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ABSTRACT

For the alphé decay of Poej_‘2 to the ground state and various excited

states of the Pb208 daughter, there are collective surface vibrational modes,

which couple these lbw—lying excited states to the ground state of Pb208.
In the present description of the transitions between these excited states
208 208

of Pb and the ground state of Pb only single phonon excitations will

be considered..
| - Interaction of the elecfric multipole nature occurs between the

excited state levels and the ground state of the récoil lead daughter induced
by its interaction with the emltted élphavparticle, affecting the latter's
penetration of the nuclear barrier. |

. The formation of the excitation in the Lead nucleus can either be
produced by Pdelz alpha decay or by (@,a") inelastic scattering on Pb208,
but in either case we consider that an alphé cluster exists in the nuclear
surface region. ‘

It is the purpose of the present paper to investigate the manner in

which the multipele interaction affécts the alpha particle penetration of

~ the nuclear barrier.



-1

I. INTRODUCTION
. The emitted alpha particle, as it leaves the recoil nucleus and
penetrates the nuclear barrier, can be‘described by a partial differential

eigenvalue equation of the form

Y =EVY _ (1.1)
n- nn : »

I

as expressed by the’ tlme independent Schrodlnger picture.

Here we have a Hamlltonlan, H, as a second order dlfferentlal
‘operator acting on space dependent wave functions, Yn descrlblng states
of the system in "ordinary spaCe' and the constant energy elgenvalue, En'

Speaklng in terms of matrlx operators ‘acting upon elgenkets which
are our dynamical states in Hilbert space, we can express the alpha par-
ticle decay in the Heisenberg picture as | | V ;
|

H) pln>.=_en]n)w . o : (1.2)

For the most part, we shall formulate.our problem in the latter
notation. ' : : .
For fhe alpha decay of Po212 to Pb208 we shall describe the action
of the nuclear barrier, represented as a nonQdiagonalﬁN X N matrix, on the
alpha particle as a wave vector where the effect of the mﬁltipole nature of
the surface deformation of the daughter nucleus is included. _ |
| In regaro'to this particular problem there are four important open
channels for_the multipole transition from the exoited Iead states to the
ground state of Lead. Thus, the general barrier penetration matrix‘will
"be a 4 X 4 non- dlagonal matrix which will describe the effect of the barrier
by its action on the alpha elgenvector, a four component vector in Hilbert
space. v A
The most important‘colieétivé levels in Lead (see Fig. 1) are the
0+, ground, 3-, 4+ and 5-. We shall derive an expression for the coupling

matrlx elements for these levels in the region from R. to R (see Fig. 2,

. 6]

page 3 ), where channel mixing occurs. _
The first excited state is the low-lying 3-. It appears that just

considering the two channel problém, where only the O+ &and 3- states are

considered, is a: reasonable approximation. Only single phonon exchange is
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considered where I =3 is the spin of the phonon for the octupole case.
The multipolarity of the state 1s determined by the usual 2 = 23 =8
or octupole state.

In order to obtain an expréésion for the coupling matrix element
in our two channel case, we w1ll set forth the expression: for the total
Hamiltonian, H, and the total wave vectors, ln

The expansion of’ln) in terms of a complete orthogonal set is per—
formed and then substitution into (H ln> f is made. Upon mul-
tlpllcatlon by (m[ from the left, and by use of the constructed orthogonal.

. elgenstates, we obtain a set of ordinary radial dependent differential
equations describing the emitted alpha particle as it penetrates the nuclear
barrier. _

In order to obtain an expression fof the total Hamiltonian{ a nuclear
model‘must be adopted. In the present fdrmulation, we are considering purely
collective properties of the nuclear sufrace and shall describe the nucleus
as an incompressible, classical liquid drop that undergoes pure surface
oscillations which can be represented by harmonic oscillators. _

This hydrodynamic model, adopted by A. Bohr and B. Mottelson  “in .
their early work, assumes anlequilibriumispherical>shape and constant vol-
ume, adiabatic conditions. Because the equilibrium shape of the lead
daughter is spherically symmetrical, since it is doubly major in Z and
N . containing closed nuclear shells only, we need consider only vibrational
excitation and not rotational excitation, as there is no permanent defor-
mation present. ' V

Utilizing this model we have a Hamiltonlan consisting of five terms:

H=7+vC + vk Hoea1. + Bipe : (1.3)
T is the kinetic energy operator for the system consisting of the emitted

alpha and the recoil nucleus given as

1 _ 2

- —V
20 r’ Q

where % 1s Planck's constant divided by 27 and u is the reduced mass of

. the alpha-recoil nucleus system. - The Laplacion in spherical—poiar coor-
27,2
r

dinates, V = is the point density source monopole or central electro-



t

E (MeV)
212 -
Po™ "
0+ 8.95
- 5- 5.46
2 |2l 2
q54 q53 qso
4+ 4.27
212
943|940
' 3—- 2.615
2 .
q3o
0+ 0]
208
Pb
© MU.35098 °
Pig. 1. The most important nuclear energy levels in Pb208

have been observed in inelagtic-electron scattering
experiments by W.C. Barber.Z Similar values for the
spacing of the lead states are also given by T. Stovel
and N. Hintz.? 'I_'hﬁ states quoted here are taken from
H. Faraggi's data.
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-static force term, where Z is’thelcharge on the daughter and r isithe
radial eeparaﬁion of the alpha and the fecoil;daughter. The symbol
represents the angular coordinates (G,¢) of the alpha particle in a space
fixed spherical polar coordinate systen. v | )
The central part of the attractlve nuclear potential, VN will be

assumed to be an exponential potential of the Woods-Saxon form.

or HN is the Hamiltonian operator for the internal energy

H
» “"coll.
* of the recoil nucleus. By adoption of the before-mentioned hydrodynamic
model, Hcoll. becomes

Ay, 2 1. "2,
Hoo11., = i[ (3¢5 Pan * (3)B5 a5 ]

where C, 1is the "surface ten51on parameter and B, is thk 'Mass" para-

3 3
meter for the octupole case.
‘The expansion coefflcient 5 m? is the collective coordlnate by

‘whlch the distortion in the nuclear potentlal caused by the surface vibra-
tional deformation, may be descrlbed » _
The interaction Hamiltonian operator, t’ is that par£ of the
Hamiltonian which deals w1th the interaction 1nvolved in the alpha. daughter
system, due to the vibrational channel coupling. . o :§

The nuclear potential, VN,’ and interaction Hamiltonian, H;

_ int’? .
are the first and second terms of a Taylor expansion-of the coupling poten-
tial, VCO ' A{T,Q).. Only terms linear in aB were kept.

Hint is dependent upon .the nuclear deformatlon of the nucleus and

is thus dependent of ¢ It is.also functlonally dependent on the total

5 e

barrier potential slope in the coupling reglon.

(1.5)

The position in space, R(g,Q)of the oscillating nuclear surface is
.defined by

R(a;g») R[l+ Za Y (n)] S (1.6)
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for the octupole case.

R, '1s the equilibrium radius. See Fig. 3. ‘Upon substitution of
' R(a&g)ln the above expression for Hint  ve obtailn
dv o . m | B |
int = " ar Ro i A, Y@ o (1.7)

The five components making up our eigenvalue equation can be written
as

C ' ' :
(T + v+ tHoo1r. g "Eb)"n> =0 (1.8)

6/

where E is the total energy eigenvalue of the system. :
The total wave function, ¥, is written, in the two level approxima-

tion, as

'—"-'()YO' Q)X +%r>2 mYmQ)X (ex,) 1.9)
r?// = uOr 0 ( Oo(a}) _T/-Tm (') 5( 3,-m* 3 ( 9

»

is

5)

where the separation of variables into functions of r, O and o
applicable. v : ‘ _ ,
The radial part of the total wave function is giveﬁ by Uﬂ(r),

the angular part Py Y?(Q), 'the spherical harmonics and Xz)_m03 the part

of the wave function depending on the distortion in the nuclear potential

-of the daughter nucleus.:

¥ can also be expressed as
. i N

o 0 - m (o) ’ |
e = uoﬂr) Yy (Q)xoo(aa).+ u3(r){Y3 (), XB’_m 3 Yo (1.10)
The bracketlnotation is introduced to indicate the sum over m,
and, that the total angular momentum is coupled to zero the angular momen-
tum of the initial state.

