sin 20 > 0
tan 27 <0

* tan 2¥ cosA

" (29) tan 26
cos A>0
tan 20 >0 0<6<y
tan’2¢>0

31

2

.. tan 26 = + tan 20 cosA 5~ < A< 2r the positive sign

‘only hés meéning.
(30) cos 2¢ = £ cos 2y cos 26
| cos 2¢g cos 26 > 0
cos 2y > 0 'again, the negative sign has no meaning.
Case A< B
| With the angles characteriétic of the geémetry of the ellipse
defined as in Section ID | |

o< OB

1
=13

<v<y
and the restriction that A be smaller than B and tany = B/Arz 0

one obtains

i
E<§DS-2- =>tan 2y < O
and, as illustrated in Fig. 6

T 37T
r<9<i-

Case I.Proceéding as for the previously discussed case B < A , when

A =n we get the same results.



'_2 l...

Case II. Proceeding as for the Case B < A

When & = g + nmMm we get the same results

.
Case III. When 0.<A<j => [ <6 <Z (See Fig. 6)

(18) sin 2¢ sin A = sin 2y
sin A > O
sin 2¢ > O

2y >0 .

i ‘ _ ﬁan 2y
(87) tan £ = 5728

tandA > 0, sin 26 > 0, tan 2y:> 0.

(29) tan 20 = * tan 2y cosh

cos A>0
.E.<.e T O tano <
5<20, 2 <5 =>tan 26, tan2y <O
.. tan 26 = +.tan 2% cos A as. before, the positive sign ohly

has physical meaning.
(30) cos 2¢¥ = = cos 2Y cos 26

>0
cos @Y, cos 260 <O
. o only the posit‘ive éign ha.s‘meaningr.‘
Case IV. g <A< ’7T => g < 9‘< .i_ﬂ
© (18) sin 2y = sin 2¢ sin &
| sin A > O,
sin 2¢ > O

sin 2y > ©



(27)

P2 -

tan 2y
A = 22
tan 2 ~sin 2

tan A< 0O

tan_ 2y > 0

'sin 26 < 0

tan 20 = * tan 2¢ cos A

.cos A0

tan 26 > 0, tan 29 < O

tan 26 = + tan 2¢ cos A the positive-sign only has physical

meaning.
cos 2¢ = % cos 2V cos 20 )

>0

. cos 2y, cos 20 < O

Case V.

(18)

(27)

(29)

negative sign has no meaning

3

m<a<g

sin 2y = sin 2¢¥ sin A

sin A< 0

sin 22//.>O

sin27<_0
tanA=;i?2—g%
tan A > 0

tan 2y < O

sin 26 < 0

tan 20 = * tan 2¥ cos A -

tan 2¥, cos A< O

tan 26 > 0

tan 20 = + tan 2¥ cos A the positive ‘sign only has meaning.
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(30) cos 2¢ = + cos 2y cos 26

Case VI.

(18)

(@)

cos 2y > 0

cos 2Y, cos 20 < o

negative sign has no meaning.

3
2

< A < 2

sin 2y = ‘sin 2¢¥ sin A

sin

A<O

sin 20 > 0

sin 2Y < O

tand =

tan 2Y
sin 20

tan2'y<0.

sin 28 > 0

tan

A<O

tan 260 = *-tan 2Ycos A

cos

tan

tan

CcOs

cos

A>0

26, tan 2¢ < O

20 =

2y =
2y >

-+

+

o)

‘tan 2¢¥-cos A the positive sign only has meaning.

cos 2Y cos 26

cos 2¥ cos 20 < 0O

negative sign has no meaning.
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Summary

The discussion has shown that with the restrictions of

IS El

<w/<+%f

0<@<T
All ambiguities in signs can be removed and the Equations (19),

(27), (29), (30), are to be used as shown below for both cases A > B

and A { B.~
A _ftanzy B
tan & = Sie . | (27)
~tan 260 = tan 2¥ cos A S _: o . (29)
‘cos 2¥ = cos 2Y cos 26 - , - (30)

See . Fig. 7 for geometrical ﬁeaning'of,parameters.
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II. DETERMINATION OF RELATIONS BETWEEN
A, Y, 6, Y BY USE OF THE POINCARE SPHERE

In this section it will be shown that the quantities 4, 2¢,20, 2y
can be interpreted as parts of a right spherical triangle as shown in
Fig. 5. Equations (18), (27), (29), and (30) can be obtained directly
from the triangle by applying Napier's Rules (See Appendix).

The triangle in Fig. 9a is part of the surface of a unit sphere

called the Poincaré sphere. Any possible polarization state may be

“represented by a point on this sphere of longitude (or azimuth) 26

megsured from H and latitude 2V measured from the equator. The con=-

vention to be adopted is that, when the equator is horizontal, points

above the equator have a positive latitude, and points below the

' equator have a negative latitude.

- The "arc ﬁrNiis a- segment of the equator and has length 26 . Here
© 'and v are the O and ¥ defined in Section I D. All points on the

. ) \
equator represent various linear polarization states. The reference

"point H represents light that is linearly polarized parallel to .the

plane of incidence while the point M represents light that is linearly

polarized parallel to the major axis of the ellipse.

A. Definitions of 6, 7y, @t =0

In order to assure the correct description of the elliptical
oscillation throughout the following calculations, the conventions
used before are re-stated, and a new one (III) is given below and

illustrated in Fig. 10.
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I. 6 is the angle measured counter-clockwise from the positive x.axis
to the major axis of the ellipse such that 0 < 6 < only.

II. 7Y is the angle, measuréd in the same sense as the rotation of the
electric vector, from the major axis of the ellipse to the restored
polarizatidh. The values of Y are posiﬁivé for left-hand polarization
and negative for right-hand pqlarization. Thus - E <v< E .

III,am = 0 will be the phase of the oscillation as the tip of the ro-
tating electric vector passes that end of the major axis which liesl
in the right half plane (x > 0).

B. Derivation of Equations

Suppose unit intensity of linearly polarized light is incident
“on a perfectly reflecting surface. The x and y comﬁonents of the
© .incident. light are in phase, and if the resultant electric vector
makes an angle of 45° with the plane of incidence (with the x axis)
the x and y components are of equal magnitude. Upon reflection, the
- -two amplitudes will,- in general; be changed and a phase difference
"will be introduced such that the polarization of the reflected light
-'is elliptical.. The x component.leads the y component by the phase
difference & . Let the major axis of the resulting ellipse be at an
"~ angle 6 from the plane of incidence (i.e., from the x axis). The
ellipticity .is tan “y.as shown'in Fig. 1lla.

" The elliptic oscillation may be resolved into two perpendicular
components along the major (u) andiminor (;) axes. For unit inten=
sity (a2 + b2 =.l), the amplitude of the component along the u axis
is cosYy énd that along the v axis is sin 7. vﬁoth compohenté oséill-
ate with frequency w, but the positiﬁe éu éompdnent léadé the posi-

tive e, component by g for left-hand polarization and lags for



“

-27-

'right-hand polarization. These components are the real parts of the

complex scalars
~iwt
cosY e

i + ig ‘ o (31)

e
u

siny e

d
1l

Note that the phase difference between the components appears

o . -
as §£ in the exponent. The plus sign in the.exponent along with the

sign convention adopted for 7Y, adequately describes both right and
left-hard polarizations. Then the oscillations along the major and
minor axes are the real parts of

.e = cos Y e_iwt , ' (31)

e i sin 7y "1t (32)

v

As shown in Fig. 1llb the light can also be resolved along the

x and y axes so that

~-iust

e, = (cosY cos® - i siny sinB) e (33)
e, = (cosY sinf + i sin¥ cosh) o~ lat : (34)

: L . 2 2 .
- Again, the light is of unit intensity, Iexl + Ie ] = 1 whieh can

‘be verified by forming the'products ee v in (33%) and (34). From

Fig. 7 it is seen that the amplitudes of ﬁhe two componénts must be

2)l/2 cos¥ = |e ]

= (A2 + R
X .

=
I

1i

p R YR iy

eyl

Taking the modulus,
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(Ag + B2)‘c052¢ = cosgv cos®o + sin27 sin@ i (35)

2

(A + Be) singw = cosg’}’ sin29 + Sing'y cosee | o (36)

Adding (35) and (36)
(A2 + BE) (cosgw + singw) = cosEY (sin29_+ cosge) + singv (sin29+cos29)

AW+ B =1 | - | : ' - (37)
Subtraction of (36) from (35) ieaves  | _.

