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ABSTRACT 
212 For the alpha decay of Po to the ground state and various excited 

208 . 
states of the Pb daughter, there are collective surface vibrational modes, 

208 which couple these low-lying excited states to the ground state of Pb . 

In the present description of the transitions between these excited states 

of Pb208 and the ground state of Pb208 only single phonon excitations will 

be considered .. 

Interaction of the electric multipole nature occurs between the 

excited state levels and the ground state of the recoil lead daughter induced 

by its interaction with the emitted alpha particle, affecting the latter's 

penetration of the nuclear barrier. 

The formation of the excitation in the Lead nucleus can either be 

produced by Po212 alpha decay or by (a,a') inelastic scattering on Pb208 , 

but in either case we consider that an alpha cluster exists in the nuclear 

surface region. 

It ·is the purpose of the present paper to investigate the manner in 

which the multip0le interaction affects the alpha particle penetration of 

the nuclear barrier. 

( 
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I. INTRODUCTION 

. The emitted alpha particle, ·as it leaves the recoil nucleus and 

penetrates the nuclear barrier, can be described by a partial differential 

eigenvalue equation of the form 

H'l' =E'f n n n 
(I.l) 

as expressed by the'time independent SchrBdinger picture. 

Here we have a Hamiltonian, H, as a second order.differential 

operator acting on space dependent wave functions, 'f describing,states 
n 1 

of the system in "ordinary space" and the constant energy eigenvalue,. E . 
t n 

Speaking in terms of matrix operators acting upon eigenkets which 

are our dynamical states in Hilbert space, we can express the alph~ par­

ticle decay in the Heisenberg picture as 

(H) In) = € In). 
op . n 

(I. 2) 

For the most part, we shall formulate our problem in the latter 

notation. 
. . 212 208 For the alpha decay of Po to Pb we shall describ.e the action 

of the nuclear barrier, represented as a non-diagonal N X N matrix, on the 

alpha particle as a wave vector where the e~fect of the multipole nature of 

the surface deformation of the daughter nucleus is included. 

In rega-rd to this particular problem there are four important open 

channels for the multipole transition from the excited Lead states to the 

ground state of Lead. Thus, the general barrier penetration matrix will 

be a 4 X 4 non-diagonal .matrix which will describe the effect of the barrier 

by its action on the alpha eigenvector, a four component vector in Hilbert 

space. 

The most important colleCtive levels in Lead (see Fig. l) are the 

0+, ground, 3-, 4+ and 5-. We shall derive an expression for the coupling 

matrix elements for these levels in the region from R0 to R1 (see Fig. 2, 

page 3 ), where channel mixing occurs. 

The first excited state is the low-lying 3-· It appears that just 

considering the two channel problem, where only the 0+ and 3- states are 

considered, is a reasonable approximation. Only single phonon exchange is 



\'' {. ' ~ I ; : . ' 

-2-

considered -where P. = 3 is the spin of the phonon for the octupoie case. 

The multipolarity of the state is determined by the usual 22 
= 23 = 8 

or octupole state. 

In order to obtain an expression for the coupling matrix element 

in our t-wo channel case, -we -will set forth the expressiQn for the total 

Hamiltonian, H, and the total -wave vectors, In). 

The expansion of In) in terms of a complete orthogonal set is per-

formed and then substitution into (H) In) = E jn) is made. Upon mul-op n 
tiplication by (mj from the l~ft, and by use of the constructed orthogonal 

eigenstates, we obtain a set of ordinary radial dependent differential 

equations describing the emitted alpha p~rticle as it penetrates the nuclear 

barrier. 

In order to obtain an expression for the total Hamiltonian, a nuclear 

model must be adopted. In the present formulation, -we are considering purely 

collective properties of the nuclear sufrace and shall describe the nucleus 

as an.incompressible, classical liquid drop that undergoes pure surface 

oscillations -which can be represented by harmonic oscillators. 

This hydrodynamic model, adopted by A. Bohr and B. Mottelson
1

· in 

their early -work, assumes an equilibrium spherical shape and constant vol­

ume, adiabatic conditions. Because the equilibrium shape of the lead 

daughter is spherically symmetrical, since it is doubly major in Z and 

N .containing closed nuclear shells only, -we need consider only vibrational 

excitation and not rotational excitation, as there is no permanent defor­

mation present. 

Utilizing this model -we have a Hamiltonian consisting of five terms: 

H = T + VC + 0 + H .
11 

+H. t 
CO • l.n • 

(I.3) 

T is the kinetic energy operator for the system 'consisting of the emitted 

alpha and the recoil nucleus given as 

' 
-where b is Planck's constant divided by 2TI and ~ is the reduced mass of 

the alpha-recoil nucleus system. The Laplacian in spherical-polar coor-
2Ze2 

dinates, V = is the point density source monopoie or central electro-
r 

•• 

• 
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208 
Pb 

E (MeV) 

8.95 

5- 5.46 

4+ 4. 2 7 

3- 2.615 

0+ 0 

MU-35098 . 

Fig. 1. The most important nuclear energy levels in Pb208 
have been observed in inelastic-electron scattering 
experiments by W.C. Barber. 2 Similar values for the 
spacing of the lead states are also given by T. Stovel 
and N. Hintz.3 Th~ states quoted here are taken from 
H. Faraggi's data. 
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static force term, where Z is the charge on the daughter and r is.'.the 

radial separation of the alpha and the recoil daughter. The symbol n 
represents the angular coordinates (e,¢) of the alpha particle in a space 

v 

fixed spherical polar coordinate system. 

The central part of the attractive nuclear potential, VJI, will be 

assumed to be an exponential potential of the Woods-Saxon form. 

, Hcoll. or ~ is the Hamiltonian operator for the internal energy 

of the recoil nucleus. _By adoption of the before-mentioned hydrodynamic 

model, Hcoll. becomes 

where c
3 

is the "surface tension" parameter and B
3 

is tle "Mass" para­

meter for the octupole case. 

The expansion coef~icient, · o:
3

m, is the collective coordinate by 

·which the distortion in the nuclear potential caused by the surface vibra­

tional deformation, may be described. 

The interaction Hamiltonian operator, Hint' is that part of the 

Hamiltonian which deals with the interaction involved in the a~pha. daughter 

system, due to the vibrational channel coupling. . 
! 

The nuclear potential, VN, and interaction Hamiltonian, Hlnt' 

are the first and second terms of a Taylor expansion of the coupling paten-

tial, v'· - {r:,D). .. Only.terms linear in o:
3 

were kept. coup. m . 
H. t is dependent upon the nuclear deformation of the nucleus and 

J.n 

is thus dependent of a
3

m. 

barrier potential slope in 

It is-also functionally dependent on the total 

the coupling region. 

!"···. 

.,( . 

(I.5) ": 

== ~~ [R(a;n) 

The position in space, R(~'D)of the oscillating nuclear surface is 

defined by 

R(O::;n·) == R0 [1 + L:a
3

m Y
3
m(n)J 

m . 
(I. 6) 



• "i. 

... 

.. \,' 

-5.:.. 

f'or the octupcile case. 

Ro . is the equilibrium radiv.s. See Fig: ·3 .:. Upon substitution of 

R( ct':,n)in the above expression for Hint vie obtain 

H = - dV [R L: a Y m(D)] 
int dr 0 . 3m 3 . m . 

(I. 7) 

The five components making up our eigenvalue equation can be written 

as 

(T + VC + ~ + H 11· + H. t - EN) /n) = 0 
CO . l.n u. 

(r.8) 

wbere Ea is the total energy eigenvalue of' the system. 

The total wave flin~tion, 7/J, is written, in the two level approxima-

tion, as 

where the separation of variables into functions of r, rl and a
3

, 

applicable. 