Before the sum over angular momentum, £, has been performed, as in

‘the above expression, we have the following general expression

- ) yi m N '
Wira) - 5 5 (@) ey x o (@)
T 20 meeg NBrL ) )“,ﬂ"m ’
or | N IR (1.11)
ry= s My(x) - Y ™(q), (05) ‘
?//l 2 »;/-27;“[ (a) L. Y,
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where Y, (Q) and. X, _(a‘) form complete orthonormal sets. ;
‘ It w1ll prove to be convenlent to deflne a newv vector, angular
' momentum, coupled representatlon fx! (Q Q. ) whlch is related to the uncoupled

representation, l (Q)Xj ;<a ), by a- unltary transformatlon

?(,/ (0,0 > - Az z c(uo',-m-mo')'Y,l“‘(n)x;,'-_,ﬁ%) (@)

vwhere the .C's are the Condon and Shortley vector addition, or Clebsch-

> .

Gordon coefflclents
v Returnlng now to the Helsenburg picture, we express?%/} (Q 04 )
as |4 m) . We will denoteY/f by |00) andd!(gg

the coupllng to zero prev1ously indicated by the bracket notation.

by ,35> 1ndlcat1ng

¥ or |n) can now be written as

: u u (r) - : .
In) = ;9.100) + 2 [33) . (1.13)

and upon substitution of ln ) in our eigenvalue equation and bv the use of

the harmonic osc1llator elgenvalue property of H coll (here, a seven-dimen-

sional harmonlc oscillator), we cbtain
’ 2

' 2 2 . 42 d |
(H-E,,) ) -2; Sy foo) - B2 |55>+(v Cof )t oloo) 133>1
dr- : dr
o o
B Oloo>+ g —?-|55>+RO gN 3mx’;<n>1<—§— oo 2033)) =0 (z.)

Multiplying from the left by (OQJ and by the use of the orthogo-
nality condition, N
(Z'm'llm? = 8,1 qmn,... ) ' - (1.15)

we have our ~ordinary differentlal equation or radial wave equatlon where

the elgenfunctlon is dependent upon radigl separation only.

W2 2
d U'O 7’1’10.) : dV’N 5 , . »
‘2u e (v 't vN+ 2 my)u, + Ry S Z(OOla nlgn 1330 =0 (1.26) f
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AThe 7ﬁw/2*tefﬁ'is'thégzéfoupoint energy of thé;harmonic oscillator
-but we may‘redefine the zero of eﬁergy,sb that we can drop this term.
| ' By virtue of the propértiés‘of spherical harmonics,'the above
equation becomes ” ' '
2

2 du | : w . _
_i;_u 20 * (V + VN E )u %NI-‘- /)I__ r3(X (a3) [a ’ 5 Y=0 (‘I.l'?)

dr n

for single phonon transitions.

By use of an operator property of the harmonlc osc1llator (ef.,

Schiff6), the coupllng matrlx element, .
a7 ‘ '
Ry ar */ g7 (%ol %)

becomes

v T pl/R
Ro%‘r.fg—% R
373

Simlarly, to obtain the second ordinary couple differential

equation for the two-channel case, we multiply on the left by(35|and'

obtain . _
0.0 : - o
- d u. . : . ¥ . 1/2
no 3 C e o H 12 va [7. n .
(V7 o+ 2= +R u =0 (1.18)
puar? | 2 "2 Fa) 0.ar "o &r (13505)17’:" o

Again, we redefine the energy zero by subtracting “the zero—point energy
7/2%w leaving %, the energy of the 3- state in Pb208 |
Instead of expre551ng our energy quantities in terms of MeV we

shall, for s1mpllc1ty, multiply through by 2%_ and express these quantlties
. : Eol o :
in l/f2 units of reciprocal fermis squared In the present paper, the
coupling term will be defined as q (r), 50 that '

qe(r)s:‘ = dVNf—' *—{11—71: : (1.19)

2 O dr )
5 5
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Our rédial waveAeqﬁations then reduce, to

dgu .

_3_0_ + —2-‘21— (Ea - Vo‘) 'uo + qeu5 = 0 ‘ ' (1.20)
dr- - B - ' : ' : ’
and
o .
du L2
'—‘-—éé + 2'—2 (Ea—h(b—va- 12, 2 )\ \JB + q_euo = Q
dr % o 2ur S ’

The V' term has Been absorbed into the VC Coulomb term, and is designated

‘It will prove to be convenient to definé the following quantities. -

x P(r) = 22 (Ea- V)

0 2
.h .
, o (T.21)
2 2u - 12 .
k,“(r) = -= [E Hw-V - =— =
3 ﬁ2 a 2u I‘2
where koe, k52 énd q2 are expressed in units of l/fg;
The coupled equaﬁions for the octupole case thus reduce to the
simple form l -
"o 2 2 -
U + ko PO +q u5 = 0
' (I.22)
i 2 2 .
W'+ k,u, +qdu, = O
3 3% 7 3%

where the indicated derivative is taken with respect to the radial distance, r.
In thé following section we shall derive an expression for the

matrix elemenﬁs of a 2 X 2 matrix, for the octupole caée,_which describes

the effect of the nuclear barrier upon an emitted alpha wave funétion. This

matrix will describe our coupling barrier penetration problem for the two

channel case. .



II. -THE'BARRIERfPENETRATION MATRIX,’IN THE CASE WHERE .COUPLING OCCURS
In this.section we shall present a method for "decoupling" our -
coupled differential equations. We shall begin by cOnsideringbfhe'two

7

channel case, as is done in H. A. Weidenmllller's' work on many channel
‘scattering. ‘

The two channel case is, of coufse, only relevant_io the approxi—
mation where octupole excitation is thewvonly type of excitation that occurs
and the open channels involve'only the_final states of the daughter that - '

are the O+ and 3-. No assumption as tbcthe relative magnitudes of the
2_ ., 2. 2

coupling matrlx ‘element q2 and the energy matrix element,. k}O ;-KB - kO ,

will be made.

As will be seen, when q2 and k are numerically evaluated, the

50
2 « q is not valld and k 2 ~ 0 1s not a reasonable

assumptlon that k., 30

approximation for32hlé problem.

We shall calculate the transformation matrlx, denoted by B,
which transforms A, the matrix Hamiltonian from a non- dlagonal form to
a diagonal representation.. The fact that the off-diagonal elements of A
are not zero can be -ascribed to the coupling effect.