(A?}+'B2) (cosew - sin2¢) = coseyv(cosge :'sih29)

- singv_(cosge - sin26)

or |

cos 2¥ = cos 2Y cos 26 | ' ' (30)
as obtained before. It is illustrated in Fig. 12 that when af = at
_é ié oriented alohg the x axis, and ey'= 0. Thus, taking the real
part of (3L) at wb = ot ,

0 = cosY sinb cosatx + sinVy cosf sin aix

'

or
tan dtx = - tan® ctn Y : (38)

when wt ='amy. e 1is oriented along the y axis and e, = 0. From (33)

O = cosY cosO cos aty - sin¥y sinf sin amy
or

- tan wty-:.etn? ctn® . - (39)

Equations (38) and (39) give the phases of the oscillations (33) and
(34). The phase difference between the two is givéh by

A= ot —‘um
x y
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. So that with tan (@b, - at ) = Con Obx - tan oty = oot
: X y 1 + tan ot_tan at
: : . b4 Ty
ctny (tand + ctnd) ' . ~

tan & = - 5
1l -ctny

Multiply the top and bottomvoffthe right-hand side by tangv and get

tan = :—E%EQLé—— (tanf + ctnb)
tan ¥y - 1 .
= g'—t—aﬂ'g— -]; .v(-tan’e + ctn@)
2
1 - tan
. 1 /sinB® |, cosb
= tan 2¥ §‘<cos9 * sinb >'
N e’
<Si1’129 + c0529
) / \cosf sinb
tan 2Y . ’ . ‘ o
A = 2= 2 .
tan sin 20 (27)

as obtained before.

C. Poincaré Interpretation

The élliptic polarization state P is represented by convention
by.a point ofvazimuth 20 aﬁﬁ l@titude 27‘on'a'unit‘sphere as des-
_c;ibed earlier in this section. Fig. 9b shows‘such'é spheriéal
ﬁriangle HMPO. | |

The symbol X preceding a group of thfee’letters.wiil be-ﬁsed in
the following to mean "the gngle". For example, < POH M heans ”£he
angle between.thg ;ides<HPo and HM of the sphérical.triangle or ﬁhe
éngle between the tangents to the axes HPO and HM at their»point of

intersection H."
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Application of Napier's Rules (see appendix, page 1, rule iv) to

the right spherical triangle'HPOM in Fig. 9b gives>the resulfvl

sin 20-= tan 2Y cot & P _HM

or

tan 2Y _ : - :
sin 268 (ko)

tan & P _HM =
Comparison of Equations (40) and (27) reveals that
g P_HM = A : (k1)
Application of Rule V to the triangle HPOM gives

cos ﬁfo = cos 20 cos 2y S (42)

Comparison of Equations (41) and (30) reveals.that

= oy o - | (43)

o]

Application of Rules I and IX to the triangle HPOM furnishes the

remaining two equations
sin 2Y = sin 2¢¥ sin & _ - (18)
tan 2¢¥ cos B= tan 26 ' (29)
The validity of the inférpretation given in Fig. 9a is therefore

established. : R Co T - o ‘
D. 1Interpretation of Phase Differences

“':iA conéidefation of'Fig. Qa ‘shows that a clockwise rotation of the
sphere fhréugh an angle & about the diameter passing through H'brings
- the polarization state PO to Po' which 1s a linear Stéfe.' Thus it
can>be seen that the effect of introducing a phase difference A between
.the x and 'y components of light of linear state PO' i8 represented by
:fotétiné the‘sphefe anti-clockwise about the diameter passing through

H through anvangle A,
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It follows that-if the initial polarization state is pqs How con-

‘sidered a general point, then the effect of introducing a phase difference

1

axis is to rotate the sphere anti-clockwise through an angle Ai -about

A" between two orthogonal components at angles O and a*-g from the x

 the diameter passing thfough the aximuth 2.

Summary
The four relations
sin 2Y. = sin 2¥ sin & : o (18)
tan 20 = tan 2¥ cos A o k (29)
‘cos 2Y = cos 2Y éos:29 2 , : (30)
tan A - tan E’V l . ‘ . - ‘ (27)

sin 26
“can be read'directly from Fig. 5 by applying Napier's Rules as given in
| the Apﬁendix to the right spherical triangle‘HPOM. Note that the pre-

viously experiéncéd.ambiguities in sign do not appear here.
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; ’ o L
TIT. CORRECTION_FOR INEXACT SENARMONT COMPENSATOR -

The féregoing analysis has given four equations tﬁaﬁlréiéfé the
measured parameters 6 andy to the desired physiéal parametefs A‘and‘w .
‘;For Equations (18), (27), (29), and (5O)Ato be correct, the compensa-
‘.tion invphase by the quarter wavevpiate must be exac£ly g‘. In
practice the retardation of the compensator is nevér exactly g . How-
ever, it will be shown in this section.that exact'eqﬁatiéns can be
:foﬁﬁd_that give & and ¥ in terms of the actual compensation 5 of the
:"Quarter" wave plate and two measured parameters.

| Suppose thaﬁ the actual retardation of the compensator is © % g s
Whére 8 is taken to be a positive quanhtity. If ‘the phase difference
_ between the qomponentsrof the éllipSe parallel to the compensafor's

~fast (f) and slow (s) axes is (wtf - amé) before passage through the

1
compensaﬁqr and (wtf.— ams)le after passage through the compensator,

then the quantityla is defined by
- = - +
(wty - at ), (ot wts)l 3
If there exist two orthogonal compenents of the elliptic oscilla-

tion whose phase difference is exactly equal to -8 , and if the slow

axis of the compensator is placed parallel to the leading member of

this orthogonal pair, then (amf - ais)l = -8 and compensation will
result, that is,
- = - % + =0
(ot wts)2 8
As an example consider the case d = g . The orthogonal -components

' il
of the elliptic oscillation whose phase difference is - 5 are those
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along the elipse% major and minor axos.“
For left-hand polarization the ieading member of the ortooéonal
pair is the compenent along the (positive) major axis. Thus for
compensation to occur the slow axis should be placed porallel to the
ellipse's major axis. Then the quéhtity (amf - ats)l =-5= -5 .
For right-hand polarization, the slow axis should be parallel to the
ellipsé% (positive) minor axis.

| ‘In ofder for compensation:to be produced.by a compénsator for
which 5 # g some orthogonal pair must exist whose'phase difference
is exactly, - ©. This pair is not‘ihe orthogonal pair composed of the
ellipse's‘major‘and minor radii. In the following‘discussioo it will
be assumed that orthogonal pairs_caﬁ always boufound whose,initial
phase‘difference is equal to -%. |

At compensation, the slow axis is at an angle 6' with the re-
ference x axis, and the resulting linearly polarized.light vibrates

ét an angle B8' + 7Y' with the x axis. Figure 13 shows the relation

between the angles 6, 7, @' and Y'.

A. Interpretation 6f Actual Retardation

Suppose unit intensity of elliptically polarized ;ight is incident
on the compensator. Using the conventions previously adopted, the
oscillations along. the major and minor axes of the ellipsé are given

. by equations (31) and (32), again using the complex form .

Kyl
il

cos Y e-iwt » | (31)

]

e

e =1 sin.y e_iai _ ‘ = (52)‘

Referring to Fig. 1k e, and e, are resolved into components along
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~ the S and F axes of the compensator.

s e = e, cos (6 -61) - e, sin (6 -67) - (Lk)
 ef'= e, sin ( 6_95) + e, COs (6-07) : (15)
or, e and e, are the real parts of
e = -éosv cos (6 -6}) - i siny sin (6 -Gg)” e-imt :
s , (Lha)
ep = gcosv sin (6 '9}) +1 SinV cos (6 ‘?%)‘ e_idé (h5a)

The.phaSe differehée between. these oscillatiéns can be found in
fhé.following'wéy. When wt = ums, the»fip_of the electric vector
sweeps pasp.the élow’axis‘and‘ef‘goes’through its zerO'valﬁé: >Thus,
. evaluating (45a) at wt = wt, and -taking the real part,

ef’ﬁ O‘= Re 'cosY sin(@—@*)'+ siny COS(Q?GJ) e fiw%‘

0 = cosY sih(@-@') cbé uxs + sin7 cos(6-6")sin dﬁé
sin wts siﬁv cos(6-0") = - cosvvéin(e-el)cos 'uts
‘tan wts = - ctny tan(@-@') o o (L6)

The electric vector passes through the f axis at at = atf, and the
real part of (Lha) is zero.

