UCRL-11896

“University of California

~ Ernest O. Lawrence
Radiation Laboratory

A GENERALIZATION OF LEVINSON'S THEOREM TO
THREE-BODY SYSTEMS

TWO-WEEK LOAN COPY.

This is a Library Ciri’:ulating C.opy;" S
which may be borrowed for two d»eeke_s(,. |
For a personal retention copy, ca'l!
Tech. Info. Division, Ext. 5545 -

Berkeley, California




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California. :



k)

Submitted to Physical Review
UCRL-11896

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

A GENERALIZATION OF LEVINSON'S THEOREM TO
THREE-BODY SYSTEMS

Jon Alan Wright

January 6, 1965



=

B f ' UCRL 11896
{ Lo A SRR
' A GENERALIZATION OF LEVINSON'S THEOREM TO THREE-BODY SYSTEMS - .-
: Jon Alan Wright R -
A o : . Lavrence Radiation Laboiatorylff{ .
P 4 ' University of California '
R . o . -+ Berkeley, California

.. January 6, 1965
ABSTRACT:

Levinson's theorem is genéralized to systems of three particles,
" The usual'two-body result relates the number of bound states of given angular""
momentum to the corresponding eigenphase shifts of the S matrix. Because

of disconnected diagrams the three-body S matrix has continuous eigenphase :. .
I

' ghifts in addition to any discrete ones; howeve:,'it is possible to define
a unitary éonneéted_matrix that has only discrete eigenphase shifts,

A}

Levinson's theorem is éiﬁeh,ip terms of these phase shifts, and it is the
e same as the usual multichannel result except that there are an 1ﬂfinite_
number of eigenphase shifts to be summed over for each value of the total -

_ angular momentum. The proof is ca;fied out within the framework of the

 Faddeev eduations by generalizing Jauchfa proof for twb-ypdy s:;rsrl:enm.,.-f
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to the phase shift by . o T
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1. INTRODUCTION

One of the important problems in the theory of elementary particles

is the determination of whether or not a particle is elementary or

composite., In a Lagréngian theory an elementary particle must be put in '

the Lagrangian. In a model based on dispersion theory there is the well

known ambiguity of Castillejo, Dalitz, and Dyson.1 They showed that an

infinite number of solutions exist in the charged sciiar theory without
recoil., In both kinds of theories it has been sugge;£ed that Levinson's
theorem2 could be used as a means of selecting the'proper Lagrangian or"
the proper solﬁtion to the dispersion relations. In itg simplest form as

first given by Levinson the theorem says that in the scattering of a 'Hv

]
]

particle from a .spherically symmetric central potential, the number of

bound states of the particle in a given angular momentum state is related

]

W= 6(0) - &(=) . . (11)

‘Jauch3 generalized the proof to a larger class of potentials than

‘that treated by Levinson, and also he showed that the relation (1.1) is

a result of the completeness of the eigenfunctions of two operators H. and-

- H, . .H is the full Hamiltonian for the system and Ho is the Hamiltoﬂian

0
in the absence of interactions., The result has been generalized to the

case in which H 4y5

0 also has a discrete spectrum,

(m, = NHO)n - §(0) = c(é). 3 _' B (1.2)

o . Yespectively.

is the‘Hamiltonianvoperator for a nonintefacting syﬁtem,'all

NH and’ NH0 are the number of bound states of H and H

Since Ho

4
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. points in its discrete spectrunm 'represent elementary particles. Levinson'slir

-l

s
1
k)

'”'-theorem has been further generalized to many-channel systems by Kazes.6

In view of the possible application of Levinaon s theorem to determining

vhich equations~=and which solutions to them—-nature actually aelects9

' it seems ‘important to extend-the theorem to systems of more than two

The three-body problem has.two important comglications which

aren't present in two-body problemso One difference ie in the number of

~variables in:the system.. Iﬁ two-body scattering the S matrix can be

- completely diagonalized by projecting out the total angulaf momentum,

Jr>

‘ . whereas in three-bod& scattering the S matrix depends upon additfonal ’”

‘j7f. energy and angular variables and a further diagonalization is necessary.