‘We shall find a new set of basis vectors [V) in the representatlon
where A 1is diagonal. These vectors may,be obtalned_from the basis vec-
tor, |U) , of the "old" representation; where A isbnot in diagonal form,
by finding the eigenvalue k— that belongs to the eigenveetOrs [V) and the
diagonal form of A. ]V) can be constructed from k—, as we shall demon-
strate. v ' o : 1

We meke use of the characteristic equation in conjunction with the
‘secular determinant in order to obtain x;} _ : ‘

Let us return to our two coupled partial wave equations which we

derived in Section I. They are: e : i

!
o

: ‘ o _ 0 (I1.1)
1t + k + — O
“3 3 “3 Q" % = °
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which can be expressed, in matrix'notation,'as:'
(II1.2)

Let A Dbe defined by

g
n

and the eigenvectors of A as:

1

i

Then the above equation becomes:

AIU)l

11

- o

this. is our matrix representation of our two coupled;‘differentiaf equa -~
tions with eigenvalues‘EO and E3 respeétively. ‘: 4

As stated before, the eigenvalues x; can be obtained from the
characteristic equation which is A[X) = O, where

.2 . 2
(ko’ )";;1: q

A= -
> > SRS
\qe k. 21——?&;

)
and |X) is some vector. ,
Setting det K,‘where det A is the secular determinant of 4, equal
to zero, we obtain the following equation in terms of x;;
2 L

(k2 - 2P0 -ap) ~dt =0 (11.5)

e
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glVlng us the two elgenvalues, k—,_as

2 TS R a
(ko + ks ) ¥ J0T g )2 u(k k" - ).‘

2

>\'—T- =‘

(T1.8)

We are free,to specify a zero of energy quite‘arbitrarily and can thus

simplify the above expression. -
Asibefore, let us define k e = 52 - ko2 or the energy spacing of
the 3- level which is seen to be 2.61 MeV (see Fig. 1).

Calculating kbg and k52 dlrectly as defined by Ky - V)

where the index i = O or 5% As wve shall see, 1n view of the greater~

detail given in Sec. IV, k02 = 3,12 l/f and k5 = 3.9 l/f . The zero
on the K;‘energy axls. can be shifted down so that k.O2 ='0 MeV and k52 =

2.61 MeV, and the 'same results are obtalned. The change of form from

2 2u (

2 .o
ko q \
A = o
q2 ok 2/
-3
. lo ‘:'d22
to o : A =

is obtained by this shift in the energy scale and for ko2 = 0 scale k;

becomes:

e = ' : - o (11.5)

For the second form, the shift is made so that the zero point of

the energy axis coincides with ko2 = 0. It is ev1dent that Np for
k02 .0 MeV can be obtained from A-. for X, 2 16 0 MeV or 3.12 l/f by

subtracting 16.0 MeV from the latter.

*The qﬁantities, k2 and q2 are treated as lkigi'and 'qel,

that is to
gay, they are treated as positive quantities. '
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Now let us proceed to construct the elgenvectors [V) belOnglng

~to the eigenvalues K such that [V) deflned as IV)— ( ), satlsfles the

.eigenvalue equation:’ AlV = A V)

For the purpose stated above, let us return agaln to our charac-
teristic equatlon.n.A1X> .0 where'. A acts on some two- dlmens1onal vettor
ket in Hilbert space with compnents ( ) such that A|X) = 0 is true.

From the characterlstlc equatlon we Obtain two llnearly dependent

equations:

il
o

2 \ : 2
(ko e K;) XxX+q ¥y
_ (I1.6)
. 2 2 :
and - . q-_xv+ (k5 - %;)-y =

|
(@

Either of" these two equatlons may be used to construct v+, the

" components of fV), so let us arbitrarily choose the first equatlon in the

form:
X[y = —p——— . (1L.7)

(k02 - K;)

The same ratiq>lx/ye obteined_from fﬁe second equafioﬁ results in a re-
dundant expression, since the above two equetioné;are'not linearly.indee
pendent. This situatioh is a conéequence of the type of vector space with
which we are dealing. ' ' v v

For s1mpllclty we shall return to the energy. scale where k02 . 0
and then the ratio x/y becomes x/y = - ¢ /x; and y/x = - x;ﬁx

We can now construct two normalized vector_component wave functions

v+ and v- from the vector components .x and y of- IX) as

)

q [ 1
Vi = ~5; } x+/q2
: (11.8)
v L ’[ * 2
= b_'kk-/q

, i . . -+ +
where . v, and v. are eigenkets or column matrices and v, and v

are row matrices.
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.l/b+ and l/b_bare,obtaiﬁed from the normalization conditions on
v, and v . . o . ’v }
* iy 2 . 2 2
The condltion on (x,y) or (xly) 1 or x + y glves b— l+h;/q
where v; are mutually orthonormal elgenvectors o ' -

So we ‘have vs.as:

! . . :’.j. \

VR e (.97,

1

* MEJ 1+x2+/qu

v

.%i/qg)-

We will construct a transformation matrix tha%.will.transform'the
matrix A, in its non-diagdﬁal representation with basis vectors, IU) = (uO)
| . | _‘ | : : U
to a representation where A 1is a doagonal matrix, denoted as D, with
' basis vectors |V) = (X;). ‘ » | '

In matrix notation we say D = B AB where B denotes the transpose_
of B. That is to- say, the representation of A as (u [A[u ) is not
dlagonal and (v [Dlv+) 1s diagonal. : i

Certain group properties of B .can“be obtained by conside;ing

_Bi as an element of a general transformation,groﬁp, G, i.e., Bgad;
By virtue of the group properties of "G it is true that we have the follow-
ing commutator relation [A, By ] = 0. | _

This follows from the postulate that the Hamiltonian is 1nvar1ant
with respect to the trapsformatlons of a group, G. Thus (u !A[u )

(v_|D{v,) are equivalent. |
. Here we are dealing with the dynamical states [u ) and lu5>-
and [v+) and - |v_) in Hilbert space. These vector components, ]u
and ]u )

3

Hilbert space. Theée two components comprise a complete set of basis vec-

are the components of {U), a vector in a two dimensional

tors in this space. . _

We can obtain the new set of.basis vectors ]V) from the old set
lU) bjﬁthe operation: B as ‘IV>.#_ BIU). It is seen that the Haﬁiltonian
A, as a matrix operator, remains unchanged under the transformation, B.

In actuality, we are defining B in ﬁhis manner to be that speci-
fic transformation which carries [U) into [v) as [V) =B[U) or written aé
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(=) = (E won )(uo’ | - (II.10)
V4 1. B T, . P .
- U R | .

B={ ( o )
1

The above form of B has been chosen for a specific reason, as

where

will become apparent later when the_éxpressions for the matrix eléements
of B are determined. | |

B is the propérgtransformation matrix first: if it'commutés with
A, as mentioned above, and secondf if it is unitafy.

The unitarity of the B matrix is again dependent upon the proper-
ties of the transformation group G, of which B is a member. The uni-
tarity condition for a transformation is indicative of the fact that any

- transformation made by that group element will preserve the orﬁhondrmality
of the wave function upon which it acts. A

| ' The conservation of‘particle number is indeed a consequence of
unitarity of the transformation where normalization remains undisturbed by
the action of a transformation matrix:suchias B.

B 1is real as all its elements are real and therefore B = B*.
From the unitarityﬂcdndition we have B % =.I and from this condition ve
have the implied'condition that B—l = %, i.e. B inverse is equal to B
-transpose. This fact will'be used in subsequent calculations. A‘

Let us look at the resulting form of the separated equations.- We

started with the following coupled equation in matrix notation

" + AlU) =0 or AJU) = - [UO)" - (1_1711)_

.