Ré ;coéﬁ cos(@FGJ) - i siny sin(e-e“) i L g

0 = cosY cos(Q-Q&) cos at, - siﬁY'siﬁ(Q-@h) sin at,

sinY sin(@-@*) sin atf = cosY cos(@-ed)‘cos atf

N’
—
=
3
~—r

tan wt, = ctny ctn(6-6"
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The difference in phase between e, and e_ is (atf— ats)l. Com-
pensation will occur when the phaééfdifference6ﬂintfoduced by the

compensator added to the already existing phase différence(btf - at;)

o L 1
produces a total phase difference of O orT.between en and és' That
is, that

((th - wts)E =Qor
Thus, at compensation
T = -
0 or j (b, u:ts)lfs
(wtf - wts)l = -3 orm -8
- =3
(ot wtf)l (48)
or (wts -wtf)l= 5 - (49)

From Equation 48,

tan B

]

tan (uﬁs - atf) ’~
(tg? wbe - tan ams)

6:—' -
tan 1+ tan atf tan ams

Substitution from Equations (M6)'énd (47) gives

_ (ctnv ctn(@ 9 ) + ctny tan( 9= 64)>'

tan O =
1 - ctnY ctn(6- -0 ) ctnyAtan(e 6*)
tan B - - ctnv Kctn 6~ 9') + tan(@ 9') >
SR 7 L
_ _tany - cos( 6= Q_l sin(@-@i) >
tangv - 1™ gin(6-6*) cos(6-6%)
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4 2 tan?y 1 < cosg(e-efq + sinz(e-é;) >
' 1 - taney' e sin (6-6Y) cos (-0

tan 2%

o.o tan 6 = + - .
sin 2(6-6)

(50)
vSince'the tangent of 8 = ﬂ‘is equal to the tangent of & ; EQuation
(49) also leads to Equation (50). |
The‘iinearly polarized light emerging from.the compensator is re=
preéented'by a point A of aximuth 26' + éy' on the‘equator of the
Poincard sphere as shown in Fig. 12,
| Consider the right spherical triahgle APOM in Fig. 15. The point
'S is located at an azimuth 26#; Using Napier's rules for a right
spherical triangle, itvis.found that

. . ~ N\
sin SM = tan P6M=cot X POSM

: ~
or tan P_M
tan ¥ P SM = —————em

= sin &N

N 1
But P_M = 2y and SM = 2(6-0")
S0,
© sin 2(6-6")

tan & by Equation (50).

Evidently, & P_SM = 8. & can therefore, also be visualized as

an angle on the Poincaré Sphere.

" B. Derivation of Alternate Egquations

It is a feature of the Poincaré'repreSentation that the linear

state A, obtained from thé'élliptical state Po by introducing the
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phase d, can be found by rotating_the sphere clockwise thrqugh an
angle 5 about a diameter through S, the animnth of the nonnensator’s
- slow axis. Such a rotation shows the arcs: g%;vand.gk.to be equal
(Fig. 15). Thus, since €h is 2y, POS'= 2yt,
Application of spherical trigonometry to the triangle POSM nf
Fig. 15 yields the result illustrated in Fig. 16.
sin 2Y = sin 2Y* sin © ' ' - (51)
Another useful result may be obtained directly from the right
spherical triangle POSMo That is that |
tan (6-6%) = cos B tan 2Y* (52)
Figure 16 shows the relation between 2Yy*, 8, 0! and the other
parameters 2y, 26, 2¢Q'A.a

C. Calibration of Quaftér Wavé-Piate

Equations (50) and (51) can be snlved for Y and 8 once 3 is
known, and the deSired parameters A and ¥ can then be obtained frpm
Equations (18), (27), (29), (30).

In order to determine the third_quantityZSZa third measurement
mnst be made, There 1s another setting of the compensator which.'
produces extinction, namely, when fhe fast axis of thévinexact come
pensator forms the ang1e 9-9ﬁ with the u axis, i.e.;, the angle
29-9“.with fhe x axié,/withuef naving'the sémevvalue at extinction
previously discussed.

Proof that the compensator sétﬁingbillustrafed in Fig. 17 pro-

(
duces .compensation with the same analyzer setting as before, is given

next. Suppose the fast axis of the compensator is set at an angle

20-0°* from the x axis, as shown in Fig. 17. Then,
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e = e, sin.(e‘e;) te, c§s (Q'Gf) o ’ | (53)
e, = e, COS (6-61) - e, sin (9-9;)‘ . lv | (54)
..Then Q%th e, = CQSV e-iwt
e, = i siny e-iat
‘es an'd,ef gre the reél parts of
e, = {cosy sin(6-6') + i siny cos (6-6') e“iat (55)
e = .écosv cos(@-e}) -1 siﬁv sin(@-e;j : énédm | (56)

The phase differenée between these oscillations is found in
the usual way. At ot = wt, en = O. Thus, evaluating the real part

of Equation (56) at wt = wt  results in

0 = cosY cos(6-6") cos at_ - siny sin(6-6%) sin b

or

= tan ums = ctny ctn(G-G;) " (57)

at ot = ot

at Am = wtf gives

e, = 0. 8o evaluation of the real part of Equation (55)

Il
O

cogY sin(6-0%) cos @t + siny cos(6-6%) sin ab
or
tan wtf = - ctny tan(6-6%) o (58)
On passage through the compensator, an additional phase difference

of ® is introduced between the two components parallel to the compen-
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sator axes. The difference in‘phaée between’ ep and e is:(dff‘; ars)l“
thus compensation occurs when the addition of & yieldé'a:ﬁhésé diff-

erence of 0 or M. The same steps leading to (48) and (L9) are applied

again.
'(amf - ams)l + 8 = (amf - Q$S)2 =0or T
.6, or & - T =T ((th: - (Uts)l
.5, or O = T = (wts - U.th)l (h8) (Ll'g)

tan F,)' - tan (astf - asts)

tan wt, - tan ot
« f s

1  tan ot tan b,
s f

Substituting from (57) and (58),

ctny tan(6-6') + ctny ctn(6-61)
1 - ctny tan(6-6') ctny ctn(6-6')

tan O =+

ctny (tah (9;6’) + ctn (6-67) )

=+ 5
1 - ctn vy

_ 2 tany 1 <sin(949’) 4, cos(6-6") )
tangv -1 cos(6-6")  sin(6-6")
. S L2 | 2

_ _ 2 tamy sin™(6-60') cos (6-8")
l—tanEV 2 cos (6-6') sin (6-61)

tan &= - 2REY L R (59)
: sin 2(6-07)

Thus, it is.seen that in this second setting ® has the same
magnitude but the opposite sign as in the original setting. The

negative sign should appear since the fast and slow axes of the

Froy eyt e T
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compensator have effectively been_interchangedf .Such an_intgrchange
is equivalent to a negative value of 6;'

The.foregoing has shown that if extinction occurs wyen_the slow
axis of the compensator is of 26 (in Poincarébrepresentétion), then
extinction also occurs when the azimuth of the slow axis in Poiﬁéaré
* representation is T + 2(26-8') (corresponding to an azimuth of 2(26-9')
of fast axis and angle 20-8' of fast axis with respect to x axis of

Fig. 17). That is, extinction also occurs when slow axis 'is set at

o - T+ 2601 - (60)
m M
By Equations (50) and (59) it is seen that S5M = MF, (Fig. 18).

Thé angle 6 can now be determined directly from the two measurements
it S :
0' and 6" = 20-0' + 5 of the orientation of the compensator's slow

axis at extinction. From Equation (60),

1t (_’_T_r
e" + 0" -3

SUMMARY
I. A: To calibrate the compensator measure 6' and 6" and compute
8 from
- S

0= ——= | (61)

B: KnoWing 0, the measurements of 6' and Y' give & from
taﬁ (0-6") = cosd tan 2 (52)
IT. A;_ When 8 is known, only 6' need be measured. It will always be
the smaller of the two angular settings that give extinction.
B: Application of the Law of Cosines for Sides (see appendix)

~to triangle HP,S; (Fig. 18) gives
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cos 2¥ = cos 20! cos 2Y' - sin 26' sin 2Y' cos 8 (62)
from which ¥ can be calculated. Since, by definition, ¥ is
always positive, no ambiguity of the sign of ¥ arises from
the solution of Equation (62).

The parameter VY can be 6btained ffom
sin 2y = sin 2Vt sin 8 : (51)

Finally,& can be computed from

ety A 15
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CHAPTER TWO. ELLIPTIC POLARTZATION INCIDENT

I. DESCRIPTION OF OPTICAL SYSTEM

When elliptically polarized light is reflected from a metal
surface, its components parallel (x component) and normal ( y com-
ponent ) tovthe plane of incidence undergo a phase cﬁénge A vhich 1s
* then added to fheir already existing phase difference. If the new
phase change & 1s equal to but in the opposife sense from the al=
ready existing phase difference, the reflected light will be linearly
polarized. |

With the arrangement shown in Fig. 19, linearly polarized
light vibrafing at an angle & with thé plane of incidence is pPro=
duced by a polarizer. This light then passes through a sénarmont
compensator, the fast axis of which is at an angle g with the
plane of incidence (Fig.EO). If‘ﬁhe retardation of the compensator
is 9, the component of the linearly polarized light that is parallel
‘to the fast axis will be advanced in phase an amount 8 over the
component parallel to the slow axis. Thus an elliptie vibration
will be produced which can be further decomposed into oseillations
parallel to and normal to the plane of incidence. By varying ¢,
these components can be made to have a phase'difference which is
equal to the retardation A~impbsed by the reflection. Under these
circumstances reduction to linearly polarized Lighf results.