(L'9) 

is 

The radial part of tl;te total wave function is given by U .e (r), 

the angular part by~(~), the spherical harmonics and x.e,-~~) the part 

of the wave function depending on the distortion in the nuclear potential 

. of the daughter nucleus'. 

r7/J can also be expressed as 
' 

(I.lO) 

The bracket notation is introduced to indicate the sum over m, 

and, that the total angular momentum is coupled to zero the angular momen­

tum of the initial state. 

Before the sum over angular momentum, .e, has been performed, as in 

the above expression, we have the following general expression 

?t1 (~ ) 
00 

.e ( -:-J lfu .e ( r) :ry· r,a
3 

,= L: L: _ __ 

£=0 m=-.e .f2.e+i 
or (I.ll) 
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where Y_ nm(n) and X (a3) form-?omplete orthonormal sets. 
;:. £' -m -
It .Will prove to be convenient to- def:in e 'a ne-w vector, angular 

- - . , m 
momentum, _coupled representation JJ-~ (n ,o:

3
1 which is related to the· uncoupled 

representation, Y £ m(n )x
1

, ._~0:3), by a unitary transformation 

£ 
= ·L. 

m=-£ 

where the C's are the Condon and Shortley vector addition, or Clebsch­

Gordon coefficients.5 

(I.l2) 

Returning now to_ the Heisenburg picture, we express $J!.t(n,a
3

) 

as I£ m). We will denote6l gg by loo) andy~~ by 133>": indicating 

the coupling to zero previously indicated by the bracket notation. 

</J -or In) can no-w be written as 

( r.13) 

and upon substitution of _In ) in our eig~nvalue equation and by the use of 

the harmonic oscillator eigenvalue prop~rty of Hcoll (here, a seven-dimen-

sional harmonic oscillator), w'e obtain -

(I.l4) 

Multiplying from the left by ( 00 il' and by the use of the orthogo­

nality condition, 

< £ I m I I £m) = 5££ I omm I - -

we have our ordinary differential equation or radial wave equation where 

the eigenfunction is dependent upon radial separation only. 

-112 d2~o · _.N 711 d-~ u3 + (v::c+: v-+ ~ -lL)u + R _v-_-_- L.(oo Ia: Y 133) = ·o 
2u ---"2 - _ _ 2 -.:x 0 - 0 dr r 3-m 3m - ~ m 

(I.l5) 

(I.l6) 

.r • 

-• 
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The 7'flwj2 term is the zero--point energy of the harmonic osCillator 

but -we may redefine the zero of energy sb that we can drop this term. 

By virtue of the properties of spherical harmonics, the above 

equation becomes 

2 
-112 d uo 
---+ 2u 2 ·. 

dr 

for single phonon transitions. 

By use of ah operator property of the harmonic-oscillator (cf., 
6 . 

Schiff ), the coupling matrix element, 

becomes 

(B C )1/4 
3 3 

Simlarly, to obtain the second ordinary couple differential 

equation for the two-channel case, we multiply on the left by(33land 

obtain 

2 2 
- n d u3 c _..N 9h 

---"'-2 + (V + v-· + ~ + 
2udr 2 

Again, -we re-define the energy zero by subtracting the zero-point energy 

7/2'flw leaving nru, the energy of the 3- state in Pp208 . 

(I.l7) 

' (I.l8) 

Instead of expressing our energy quantities in terms of MeV we 
2u shall, for simplicity, multiply through by - and express these quantities 
'tl2 

in l/f2 units of reciprocal fermis squared. In the present paper, the 
' 2 

·coupling term -will be defined as q (r), so that 

2( ) _ 2u dVN t":f' 
q r = 2 Ro dr .J Pm u ' (B C )1/4 

3 3 

(I.l9) 
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Our radial wave equations then reduce, to 

(1.20) 

and 

2u _ _a 12 )1
2 2 

2 (Ea:-nm-v - 2 )_ ~ + q u0 == o 
n 2ur 

The ~ term has been absorbed into the VC Coulomb term, and is designated 

fi. 

It will prove to be convenient to define the following quantities. 

2 2u 
(Eo:- fi) k0 (r) == . 

n2 

2 2u n2 12] k
3 

(r) == ·-- [E -nm-fi- -
112 a: 2u 2 r 

(1.21) 

h k 
2 

k 2 and q2 d · 't f l/f2 w ere 0 , are expresse ln unl s o • 
3 . 

The coupled equations for the octupole case thus reduce to the 

simple form 

II ·' 2 .2 
0 uo + ko uo + q u3 == 

(1.22) 
ti.·i. 2 2 

0 u3 + k3 u3 + q uo == 

where the indicated derivative is taken with respect to the radial distance, r. 

In the following section we shall derive ~n expression for the 

matrix elements of a 2 X 2 matrix, for the octupole case, which describes 

the effect of the nuclear barrier upon an emitted alppa wave function. This 

matrix will describe our coupling barrier penetration problem for the two 

channel case •. 

'''· 

.. 

. I .. 
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II. THE BARRIER PENETRATION MATRIX, IN THE CASE WHERE COUPLI~G OCCURS 

.In this section we shall present a method for "decoupling" our 

coupled differential e~uations. We shall begin by considering the two 

channel. case, as is done in H. A. Weidenmliller'·s7 work on many channel 

·scattering. 

The two channel case is, of course, only ~elevant to the approxi­

matj,on where octupole excitation is theJonly type of excitation that occurs 

and the open channels involve on,ly the final states of the daughter that · 

are the 0+ and 3-· No assumption -as tbcthe relative magnitudes of the 

1 . t . - 1 t 2 d th t . 1 t k. 2 ' 2 coup ~ng ma r~x e emen ~ an e energy rna r~x e emen , 
30 

~ K
3 

will be made. 

As will be seen, when ~2 and k
30

2 
are numerically evaluated, the 

2 2 2 asswrrption that k
30 

<< ~ is not valid, and k
30 

""· 0 is not a reason.able 

approximation for this problem. 

We shall calculate the transformation matrix, denoted by B, 

which transforms A, the matrix Hamiltonian from a non~diagonal form to 

a diagonal representation •.. The fact that the off-diagonal elements of A. 

are not zero can be ·ascribed to the coupling effect. 

-We shall find a ·new set of basis vectors IV) in the representation 

where A is diagonal. These·vectors may be obtained from the basis vee~ 

tor, !u) , of the "old" representation, where A is not in diagonal form, 

by f.inding the eigenvalue ~+ that belongs to the eigenvectors !v> ~nd the 

diagonal form of A. !v) can be constructed from ~+' as we shall demon­

strate. 

We make use of the characteristic e~uation in conjunction with the 

secular determinant in order to obtain ~+· 

Let us return to our two coupled partial wave e~uations which we 

· derived in Section I. They are: 

Ill; 2 2 
uo + ko uo + ~ u3 ::: 0 

2 2 (II.l) 
u;+ k3 ~ + ~ uo ::: 0 
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which can be expressed, in matrix notation, as: · 

(II.2) 

Let A b.e def'ined by 

. (k 2 ''· 2) 
-I 0 q 

A= 2 . 2 
q ~ k3 

and the eigenvectors of' A as: 

Then the above eq~ation becomes: 

AjU) = - iu)" 

this. is our matrix representation of' our two coupled, dif'f'erential' equa­

tions with eigenvalues E0 and E
3 

respectively. 

As stated ?ef'ore, the eigenvalues A+ can be obtained f'rom the 

characteristic equation wnich is A.!x) = 0, where 

( . 2 .:· 2) - = ko .- . A+ ; ~: q 
A- '· , 

\ c,2 · , 2 :·. '.l 
\ k '-A-'· q 3 . -.+ 

and jx) is some vector. 