But A=% DB . since D=BA®D '
So that [U)" + AJU) = 0 becomes

H

)" +BDBY) =0 (11.12)

!
Using our definition of B as the matrix which tranéforms IU)

into ]V) as ]V) = BIU) in conjunction with the eigenvalue A+, we have
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DIV) =N £ V) : S © O (II1.13)

where D 1is the diagonal form of ‘A, sO that.
M+ plv) =0 | o (II.14)

we obtain the following two separated second order differential equations:

]
O

Vi (2) + Aale)vale) o
' (1I.15)

1l
o

vr"(r) + x_(rjv;(r)

The exact formfdfthe matrix B can eésily-be expressedlin terms
_Of ve by the following parametrization method. When numerical evaluations
are made later on, it will be seen that this parametrization is useful in
thié reéard. As 1s well known, any 2 x 2 real, unitary matrix can be

expressed as:

cos ¢ -sin ¢\

g
no

sin ¢ cos ¢

Since B. is real and unltary,llt qualifies as a value Wthh R
can take on so we will express B in this manner. _
In order to obtain the elements of B . from the elements of R,

we can plcture a right triangle of sides A~ and q2 making an angle of

¢ opposite to the s1de of length X\- and with hypotenuseJ q + k-g
From this triangle we see that
' ‘,( .-‘ o . . - ( ,
sing = R S ’ o : (I1.16)
| CJat e | o
’ _ _ :
and _cogw ::GF:T;—gﬁ ' ?O that B can be writtep as
2 o A
. Tk ® B PTINCE,
B = ' o , . (1T.17)

2

; S - c !
\ e a2 B )
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At this point in our discussionvwe.infroduce,the_cbupling barrief_
penetratibn matrix,; Q. Q@ 1s a real symmetric matrix. We shall see hbw
Q .is expressed in férms of the transforﬁation matrix, B, and thé WKB
integral penetration matrix, P, .which'describes the manner in which the
barrier aff?cts the partial wave‘ampliﬁudes u, and u5 when no cbupling
is present. For this.purpOSe let us qonsider,the step by step process by
which an alpha particie escapeé fhe coupling region of_thé barrier.

We shall consider an eigenvector{‘%))as describing an alpha
. B
cluster which exists at some raduis? RO.' We shall regard this alpha
cluster as a purely out-going wave at this radius, and that its nature is

purely independent of the statistical manner in which it was formed. In

- this regard we shall consider the nucleus as.a black box and not 1look at

the manner in which shell model wave functions, not derivable ffom a poten-

“tial, are.ca}culated. . ug _

Léet us for now assume that { “ > exists, and let us "carry" this
alpha particle wave vector.through-fheacoupling region of the barrier and
 find out what effect the coupling has on this emitted alphs particle.

- First a transformation t¢o diagonal form is méde'iniorder that the
set of basis vectbrs belonging to the dlagonal form of A will be carried

through the barrier in the "de-coupled" form.

i e:50 | U A SR |
| ; ° - | 0700 (17.18)
SR oohev (R ) ,,HB(RdV“ _ .
by definition of B.v R ' }“f'VAT)‘ | o
Then the new wave vector 5'vJv-(r) may propagate through the

barrier under the influenée of the barrier as prescribed by the diagonal
barrier penetration matrix, denoted by P. '

.Therefore,

v V-(Rl‘) - V- (RO\,) .
' =P : . C

i yo=P | (IIflg)
Yy V-I-(Rl_)‘ Vi (RO) !
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. where P represents that part of the barrler ‘between RO and. Rl
(Detalls of the structure of P will be elucidated later ) See Fig. 2
Sec. III for an 1nterpretat10n of RO and R1

We obtain our original wave vector by the operatlon of B again as:

uo(R,): o [v'-(Rl').--.‘{_} | |
L TR I N )
I I e B -
We have made use of the fact that gt =-.§, since B is,a real.
unitary matrix, as is.evidenced'by the relaﬁibn det B =1, as wasfelabo;
~rated upon earlief. ' V_ : 2 . _é
| Briefly stated we then have, in vector nbtation,' ' | E
lvy(Ro)>;”B|U(RO)) by definition of the transformation ‘B,'[V(Ri)5=P[V(RO)>
by the actibp of the nuclear barrier on the outgoing alpha particle wave
function. ‘ , i
' ]U(R )) = §IV(R )) by transformation back to our orlglnal basis-
vectors. _
The total transformation'of these matrix Operationé carry %he
alpha particle partial wave amplitudes through the coupliﬁg region of the
barrier and thus comprlse the operations of the matrix we denote as Q.
Q becomes Q = B'P B.

The matrix elements of Q will be denoted as: -
a By | o
Q = | _ o
By / o

since Q 1is real and symmetric, that is to. say, 'Q is Hermitean.

'(iI;el)

ot = Q where Q" 1is the Hermitean conjugate of Q and is a
combination of the'complex conjuggte and transpose operatiohs:
&= |

Returnlng again to the parametrization method previously descrlbed
expre551ons for the matrix elements of Q may be obtained. '

First, however, let us depart from therabove discussion fof a
brief consideration of the barrier penetration matrix P. PFurther dis-

cussion of P will appear in the next section.
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P 1s a diagonal matrix of the form o ) )
/XK. O \.:

(11.22) .
o Ky / |

S

where fhe.diagénal elements of P, ‘K;l'Will be approximated by WKB
_exponential penetrability expressions, the arguments of which are dimen-
sionless integrals. - ' ' '

A diagonal matrii of the form of P would describe the barrier
adequately if coupling of the partial wave equations did not occur.

Tt is the off-diagonal elements of Q which describe the coupling
effect in the inner part of the barrier region. ' _

.Returning'td the evaluation of O, B, and Y Dby the right triangle

method, we have the expreséion for Q as

cos ¢ sin qb\ .K_ 0 cos ¢ -sin ¢ )

Q = / _ (11.23)
isin ) cos ¢/\“O K+ sin ¢ . cos ¢ '
so that «, B, and.ﬁ become:::
;'(1 = K sinz'(b_}.K_ 0082 0
B = (K- K-)’éin'¢ cos ¢ v _
. o, o (TT.24)
Yy = K_ sin” ¢ + K, cos X0

where 'tan.¢'£ A ;/qzl ‘

This method 5f expressing the elements of Q makes nuﬁerical
evaluation of Q easier. _ V

The next section contéins a detailed discuésion‘of ﬁhe structure ‘
of the bérrier as it is made up of nuclear, coulomb;”and'cehtrifugal barrier
componenets. We also considef the manner in which the coﬁpling affects the
usual barrier penetration éalculation.‘ We shall aiso.perform the numerical
. calculation of Q. ‘ b
Let us first, before numerically evaluating @, lock at the barrier

regions in greater detail,
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III; NUMERTICAL EVALUATION OF THE BARRIER PENETRATION MATRIX
FOR THE TWO CHANNEL CASE |

We have seen how Q is obtained as a barrier penetration matrix in
a mathematical formalism.' Now let us investigate the physical interpreta-
tion of Q. ' ‘
‘ In regard to Flg 2 it is apparent that there are essentlally four
regions in the potential energy diagram to be considered in the solution
of the barrier penetratioh problem. ' | _

The first, of course, is the nuclear interior, that is, the region
inside R, (the inner- cla551cal turning point).

0 S ‘
The second is: the coupling region from R, to Rl (where Rl is

the radius at maximum barrier height) where the bgrrier penetration matrix
ie not dilagonal and was defined as our Q. '

| ‘The third is the region from R, to R, (where R, 1is the outer
c.t.p.). We assume that coupling does not occur here and that the barrier
penetration matrix is diagonal and that the barrier can be described,by a
simple WKB (Wentzel, Kramers, Brillouin) calcuiation. V ' _

The fourth is the region, outside of R2, where the problem can be
taken out to infinity, where laboratory observations are made.

Microscopic models have been developed to set the boundary:con-.
ditions on alpha wave functlons at the outer surface of region one. In
essence, they take'shell model product wave functions for 1nd1v1dual nucleons
and project out.cluster probabilities. We shall not be concerned here
with the microsc0pic models, but shall consider the general effects of sur-
face coupling of outgoing alpha channels under a wide range of inner bound-
‘ary conditions. , ' '

We consider -our alpha waves as‘purely outgoing waves at infinity
and as of the same phase at the nuclear surface, which, for our problem,

O'* The latter requirement is.forced by the
nature of the problem of decay of a quasi-stationary state, where there is

coincides quite closély to R
a standing wave insidethe.potential barrier.