In addition to a phase change on reflection the x and y com=
ponents also undergo an amplitude change. The lineéar analyzer

measures the ratio of the reflected y and x components as
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tan g = tan w' where B is the setting of the extinction axis of
the analyzer at extlnctlon. Thus, 1f the ratio of these quantities
is glven by tan W before reflection the ratio is reduced by a

factor

tanllj r

tén s __r -
v tany 5

(1%a)

after reflection.
. DERIVATI(‘)N_V OF EQUATTIONS

ifhé‘sﬁate‘P of the original’liheérly pOlariZed light is re=
preséntéd by the poiht P of azimuth 20 on the equator of the Poine
carévsphere as shown in Fig. 21, The referénce péinf Hy, as always,v
represents light that is linearly polarized parallel to the plane
of incidence. As was pointed out in Section IIDof Chapter One, it:is
a feature of the Poincaré representation that the ellipticél Polar=
ization State PO, obtained by introducing.a pﬁase difference 8
bétween the components of the linear light parallel to the compen=
sator can be obtained by rotating the sphere abgmt a diameter
passing throwgh:F(the azimuth of the compensatorfs fast axis in
Poincare space) countefrdlodkwise throiigh an angle -8.

Thus, the sides f% and E%é are equal. As shown’in Chapter One,
Section ITI, when the latitude of the point Pé is 2y, the angle
X POHF is equal to ﬁg_the phase differences between the x and y
components of the elliptig vibration. It was also ghown that the
arc HP is equal to gwie vFigure 21 shbws the relation between
20, 3, 2;0 , and A . - |

Appllcatlon of Spherlcal trlgonometry to the right spherlcal

triangle P MF of Flgo 21 gives
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-~
sin P M = sin 2(0 = g ) sin B

Using the same identity in triangle HPOM there results
.o N\
sin POM-= sin 2¢i sin A

Equating (62) and (63), one finds that

sin 2y, = sin2(¢ " %) sin & _cos 20 sind

sin A ' sinA

As in Chapter One,Section II, the linear wvibration emerging from

(63)

(64)

the polarizer is decomposed into components along F and § (see Fig.

20) yielding, for light of unit intensity,

cos ( g - ot)'e"'l‘CDt

(0]
il

us

o
I

sin ( E‘a o) et

The oscillations along the fast and slow axes are the real

parts of the right sides of (65) and (66) respectively.

(65)

(66)

On-passing-through the campensator, a phase'difference ® is

introduced between e, and e, SO that (66) becomes

—igh # i®

D
Il

sin ( E - Q) e

or
e = sin ( %-— @) ( cosd® + i sind) o it

(66a)

The resulting vibrations (65) and (66a) combine to form an

elliptical oscillation. From Fig. 20 it can be seen that resolu=~

tion along the x and y axes gives
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4

e, =€, cos ~e siny : , (67)
LT i - '
= L+ |
ey = & sin g e COS"E‘ » S .(68)
or, substituting from (65) and (66a) and using the fact that cos g =

g— s one has

| e, = —g—( cos (7)_{ - o) - Sln (%r = ) (cosd + i sind) ) e (67a)
ey yé( cos (%T - ) sin (g = &) (cos® + i sind) )IGEiwb' (68a)

The phase ‘difference between the x and y components is found as -

fvollows :

at at = wt_, e, = 0. Taking the real part of (68a) at at = aﬂ:xy there

results
0= Rf;«géos (g - @) + sin (E = ) (cosd + i SinS)'\) e "1
0= | cos (F = a) + sir; (ﬂ - &) cosd ‘cos ast +'éin(7T: - Ot)sin&sin@
In I =~ ' X I x
or
cos (71% = Q) + gin (g = @) cosd
tan arbx = e =
sin~ (E o) sind
ctn (g ). o e
. . tan wbx = - < s + ctnd ) | (69)

At wt = wty, ‘e = 0.  Taking the real part-of (67&) there results
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0 = R-e_\/g— L cos (%T - O‘)_ ~ sin (g -@) (cosd + s1ind) J..e—idfby

- -

cos(% ) - 511'1(% —a)cosﬁJcoSwty_-sin(g -0t)sind éinaﬁty

S8

noj

sin (g -0) sind sin cnty = [cos (E -a) - sin (E -Qt) cos8‘]cos_ wty

cos (g— -Q ) - sin (E - Q) co_é,S

tan wt = p
Y sin (} - @) sind
et (- @)
S S 5
“tan d)ty 5 ctn S | (70)

The phase retardation on réflection must be equal to the phase
difference between the x and y components upon incidence if linearly

polariied light is to be produced. Thus

A = mtx - wty ' | (71)

tén ot - tan at -
X y

N = - =
tan tan (th wty) T + tan at_tan mty

Substituting from (69) and (70),

™ T
ctn (H - Q) - ‘. ctn(%T - Q)
- = - ctnd - ———— + ctnd
sind sind
tan &= ' . — : —
ctn (71{ - Q) [ ctn (g - Q) )
1 | ——————+ ctnd K-.————ctn&
sind . 8ind .
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Multiplying the top and bottom of the right side by singa leaves

2 ctn (% - @) sind

tan & = ~— T T
"~ sin ® '-=< ctn (H = Q) + cosd Xctn (If - Q) = cos&)

2 ctn (E - O) sind

2
sin"® - ctn (% = Q) + costs + ctn(g = Q) cosd = c’cm(;}T =C)cosd

2 ctn (L—r' - Q) sind
tanfA= =«

1w ctng(g - )

2 tan (g - 0) sind

tan2 GIT = Q) =1

T
2 tan <H e Q) sind

1l = tan2 (g = )

i
tanf=  tan? (H = &) sind

tanA=  ctn 20 sind (72)

il .
Notice that for the special case O = ‘2" corresponding to exact

quarter wave compensation, Equation (72) reduces to

tan & = ctn 20 . (722)

which implies that

A=5 -2 | (73)
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SUMMARY

Once the compensator is c‘alibrated, A is found directly from (72)

using the measured angle & .

tan & = ctn 20 sind : : (72)

When A is known, lﬁi can be found from

- cOs 2o sind

sin 2¢i = oA (64)
When ll/i is known, the measured angle B gives ¥ from
tan¥ - o
tan ¢ = —— ' -
7 4 tany . S B (13a)

Where ?Pr = B = gsetting of extinction axis of ’a'nalyz'er at extinction.
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' CHAPTER THREE. INTENSITY ANALYSIS

* T. FRACTION OF ‘STATE-P THAT IS PASSED BY
~ELLIPTIC: ANALYZER OF STATE A

As mentioned in the introduction, the phas¢ chahgé-A.éccﬁrring
on reflection from a metal surface often changes so quiékly Lhat the
methods of compensation given in the previous chapters afe_too slow
to give accurate.values of A and ¥. An analysis of the intensity
transmitted gy a rotating analyzer placed in the path of the reflected
light is a possible way for faster determinations of A and ¥.

A "quarter wave' plate, when followed by a linear analyzef
(nicol prism), can be used as an elliptic ahalyzgr with the following
property. Let the slow axis S of the quarter wave plate and the
transmission axis N of the linear ana;yzer make angles GA; and GN =
GA + VA respectiveiy with the x axis. vThen; when light of elliptic
‘polarizétion state A(EQA, QVA) is incident on the system, the major
axis of the elliptic vibration coincides with S ‘and the restored
polarization is along N. Thus; light of state A is completely trans-
mitted by the system. The elliptic analyzer is then called an elliptic
analyzer of state A. The dashed ellipse in Fig. 2% and the point A
in Fig. 24 represent the stéﬁe A: Figure 25 illustrates the angles
VA,veA in real space while Fig. éh gives their interpretaﬁion in
Poincaré Space.
| Cénsider the general elliptical oscillation P represented by
the solid ellipse of Fig. éB and 5y the point P of Fig.b2h. It is
described by Equations (81) and (82).

cos Wb e-iam' (81)

]
i

evp = 1 sin Uk | (82)
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which are the same as Equations (31) and (32) of Chapter One.. When
this light is incidént on the quarter wave ‘plate of.the elliptic
analyzer, the componenfs along the fast anﬁ slow axes respectively
are (see Fig. 22)

e, = e sing + e gosg
f u, vy T (83)

° T Gy 008t - ey, sint o (E
b b

where € is the angle between the up and S axes (see Fig. 23). Equa -~
‘tions (83) and (8L4) are equivalent to Equations (44) and (L45) of Chap-
‘ter. ‘One, where t has replaced (6-8') of Fig. 1kL.