T :

?'continuous spectrum

" sum. In the special casge 1n which there are no two-body bound atates ‘the

" number of three-body bound atates is shown to he " }e'7"' .cﬁ'évfi

1]
Wy

> . Unfortunately it is not known how to do this.' The secohd major *

there exist situations in which two particles interact and the third .

r=pert1cle is.always beyond the range of .the forces, As a result of this

oo i : : '
* _disconnectedness, the kernel of the Lippmann-Schwinger equation has a

T Similarly the S matrix will have a continuous

spectrum9 that 19, it will not have: only discrete eigenphase shifts which

simple origin of the continuous apectrum, it is possible to define a

unitary operator closely related to the S matrix and having only a

. discrete spectrum, Unlike the two-body case, there are here an infinite

‘.'u:{and the expreesion for the.number of bound states involves an infinite'

¥

-

t ¢ . ) ! .,

-~ particles, In this paper we'generalize the theorem to three-body systems.r“:}ﬂf?y

‘. difference is the conhectedness structure; that is, :in three-body scattering

G e

= :{ can be eummed to give an equation such as (1.1). However, because of the,l"{. It

_number of eigenphase shifts even after the separation bf angular momentum,‘.n\

. t o
S
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s 1 : h
| Foe 3 ) (800 -6 (=), - (1.3)
- .
" where the 6n are the eigenphase ghifts of the unitary operato:; mentioned
above, '
‘The proof of (1.3) is carried out within the framework of the

g-11 and it is based upon:

set of three-body equations developed by Faddeev
the completeness relationships of ehe eigenfunctions of the operators H
and Ho. If therg are no two-body bound states, the eigenfunctions of
H eand Ho ayé related to each other ﬁy one isometric operator, the
Mdllefl2 wave matrix. In Sections 2 and 3 we restr1c§ ourselves to this

‘ ' I
situation, as it contains all the essential problems without the many

algebraic complexities that arise when two=body bound states are éermitted.

In Section 2 we introduce the Faddeevll.equations and the projection

operator onto thé three-body bound states. In 8Section 3 we derive Eq. (1.3).
In Sections U and 5 we relax the restriction on two-body bound

states to permit éne bound state between each pair of particles,

Section 4 contains the generalization of the Mgller wave matrices to

allow for this possibility, and Section 5 contains the general#zation of

Eq. (1.3). ?inally. the more tedious calculations can be found in the

Appendices,

2. THREE-BODY WAVE MATRICES

In this section we outline tr~ method of proof and introduce the

.Faddechequationse-ll and the isometric operétors which are the generaliza-

12

tion of'the'Méller wave matrices” to three-particle systems. A complete
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account of the operators and ﬁhéir properties can be found in
reference 11,

The basis for the proof is the same as for Jauch's original proof
for two=body systems., All calculations are carried out for fixed total

angular momentum £ . The total Hamiltonian is split into two parts, .

H = H +V : , (2.1)

where HO is the free~particle Hamiltonian and V 1is the interaction

term., We assume that all the eigenstates," ¢E

o Of Ho are contfnuum

states with energy E > 0 ,

Hofg = Efg iﬁ2°2)
and that H has N points-in the discrete spectrum with En 0
(n =1,2, *+¢ N). ﬁ_ is assumed to have the same continuous spectrum

* . hd

as Koz

Hp = By with E>0

Hy, = E¥ with E <0 . (2.3)

The isometric operator that maps the continuum eigenstates of Ho onto
the continuum eigenstates of H is called the Mgller wave opera.to_r,l2
and is given by
“. .
o = [ @l . (2.4)
The completeness of the eigenstates of H and Ho: gives the relationships



5=

!

4 .. . .
‘ n*q -_[0 aE |#5C8 = 1 . ‘ (2.5)

“ , " and

o " - f.dE' [g><vgl = TP, .. . (2.6)
. . ‘ 0 . X . u ) .