Setting det A, ·whe:r:e det A is the secular determinant of A~ equal 

to zero, we obtain the f'ollowing equation in terms of' A+· . 
' . 

2 2 4 (k0 - A+)(k3 -A+) - q = 0 (II.3) 

. " 

• 

~. 
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giving us the two eigenvalues, !-..;:., as:· . 

(k 2 + k 2) + r(:-:--~·-:--;··2-_)2--4-(~k 2k 2 ~-) 
-o · 3 ... \1 o . 3 o 3 · q . 

/-.- ; ------~~--~------~----------~~-----+ 
(II.4) -

2 

We are free to specify a zero of energy quite arbitrarily and can thus 

simplify the above expression. 
2 - 2 2 As before, let us define k30 = k

3 
- k0 or the energy spacing of 

the 3- level which is seen to be 2.61 MeV (see Fig. 1). 

Calculating k0
2 

and k3
2 

directly_as defined by ki
2

;:: ~~-(Ei- v) 

where the index i == 0 or 3~ As we shall see, in view of the greater 

detail given in Sec. IV, k0
2 

== 3.12 l/f
2 

and k
3

2 
= 3.96 l/f

2
• The zero 

on the;>..+ energy axis can be shifted down so that k0
2 

=·O MeV and k
3

2 
== 

2.61 MeV, and the ·same results are obtained. The change of form from 

to 2 ) 
q ·. 

-k302 

is obtained by this shift in the scale and 2 
0 scale energy for k

0 = /-.-
+ 

becomes: 

.r,:·-1+ 4 
k30 

2 

. (..+ ; 

+ k30 + 4q 
(II. 5) 

2 

the 
2 

ko 

For the second form, the shift is made so that the zero'point of 

energy axis coincides with k0
2 

= 0. It is evident that ;>..+ for 

=.0 MeV can be obtained from/-.+ for k0
2 = 16.0 MeV or 3.12 l/f2 by 

subtracting 16.0 MeV from the latter. 

*The quantities, k2 and q2 are treated as lk. 2 1 and lq2 1, that is to 
say, they are treated as positive quantities. l 
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Now let us proceed tO constr'uct the eigenvectors IV) , belonging 

to the eigenvalues A.+, such that Iv>, defined as .Jv> == c:~), satisfies the 

.eigenvalue eg_uation: Alv) == A.±lv) 

For the purpose stated above, let us return again to our charac­

teristic eg_uation:·· .... Ajx): ==, 0 where A acts on some two-dime~sional vector 

ket in Hilbert space with compnents (x) such that :Ajx) == 0 is true. 
y 

From the characteristic eg_uation we obtain two linearly dependent 

eg_uations: 

(II.6) 

and 

Either .of these two eg_uations may be used to construct v+, the 

components of jv), so let us arbitrarily choose the first eg_uation in the 

form: 

x/y == 
2 -g_ 

2 (k -f..-) 
0 ·+ 

(II. 7) 

The same ratio x/y · obtained from the second eg_uation results in a re­

dundant expression, since the above two eg_uations are not linearly inde~ 

pendent. This situation is a conseg_uence of the type of vector space with 

which we are dealing. 

For simplicity we shall return to the energy scale where k0
2 

== 0 

and then the ratio x/y becomes x/y ·,;, --g//A.+ and y(x == - /l..:r/'1~ 2 . 
We can now construct two normalized vector component wave functions 

v+ and v- from the vector components .X and y of I x) as 

;( ~~;l) 1 
V+ == b+ 

(II.8) 

v_ == 
I 1 ) t. :\ ~-jq2 

where. and are eigenkets or column matrices and + and + 
v+ v_ v· v + 

are row mat·rices. 

" 

•· 

,., 

'tl. 
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1/b+ and 1/b_ are obtained from the normalization conditions on 

v + and v . 

The condition on (x,y) or (x,J'y) = l or x
2 

+ y
2 

gives b+ = l+t-..:;_/q
2 

where v+ are mutually orthonormal eigenv·ectors. 

So we have v+,as: 

v 

v 
+ 

= 
l 

.J l+t-..2-jq4 

l 

We will construct a transformation matrix that will transform·the 

matrix A, in its non-diagonal representation with basis vectors, !u) = (uO) 
u3 

to a represen\ation where A is a doagonal matrix, denoted as D, with 

basis vectors 1V) = (~~). 
In matrix notation we say D = B AB whe.re B denotes the transpose 

of B. That is to say, the representation of A as (u
3

!A!u0) is not 

diagonal.and \v_!nlv+) is diagonal. 

Certain group properties of B can be obtained by considering 

Bi as an element of a general transformation group, G, i.e., B~G. 

By virtue of the group properties of G it is true that we have the follow­

ing commutator relation [A~Bi] = 0. 

This follows. from the postulate that the Hamiltonian is invariant 

with respect to the trartsfopmations of a group, G. Thus (u
3

!Aiu0 ) and 

(v_!Div+) are equivalent. 

Here we are dealing with the dynamical states _lu0) and !u
3

) 

and lv) and lv _) in Hilbert space. These vector components, .lu0 ) 

and lu
3

) are the components of lu), a vector in a two dimensional 

Hilbert space. These two components comprise a complete set of basis vee-

tors in this space. 

We can obtain the new set of basis vectors lv) from the old set 

lu) by-: the operation: B as lv) = B lu). It is seen that the Hamiltonian 

A, as a matrix operator, remains unchanged under the transformation, B. 

In actuality, we are defining B 

f1c tr~n$formation wh~eh carriee [U) into 

in this manner to be that speci­

[v) as ·IV) =B !u) or written a~ 



· .. (II.lO) 

where 

B= :' (.~ ' -; ) 
\ I' ,: ' 

~ .. s 

The above form of B has been chosen for a specific reason~ as 

will become apparent later when the expressions for the matrix elements 

of B are determined. 

B is the proper:.transformation matrix first: if it cornmutes with 

A, as mentioned above, and second: if it is unitary. 

The unitarity of the B matrix is again dependent upon the proper­

ties of the transformation group G, of which B is a member. The uni­

tarity condition for a transformation is indicative of the fact that any 

. transformation made by that group elem~nt will preserve the orthonormality 

of the wave function upon whic~ it acts. 

The conservation of particle number is indeed a conse~uence of 

unitarity of the transformation where normalization remains undisturbed by 

the action of a transformation matr±x·:such.!as B. 

B is real as all its elements are real and therefore '* B == B . 

From the uni tari ty condition we have B B == I and from this condit.ion we 

have the implied condition that B -l == B, i.e. B inverse is e~ual to B 

transpose. This fact will be used in subse~uent c.alculations. 

Let us look at the ·resulting form of the separated e~uations.- We 

started with the following coupled e~uation in matrix notation 

lu)" + A!u) == o or , A!u) = - !u)" 

"' But . A '= ·!i D B since 

So that lu) '.' + A!U) = 0 

D::;:BAB 

becomes 

ltJ)" + B D i3!u) == o 

(II.ll) 

(II.l2) 

Using our definition of B as the matrix which transforms !u) 
into !v) as !v) = BIU) in conjunction with the eigenvalue A+, we have 

• 

... 

e:· 
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,. 

" 

... 

· n!v) =f...± lv> (II .13) 

where D is the diagonal form of AJ so that. 

(rr.l4) 

we obtain the following two· separated second order differential equations: 

v+11 (r) + f...+(r )v +(r) = 0 .· 

(II.l5) 

v _11 (r) + f..._(r)v-(r) = 0 

The exact form·of the matrix B can easily be expressed in terms 

of v-4'- by the following parametrization method. When numerical evaluations 

are made later onJ it will be seen that this parametrization is useful in 

this regard. As is well known) any 2 x 2 real) unitary matrix can be 

expressed as: 

Since B. is real and unitary) .. it qualifies as a value which R 

can take on so we will express B in this manner. 