. %The nuclear radius, Rd, is given by R, = (l.QA;/5+ 2)f. TFor the
~ case of P 212 Ry is, =~ found to be 9.15°f.



_20-

ol
B WARA
AN

S ATANNY

SN IANNN

AV A NN
NIENSSNuE|
v [ T
W

\J
Fig. 2.  This represents the total potential barrier seen

by the outgoing or scattered alpha for the Po2l? to Pb208

+transitien. The total potential is given by

vI'@R) = VC(R) + W(R) + VZ(R) and is plotted by a program
developed by Poggenburg;ll The nuclear potential, for
the present case, was taken as a Woods-Saxon potential.
VL was taken to be the Langer form of the centrifugal
barrier factor as VU(R) = xe/2u(1 + 1/2)2/R°, and vC

is the Coulomb term.’

| te
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In the region R to R Q operates on the alpha particle wave

’
vector, as preViously discusseé and transforms it to a new wave vector at
Rl' Tt will be noted that since @ involves a WKB calcnlation by virtue
of its dependence on matrix P, we must be careful about the use of Q  at
or near the inner‘c.t.p.lés'WKBlcalculations are not adequate for this
region or near R (For detaile'refer to the discussion in Morse and
Feshback. )

At the radius Rl

on the alpha waves. We then extend the problem to infinity where the

we can apply a straightforward WKB calculation

relative intensities of the alpha particle groups can be calculated.
Again, discretion must be used in the region about RQ. At each radius
R , and . R2

The solution to the barrier problem involves the last three regions.

R , as a boundary condition, the alpha waves must be matched.

0’ 1

' The solution in'the last two regions, as stated before, involves

a simple WKB type calculation. The region of interest is the second,
between‘RO and Rl and thie is the region under consideration in this
baper.
We consider thatlthe-alpha particle cluster exists at RO. We

then ask "What effect does the-barrier have on it?f‘ Region two can be
11lustrated in another manner by looking at a more "physical” picture.
In this regard, consider Fig. 3. The model represehted by Fig. 3% is .
described further,.in this'section,vunder the discussion of the collective

[T

" coordinate.” We have the easily'ekcitable "pear shape," 4 = 3, oscillation
if only the octupole’ coupling is considered and the higher levels, Lhe 4+
- 5-, etc., are ignored. . As we sshall see, this is probably not a poor
" approximation. ' 'i
The alpha cluster is assumed to form somewhere in the nuclear
interior but octupole coupling does not occur until the cluster reaches

R or core radius. At the distance R,, the alpha cluster can exchange

c? . ‘ c.
angular momentum and energy with the daughter nucleus. (The angular
momentum exchanged; as stated before, can be even or odd, as 2 =0, 3-,
4+, 5-, where T 1is the parity of the phonon state or mode of oscillation.)

No coupling occurs inside of RC‘"
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MU-35096

Fig. 3. The mechanism by which the channel mixing or
coupling between the recoil-excited states and the ground
state, 1s represented by the change in momentun and
energy of the emitted alpha particle through the exchange
of a phonon, or a quasi-particle of integral gpin, between
it and the recoil nucleus "flipping" the Pb2%° nucleus
between the O+ andJ3- states. That is, the emitted alphs
can induce, through phonon exchange, a change in- the
daughter's spatial distribution from that of a sphere to
that of a three-nodal deformation of higher energy and
angular momentum.

&
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Lef QS<returh to the octupole case. In-accofd with our model,
the core nucleons, inside’of.Rc, do not participaﬁe and remain undia-
turbed by the octupole -deformation. o

In the deformed region,.Rc to R, , the nucleons take part in the

’
total collective mode of oscillation ané show a new displacement at any
time, t,. | |

The time average of the octupole (or other) deformation is zZero,
as (a5u> = 0, where a3u is the collective coordinate.*

We can consider the'node as ripples moving around on the surface,

' or, looking along a radlal dlrectlon, we can imagine an undulating or

oscillating surfaCe.
There is a net effect, as (a ) # 0. The coupling occurs in

this "deformed region" between R and R

l .
Of course we, have a s1m11ar picture for £ =4, the L+ level where

there are 4 nodes. .

In any case, it 1s pictured that thevalpha leaves the parent at
the point RO where RO is taken equal to Rc and at this point the nucleus
is the daughter, that is to say, that the barrier "belongs" to the daugh-
ter. The coupling of angular momentum or sharlng occurs between the
alpha and the daughter, Pb208 T This is essentlally the plcture presented

earller. ,
"Let us now dispense with the numerical! calculation of P, the

penetration matrix, in the region between Rl and R2- No coupling occurs
here and P can be obtained, as a diagonal matrix, by a simple WKB cal-

culation. We shali then proceed to the nhmerical calculation of Q.

*There is no prolate or oblate, permanent deformation in Pb208 since it
is doubly magic in Z and N. Lead, Pp20 , has no rotational bands,
but several excited states seem to have collective character as shape
oscillations about an equlllbrlum sphere.

TNote that Ry of Pb208 and Ry of Po°™® do not aiffer to any extend due to
the fact that A. of Pb doés not differ greatly from A of P0212, where

A is-the atomic number.
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‘We shall again consider octupole deformation and, therefore, we
are dealing with a 2'X 2 matrix operator, Operating on a 2 component wave

vector. The potential at maximum barrier height, V = B can be read

1=0 =0 " o ph=D
from Fig. 2 directly and 1s B"'="20.22 MeV at Rl 10.95f. and B 7 ='20.75

MeV at Rlﬂ =5 = LO o5f.
" As ve see R 10 and R =3 do not differ noticeably. From the

deflnltlon of the c. t.p R f= & and R £=3

o - 0
=0 = :
to‘9‘l5f and ;2£ = 26.5f and R2}Z 5=27,5f by means of a hand calculation.

These_values-compare‘quite favorably with those obtained from Fig. 2,

which are R £=0 = 27 50 f and Rﬁ}Z =5 = 27.32f indicating that Fig. 2 is

can be found epproximately eqﬁal

valid for our case.’

The barrler penetracion matrlx for the uncoupled region R to R2

is glven as

PO C) ' ‘
P= | .} - (rIT.1)
’ 0 P ' :
5
To detérmine the values of PZ for £ = O:and 3 and also P, values
for I = 4 and 5, the WKB pe netrability calcula+1on was made with the aid

of a computer program developed by N. Glendenﬁlng 12

This computatlon is valid for any arbitrary barrier slope. For
our lead 208 case, the value of the angular momentum state, f,the value
" of the 0 decay energy Ea = 8.95 MeV for the ground-ground traﬁsition and
a value called R low.are fed in.

The values of P, are computed directly. .

For the purposes of this calculation, VN(R) was taken to bé a

Woods-Saxon potential of the general form

)

-V

VW(R) = 9 — . (1In.2)

poog (Bl




,vobserved from Fig. 2 which are R

_2‘_5_

In the present. computatlon the parameters were chOSen as, VO’

the nuclear well depth as 35, rOA /5 l) = 8.71, and &, the diffuse-

" ness, as 0.61f.

As may be noted in the lead-208 case, the WOods Saxon potent:al is -
gquite similar to that chogsen for K. Poggenburg S calculatlon where Vk

was given.as

VN(ﬁ) - .a 35" C(1I1.3)
(R—l.l7A;/5—2.17) .
(1 T ePTTTG.576 )

where Vy = 435 again and 12747 = 6.96 for A = 208 and r, = 2.17.

The computation involves a search for the radius at maximum barrier

‘height. If the barrier maximum does not exist as in Fig. 4, part (a)

where only one inflection point exists, then the value of R low is read

~in; If the barrier maximum does exist, then the program searches again

for the barrier minimum as in Fig. L4, parts(b)or(c; If the minimum is-

below the alpha decay energy, then the program searches for the inner

turning point of the barrier as in Fig, 4, part(b)as in our case.