A

Here I 1is the identity operator-.and P. 1is the projection operator

d
on the discrete spectrum of H Combining Eqs. (2.5), and (2.6) ve have

.1

d

L3 .

P, = ala-aat ', (2.7) .

N ' Slnce the trace of a projection operator is the dimension of the space “

it projects onto, we have, for the number of bound states,

j\\ : N = trace Pd = tracé (ﬂ* N -0 nf) ; , (2.8)

It is convénient to use two sets of variableé in the calculation
of the trace in (2.8). The final ansver 1s indepéndeﬁt of the vafiableg
used, but éhe proofs are ‘often simpier for a particular'choicepf‘vﬁriables.
One set is the same as that used by Omnes,13 which consist; of the individual
‘kinetic energies (ml,wz,w3) in the o;erallvcenter-ofemasa sisfem, a total
angular momentum J and its projections M 6n‘a space-fixed axis, and
M'-ona body-fixéd axis,
_ The second set of vafiables is essentially an angular momentum
_ decomposition of Faddeev's. A pair of particles is denoted by the symbol '
a., for example the 2-3 paif.is denoted'by a=1, In the center of mass

of pair a  we introduce the kinetic energy Vo and the relative angular

momentum variables £, and m . These variables refer ‘only to Patr ae



w6

In the total center-of-mass system we let ,w; .be tse translatiohal energy
. of the centes of mass of pair a and ﬁhe:third'particle..‘A.third total
”'energy variable E's We + Vo will often be used instead of Wy .' For T
simplicity we denote the angular variables ﬁa and m, by Aa;.aometimes

Aa- is omitted estirely, as it is inessential to the calculations.

' . Obviously there are three sets of variables as there are three distinct

" pairs oﬂDparticles, and we'will often change from one description to

another. The total angular momentum J and its proJection M ona

':space-fixed axis complete the ‘set of variables. We will always work in a B

!

system with J and M, fixed, so they will be omitted.’

Before discussing the three-body problem*it is necessary to have

vthe solution to the two-body Lippmann-Schwinger equationlh for the t mstrix,

v, (v LI L AT 's) Lo

N ' ' culs - a a’a’a’ : )
, ta(va,va,xa s)‘é vu(vs’?&fxa)d“-J[ dv. , o

/"'We have assumed that the potential is of the form Vla(lr - r2|) in

( .
coordinate space so that Va and ta are diagonal’ in A o " The kernel

of the three-hody equations involves the operator Ta(s) R

<v,A,wlTa(8)|v',A',w°) =.§(wa - 0&)Q(Xagl&)ta(vaivé

Although the three-body transition operator satisfies an integral

.. equation like (2.9), the kernel is not compact, because of the disconnected'

!

graphs. However, it is possible to define operators that satisfy a set

of coupled integral equations in which the disconnected terms are explicitly o

. summed, - An iterate of the kernel of these equations has been shown by .
. - . R ‘v .A. . ‘J( - N .A . K .

Faddeev to be compact. -

LI (2.9)

glg;s;-mma) . (2.10) -

>

N



ale
Let M;B(s) be the amplitude for an‘inteﬁactién vhere pair o is
Ithe first to 1ntergct and pﬁtr_.B is the iast. These 6pér&tors sgtisfy
. fhe equations | | ‘ o

L}

Hip(s) = by T(e) = () =t Y m(e) . (2am)

Here H6 is the energy 6pergﬁor for all particles free and noninteracting.
In our representation it is Jjust multiplication by E'!fva & md.' The .

kernel of the operator will be written

'(v,m,AIMua(s)]v',m',A)"B 'Mae(w;vgx;m',g',l°;s)
. . ) .o * ;" ) y . l

_Of .. . o B!
(wl,qa,w3€M|MaB(s)lwi,wé;mé,u'7 = Maé(ulgu2,m3,M;ui.qé,m§3M9;8)ﬁ s (2.12)

depending upon which variables we are using.