In order to obtain the elements of B . from the elements of RJ 

we can picture a right triangle of sides f..._ and q2 making an angle of 

cp opposite to the side of length f...- and with hypotenuseJ-~1+--~--~·y·:·,~-
From this triangle we see that 

(II.l6) 

2 

and cos'icp 
= /q 4+ f..._ 2 

so that B can be written as 

2 
f...-

1 ( 1 4+ r... 2 lq4+f..._2 q -
B = (II.l7) 

2 

\ f..._ r q l 
lq4+ (..._2 rcr;: 2 ) 

q +f...- I 



At this point in our discussion we introduce .the coupling parrier 

penetration matrix, Q. Q is a real symmetric matrix. We shall see how 

Q is expressed in terms of the transformation matrix, B, and the WKB 

integral penetration matrix, P, which describes the manner in which the 

barrier affects the partial wave amplitudes u
0 

and u
3 

when no coupling 

is present. For this. purpose let us consider. the step by step process by 

which an alpha particle escapes the coupling region of the barrier. 

We shall consider an eigenvector-{ uO) as describing an alpha 

\ u3 

s:lusterwhich exists at some raduis, R
0

• We shall regard this alpha 

cluster as a purely out-going wave at this radius, and that its nature is 

purely independent of the statistical manner in which it was formed. In 

this regard we shall consider the nucleus as a black box and not look at 

the manner in'which shell model wave functions, not derivable from a paten-

tial, are calculated. · 

Let ~s for now assume_ that { uuo) exists, ·and let us "carry" this 
. . . \ 3 . 

alpha particle wave vector through the coupling region of the barrier and 

find out what effect the coupling has on this emitted alpha particle. 

First a transformation to di13-gonal form is made in order that the 

set of basis vectors belonging to the diagonal form of A will be· carried 

through the barrier in the "de-coupled" form. 

by definition of 

Then the 

= B 

B • , ·, ( v _{ r )) 
new wave vector · , _' v +(r) 

(II.l8) 

may propagate through the 

barrier under the influence of the barrier as prescribed by the diagonal 

barrier penetration matrix, denoted by P. 

Therefore, 

(II.l9) 

• 



• 
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where P represents that part of the barrier.between R0 and R1 . 

(Details of the structure of P will be elucidated later'.) See Fig. 2, 

Sec. III for an interpretation of R0 and R
1

. 

We obtain our original wave vector by the operation of B again as: 

(II.20) 

We have made use of the fact that 
-1 B = B, since B is :a real. 

unitary matrix, as is evidenced by the relation det B = 1~ as wasielabo­

rated upon earlier. 

Briefly stated we then have, in vector notation, 

!v. (R0) )z: B !U(R0 )) by definition of the transformation B, .lv(RT) )=P lv(R0)) 

by the action of the nuclear barrier on the outgoing alpha particle wave 

function. 

!u(R
1

)) = j31v(R
1

)) by transformation back to our original basis· 

vectors. 

The total transformation of these matrix operations carry the 

alpha particle partial wave amplitudes through the coupling region of the 

barrier and thus comprise the operations of the matrix we denote as Q. 

Q. becomes "' . Q. = B P B. 

The matrix elements of Q. will be denoted.as: 

a: 
. (II.21) Q. = ( 

since Q. is real and symmetric, that is to say, Q. is Hermitean. 

Q+ = Q. where · Q.+ is the Hermitean conjugate of Q. and is a 

combination of the complex conjugate and transpose operations: 

Q:* = Q.+. 

Returning again to the parametrization method previously described, 

expressions for the matrix elements of Q. may be obtained. 

First, however, let us depart from therabove discussion for a 

brief consideration of the barrier penetration matrix P. Further dis­

cussion of P will appear in the next section. 
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P is a diagonal matrix of the form 

I K - 0 ' p := I 
'·K+) 1 

i 0 
I 
1 ' 

(II.22). 

where the diagonal elements of P,. K.:j: · will be approximated by WKB 

.exponential penetraoility expressions, the arguments of which are dimen­

sionless integrals. 

A diagonal matrix of the form of P would describe the barrier 

adequately if coupling of the partial wave equations did not occur. 

It is.the off-diagonal elements of Q which describe the coupling 

effect in the inner part of the barrier region. 

Returning ·to the evaluation of a,.~, and~ . by the right triangle 

method, we have the expression for Q as 

Q = c:::: sin ¢'(K­
cos ¢/\ 0 

0 )( cos ¢ 

K+ . sin ¢ 

.so that a, f3, and~ become: 

a K+ sin
2 ¢~- cos

2 
¢ 

.~ = (K+- K-) sin ¢ cos ¢ 

·~ = K_ sin2 ¢ + ~ cos
2 

¢ 

where . I 2 . tan ¢ · = /I. .+ q . 

-sin ¢ J 
cos¢ J 

(II. 23) 

(II.24) 

This method of expressing the elements of Q makes numerical 

evaluation of Q easier. 

The next section contains ~ detailed discussion of the structure 

of the barrier as it is made up of nuclear, coulomb, and centrifugal barrier 

componenets. We also consider the manner in w~ich the coupling affects the 

usual barrier penetration calculation. We shall also perform the numerical 

. calculation of Q. 

Let us first, before numerically evaluating Q, look at the barrier 

regions in greater detail. 

• 

•. 
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III. 
' 

NUMERICAL EVALUATION OF THE BARRIER PENETRATION MATRIX 

FOR THE TWO CHANNEL CASE 

We have seen how Q is obtained as a barrier penetration matrix in 

a mathematical formalism.· Now let us investigate the physical interpreta­

tion of Q. 

In regard to Fig. 2 n: is apparent that there are essentially four 

regions in the potential energy diagram to be considered in the solution 

of the barrier penetration problem. 

The first, of course, is the nuclear interior, that is, the region 

inside R0 (the inner·classical turning point). 

The second.is·the couplingregion from R
0 

to R1 (where R1 is 

the radius at maximwn barrier height) where. the barrier penetration matrix 

is not diagonal and was defined as our Q. 

The third is· the region from R1 to R
2 

(where R2 is the outer 

c.t.p.). We asswne that coupling does not occur here and that the ba:r:-rier 

penetration matrix is diagonal and that the barrier can be described by a 
simple WKB (Wentzel, Kramers·, Brillouin) calculation. 

The fourth is the region, outside of R
2

, where the problem can be 

taken out to infinity, where laboratory observations are made. 

Microscopic models have been developed to set the boundary: con-. 

ditions on alpha wave functions at the outer surface of region one• In 

essence, they take shell model product wave functions for individual nucleons 

and project out cluster probabilities. We shall not be concerned here 

with the microscopic models, but shall consider the general effects of sur­

face coupling of outgoing alpha channels under a wide range of inner bound-

ary conditions. 

We consider -our alpha waves as purely outgoing waves at infinity 

and as of the same phase at the nuclear surface, wbich, for our, problem, 

* coincides quite closely to R
0

. The latter requirement is forced by the 

nature of the problem of decay of a quasi-stationary state, where there is 

a standing wave inside t:r.e. ~potential barrier. 