E = Qp - QA

On passage through the quarter wave plate a phase difference is in-

troduced between e and ep with ey lagging by g. Thus
- P T Tp P .
in
e = (eup cost - evp s1n§) e 2 | (8ka)

which becomes after substitution from (81) and (82)

igh  im
e = (cosY cost - i siny sint) e e 2
s = ( Y, cost v, £) 7

 Since the amplitudes are all that is required in what follows,
' il

S . iz _ .
we can write with, e™2 = i,

D
]

(éinvp sing + i cos}b cost) | ' l (85)

[
I

(cost sing + i sinvp cost) Co ' (86)
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The linear analyzer resolves these'vibrations alongﬁtwd,pef_
pendicular axes and passes one of them. Suppose the transmission
i‘axis of the“anélyzer is 'set at an angle vA with the ‘S axis. Then,

the intensity it transmits is proportional to

where -
= £ sy . " o -
e, = e cos'yA er SIHYA (87)

Substituting from (85) and (86),

. e

. . + - . )
& (s1ﬁyp sing + i cosvpcosg) cos,

+

(cosvp sing +1 sinqbcosg) simy,

(cosWi sing siny, +»sin)b sint cosyA)
+4 s .

1(cosﬁ§_cos€ cosy, + s1n’Yp cost s1nYA)
= sint (cosﬁb 31nﬁk.f 31nub cosVA)

+i cost (cost cosy, + sinyp sinyA) . (88)

it

sing sin(Wb + WA) + 1 cost cos(qb.- WA)

| |et|2 singg sing(yp + 'yA) + COSQE cOSe(,YP _ ,YA) | (89)

"Equation (88) can be transformed to arrive at an altérnate final
result (90) which.can be interpreted on the Poincaré sphere. Re-

write (89)

le |2 = sin2§ cosY. siﬁ& + siny cos§ +cosgé cosY_cOosY + siny siny P
t , p A P A p A P A

= éinei[;osev sinay +'§in27 cosgy'+ 2siny cosy siny cosyﬁ

v pT A 'p A o) o) A

+ c082§ cosav cosay + singv Siﬁg + 2siny cosy sin ‘cos .’”
o A D VA Wb Wb WA Wk
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1 . . 2 2 . 2. 2 2 2 2 2
= = 1 . 2 + e P~ . g . .
5 31n27psln VA(Sln ttcos & ) + (sin Ecos 7531n Y, tsin €sin Wbcos Yy

2
+ cos2§c0527 cos™Y *sin~Y _cos® sin"Y )
ok AT po T A
Add and subtract the second term in brackets below

t 2

2 1 -1 2 2 2
. . = s . + £ . =
’e |- s1n27p51n27A 5 (sin“Ecos 7p31n“yA

+as ] +
sSin 531n Y cos 7Y cos Ecos Yy _CcOs '\/j

2

2 2 ...2 1 2. .2 2
+ i ; - = {C i
| cos Esin 7ps1n VA) . (cos Vp51n YAcos £

2 2 2 2 2 2
s + .
sin Vpcos VAcos 13 cos Wbcos VA31n £

2, .2, .2 1, .2 2. .2
+ o " + = 3 .
sin p51n VA31n E) 5 (sln Ecos 7b51n Yy

- 2 2 2 .2 2 2
tsi i cos +
~tsin Esin Wb VA . cos Ecos Wbcos VA

2, .2 .2 1 2. .2 2,
+ 3 : + = ~ ¢
cos Esin Yps1n WA} 5 (cos Vp51n v, cos 3
+sin27 cosay cosgg + cosev cos2 singg
P Ma p°%% Yo
2 . . 2
+sin 7ps1n2VA51n E)

Combining the first two and the last two terms in brackets

2 l 3 - 3 l ) 2 - 2 . .2
- = + = =
|e | =5 s1n27v§1n27 g‘lcos Y (s1n.7351n 3

_+cosggcos27A - sinavAcosgg - cosayAsineg) -

2 2 2 2 2 2
Cad I . L s
sin yp(cosayAcos 3 sin VA81n E sin écos VA

c 2 2 1 [ . 2 2 2
- - + = vy si +
cos”Esin VA) ] 5 |sin”¢ (CQS,YpSID Yy
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- 2. 2 . 2 - 2. e .. 2
+gi + + giv 51
sin '\/pcos’y3 cos Vpcos‘yf sin~y,sin wb)
. 2 2 2 2 2 . 2 . 2 2 2
C+ {cog” + gi i S+ Y.+ osi;
cos & (cos Vpcos Y, T sin 7551n'7! cos }bs;n Yt sin YPCQ§ yﬂ)

o 1 T 2 2
| = = g i + =
|¢t| 5 31n2yp51n2YA E_QOSEVPF[-cos.g (cps YA

L aipPy . 2 2. .2 4
- s1n~7A) - sin 3 (ggé YA - sin YA) ]

(o]

¢ s + N 4+ o+ ; s
gcos‘y (sin™y cos Y,.) sin~y (cos™y, + sin™y )I

1l ' 1 ' 1
_ = . + _ S+ =
5 s;nE(p31n2Y 5 cosEchquEcosEY‘ 5
| |2 = l + E i in2 + 2 2 2
el =5%3 (s1n27ps;n‘7v : cQs‘ypcosfygcqs £) . L (90)

;'Thé angles 2YA, 2}5 have the usual interpretation on the-
Poincaré sphere as shown in Fig. 2k,
When the Taw of Cosines for Sides (see appendix) is applied

to the triangle LAP of Fig. 24, there results

(2 v m . E _ ) . 7;[- _ .
cos AP = cos(§ - QYA)COS(§ - EYP) + s1n(2 EYA)Sln (2 27p)cos 2¢
(91)
ory
cos AP = sinEYAsinEWb + cosEyACOSQyPCOSEQ : - (92)

Comparison of (92) and (90) reveals that

A
2 BA

2 1 1
Ietf = §-+ 5 cos PA = cos 5

When the original intensity is unity, the fatio of transmitted

to original intensities is

) :
I, = cos PA (93)
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Although in this treatment use was made of an elliptic analyzer
employing én exact compensator, the results hold generally. As dis-
‘cussed In Chapter One, Section III, there are two settings GA of an
inexact compensator which give compensation. They are the 6' and g
of Equation (61). 'Thereforé,:the state A of an elliptic analyzer
which uses an inexact compensator cannot be found directly from the
compensator and niqol prism settings, but musf be calcuiaﬁed uSing.the
equationsrsummarized at the.end'of‘Segtion IIT, Chgpter Oné. Pro-
ceeding thus with P and A known, Equafion (93) gives the fraction of
ihtensity that is passed by the analyzer.

Of‘particular interest in the following sections will be the
case_when A is a linear state (i.e., A lies on the equator of the

Poincaré'sphere), and the analyzer consists solely of a nicol prism

(1linear analyzer).
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IT. INTENSITY METHOD'FOR:DETERMINING
A AND ¥ WITH.LINEAR»INCIDENCE
Suppéée linearly polarized light is incident on a metal surface,
with the electric vector making an angle of 4L5° with the plane of
incidence. The reflected light which is in; general, elliptically
polarized is characterized by the phase difference A between the
' eiectric field components parallel and normal'to the plane of in-

cidence and by the ratio

tan ¥ = P (9%)
of the amplitudes of thesé components.

The reflected light can be analyzed by passing it through a
rétating nicol prisﬁ* and plotting thé inténsity of the lighf trans-
mitted as a function of the angle‘B between thé prism's tranémission
Vdirection and the plane of incidence.

The polarization state of the:incident light is represented by
the point PO located at an azimuth of 90° on.the equator of the
Poincard sphere (see Fig. 25). The reference or Zero azimuth H
corresponds to light that is linearly polarized parallel to thé
plane of incildence.

Upon reflection, the state is elliptical and is represented by
the point Pi on the sphere.u The sides and angles of the right

spherical triangle HMPl are interpreted physically as explained in

the caption of Fig. 25.

¥ No compensator is used with this analysis.
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The polarization state A is that state which is completely
transmitted by the analyzer. If the transmission axis of the
analyzer forms an angle B with the plane of incidence, then the

™
azimuth of the Point A in Poincaré space is 2p . If PlA is the

length of the arc of a great circle connecting P, and A, then the

1

intensity transmitted by the analyzer relative to that incident,

according to (93), is given by
™

2 PiA
L (95)

I = cos

If two points P; and P, on a sphere have longitudes 291, 26%
rand latitudes 271, 272, then the distance betweeén them in given by¥

4 2 2(6.-6.) + sin2y. sin? 6
cos P,Py= cos2y,cos2Y,cos ( - l) sin2y, sin2v, (96)

The latitude of the Point A in Fig. 25 is zero (Wé=0), SO

Equation (96) gives, for the arc P A

cos PjA = cos MP, cos (2B - HM) . (97)
From the right spherical triangle HPlM,

~ .

cos HM = 39§7§$1- : v - (98)
cos MP : ‘
1

~

sin HM = tan @l ctn A (99)

Equation (97) -can be written

™\ AN ~ LN
cos PlA = COS MPl cos 2B cos HM + sin 2B sin HM

Substituting from (98) and (99)

~ ~ [a)
cos P.A = cos MP-|cos 2B E28 2? + gin 2B tan MP. c¢ctn &
1 1 cos MPl ' 1 :