. 7 : , '. .m.
The generalization of the wave matrix is given by

-

. . . . M (w Vedzw! V! Xv.s = w'+v'+1e) .f s
8, = 8(wm')8(v=v")8(A,A1) = E: KT DAL AR W . (2.13)

wHv=w'=v'=ic
G’B ' ’ o

If there are no two-particle bound states, .the proJeétion operator on:the
three-particle bound spateéiié |

A ogfa wanal .

% = e o (2j1§)

oo
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The operator &, is a sum of several terms which we write as
By = LaW -Wy=Wy=W, (2.15)

with W, Wé; W, being the disconnected terms,

G(wa - w&)é(kq,k')t (v _3visx tvt + i¢)

g o a " a” a4 a
R T . . (226
Qa a

(“’a"s”walw't\" $ATH =

)

o
connected part.. Using Eq. (2.15) we have, for A »

The term W, 1is that part of (2.13) with no delta functions, that is, the

s

"3 - . , '
A= Z mawg} -+ '{wg. ."o] +Z [w:.wa] e fean
© am=0 | e o

a#B ' : o

The last term is. the two-body éxpression equivalent to Eq. (2.7) and can .

be written

| . {?Z;Wa] o 6(«»q - w;)P“ ’ ‘ , ' (2.18)

where PQ is a pfoJeétion operator on the two-particle bound states of

pair a , Since we assume there are no two-particlg bound states, Pa = 0,

Later we include the possibility of these bound states.

Because Pa'= 0, ve need only take the trace of the terms in
(2.17) that don't have an overall delta function. The answer is given in

terms of the three-to-three S matrix, which is defined by

00

s = 8w = w')8(v =W')6(A2") = 278l + v = 0 - v')Too s (2.19)




with _
TOO ZE: M, (w,v l,w' V', X'~s - RVL R U 15) o« ' (2.20’
a8 - o .
9

-

* .

The trﬁpe of A 1is evaluated in Appendix I and the separation of eigenphase

‘shifts is discussed in the next section,

3. THREE~-BODY LEVINSON THEOREM

The number of three=body bound states of the system can now be .-
obtained by'taking the trace of both sides of (2.1k), The result, as’

given in Appendix I, is ’ ‘ “ . }

o =/ : | t o .

¢ T Moo oo -

N = dirn U[ dE trace Too a5 - Too 35, ° | (3.1)
0 . . . ’ .

The prime on the integral means that terms with an overall délta function

»are to be omitted from the trace. To obtain a result in terms of a sum
‘ R v .

-over eigenphase shifts, it is nécéssafy-to have a compact opetatorsh}A )

LY

~ connected T matrixlis defined’ by

| S scl = 1r;.2n_1 G(E'q-Ef)Tc:fr;, ) :‘fﬂ : ’<$;§>
with
sé = slfs2 83 So0 . ¢ EER "i.{}»" (3.3)
/ i [ -
"¥ H;ref*sl %s the two-body Si@atrix éﬁltiﬁlied byié(wl_Q.wi) y
. ’;.ti ) 2“ 1'5<EVf Eé)Ti;ﬁ;;. {;;;» 1;-7f; . 7‘ e
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Sc is a unitary operator and it is easily verified that Tc has no
delta functions in i{t. For fixed total energy, Tc is a square integrable
. operator, siﬁce its kernel is bounded for all values of the variables and

the integration is over a finite'range; that is,.

.~

. f . ) ’
trace TcTc f Lo o o o (3.5)
Because of unitarity, T, is also a normal opérator,

tp o got | ;
Te'Te = TTo . (3.6)

and thepefore it has a spectral expansion of the form

- 18 ' ‘
1 n . '
T, = -3 Z e = sin Gnlen)< enl ve !|(‘307)

n

- The eigenvalues depend upon the particular order of the 8, in (3.3)
but the final result does not. For the total energy E =.0 » trace

0, since the subenergy integrafions'are over an interval of

1.
(z.tr,)
‘\ zZero lengtq.';Therefore the eigenvalues sin26(E = 0) all vanish identically.