*The nuclear radius, R0 , is given by R
0 

= (1.2Al/3+ 2)f. For the 
case of P0212, . R0 is found to be 9.15 f. 
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Fig. 2. This represents the total potential barrier seen 
by the outgoing or scattered alpha for the Po212 to Pb208 
transiti0n. The total potential is given by 
vT(R) = vC(R) + vN(R) + vL(R) and is plotted by a program 
developed by Poggenburg.ll The nuclear potential, for 
the present case, was taken as a Woods-Saxon potential. 
vL was taken to be the Langer form of the centrifugal 
barrier factor as vL(R) = n2j2~(l + l/2)2jR2, and VC 
is the Coulomb term. 
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In the region _R0 to R1, Q. operates on the alpha particle -wave 

vector, as previously discussed, and transforms it to a ne-w -wave vector at 

R
1

. It· ·-will be noted that since Q. involves a WKB calculation by virtue 

of its dependence on matrix P, we must be careful about the use of Q. · at 

or near the inner. c.t.p; as WKB calculations are not adequate for this 

region or near R2 . (For details·refer to :the discussion in Morse and 

Feshback. )8 

At the_radius R1 -we can apply a straightfor-ward WKB calculation 

on the alpha waves. We then extend the problem to infinity -where the 

relative intensities of the alpha particle groups can be calculated. 

Again, discretion must be used in the region about ~· At each radius 

R
0

, R1 , and R2 , as a boundary condition, the alpha -waves must be matched. 

The solution to the barrier problem involves the last three regions. 

The solution in·the last t-wo regions, as stated before, involves 

a simple WKB type calculation. The region of interest is the second, 

bet-ween R
0 

and R1 and this is the region under consideration in this 

P?per. 

We consider that the- alpha parti0le cluster exists at R
0

. We 

then ask "What effect does the-barrier have on it?" Region two can be 

illustrated in another manner by looking at a more "physical" picture. 

In this regard, consider Fig~ 3· The model represented by Fig. 3 is 

described further, in this· section, under the discussion.of the collective 

coordinate.· We have the easily ·excit~ble "pear shape," :1. == 3, oscillation 

if only the octupole coupling is considered and the higher levels, ;the 4+; 
5-, etc., are ignored. As -we ::shall see, this is probably not a poor 

approximation. 

The alpha cluster is assumed to form somewhere in the nuclear 

interior but octupole coupling does not occur until the cluster reaches 

Rc, or core ra_dius. . At the distance R0., the alpha cluster can exch,ange 

angular momentum and energy -with the daughter nucleus. (The angular 
7f 

momentum exchanged, as stated before, can be even or odd, as £ == 0, 3-, 

4+, 5-, -where 7f is the parity of the phonon state or mode of oscillation.) 

No coupling occurs inside of R.c: .· 
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Fig. 3. The mechanism by which the channel m1x1ng or 
coupling between the recoil-excited states and the ground 
state, is represented by the change in momentun and 
energy of the emitted alpha particle through the exchange 
of a phonon, or a quasi-particle of integral spin, between 
it and the recoil nucleus "flipping" the Pb20ts nucleus 
between the 0+ an,dJ3- states. That is, the emitted alpha 
can induce, through phonon exchange, a change in the 
daughter's spatial distribution from that of a sphere to 
that of a three-nodal deformation of higher energy and 
angular momentum. 

0) 

~. 

... 
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Let us return to the octupole case. 

. ,. 
'· 

In accord ~ith our model, 

the core nucleons, inside.of Rc' do not participate and remain undis­

turbed by the octupole deformation. 

In the deformed region, Rc to R1 , the nucleons take part in the 

total collective mode of oscillation and sho~ a ne~ displacement at any 

time, t 0 . 

The time average of the octupole (or other) deformation is zero, 

as (a
3

u) = O, ~here a
3

u is the collective coordinate.* 

We can consider the node as ripples moving around on the surface, 

or, looking along a radial direction, we can imagine an undulating or 

oscillating surface. 
. . 2 

There is a neteffect, as (a
3
u) /= _o. The coupling occurs in 

this "deformed region" between Rc and R1 . 

Of course we. have a similar picture. for £ = 4, the 4+ level where 

there are 4 nodes. 

In any case, it is pictured that the alpha leaves the parent at 

the point R0 ~here R0 is take.n equal to Rc and at this point the nucleus 

is the daughter, that is to say~ that the .barrier "belongs" to the daugh­

ter. The coupling of angular momentum or "sharing" occurs between the 
208 t alpha and the daughter, Pb · . This is essentially the picture presented 

earlier. 

· Let us no~ dispense with the numerical' calculation of P, the 

penetration matrix, in the region between R1 and R2 . No coupling occurs 

here and P can be obtained, as a diagonal matrix, by a simple WKB cal­

culation. We shall then proceed to the numerical calculation of Q. 

*Th . 1 t bl t . t ·g f t · · Pb208 · · t ere ls no pro a e or o a e, permanen e orma lOn ln slnce l 

is doubly magic in Z and N. Lead, Pb20 , has no rotational bands; 
but several excited states seem to have collective character as shape 
oscillat~ons about an equilibrium sphere. 

t 8 212 . .· Note that .Ro of Pb20 , and R0 · of Po do not dlffer to any extend due to 
the fact that A. of Pb does not differ greatly from A of Po212, ~here 
A is the atomic number. 
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We shall again consider octupole deformation and, therefore, -we 

are dealing with a 2 X 2 matrix operator, operating on a 2 component wave 

vector. The potential at maximum barrier height, V = ;B can be read 
2 0 2=0 max 2 3 

is B ~- 20.22 MeV at R1 = 10. 95f and B == = 20.75 from Fig. 2 directly and 
P.=3 -MeV at R1 ~ ~0.95f. 

As we s~e R1
2 ~0 and P.

1
£=3 do not differ noticeably. From the 

. 2=0 £=3 definition of the .c. t .p. Rr) . and R0 can be found approximately equal 
2~0 2=3 to ·9.15f and R2 = 26.5f and R2 =27.5f by means of a hand calculation. 

These values-compare quite :favorably with those obtained from Fig. 2, 

which are R2 P.==O = 27·.30 f and ~£=3 == 27 .32f indicating· that Fig. 2 is 

valid for our case. 

The barrier penetration matrix for the uncoupled region R1 to R2 
is give_n as 

(III.l) 

To determine the values of P 
2 

for_£ = 0 and 3 and also P 
1 

values 

for P. = 4 and 5, the WKB penetrability calculation·was made with the aid 

of a computer program developed by N. Glendenti;ing. +2 

This computation is valid for any arbitrary barrier slope. For 

our lead 208 case, the value o.f the angular momentum state, £,.the value 

of the a decay energy Ea = 8.95 MeV for the ground-ground transition and 

a value called R low.are fed in. 

The values of P2 are computed-directly. 

For the purposes of this calculation, ~(R) was taken to be a 

Woods-Saxon potential of the general form 

"(R) = 

[ (
R-r0f!!/d3 

i + exp 

(III. 2) .•.' 
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In the present computation the parameters were chosen as,, v0 , 

the nuclear well depth as 35, - (r0Al/3 ·+ r 1 ) = 8. 71, and d, the diffuse­

. ness, as o.6lf. 

As may be noted in :the lead-208 case, the Woods-Saxon potential is 

quite similar to that chosen forK. Poggenburg 1 s calculation where "(R) 

was given.as 

= -35 (III.3) 
. (R-l.l7A

1
/ 3 -2.17)) 

exp 0 ·576 

where v0 = +35 again and l.l7Al/3 =6.96 for A= 208 and r 1 = 2.17. 

The computation involves a search for the radius at maximum barrj_er 

height, If the barrier maximum does not exist as in Fig. 4, part (a) 

where only one inflection point exists, then the value of R low is read 

in. If the barrier maximum does exist, th~n the program searches again 

for the barrier minimum as in Fig. 4, parts(b)or(c~ If the minimum· is, 

below the alpha decay energy, then the program searches for the inner 

turning point of the barrier as in Fig, 4, part(b)as in our case. 

If the minimum is above the alpha d.ecay energy, i.e., the inner 

turning point does not exist as in Fig. 4, part (c), then again the R low 

velue read in is used. 