* A derivation of this formula is given in the Appendix, pgs.4 and 5.
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)

cos P,A = cos 2B cos 2y + sin 2B btn’A.siﬁ.MPl’ (100)
: oo _ L ~
Next, Equation (96) is used to find the distance P, Py
e - ’N?P | (90° ﬁw)
cos 1o = cos 1 cos (9 -
~ a)
cos 0P = cos W, sin HM _ (1Lo1)
o~ 1 54 DR |
Substituting from (99), . (101) becomes
N . ~ ~ A
cos PlPO = COS MPl-tan MPl ctn
~ A N
cos'PlPo =vs1n MPl ctn o . (102)
Substitution of (102) into (100) leaves
Y t‘% : »
cos PlA = cos 2P cos 2¢¥ + sin 2B cos Pl 6 o (103)

Apply the Law of Cosines for Sides to the oblique Spherical

triangle HP P, and find

1

e : LR + gip 2 . ; -
cos g;}o cos Ew“zgghgzg sin ¢\§i5*29 cos A
1
~

cos PPy = sin 2y cos A (104)

Now substitute (104) into (103) and have

AN . . . .
cos P.A = cos 2B cos 2¢ + sin 2B sin 2¢ cos A (105)

Applying the trigonometric identity

costt = % ( 1+ cos 2t) ; (106)

to Equation (95), there results

2 1A
: ~ .
I = cos _;—__=l(1+ cos P.A) (107)

2 1
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or, upon substitution from (105)
I= %— ( 1 + cos2p cos2y + sin2g sin2¥ cos A) | (108)
With the trigonometric identity (106),
A
cos A = 200s2 5 - 1
] . . 2 A
I= 5 1 + cos2B cos2¥ + sin2B sinl2y (2cos 5 - 1)
1 [ o s 5 2 A
I = 5 1 + cos2B cos2Y¥ - sin2B sin2Y + 2sin2B sin2yY cos 5
I= %' 1 + cos2(p + w)] + sin2B sin2y cos2 g
Again, applying (106),
2
I=cos (B +¥) + sin2p sin2yY cos® %‘ o (109)

Where B is the position of the analyzer's transmission axis,

tan ¥ the amplitude ratio of normal to parallel components and A

their phase difference.
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TII. INTERPRETATION OF INTENSITY MEASUREMENTS

As the analyzer is rotated' the transmitted“intensity Varies,
since the distance PlA (Flg 25) changes. When the analyzer is at

1’ the arc PlA Wlll be at 1ts shortest

the same azimuth as the polnt P
..pOSSible length. Thus, since the cosine fnnction.decreases as the
argument increases from zero to g,’the intensity will be a‘maximum
when Pl'and A have the same azimuth. But a maximum transmitted: in-
tensely’occurs When the transmisSion direction of the analyzer is

" parallel to the major axis of the ellipse. Thus,

B =0 S o : (110)

Where ﬁImax is the setting of the analyzer when the transmitted in-
tenslty is a maximum, and 6 is the orientation of the major axis of
the elllpse with respect to the plane of 1n01dence The azimuths of

both p01nts A and P. are then 29 on the P01ncare sphere. ‘As the

1

analyzer continues to rotate it will, at an angle ) + 5, ‘come to.a

minlmum as the transmission dlrectlonvls ailgned with the mlnor axis

of the elllpse. rThus;.ln one rotatlon of 360 the transmltted inten-

s1ty will go through tno maxima and two minima correspondlng to set-

. tlngs along the two major and mrnoriradll‘respectlvely. A plot of

intensity_versus analyzer angle might look iike that shownbin Fig. 26.
Since the intensity is proportionaluto the square of the amoiitude,

the ratio of minor to major diameters of the eilipse‘can be found from

tany

=.t“ j axX ] , , N ) 111
£\ S
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The + sign is chosen when the polarization is left-hand and the - sign
designates right-hand polariiation. .
When 6 and'the magﬁitude of.v arelmown5¢=caﬁ be‘found from the
previously derived Equation (30)
| cos2Y = cos2Y cos28 ’ : (112)
~ Equation (112) is found from the right spherical triangel HMP,
since the latitude of P, is 2Y by definition(Fig. 9).
Once ¥ is known, A can be found from (109) with the measured
value of I.
If one makes the assumption that ¥ does not change»with time, ¥
and ifthe‘time dependence of B is known,a A -time plot can be made
direcﬁiy from (109) once the value of ¥ is chosen'and the ﬁime varia-
“tion of I is defermined.
vif the time vériéfion of w.is not neglectéd, a new value‘of Y
can.be determined with the curve frqm each rotatioh"of the aﬁalyzér -
first finding 7 and 6 and then ¥ from (112). For such a measurement
to be‘precise, thé exact depeﬁdence of B on time must be known.
An alﬁernatevprocedure would be to measure ﬁhe intensities when
the transmissioﬁ directioﬁ of fhe analjzer is paréllel and normal to
the pléne of incidénce. From the measured 1nten31t1es T

arallel

and T : ¥ can be determlned as in (9L4) from

normal
| : (Ino£;él
N - - (113)
‘g “parallel

Then, A can be determined from (109). The handedness of the elliptical

*  This assumption is approximately true when studylng the early stages
of film growth on metal surfaces.
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oscillation will be
right-handed B when A is on the range

-mT<A<O
T<AL 2T
3m <A< b, oete.

left-handed . men <A< -
o<A<LT
2 < A < 3m, ete.
as shown in Chapter One, Section. I.
Whichever procedure is adopted; theuaccuracy will depend upon
how fast the analyzer is rotated. The analyzer should meke one
(
complete rotation in such a short time that the ellipse does not
change by a measurable amount. This time of rotation will be limited

by the corresponding short time interval available during which to

make measurements in the desired positions.
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‘Iv. INTENSITY METHOD FOR DETEﬁMINﬁNG
A AND ¢ WITH ELLIPTIC INCIDENCE

When polarized light is reflected from a metal surface, the’

staté of polarization of the reflected light depends upon two factors.

(1) the phase difference As introduced on reflection between
electric field compenents pafallel and normal to the plane
of inc¢idence.

(é) the amplitude atténuation undergone on reflecfion; If the
ratios of perpendicular to éarallel amplitudes arevtan¢&
tan¢% in the incident_and reflected beams respectivély, the
,change‘can be represented by the parameter ¥ Where-as in (13)

tanz//'r

tanw 5

tan¥ (11L)

Consider the ellipsometér geometry illustrated schématically
in Fig. 27. The incident light is first linearly polariéed by a‘
polarizer, the‘transmission direction of which is at an angle O with
the plane of incidence. Then the light is passed through a compen-
sator which adds a phase difference & to the linear components normal
and parallel to its axes. The light is then reflected from a metal
surface and passes through an analyzer whose transmission axis is at
an angle B to thevplane of incidence.

As shown in Section I of this chapter, it is a feature of the
Poincaré representation that, given an analyzer which transmits
completely light of polarization state A, the fraction I of the
intensity of light of polarization state P emerging from the analyzer

is given by
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S (93)

I = cos

ol

where PA is the arc of the great oifole on the Poincarg spnere Joining
the»points P and A. |

With the Poincaré representation, the state'of the_linearly.polar-
ized light that emerges from the polarizer can oe represented py a

pointPO on the equator of the unit sphere.(Fig. 28), If the point H

is chosen to represent light that is linearly polarized parallel to the

plane of incidence, then P. lies at a distance (azimuth) 20 along the

0]

equator from H. Again, & is the angle that the polarizer's transmission
dlrectlon makes w1th the plane of 1nc1dence. On emerging from the

compensator, the llght is in the elllptlcal state Pl ThlS state is

Tfound from PO by rotatlng the sphere counter-clockw1se about the dia-

meter pass1ng through F through an angle 6 . Here O is the phase

dlfference 1ntroduced between the components of the llght parallel to

T
the compensator axes. For an exact Senarmont compensator, &is 3 .

In going from state PO.to Pl a phage difference Ai is introduced be-

tween the components parallel and normal to the plane of incidence.
Upon reflection, an additional phase difference‘AE is added to the

components parallei and normal to the plane of incidence. _The light is

‘then in the elliptic polarization state P,. The intemsity of the

elliptic light of state P, that is transmitted by the analyzer when its

2

transmission aXis’is at an angle B to thé plane-of incidence (so that
the.light it passes completely is_represented by the point A on the
equator having azimuth 2B) is given by Equation (93) with P replaced
by Pgl : )

hen the ellipse variés with time,(93) givés only an 1nstantaneous
intensity.



6he

~

1

was introduced between the components parallel to the axés of the

In going from state PO to State P, (Fig. 28), a phase difference

compensator, but there was no attenuvation of the amplitudes of these
components. Since the only change in the polarization is a phase

, e .
change, the arcs E}O and FPl are equal. However, on reflection, in

o

general, there is an attenuation, so the arcs HP, and HP, are in-

general not equal.
vFinally,‘it can be seen from Fig. 28 that if

A= D D ' ' - -
A > - ,.(115)

S

il
3
]

HP>

the reflectéd state will be linear and the transmitted intensity will

be a maximumvwhen A and P. coincide on the equator.