We now write (3.1) in terms of Sg0°
«/

| | 1 [+ 2500 N "
No=dn f aE trace (13 [soo 3~ So0 ~3E |~ 2nT 38 (Yoo * Too9 J

0 . . | (3.8)

then we use the fact that trace T vanishes at zero and infinite energy

00
to eliminate all but the 8 matrix, Substituting'(3.3) for S00 s We have
of

Nealn dE “trace [(s c81§253) 5E (sBSaslsc) (-s3saslsc) 5 .(scslszss)] .
0 ‘ (3.9)
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Using the unitarity of the S matrices and the identity trace A B = trace B A,

we have

i 3 3 .+ ' )
.N"Wj ‘mt"_“e[scassc SeESe *S1ESL* S S
. . 0 . -

stls s gt 1 t
*S33E 8351351 -5 aESZ s313Es3] .

(3.10)
The prime on the integral rehinds us that all the terms with an overall
'delta function are to be omitted., Finally then we have
N ow A dE trace |8t s .8 st .~ (3.11)
I ¢ 3E "¢ “ "¢ 3E e . k
. 0 ' v . ¢
This can be rewritten with T, rather then S_ AR ‘
. t N a— * .
N f dE trace (T =T = T 6 3= T.c} A (3.12)

[

To éompute the trace,. we use the'eigenfunctions.of '1’c as a basis,

*

The diagonal elements are easily computed to give

’ 16 T,
(e ch aE - Te aE c > l sin § (e I 55~ 3E \ € >

.

~

i6: art

o . B | no_.o . e ' o
/ | e "_‘?“‘n<en*az &) o+ . (33)

The eigenvalues of. Tcw are given as a functional uhich'is stationary

L]
.

with respect to variations of the wave functions, .

i6 LI
n <eanc|en

== sin § = o E ; S " (3.14) ’

N n n enlen>

|
‘ : !
e e e+ et S —

O

e e e

———————
-

e T e Y e S et e %
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 we have already shown sin 8(0) = 0o therefore we have

since the derivative of the eigenfunction gives zero because’ of the

stationary property. Finally then (3.13) becomes - Aﬂ:'z’;ff;m ”{
o o, - v as_ - , '
f - 2 n .. . . L .
(enl'l‘c --—-aE T, | en> ~—- sin® 8 'om= . . o (3.3_16).

- To obtain the trace, the above expression is summed over”,n “to yield -’

Interchanging integration and summation, we have y

2

| ~ sin 26_(0) sin 26 (»)) .- o
n ) b ) . "_. .

[

b-The integration and summation can be interchanged if the partial sums are

" bounded by an integrable function. The partial sums are bounded if only

a finite number of phase shifts have arbitrarily large derivatives. Ve,

assume that this is the case., The bound is integrable provided that the

k ‘5:T matrix falls to zero sufficiently rapidly as E > =,

Since the amplitude vanishee at infinite energy, sin G(G) = 0- aud

%'.Z“n“” - “n“”’-’A e T g

. «t, -
D ) S
-, . o e,
.
. . T

_ 6; | ‘ -]l | '
Taking the derivative of both sides with respect to. E , we have
* . ' ' . , Vi‘
-3 . : L ‘ Y ; © ,‘,_'_'
ol | Helgew S an
———ﬂ-&o—u ) i A. ' ‘
n'%n) ‘ SR
4 LA

T P N I SL A A
N = '—."" dEZ sin Gna‘E-“ ,‘ ¢ ‘ ' (.3°17)
0 n .. - Coe Soe

L 2



‘to know the bound-state wave function, ¢ ,

Clunity, - o ' o
| fav [0y, .x)lz‘ 1. O (a2)

" We will assume that there is one s=-wave bound state in each two~body

/ projected out is given by;j(

«13=

1

IV. THREE-BODY WAVE MATRICES IN THE PRESENCE OF TWO-BODY BOUND STATES'

In::this section we extend the discussion of Section II to allow

- for the presence of tvo-body bound states, ' In that case it 1is necessary

a

X . o 1 " . o ’ |
balVaiha) = =T f avy Va‘“a»“; *a)%(% U (he1).
. o | |

-

wherevthé bindihg energy is -Bd + The wave functions are normalized to

a''a o’a
0.