Besides determining P
2

, the following quantities were also 

determined: R. , R1 , R2 , TJn, the Coulomb parameter. 
mln ~ . £=0 

The values of R2 were determlned to be ~ = 26.39f, 
£=3 £=4 . 

~ = 26.66f and R2 = 26.84f which compare favorably with the values 

observed from Fig. 2 which are R
2

£=0= 27.30f, R2 £=3= 27.32f and 
~5 ' r 

~ = 27.8f. The £=4 wave was not plotted. 

The values of P _g were found to be:. 

Po = 3.105 X 10-14 

p3 = 6.665 X 10-23 

p4 5·771 X 10-32 
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Fig. 4. The WKB barrier penetration calculation can be 

MU-35097 

made for any arbitrary barrier shape by use of Glendenning's 
computer program in the region where coupling does not 
occur. 

,, ,.·: 

-. 
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The value for the ground-ground state transition penetration fac­

tor P 
0 

was previously calculated by, J. 0. Rasmussen9 and was found to 

be p
0 

= 1.32 x 10 -l3. ·Again, as in the above calculati.on, the penetra-­

bility factor was calculated from R0 out. 

The potential assumed by Rasmussen for the calculation of p·
0 

was 

an Igo potential of the form: 

(III.4) 

where the well depth v0 was taken as v0=1100 MeV. 

The Igo potential used'.in optical-model analysis represents the 

real part of the nuclear alpha-surface interaction and is determined by 
10 alpha-scattering exPeriments, over a wide range of target elements .. 

The larger penetrability factor was determined when the more 

attractive Igo potential was used. · 

'It was felt that for the present probelm, the Igo potential dropped 

off too rapidly and that the Woods-Saxon potential better represented the 

nuclear barrier in the surface region. 

The barrier penetration matrix for the }\to ~region is given by 

the 2 X 2 diagonal matrix P, where only octupole vibrational contribu-

tions .are considered in the coupling region. 

~ (3.10: 1o-
14 

0 

10_2J p 

6.66 X 

' Now let us turn our attention to the coupling region once·more 

and evaluate the non-diagonal coupling matrix, Q. For the present; let us 

concern ourselves with the octupole case and consider Q as a 2 X 2 

matrix. 

It may be recalled•that in Sec. II, we had Q in parametric form / 

(III.5) 



. where 

and 

tan¢ 
2 

"--/Cl 
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In order to .. evaluate ex, f3, and 'Y, we must evaluate the eigenvalues 

A. belonging to v and also q2 , the coupling matrix element between 
+ + 

the 0+ and 3- states of lead. 

K-, which appears in the barrier + . 
in the coupling region, can be evaluated 

the small range ~R, K; are given as 

pe~etrat:L6n matrix p ~r~- ~J 
b,y a WKB:..type expression over 

(III. 6) 

'\ 

where B is the barrier height and ~ is the reduced mass. 

In this approximation, 'we have replaced the nuclear barrier by a· 

rectangu'lar barrier extending from R
0 

to R
1 

and Eo: to B. It is obvious 

that this approximation greatly ov~r-emphasizes the effect of the barrier. 

Later we_ discuss a triangular barrier approximation which more accurately 

represents the actual barrier. See Fig. 5, page 34. 
In the coupling region, the interaction between the 0+ and 3-

state causes a decrease in the "effective barrier height" as seen by the 

presence of "-+ in the above expression. 

An enhancement of the decay rate over that which would occur if 

coupling did not occur, is found to exist for some boundary conditions. 

The eigenvalues, A.- were previously expressed in terms 
2 + 

2. 2 
of k0 , k

3 
, 

q_ , and in order to determine the values 2 of A.- we must evaluate k0 , 
:+-2 and q_ . 

energy 

We shall now turn out attention to this problem. 

The matrix elements k0
2 , k

3
2 , and q_2 must be properly defined in 

units chosen in this case to be l/f2 , as stated earlier. 

The eq_uatioris relevant to the octupole case are 



.. 

(III. 7) 

-where 

. V == (2Ze + ") MeV 
R . 

2 . 2 
Here -we have considered the evaluation of k0 and k

3 
and some 

"repr~sentative" radius R0 , in the coupling region R0 to R1 . Since the 

coupling region.extends over a relatively small interval, R1 -R
0

==LiR=l.8f, 

compared to the total barrier extent, -which is greater than )Of, the 

radial dependent energy variables are assumed to constant in this regionJ 

as a first approach to the solution of this problem~ See Fig. 2. 

The values, from the above expressions ~or k 0
2

(R0 ) and k
3

2
(R0), 

are determined to be 16.0 MeV or ).12 l/f
2 

and 18.6 MeV or 3.96 l/f2 ~ 
respectively, -where the centrif4gal barrier term has not been included 

in k 3
2

(R0). The centrifugal barri~'r term \(2ujti2 ){12jR
0

2)equals 0.72 MeV 
2 . ' 

or 0.14 1/f • . : · · · 

The expression for the coupling matrix element q
2

(R0 ) is derived 

in Sec. I, and is given as 

(III.8) 

Using the relation, tim= tilc
3

jB
3 

-we may eliminate the octupole 

mass parameter, B
3

, from the above expression ~nd thus obtain: 

_ _N] . f R 2 

. q2 (Ro) == 2u ~ J7 /87T '· tim o (III. 9) 
ti2 dr R \I c3 0 

We find 6V/6B==9.l MeV/f over the radial region LiR=l.8f as deter­

mined from Fig. 2. The potential ~ariation, 6V.:::(20.22-8.95) MeV, so that 
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6v ·becomes 11.27 MEN and 6R == (10.95 .- 9 .. 15)f- 1.8f, with the result 

that 6V/till. becomes' the abov~ ·value, 9.1 MeV/f; 

Once:wehave'a value for the surface tension parameter c
3

, we 
2 can uniquely determine the q value. There is an uncertainty as to the 

. precise value of c
3 

and thus the value of q2 

methods for determining C and calculate the respective values Qf 

We '~ill set forth several 
2 

q . 
. 31 

Bohr and Mottelson der~ved a general expression from the hydro-

· dynamic model considerations and arrived at the following expression for 

any arbitrary deformation, £: 

where MeV and 

nuc],eus·. 

2 2 
3(£~l)Ze 
2TI(t+l)R0 

(III.lO) 

Z is the charge on the daughter or recoil 

For the octupole case, . £==3, we obtain c
3 

== 279 MeV and there- . 
2 2 . 

fore B
3 

== 41.5b /MeV. For this value of c
3

, q becomes .4.40 MeV or 
2 . 

0.86 1/f • . 

Lane a~d P~ndlebury13 quote a value. of c
3 

determined from electro­

magnetic.transition probability data and found 

c
3 

== (~500 ± 750)MeV 

The above c
3 

value was obtmnea by experimentally determining 

the lifetime for the E3 transit~on for the lead, Pb208 excited state 

de-excitation, into 'the ground state which was found to be -r = (4±2)Xlo-11 

sec. Then the pr~bability per unit time for such a multipole transition 
. . b 14 J.s g1.ven y 

T 2 . 87r(£+l) 

c [ (2 £+ 1) ! !] 2b 

for an arbitrary E£ transition, where we can convert 

T to T by 1 
T =-

"' 

(III.ll) 

and whereB(.e) is the reduced transition probability for vibrational 

,, 
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excitation,given by 

B(,e) = 
(2£+1) (~rr ZeR0 £) 2

11 

2JB,e ci 

for single phonon excitations. 

(III.l2) 

Again we shall use the expression for the energy,quanta in our har­

monic oscillator mode·l given before as 

C£ can now be determined from the values for. '! and IDill,e· 
2 For the Lane and Pendlebury value of c

3 
we have q = l.9MeV. 