If the minimum is above the alpha decay energy, 1.e., the inner
turning p01nt does not ex1st as in Flg. L part(c), then again the R low
value read in is used. ' ‘

Beaides determining P ! the following quantities were also -

determined: R in’ R,, R,, n,, the Coulomb parameter.
in 1 2 £ =0

The values of R, were determined to be R, = 26.397,

: 2
R2£—5= 26.66f and R, £k 26.84f which compare favorably with the values

ngo 27.30¢, R, Y= 27.32F and

o
=5 o7.8¢. The (=4 wave was not plotted.
'R, p

The values of P, were found to be:

Y
3.105 X 10’14 , » 7

o
It

6.665 x 10722

el
I

= 5.771 X 10732

e
-
|
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Fig. L. The WKB barrier penetration calculation can be

computer program in the region where coupling does not
ocecur .

made for any arbitrary barrier shape by use of Glendenning's
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- The value for the -ground -ground state transltlon penetratlon fac*

9

tor -PO was previously calculated by J. O. Rasmussen” and was found to

be PO

blllty factor was calculated from RO out.

The potentlal assumed by Rasmussen for the calculatlon of PO was

= 1.32 X 10 15. Agaln, as in the above calculation, the penetra-

an Igo potential of the form:

-

: ‘ —A.-' 13 ) .
vV (R) ==V, e (r‘é:%$ﬁ‘/ ) (ITI.%)

where the well depth V was taken as Vb—llOO MeV.

The Igo potentlal used in optical-model analysls represents the
real part of the nuclear alpha surface interaction and is determined by
alpha-scattering experiments, over a wide range of target elements.

The larger penetrability factor was deteﬁmined when the more
attractive Igo potentlal was used.

‘It was felt that for the present probelm, the Igo potentlal dropped
off too_rapldly.and that the Woods-Saxon potential better represented the
nuclear barrier in the surfaceiregion. |

The barrier penetfation matrix forvthe Rto Ryregion is given by
the 2 X 2 diagonal matrix P, where only octupole vibrational contribu-
tions are considered in tue coupling region.

3,10 X 10"1&' -0
0 6.66 X 10'23~

Now let us turn our attention to the_coupllng region once more
and evaluate the non-diagonal coupling maﬁrix, Q. For the preéent; let us
concern ourselves with the octupole case-ahd consider Q as a 2 X 2
matrix.

It may be_recalledrthat in Sec. II, we had @ in parametric form ,

(III.5)'
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K sin%ﬁ+K cos%ﬁ

. where =
B = (K.-K. )51n¢c05¢
=K sin<p+K cos ¢
and
g 2
tan¢ = x_/q

In order to. evaluate a B, and Y, we must evaluate the elgenvalues
x_ belonglng to v and also qg, the coupling matrix element between
b

the O+ and 3- states of lead K 0

‘ 0 K
. in the coupling region, can be evaluated by a WKB-type expresslon over

: K+, which appears .in the barrier penetratlon matrix P =

the small range AR,'K; are given as

k3= -

sgie'

en(B-(E,-n;) 'R (I11.6)

where B is the barrier height and' i 1is the reauced mass.

In this approx1mat10n, we have replaced the nuclear barrier by a
rectangular barrier extendlng from R to Rl and E to B It is obv1ous
that this approx1matlon greatly over-emphasizes the effect of the barrier.
Later we discussva triangular barrier apprdximation which more accurately
represents the actual barrier. See Fig. 5, page 34.

In the coupllng reglon, the interaction between the O+ and 5—
state causes a decrease rn the 'effectlve barrier height'" as seen by the
presence of x- in the above expression '

An enhancement of the decay rate over that which would occur if

coupling did not occur, is found to exist for some boundary conditions.

The eigenvalues, Np were prev1ously expressed in terms of k 2 52, and

' qe, and in order tp determlne the values of_x# we must evaluate ko k52,
and q2. We shall now turn out attention to this problem.

The matrix elements k 2 52, and q2 must be properly defined in

energy units chosen in. this case to be l/f , as stated earlier.

The equations relevant to the octupole case are
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il
o

W ()4 B ()2 ()40 (1) g ()
0" (0)45,% (1) (1) 1% (7))
kOQ(RQ)E;égggifvx)l/fe

i
O

(111.7)

k2 (Ry)= 24(E, il 2Py
3 V00 geto 2u g 2
,o

" where - v

V= 259 + vN MeV

Eere we have cdnsidered-the evaluation of k02 and k32 and some
"representative” radius R, in the coupling region R,y to R,. Since the
coupling region extends over a relatively small interval, Rl—RO=AB=l.8f,
compared to the total barrier extent, which is greater than 30f, the
radial dependent energy variables are assumed to constant in thls reglon,
as a first approach to the solution of this problem. See Fig. 2.

The values, from the above expresslons for Xk, (R ) and k (R ),
are determined to be 16.0 MeV or 3.12 l/f and 18.6 MeV or 3.9 1/f

'respectlvely, where the centrlfugal barrier term has not been 1ncluded
in k (R ). The centrifugal barrier term igu/h )(12/3 }equals 0.72 MeV
or o,lu 1/1°, p ‘ -

The expression for.the coﬁpiing matrix element qg(RO) is derived :
in Sec. I, and is given as ’ ‘ "

2u dVN

(R ) = ——-R ==

Using the felation, fw = nlc /B we may}eliminaﬁe the octupole
mass parameter, B 39 from the above expres51on and thus obtain:
' 2

L f R
qE(RO) - 2; 3 LJ?/S C: (22L.9)

0.

We find AV/AR=9.1 MeV/f over the radial region AR=1.8f as deter-
mined from Fig. 2. The potential variation, AN;(20.22~8.95)'Mev, so that
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OV - becomes 11.27 MéV and AR = (10.95 - 9.15)f = 1.8%, with'the’fesdlt -
that - AN/AR becomes the above ‘value, . 9 1 MeV/f A
Once:;we- have a value. for: the surface tension parameter 05’ e
can unlquely determine the. q2 value. There is an uncertalnty as to the
. precise value of C3 ~and thué.the value of qe.: We will set. forth sevgral
methods for determiaing -C5 and calculate the respective values of g .
, Bohr and'Mottelson‘l derived a general expression from the hydro-
" dynamic model considerations and_arrived’at the fellowing expression for

- any arbitrary deformation, 4

- o o
oy e\ e _5,ZlZ.e '
= (2-})(£f2)ROw’ Zn(F )R, ~ (111.10)

15 20

where w = ————75———— MeV and Z .is the charge on the daughter or recoil
| 4mRS R |
. 0
nucleus. . _ _ . . .
For- the octupole case, . f=3, 'we obtain C5 = 279 MeV and there— -
fore B 5 = k1. 5h /MeV For this value of 05, q2 becomes 4.40 MeV or
0.86 l/f_.v R ‘

13 - . : ‘ o
" Lane and Pendlebury 5 quote g -value of C determined from electro-

3

magnetlc_tran51tlon probabllltyrdatavand_found

(1500 - 750)MeV

5
The above 05 value was obtm.ned by experlmentally determining
the lifetime for the E3 transition for the lead, Pb2 o8 excited state
de—eXcitation; into ‘the ground state which was found to be T = (4#2)Xlo_ll
sec. Then the prqbability‘per unit time for such a multipole transition
is given byl '
T L+ w :
o . 8T(£rL) 5 (aaezle(ﬂ) (TIT.11)
' cl(24+1) 117 - . .

for an arbitrary EZ transitiOn, where we‘ean convert
Tt T by T-= %

“and where B(£) 1is the reduced transition probability for vibrational
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exeitation: given by
(2z+1)( T ZeR ) 2y

B(z) —. T - . L ; (111.12)

for single phonon excitations.
Again we shall use the expre331on for the energy, quanta in our har-

monic osc1llator model glven before as

T , Ct
”..u)“i' = h =,
hd)z' B

C4 can now be determlned from the values for. T and: ﬁwz.