2

Whén A% has any other value than those given by (115), a varying
amourt of light will be transmitted by a rotating analyzer. The analy-
sié aﬁd interpreﬁétién of the varying intenéity that is.transﬁitted by
‘the analyzer ig given in Section IIf of‘tﬁis chapter; Left-hand
'polarization for the reflected light will occur when the total phase
difféfenée |

A = Aii AS | | - (116)

between the éomponents parallel and normal to the plane of incidence

is on the range
=2 T A} < -, 0< A} < m, ‘ en < A}.< 3m, etc.
The oscillation will be right-hand when
-m<aA <O, T<A <eom 3w <A < b, ete.
r T r

For the other cases (A-r = 0, M, etc.) the oscillation is linear."
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It remains to find the polarization state P2 (i;e.; the point .of
latitude ZYr and longitude QGr)'of the reflected light in terms of the
polarizer and analyzer azimuths and B, the relative amplitude diminu-
tion ¢Iand the phage retardation AE introduced by the reflectipn. From

the obligque spherical triangle HPlF of Fig. 28,

sin Al = gin (7‘( _6) o o -
Ka) ~ . (117)
sin FPl sin HPl . _
v 5
But
~ ~ . T
FPl = FPO = 20 - 5
™
HPl = EWi
sin (T - 8) = sind.
So - ' .
sin (20 - §v) sind (118)
sin A, = — .
i sin 2¢i

il
When the compensator is exact, & = > and 2 = 90°. The latter

fact can be verified by applying Napier's rules to the triangle*HPlF

la)

S |
cos 2¢& = COs 3z COs FPl
o e
0]
2 Y, =90°

1

Thus, for the case of an exact compensator

T
in A, = gii - =
sin &, = sin (20 2)

(119)

20~ »

Ai 2
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A. - Exact Compensator

and .~

s

Assume that the compensator is exact, i.e., that & =
Equation (119) holds.

From the right spherical triangle HP2Mr of Fig. 28, one has

it

D\
sin (27 - HM ) = tan &f} cot (T - A)
r r 2 r

~ ~ -
- sin'HM = tan M P, (-ctn A)
r r2 r
™
sin HM_ = tan M/} ctn A : (120)
r T 2 T .

Also, from the same triangle,

~ cos 2V -
cos (2m - HM ) = —_— '  (121)
: cos MyPo»

since 2Y, = 90° , tan ¥, = tan 45° = 1 and from (114)

tan ¥ = tan ¥, | _ y (122)

SO

~ :
M = S8 2y

= L8 2K (121a)
cos MrP

cos
e

. ~ .
Applying Equation (16) to find the length of P_ A, and remembering that

2
the latitude 272 of A is zero,
| ~ A
coslPEA = cos M P, cos (2B = HMr) ~ C 0 (123)

™\ ~ ~ A
cos P,LA=cos MP cos 2B cos HM + sin 28 sin HM
2 r2 T r
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Sﬁbstituting from (120) and (12l1a),

: I ~
cos P.A = cos M P cos QE,SOS 2¢_+,sin 2B tan M. P, ctn A
2 T2 . , r 2 S
: cos M P
r 2
~ , o ‘ N e U , ‘
cos PyA = cos 2P cos 2¢ + sin 2B ctn A, sin M P, (124)

Applying Equation (96) to find the distance PEPO"

m~ ~ ~
cos PPy = éqs M P, cos (20 - HMr)
which results in _
~~N N : S
cos P Py = cos 20 cos 2¢ + sin 20 ctn A, sin M P, (125)

“which is analogous to (124). _
' ~

Equation (125) can be solved for sin M P, to yield. .
A~ : o
~ cos”PEPO - cos 2O cos 2Y :
sin MrPE ¥ Tsin 20 ctn A}‘ . (12%)
Substitute (125a) into (124) to get
_ N
~ N ~ sin 2B ctn A} (cos P P, = cos 2 cos 2Y)
= + . —
cos PEA cos 2B cos 2¥ WO A}
~ ' ; ~
_ sin 28 . .
cos P A = cos ?B cos 2y + TG ( cos PP, = cos 20 cos 29)  (126)

Next, apply the Law of Cosines for Sides to the oblique triangle HPEPO
.to get

= ’ + si i JAN
cos P P, = cos 2¢r cos 2Q + sin 2¢} sin 2a cos A (127)

Insert (127) into (126) to get,
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N ’ sin 2B
= 28 + ———
~cos P A = cos 2y cos 2B e ( cos
sin 2B
T sin 20

cos PoA = cos 2¢¥. cos 2B + sin 2B sin 2¢ cos A}

2¥ cos 20 + sin 2¢ sin 20 cos Q?)

cos 20 cos 2Y

(128)

Applying the trigonometric identity

coset =v% ( 1+ cos 2t)

(106)

to Equation (93) and replacing the general point P with the particular

point P2
~
. P.A e
2 2 1
- = - =(1+

I cos — =3 (L + cos PEA) _ (129)
Substituting (128) into‘(129),

I-= % (1 + cos 2¢ cos 2B + sin 2B.sin 2¢ cbs A}) (130)
Apply the identity

2 1 : :
sin't = 3 (1 - cos2t) (131)
1 ' S L . .2 A
I= §.(l + cos 2¥ cos-2B + sin 2B sin 2¢ (1 - sin §r) )
1 , A . . .2 Oy
=5 (1L + cos 2¢ cos 2B + sin 2B sin 2¢¥~ 2sin2B sin 2¢ sin 35 )

I= % (1 + cos é(¢'~ B) - Osin 2B sin 2¢ sin2 ér
Applying (106),

I= cos® (¥ = B) - sin 2B sin 2y sin? g? (132)
Equation (116) becomes, by (119),

-
Ay =Dyt 200 - 3 (133)



so that

" one has _ \

5 o EPVANEEE EOé-g\
I=cos (¥ =B) - sin 2B sin 2y Sin%;fé_——E———__ ) (134)

If identity (126) is used instead of (131) to simplify (130)

A +o20 -0

2(5a+ V) + ?in 2B sin 2¥ cos (}S 5 2f>. L ‘(155)

I = cos
Equation (135) reduces to (109) when ¢ = E . That is, when the

linearly.polarizéd light is incident parallel to the fast axis of the

compensator, it. is:transmitted unchanged to the refiecting surface and

the incidence is linear.
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B, Inexact Comperisator.

When the compensator is‘not exact, Equations (119) and (122) are
no longer valid since the angle P FH (Fig.28) is then no longer a
right angle. The steps leading to Equation (130) can be repeated for
the case of an inexact compensator if ¥ is replaced everywhere by ¢}.'

' Thus, by analogy to (130), there results

T =

N+

(1L + cos 2¢};cos o + sin 2B sin 2 ¢% cos A})A » (136)

'By using the analysis discussed in Section IIT of this chapter, one

can find lyrl and Gr. Then ¢} can be obtained from
cos 2¢} = cos 2y, cos 29r (137)

which is Equation (30) of Chapter One. In addition, A} can be found‘
from Equation (29) of Chapter One,
_ tan 29r

cos By = Tan W, - (138)

~In order to find the amplitude diminution tan ¥ and the phase
change A% on reflection one must know Ai and wi. These can be ob=-
tained by applying the Law of Cosines (see appendix) to the oblique
triangle HFP, of Fig. 28. Thus, remembering that T = 90°, and
=20 - 90'?:

N o
FPl = FPO

~ A .
cos 2¢i = cos HF cos(20 - 90) + sin HF sin(2 - 90°) cos (7 - &)
0 {
or

. cos 2¢i = cos 20 cosd oo (139)

&
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Also,:
m ~
cos (2@ - 90) = cos HF cos Qwi + sin HF 'sin 29, cos iy
—~ . ——
o . A

/

sin 20= sin 2¢; cos i (1k0)

When the time variation of B is known, and the time variation of
wr'is computed by meking successive applications of (137) with each
- 360° sweép of the analyzer, the time variation of A} can be found
from‘(156). The phase difference Aﬁ’ for & stationary polarizer can
be found once and for all from (139) and (140) so that the time varia-

‘tion of Aé can then be found from

A=A -A o ' " (116)

-The amplitude ratio wi can be found once and for all from (139)
for a stationary analyzer so that, the time variation of ¥ can be

found from .
tan ¢%

tan wi

tan ¥ = (114)

The intensity method utilizing eliiptic ineidence appears to have
no advantage o;er that using linearly polarizedvincident light when
the choice of & is arbitrary. However, if the occasién .should arise
that a rbtating polarizer is desired in addition to a rotating analyzer,
the consideration of elliptically polarized inc;dent light would be
necessary. In spch a case the precise variétion of & with timé must

be known in order to determine wi and A, from (139) and (140).
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APPENDIX - SPHERICAL TRIGONOMETRY '

Napier's rules. -~ In a right spherical triangle, with y = 90°,
~ there are five other parts,®, B, a,b,c. These five parts can be grouped
together in ten different sets of three each. Corresponding to each of

‘these sets there is a formula connecting the three parts, so that by

means of one of the ten foimulag,_when ?wo parts are given?.any other
.part may be,fopnd.' The ten formulas'arél wit@ reference to Fig{_Al,
1. sina = sin c sin &, 2. sinb = sin ¢ sin B,
3. sin a = tan b cot B, L, sin b = tan a cot Q,
5. COS ¢ = cos a cos b, 6., cos c = cot Q.cot B,
7. cos & = cos a sin B, 8. cos B = cos b sin @,
9. cos & = tan b cot c, 10. cos B = tan a cot . c.