Among the more recent methods available to us for the determina­

tion of c
3 

is the DWBA ·(distorted wave Born approximation) analysis of 

inelastic s.cattering of charge particles. The DWBA is applicable to our 

coupled channel purely collective model for single phonon excitation. 

T. Stovel and N. Hintz3 obtain cs::c·468MeV for (P ,PI) scattering. R. H. 

Cranne115 , et al.,determined the ~alue of c
3 

to be c3~ 793 MeV, obtained 

The respective values of q
2 

are from inelastic ~lectron scattering. 

q
2 

= 3.41 MeV and q2 = 2.82 MeV, for these references. See Table I. 

The calculation of the eigenvalues A+, of the system when the 

alpha particle is in the surface region in the octupole case, can easily 

be performed now that q2 is determined. As may be recalled, 

giving A+(R0 ) = 

though with the 

A­+ = 

J 4 4 .:. k +4q 
+ 30 

2 

{-3·74 } MeV for c3~210 MeV or 1.0 ljf2 . 
6.35 

above example for q
2

=5.07 MeV. 

(III.l3) 

We shall follow 

We may now. obtain K+- as a function of A- by using the WKB triangle 
+ 

barrier approximation. See Fig. 5· This approximation is superior to the 

rectangular barrier approximation given previously in this section, which 

overestimates the effect of the barrier attenuation of the alpha wave. 
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Table I. Values of the surface tension parameter and. respective values of the coupling constant. -~ . ·-

0 

[MeV) · 
2 

[MeV) 
2 

[1/iJ Reference c3 q q for c3 

·210. 5.07 1.00 Value used for calculations 
in this paper 

279· 4.40 0.86 (Hydrodtnamic model 
theory) · 

468. 3.40 0.67 ((P)P') inelastic . .. 
scattering)3 ~ ··:-

793· 2.82 0.55 ((e)e') inel~stic 
I 

scattering)l . \.PI 
1\) 

(Electromagnetic . f t. )12 I 

1500. ·1.91 0.37 ll e lme 
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If the coupling interaction '~ere not present, the alpha -particle 

wave would·be attenuated by a factor.giveri as 

for 

so that c0 becorp.es 

V-E = (~)r 

co= e- 2
: (2/3)(&.o)

1
/

2
t:R where &;

0
. = B-E 

;ex 
If coupling occurs, the penetration factors, K:;:, corresponding 

to the eigenvalues A+, can be found in terms of c0 . The upper penetra­

tion factor, K_, can be determined· from the 11 small triangle" in Fig. 5· 
Since the 11 small triangle" for K is similar to the triangle for 

is given by 

ln K (III.l5) 

By similar triangles the lower penetration fa-ctor, K+, is given 

by 

(III.I6) 

where L:E _ = E
0 

+ ·" - " '+ f\. +. 
The values. thus determined from the WKB triangle method for K:;: are 

K- = [0.360l 
+ 0.027 f 

The alpha wave vector, v , in the uncoupled representation, pene­

trates more readily when the coupling occurs because it "sees" a narrower 

and lower barrier, since its effective alpha decay energy is 12.69 MeV 

and not 8.95 MeV. See Fig. 5· The penetration factor for this wave, K , 
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20.22 8 

Fig. 5. The barrier penetration matrix elements K- may be 
obtained by application of the triangle method i~ the 
region of the barrier ~here coupling occurs. 
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is larger than the penetration faCtor c
0

, when there is no ·coupl~ng so 

that the aipha wave penetrates more readily. 

We are now in a position to determine'the matrix e::\_ement-s of Q 

and we find 

a = 0.244, 

thus Q becomes 

~ = 0.160, and ·~ = 0.144 

Q = (0.244 

0.160 

0.160) 

0.144 

We shall interpret the meaning of Q and its action on some two-

component wave vector (uuo
3

) by a graphical method, .as will be done at the 

end of this section for the c
3 

= 210 MeV case. See Table I. c
3 

= 210 

MeV is the lowest value and thus gives an. estimate of the largest possible 

coupling effect. 

The present calculation gives an order of magnitude estimate of 

the enhancement of alpha-particlepenetrabilities due to the effects of 

collective excited states. 

Because of the existence of a· coupling in the surface region, the 

alpha-wave function is able to propagate more easily through the initial 

part of the barrier region than would be possible if the coupling were 

absent. 

If the coupling did not exist, the £=O·alpha-particle wave would 

be attenuated through the coupling region, from the inner turning point 

to the maximum:barrier l::).eight, by a factor of K=O.l56. 

Now consider the finite coupling case with an alpha-wave vector 

of the proper linear combination of the ~~=0 and (=3 parts that constitute 

the lower uncoupled solution v . The v wave vector effectively pro­

pagates through the coupling region as an alpha group of higher energy, 

3-74 MeV above Ea, where ~-=3·74 MeV (see Fig. 5). Thus this wave vec-

tor will only be attenuated by a factor of 0.360. 
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I 

As can be seen) the enhancement in the alpha-particle vave ampli-

tude due to the c()upling interaction) is about a factor of 2 and,thus 

the enhancement in the alpha interisi ty is up by a factor of 4.' 

The hyp'othesis might be made that the inner boundary conditions 

on the alpha-particle wave will always be near the optimum to exploit 

the enhancement of the alpha particle's.penetration through the coupling 

region in the decay to vibrational states. 

Such is not the case in deformed daughter nuclei involving rota­

tional states) but it could be the case for vibrational states. 

Graphical methods will be used at this point to indicate the 

action of Q. on the impinging alpha particle. Consider.some input wave 

vector 

and by the action of Q. upon it we obtain some output wave vector 

so that 

(III.l7) 

The wave-vector components u~ and u0 are linearly related to the components 
I d I b . . 3 u0 an u

3 
y 

I I I \ 
f3 i . uo \ 

~ I r 

~ j \ u~ / 

(III .18). )./ 
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We assum·e, in writing these equations,, that the
1 

super position _of the 

u~ part on the ~;.is valid. 

The first case that will be considered is the one_where u; is_ 
0 0 taken to be unity and we shall investigate the effects on_u0 and u

3
, due 

to the channel mixing, by letting u~ deviate from zero. We now have the 

equations 

R + )'UI . 
l-' 3 

(III .19) 

for the relation of the .input.to the output vector <:!Omponents. 

In graphing 0 · I ·· u
0 

vs u
3 

we have a linear plot where a: is the inter-
0 I cept and 13 is the slope 0 Similarly for u
3 

vs u
3

, 
and ~ is the slope. 

I The two lines intersect at u
3 

= 

Fig. 6) .. 

. 0 
-4.00 and u0 

13 is 

Plotsiof the form lu~l 2 vs u~ ~n~ lu~l 2 vs u~ have 

the left of u3 = -1.0 .. The plot of lu0 1 + lu~l2 vs u~ is 

the above two curves (see Fig. 7). 

the.intercept 

-0.40 (see 

a minimum to 

the sum of 

In plotting the ratio u~/u~ vs u~ a 

-where u~ = -1.14. At this value of 

and around and up from - 00 • 

discontinuity occurs.at 
0 

u
3 

= O, I 0 0 u
3

, the ratio of u
0
ju

3 
goes 

to +oo 

I I vs u
3 

occurs at u
3 

= -1.50 The discontinuity in the plot of u~/u~ 
01 0 where u
3 

u
0 

goes to - 00 • The discontinuities are avoided by plotting 

in the range 

-1.0 to 1.0. 
· .• 1-·.· '·; , .. 

OJ 0 I 0/ 0 I For the plot of u0 u
3 

vs u
3 

and u
3 

u0 vs u
3 

(see Fig. 8). 

The effect of the enha.ncer;tent, due to the £=3 wave, can best be 

demonstrated in a plot of 
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and 

The displacement of the maximum of the 

from u~ = 0 to ~he right 

0~ ~~. 1\l~ 12 0 2 vs 

lug 12 
+ lu3 1 

strength (see Fig. 9). 