For the Lane and Pendlebury value of C5 we have q2 = 1.,9MeV.

Among the more recent methods avallable to us for the determina-

tion of C, 1is the DWBA (distorted wave ‘Born approx1mat10n) analys1s of

5
inelastic scattering of charge particles. The DWBA is applicable to our

coupled channel purely collective model for single phonon exc1tat10n.

T. Stovel and N. Hintz> obtain C3 L6BMev for (P,P') scattering. R. H..

CrannellS, et al.,determined the value of C3 to be 5= 793 MeV, obtained -

from inelastic electron scattering. The respective values of q  are
q2 = 3,41 MeV and q? = 2.82 MeV, for these references. BSee Table'I,

The calculation of the eigenvalues S of the éystem when the
alpha particle is in the surface region in the octupole case, can easily

‘be performed now that q2 is.determined} As may be recalled,

Ay o= 20 2 . (1I1.13)

giving Az (R, ) = (72 ‘. 55} MeV for 05_210 MeV or 1.0 l/f We shall follow
though with the above example for g —5 07 MeV.

We may now,obtaln K;'as a function of‘h; by using the WKB triangle
barrier approximation. See Fig. 5. This approximation is superior to the
rectangular barrier gpproximation given previouSly in this section, which

overestimates the effect of the barrier attenuafion of the alpha wave.



Table I. Values of the surface tension parametér and respective values of the coupiing constant.

C5 [MeV] - . q?_[MeV] g [l/f ] . Reference for.C5
-'210.,." ' 5.07 e 1.00 . R Value used for calculations
C ' - o S _ in this paper - .
279. S ko 0.86 0 : (Hydrodif‘namic model - :
o o ' ' . theory) : ‘ ‘
LES. 3.h0 ' ' 0.67 . ((P,P') inelastic
- ' - ‘ R : o . scattering)? i
" 793. | 2.82 - 0.5  ((eye) inelist,ic ' : ;
o : T o : " scattering)l W
1500. ' -1.91 . ‘ - 0.37 .,)' ‘ _ (Electromagnetic lifetlme)r '
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If the coupling 1nteract10n were not present the alpha—partlcle .

wave would be attenuated by a factor. glven as ;
{

7 R

zu [ 1 2, a f
Chp= © 457; Jé | (V E) / , _:<III.lh)§_
for
v-E = (BDr

5 - ' “2u /2 o
o that C, ‘becomes Co = @ F (2/5)(AEO) AR vhere AR ‘= B-E,
- If coupling occurs, the penetration factors, K;, corresponding
to the eigenvalues x:,_can'be found in terms of CO" The upper pénetra—"
1"

tion factor, K_, can be . determined from the "small triangle" in Fig. 5.
“Since the "small triangle" for K_ is similar to the triangle for
‘CO,_ln K_ is given by»l
e LEy3/2 I.15)
ln:K_ = (;n co) X (2@6) | (I11.15)

By similar triangles the lower penetration fattor,_K+, is given
by : : _ v . )
N OE4y3/2 B
In X, = -‘(ln co) X (ZESJ (111515)
where AE- = E + x-“
The values thus determined from the WKB trlangle method for K; are

0.360
K- =

+
' 0.027
The alpha wave vector, v_, in the uncoupled representétion, pene-
trates more readily when the coupling occurs because. lt "sees" a narrower
and lower barrier, since 1ts effective alpha decay energy is 12.69 MeV

and not 8. 95 MeV. BSee Fig. 5.‘ The penetration factor for thls wave, K_
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Fig. 5. The barrier penetration matrix elements K- may be -

obtained by application of the triangle method.iﬁ the
region of the barrier where coupling occurs.
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is larger than the penetratlon factor CO’ when there is no coupllng ‘50
that the alpha wave penetrates more readily.

We are now in a position to determine "the matrix elements ef Q

and we' find

= 0.2k, B =0.160, and y = 0.1kk
thus @ becomes .
0.24k 0.160'

10.160  0.14k4

" We shaﬁ;interpret the meaning of Q.. and its aetién on SOme‘ﬁwo-

component wave vector {uo) by a graphical method, as will be done at the
_ 5 A

Aend of this section for the- 05 210 MeV case. See Table I. 05'— 210

MeV is the lowest value and thus gives an. estlmate of the largest possible

coupllngveffect.

The present calculation gives an order of magnitude estimate of
the enhancement,of alphaaparticleﬁpenetrabilities due to the effects of
collective excited states. | | ‘

Because of the existence of a.coupling in the surface region, the
alpha-wave function is able to propagate‘more.easily through the initial
part of the barrier region than would,bevaSSible if the coupling were
absent. ‘ | | - |
If the COupllng did not exist, the =0 alpha—partlcle wave would
be attenuated through the coupling reglon, from the inner turnlng point
to the maximum 'barrier height, by a factor of K=0.156.

Now consider the finite ceupling case with an alpha-wave vector
“of the proper linear combination of the{@;O and £.=3 parfs that constitute
" the lower uncoupled solution v_. The wv_ wave vector effectively pro-
pagates through the coupling region as an alpha_group of higher energy,
3,74 MeV- above E,, where N _=3.74 MeV (see Fig.lb). Thus this wave vec-
tor will only be attenuated by a factor of 0.360.
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~As can be seen, the enhancement in ﬁhe’alpha—particle yave ampli-

tude due to the coupllng interaction, is about a factor of 2 and, thus
the enhancement in the alpha 1nten51ty is.up by a factor of k.
The hypothesis might be made that the inner boundary conditions
‘on the:alpha-particle‘wave will always be near the optimum to expldit
the enhancement of the alpha paftiéle'syﬁénetration through ﬁhe coupling

region in the decay to vibrational states.

Such is not the case in deformed daughter nuclel 1nvolv1ng rota-

tional states, but it could be the case for vibrational states. -
’ -Graphical methods will be used at this point to indicate the
action of - @ on the impinging alpha particle. Consider some input wave

~vector

u
sO that
-0 I i . )
-(uo \ g ‘ - >
!‘x 0/ = Qi _ . (I11.17)
Uy | qu/ : .
The wave-vector components 8 and ug are llnearly related to the components
I I
U, agd g5 by’
0y Xe' ' v L
i/uO%,:( BE{HO\f
0 | I
.\uj . p 3’/ uj /
' (I11.18)
0 I I '
go = auo + ﬁ%u.5
O I I
u5._ éuo + qu

I
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We assume, in writing these equatlons, that the super position of the

uI part on the uI is valid.

3 0

The first case that will be considered is the oﬁe’wheré ug is o
taken to be unity and we shall investigate the effectsloh,uo and uO, due
to the channel mixing, by letting ug deviate from zero. We now have the
equations . N '

0 I
Uy = a + Bu5 |
S ' (I11.19)
0 T '
u, =8B + :
5 =P Ty

for the relation of the input to the output vector components.
" In. graphing ugvvé ug we"haVe a linear plot where @ is the 1nter-

cept and B is the slope. Similarly for ug vs u% B is the intercept
and Y 1is the slope. ' - '

' The two lines intersect at ug = -4.00 and ug = ug'= -0.40 (see
'Fig;v6) o _ o
I 0,2 I -
Plots of the form ]u l vs u, and [u3 vs u; have a minimum to
the left of u% = -1.0. The plot of |u] 2+ Ju g,e vs u% is the sum of

the above two curves (see Fig. 7)
In plotting the ratio u /u Ve u% a dlscontlnulty occurs ‘at
ug = 0, where u% = ~1.14, At this value of u5,

to +° and around and up from -« .

the ratlo of u /u goes

The dlscontlnulty in the plot of u /u Vs uI occurs at u% = -1.50

3

where u /u goes to .-« . The dlscontlnultles are avoided by plotting

in the range

u, = -1.0 to 1.0.