The :same . sourcé7 gives the following laws for ‘the oblique
triangle in Fig. 2.
I. Law of Sines

sin@  sin B : siny
sin a sin b 8in c

IT. Law of éosinéé for SideSVF
;éos a = cos b cos ¢+ sin b'sin c cos O
and éjélic.
IIT. Law of Cosines for Angles
| cés Q- - cos B cos vy + sin[B sin 7y cos’ a
and cyclic. | |
Theorem: The distance between two points on the unit sphere is

given by
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)

cos P.P. = cos 271 cos 272 cos 2(8

155 > = el) + sin 2y, sin 27, (14)

where 291, 292 and 271, 2Wé are the aéimuths and latitudes respectively

of the pointS'Pl and P2.

‘Proof: (See Figure A3)

Application of Napier's rules to the right spherical triangle

APQB gives
a 2 2(6, - 6 -
cos AP, = cos 2, cos 2( s - l) N (A)
" sin 2, .
, sin 4 PoAB = —— (B)
sin AP
2
Apply the Iaw of Cosines for sides to the oblique triangle'PlAP2
to get
3 oo .~
cos P P, = cos2Y; cosAP, s1n271s1nAP2cos(§ -4 PEAB) - (c)
/\'—‘ 2 f\+_2 e : P
cos PlP2 = COS8 Yl cos AP2 sin 71 s1nAP2 sin # 2AB

From (A) and (B)

sinEWé

o~
cos P P, = cos2Y; cos2Y, cos2(92 - Gl) t sin2y, sin AP, 7
’ 2
: 2 2 ve ' in2 i .4
. cos PP, = cos2¥, cos2Y, cos2( b = 91) + sin2y, sin2vy, (14)

APPENDIX FIGURE CAPTIONS

Fig. Al.. Right spherical triangle.

" Fig. A2. Oblique spherical triangle.

Fig. A3. Constfuction used in proof of theorem.
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MUB-8184

- Fig. A-1
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‘MUB-8185

Fig. A-2
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MUB-8186

Fig. A-3
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FIGURE CAPTIONS

Fig.l. v(a) Flectric and maghetic vectbrs E and H in a linearly polar=-
ized monochromatic wave propagating in the z direction.

'(b) Representation of linear polarizatidn by considering the
electricAvector only.

Fig.E. Linear polarization és resultant of two orthogonal linear com=
ponents in phaée. |

Fig.3. Elliptical polarization és resultant of two orthogonal linearly
polarized sinusoidal componéﬁts with a mutual phase difference A.

Fig.h. Heiix in gspace ag the instantaneous representation of an ellipe-
tically polérized wave., Propagation of the helix in the z direc-
tioﬁ through the fixed x y-plahe results in the'ellipse béing
\traced out.

Fig.5. Dependence of elliptic polarization on phase differénce A be=

» tween orﬁhogonal lineariy polarized components of amplitude A
and B for the case A > B.

Fig.6. Dependence of elliptic polarization on phase difference A be-
tween orthogonal linearly polarized cOmpOnenﬁs of amplitude A
and B for the casé.A < B. Compensation by quarter wave plate
with fast axis pafallel minor ellipée axis.

Fig.7. Geometric and phjsical parametérs of élliptic polarization.

u v codrdihate system parallel to major and minor ellipse half=
axXes a and b. x difection parallel to plane of incidence. A, B =
amplitudes of x,y componeﬁts; 6 = orientation of major ellipse
axis, tan W:and tah Y = amplitudé ratios in x vy and u v coordinate

systems. ¥'= direction of restored linear polarization.
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8. Conjugate radii of ellipse.

9. (a) The elliptic polarization. state P, as represented on
Poincare” Sphere with MM an arc of the equator.

(b) The right spheri;al t;iaqgle HMPO relating the éngles
2y, 20, 2y and the phase difference A.
10.  Tllustration of sign conventions and meaning of the quantities
0,y Oscillation seen as observer looks toward‘the source.
11. (a) VResolution of elliptic vibratién a;ong major.andvminor
axi;.

(b) Resolution of e , e along x and‘yv

12. fhases of_elliptic oscillation when.electric vector coincides
with coordinate axes. |
13. Ingxact quarter wave plate. Slow axis éf inexact compensator

is at an angle 0' and extinction axis of analyzer at 6' + y' at

extinction. S and F designate slow and fast axes of compensator

respectively. The u axis is chosen to be alohg the major axis of

the ellipse, v is along minor axis.

14. Inexact quarter wave plate. Resolution of e, and e, along
compensator axes S and F.
15. Portion of Poincare” sphere showing azimuths § of slow axis

of inexact compensator and'A of analyzer.

16. The actual retardation d of the inexact compensator leading

. to the measured parameters 6' and y' can be correlated with the
: derived parameters O, 7y, ¥, A Dby considering the right spherical

_triangle P SM in the Poincare” representation.

17. Altefnate orientation of inexact compensator at extinction.
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18. Compensation occurs at two settings of the'coﬁpensétOr; one
with the azimuth of the Sl axis at 20' and the Oother with the
azimuth of the 8, axis at 7 + 2(29-8“)."’

19. Tllustration of eléments in ellidemeter using incident

.ellipﬁic polarization.

20, Orientation of polarizer and compénsator with respect to the
plane of incidence (x axis) for incident elliptic polarizatioh.

21. Incident elliptical polarization P Poincare” repfesenta-.

o
tion with P original linearly polariZed light of azimuth & falling
on compeﬁsator:of retardation & and M azimuth of linear vibration
along major axis of ellipse.

22. Resolution of e, ’ &y along axes of %“waﬁe plate.

23.  An elliptic anal?zér Eonsisting of Sénarmont compensator
having slow axis S at angle QA from x axis and of nicol prism
havingrtransmiSSion axis N at angle GN from x axis passes com-
pletely 1light of polarization state A (dashed ellipse). When

light of unit intensity'but arbitrary polarization P is incident

on the above elliptic analyzer, the fraction transmitted is

‘given by Equation (93).

24, The quantitiés'EyA, 2§;;27p are related on Poincare” sphere
as shown. Thevpoint L is a pole of the sphere and represents
left-hand Eircularly'polafized light. The point S is the azimuth
of the analyzéf’s SIOW'axis, the point M is the aximuth of the
ellipse‘é major axis, and the point I is the aximuth of the

linear analyzer.
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Fig.25. The polarization states as fepresented on Pbihcaré sphere.
H corresponds to light linearly pqlarized'parallel to plane of
incidence. M corresponds to light linearlyﬁéolarized along

-major axis of ellipse represented by Pl' fhe anglé PlHM is to
be interprgted as the phase difference A.introduéed getweén'
parallel_and normal components'on reflection, while fﬁe side ﬁ%l
is interpretéd as 2. | |

Figf26. As analyzer is rotated 360° intehsity goes throﬁgh two
maxima and two minima. |

Fig.27. Ellipsqmeter arrangement for‘intensity methba with elliptic
.inCidence.fihgf” | o
1) Light source.

2) Polarizer_with.transmission axis set at angle & with the

‘plane of incidénce.

3) Compensator with fast axis at g to plane of'incidence.
L) Reﬂkcting_surféce.. |
5) Anélyzer set with transmission direction at an angle P to the

- plane of incidenpef | | |

Fig.28. Succéssive_polarization states, Poincarélrepresentatién,

elliptical incidence, amplitude analysis.

P_: polarization state as light leaves polarizer.

o
Pl: polarization state as light leaves compensator.
Py: polarization state of light after reflection.

A : polarization state of light passed completely. by analyzer.
H : linear polarizafion parallel to plane of incidence.
& : angle between transmission direction of polarizer and plane

of incidence.
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fast axis of compensator.

phase shift in compensator.

: phase difference between x and y components'of:incident light.

: phase difference between x and y compdnentsbdue to reflection.
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MUB-8165

Fig, 3
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MUB-8166

Fig, 4
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MUB-8157

Fig. 7
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Fig. 8
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Fig. 9

Equator
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Left-hand . Righ:’r—hond

sinY>0
cosY >0
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Fig. 10
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Fig. 11
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Fig. 12
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Fig, 15
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Fig, 20
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Fig. 22
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Fig. 23
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Fig. 24
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Fig. 25
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