I u
3 

= 0 is a measure of the coupling 

·, 

.. 



.. 
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.. 

0.40 

0.30 

Q20 

0.10 

ug vs u; 

u~ vs u; 
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0~------~~------~--------~------~ 
-1.0 -0.5 0 0.5 1.0 

MU-35104 

Fig. 6. The wave vector components ug and u~ are linearly 
related to the components u5 and ul by the matrix 
elements of Q, the barrier penetra~ion matrix in the 
coupling region. 
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2 
lug I vs 

lu~l2 vs 

0.20 lu0 12 + lu 0 12 
0 3 

vs 

-0.5 

u~ 

ui 
3 

UI --
3 

0 

u~ 

--· 
0.5 1.0 

MU-35101 

Fig. 7. The square of the wave vector components lu81 2 and 
. lu

0
j
2 are plotted vs. u~ in the quadratic representation 

of t~e effect of th~ coupling interaction. 

~. 
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vs u1 -3 

vs u I ---3 

---------------------

0~--------~--------~--------~--------~ 
-1.0 -0.5 0 0.5 1.0 

ul 
3 

MU-35099 

Fig. 8. The ratio of the wave vector amplitudes for the 
£=0 to £=3 and £=3 to £=0 waves are plotted vs. the input 
£=3 wave amplitude u~. 
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I . u ----
3 

---~---.,.,.-- ----~---------

0~----------~----------~----------~----------~ 
-1.0 -0.5 0 

u I 
3 

0.5 1.0 

" MU-35103 

Fig. 9. The effect of the enhancement in the ground-ground 
state transition,due to the £=3 wave, is seen in the 
plots of the square of the amplitude ratios in the input 
wave amplitude. 

. -, 
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Dr. THE GENERALIZED PROBLEM:· 

THE THREE- AND FOUR-CHANNEL CASES 

We have seen how the matrix Q can be obtained for th~ two-

channel problem .. where only .e=O and £=3 waves are considered. The Q 

matrix was derived in terms of a transformation matrix, B and a diagonal 

barrier penetration matrix, P. The matrix B was constructed from the 

eigenvector lv) belonging to eigenvalu~s A.- which were in turn constructed 
+ 

out of r.-. + 
The eigenvalues, A.-, satisfy the eigenvalue equation in the 

+. ' 

diagonal representation of a matrix A, a Hamiltonian 2 X 2 matrix which 

is a linear operator operating in a two dimentional Euclidean space, and 

are obtained by the Secular determinate method. 

The matrix Q was constructed out of B and P as an operator 

that first transforms ~n eigenvector lu) as bases vectors in the "old11 

non-diagonal representation to the bases vectors !v) in a "new" diagonal 

representation and carries them through a potential barrier by P in 

this "new" uncoupled representation and then transforms these eigenvectors 

lv) back to the origfnal set of bases vectors lu). The matrix Q found 

in the preceeding section was thus found to be a barrier penetration 

matrix, applicable for the problem where only two-channel coupling occurs. 

In this regard, · Q will act upon an escaping alpha particle represented 

by lu) a two-component eigenket in a two-dimentional Hilbert space. 

Now let us extend and generalize our problem to one with an 

tmspecified number of open final-state channels, say N channels. The 

Hamiltonain matrix__, A, will be an N X N matrix with assoCiated bases 

vectors u1 .•. , UN.~ 

In general, for N open channels, that is, for N final states 

of the system where the alpha decay can leave the daughter in any angular 

momentum state, .e, an N X N Hai)'liltonian matrix Q can be constructed 

that would operate on an ~ component column vector. 

There are essentially fou~ Pb208 levels as determined by' (a,cx') 

and (P,P') scattering experiments that significantly contribute to the 

coupling. (See Fig. l) The four significant levels in lead are seen to 
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-to be the 0+ ground .state, 3-, 4+, and 5- excited states. The relative 

importance of these levels decreases for higher .£,' s and thus the previous 

t-wo-channel calculation is not a bad representation of th.e coupling effect 
. . 

on the alpha-particle barrier penetration. 

The general problem for the lead-~08 daughter thus -would be com­

pletely described for a four-channel Q matrix, represented by a 4 X 4 

matrix in a four-dimensional Hilbert space. 

We will discuss briefly the three-channel case -where the 4+ state 

of the daughter, lead, is.also taken into account. 

Considering the lowest three levels of lead, the ground state 0+, 

the excited· octup0le, 3- state, and the 16 pole, 4+ state, we again have 

our differential equations in matrix notation 

A40 iu) ~ -lu)" (IV.l) 

-where .1 ty) is a three-component vector in a three-dimensional Hilbert space 

as. 

~ (~~I 
\ u

4 
I 

and the Hamiltonian· A· is given as 

~0 

A40 -will denote the 3 x 3 

previously discussed 2 X 2 matrix. 

matrix. 

(IV.2) 

(IV.)) 

And will denote .the · 

As indicated ~O is a submatrix of A40 . The coupling terms 
2 to be small in magnitude relative to q
30 

(see Fig. 2), are assumed 
2 

q40' Hence ~O becomes 

'\ 

: ,f 



'. ( 

... 
·'"' 

". 

I . { 

. _,-·_ 

(IY.4) 

·-:,·- .l. 

As is seen, the form of ~O is that of a real symmetric matrix which 

must be true for any Hamiltonian. 

· Again the' method of sec1?-lar determinants can be applied in order. 

to determine the three eigenvalues .. A.~!. 6 belonging to the three-component 

vector lv) in the eigenval~e expression 

jv) for lv); ( vv+ ) . 
. \ ' . -

. . , vo 

Proceeding in a manner analogous to·that used for the calculation 

of Q
30 

in Sec. II; for the two-channel case, we can again use the method 

of secular determinates in order to detemine .the thre eigenvalues A.+,O 

belonging to the three-component vector· lv) in the eigenvalue expression: 

(IV .6). 

The tran'sforrhationmatrices,·can~then•:be deduced frcim·:A.i,O.· 

The values of K+,O can also be determined by the use of an approxi­

mate WKB barrier calculation, so that the·expression for the matrix 

elements of Q4o can be determined. 

This same treatment may also be extended to the four-channel case, 

to determine Q
50

• 

It is felt that adequate values of c
3

, c4, and c
5 

may be obtainable 

from a consideration of (cxJcx') inelastic data in order to determine the 
2 2 2 values of q40 and q

50 
as well as q

30
, but for the present we shall not 

"consider such calculations. 

When such values are determined,. it will be possible to calculate 

the matrix elements of Q40 and Q
50 

in a manner analogous to the cal­

culation of Q
30 

performed in the previous section. 
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·v. CONCLUSION 

A plirely collect:i,.ve vibrational model has been appl:i.ed to the 
' 212 . 208 

alpha decay of Po . to Pb . We' have cal.culated a non-diagonal ·2, X 2 
( 

matrix, Q, wbich describes the action of the coupling part of the barrier 

on the emitted alpha, when the .two-channel coupling approximation is 

considered. The effect of the.barrier-penetration matrix, Q, on an out-

going two component .alpha wave I u). == 1\
1 
uo 'J was examined by graphical. 

. ·' u3 . . ' . I 

methods and discussed. 

A short discussion of the three- .arid:: four-channel cases was' also 

included. 

Further analysis of the problem, w:ith regard to the .consideration 

of (cx,cx') scattering may be in order, but for the. present the determina­

tion of the form of the octupole coupling constant and its magni,tude, as 

~11 as the barrier penetration matrix in the coupling region lends· 

further ~nsight into the alpha decay to spherical-daughter nuclei, where 

only vibrational excitations occur • 
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