DRI

For the plot of ug/ug vs»u% and ug/ug Vs u§-(see_Fig. 8).

The effect of the enhahCement, due to the (=3 wave, can best be

' demonstrated.in a plot of



Jug *
- 0 vs uI '_
0,2 0,2 - TR
'luo + [u5] .
and
luO}E ‘ ‘
- b Vs uI
0,2.,. 102
lugl® 1] >
. 0.2
, | B o
The displacement.of the maximum of the o5 om Vs u5
WP+ SP
( | 0 3
from uI ='0 to the right of ug = 1.0, and the displacement of the minimum
2 :
SR lugl - T
of the 5 é‘ 5 Vs u3 from- u5 = 0 is a measure of the coupling
| A

strength (see Fig. 9).
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Fig. 6. The wave vector components ug and uO are linearly
related to the components u% and u% by thé matrix
elements of Q, the barrier penetration matrix in the
coupling region.
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Fig._?.'o 2The square of the wave vector components |u8]2 and
u l are plotted vs. ul in the quadratic representation
of tge effect of theé coup?ing interaction.
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MU-35099
) Fig. 8. The ratio of the wave vector amplitudes for the
X £=0 to £=3 and £=3 to £=0 waves are plotted vs. the input

. £=% wave amplitude ut

3

w {3
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Fig. 9. The effect of the enhancement in the ground-ground
state transition,due to the £=3 wave, is seen in the
plots of the square of the amplitude ratios in the input
wave amplitude. .
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IV. THE GENERALIZED PROBLEM: - - L
THE THREE-.AND FOUR-CHANNEL - CASES .

We have seen how the matrix Q can be obtained for the two-
channel problemiﬁhére only £=0 and /=3 waves are considered. The Q -
matrix was defived in terms of a transformation matrii, B. and a diagonél
barrier penetration matrix, P. The matrix B was constructed from the
eigenvector lV} belonging to eigenvalués k;. which were in turn constructed

out of h;. The eigénvalueé, k;? satisfy the eigenvalue equation in'thé

diagonal representation of a mafrix A, a Hamiltonian 2 X 2 matrix which
is a linear operator bperating in a two dimentional Euclidean spacé, and
are obtained by the Secular determinate method. _ |

' -The matrix @Q was constructed out of B and P as an operator
that fifst'transforms an eigenvector [U) as bases vectors in the "old"

non-diagonal representation to the bases vectors |V) in a "new" diagonal

-representation and carries them fhrough a potential barrier by P in

this "new" uncoupled representation and then transforms these eigenvectors
JV> back to the original set of bases vectors [U). The matrix @ found

in the preceeding section was thus found to be a barrier penetration.

" matrix, applicable for the problem whefe only two-channel coupling occurs.

In this regard,  Q will act upon an’escaping alpha particle represented
by lU) a two-component eigenket. in a two-dimentional Hilbert space.

Now let us extend and generalize our problem to one with an

" unspecified number of open final—state:éhannels, say N channels. The

Hamiltonain matrix, A, will be an N X N matrix with associated bases

~ vectors U,..., U,:

1 N
In general, for N open channels, that is, for N final states

of thebsystem where the alpha decay can leave the daughter in any angular
momentum‘state, £, an® N X N Hamiltonian matrix Q can be constructed
that would operate on an N component column vector. '

There are essentially four Pb208 levels as determined by (a,a')

and (P,P') scattering experiments that significantly contribute to the

- coupling. (See Fig. 1) The four significant levels in lead are seen to



il

to be the d+‘ground,state, 3, b+, and . 5- exciﬁéd_states. Thé peiaﬁiVe ‘
importance of thésé-levels decreasés for’highef £'s and thus the previous
two-channel calculation is not a bad representation of the coupllng effect
on the alpha—particle barrier penetration., ' . .

The general problem for the lead—208 daughter thu would be com-
pletely described for a four-channel Q matrix, represented by a 4 X 4
matrix in a four-dimensional Hilbert space. o

We will discuss briefly the three-channel case where the L+ state
of the daughter, lead, is also taken into account.

Considering the lowest three levels of lead, the ground state O+,
the excited. octupole %- state, and the 16 pole, h+ state, we again have

our. differential equations 1n matrix notation g

e L A L A v(iV.l)

!

Where.]tﬂ is a threeécomponent vector in a three-dimensional Hilbeft*épade

as. .

--..\

SU}'

; Ub 3 ) o .
x\ U5 , (‘JIV’.E)
O

and the Hamiltonian . A 1s given as

e}

[¥o %0 40\
Ao = i d%g k% t Qi (1v.3)
\, 27

0 %5

3
>
ku/

Aﬁo will denote the 5 X 3 matrix. And ABO w1ll denote uhe-
previously discussed 2 X 2 matrix.

As indicated Aqo is a submatrix of Aﬁo The coupling terms
qua (see Fig. 2), are assumed to be small in magnitude relative to q?o

‘-and quo Hence AHO becomes

¥
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By ={.2
4o Az K »0, ,
2 2
: , ; A O Ky /

As 1s seen, the form of Au. is that of a real symmetrlc matrlx whwch

.must be true for any Hamlltonlan.

Agaln the ‘meéthod- of secular determinants can be applled in . order.

to determine the three eigenvalues AN~ 76 belonging to the three componen+

vector IV in the elgenvalue express1on

v,
V.-

"VO_ _

AlV) = 7‘;:’0‘ lv) for lv);( (I‘V-5')'

Proceedlng in a manher analogous tothat used for the . calculatlon
of QEO in Sec. II, for the two- channel case, we .can again use the method

of secular determlnates in order to detemine the thre eigenvaluesg x ,0

. belonging to the three—component vector ]V) in the eigenvalue expression:

lv) = (z; \ | | ' (Iv.6)f
v 0 :

~The trangformation. matiices: can’ ‘then:be deduced from. k , 0

The values of K-,0 can also be determined by the use of an appr0x1—
mate WKB barrier calculation, so that the expression for the matrix
elements of QAO can be.determined '

This same treatment may also be extended to the four-channel case,

to determine Q5O

It is felt that adequate values of C;, Ch’ and C_. may be obtalnable

3 >

from a con51derat10n of (a a') 1nelastlc data in order to determine the

— values of 040 and q5O as well as q50’ but for the present we shall not

con51der such calculations.

When such values are determined,. it will be p0551ble to calculate

the matrlx elements of QMO and Q5O in a manner analogous to the cal-

culation of QBO performed in the previous section.
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- V. CONCLUSION
A purely collectlve v1bratlona1 model has been. applled to the
alpha'decay of Po212 to Pb208. We “have calculated a non- dlagonal 2 X2
matrix, Q, whlch describes the action of the coupling part of the barrler
on the emitted alpha, when the two channel coupling approximation is
congidered. The effect of the barrler—penetratlon matrix, Q, on an out-

[V
~ going two component alpha wave lU) = Suo} was examined by‘graphlcal

|
methods and discussed. i ' . _

A short discussion of the three- and: four- channel cases was also
included. _ '

Further analyéis»Oflthe.problem, with reéard to the,cbnsidefation
of (a,0') scattering ﬁay be in order, but.for'theepresent the determina-
tion of the form of the octupole coupling constant and its magnitude, as
well as the barrieﬁ penetration matrix in the couﬁling region lends -
 further insight into the alpha.decay to spherical-daughter nuclei, where

only vibrational excitations occur.
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