-

‘system. This is not essential, but it simplifieé the algebra considerably.’

In this case ‘A = {L,m} = 0 for the bound-state pair:i’a .
The bound state causes the two-body t matiix to have a pole at
s = ~B_ ", The three-hody amplitude M B will then have a pole at

- . ' € - .
8 = wa Bu. Similarly M af has a pole at 8 = wg BB o« The residue

‘at these poles and at the double pole s = wé - BB = w, - Ba are closely

" related to the S matrices for bound-state scattering, To be more precise

it is not the residue of Mas “but rather the residue of M a8 with the

";twd-body wvave function projected out» We 1list these residues and their
‘relationship to the S matrices and the Mdller wave matrices in Eqs. (L, 3)
.to (4,12), For a complete discussion of their properties. the reader may

- consult reference 1ll, The :egidue at 8 = w! ;;B with the wave fnnctiqn . 'f].'ffl

e}




v Las(m,y,x;w'-s) = (s +B

wllie

(]
M _(w,v,A3v!,v! . 0:8)
GB PV BO 8’ At .
ooy | H R ey

»
g 0 . B

(4.3)

"&and the residue at s = 0, - Bc by

N . ' »
dv M (wa,vq,o;w,v,l;s)uh(va)

Aﬂag(“a;“"?""""is) = (g + Ba - wa‘) f .Z' a af

v, *+8, -8 *
0 la thl)
The MGB' safisfy the relation
, , » "
Mus(u,v,k;w YVi,Atsg) = MBa(w',v',A';m,v,A;s,) ’ (L.5)
Y
and the ‘LaB satisfy
#* . * . r~o " '
Lae(w,v,k;wé;s ) = Lsa(wé;m,v,k;s) o _ (be6)

The ALGB operator has a unity term in it coming from the projection of the
term TCGGB in Eq. (5.3).  Separating this term out, we define an
~ .

’ {
operator Kas and the corresponding operator KaB by

LaB = (va * Ba)wa(va?a(wa - “&)Gaﬁ + Kua(w,v,x;mé;s) * | (k.7)

The residue of Man at the double pole with both wave functions removed
is denoted FuB , and it is obtained by separating KuB into a term

regular at s = -Ba + W, and a pole term:

. : . (va + Ba)wu(va)

+
af oB 8 %+ Ba - wa

‘Fas(ma;wé;s)' 0 o (4.8)

L e e - ————. X 3

. i



I g
| (V) .+ B )y (v?) .
N ns . . B B B ﬁ ‘ * : % |
KaB = GaB +,Fq8(wa,wé,s) — Ba ~ mé e : | (4.9)

We define three isometric operators by

.(w,v,l;wais =B+ m; + ie)
Ro= ) L — . (1.10)
a Ba (w+B+B = w' -ic)
B . e a A
The S matrix is given by
’ .~ = : ‘- ' -’ .’. - - ! | . ] \ ‘ ’
Sy = Sag8lug _“’a) and, (,wa’ Ba = g *.BB)Ta_B("’a’“’é) _ (b.11)
and
| . | il
Soq = -2n_16(m_ + v+ B, - m&)TOQ(m,v,x;%) . (k,12)
where .
iy ? = . . | I ' -
TaB(wu'mB) - Fas(gc’mp's = ug < BB + 1e)
and .
. , .
TOa(w,v,A;w;) = Zz: Ksa(w,v?A;w;;s = -B + w * ie) (

8

The subscript zero denotes a state with all particles free, for

example, S is the S matrix for Particle 1 Sdattering on & bound state

0l

of Particles 2 and 3 with all final particles free, 812 is the S matrix

for a rearrangement collision with Particle 2 free initially and Particle 1

free in the final state,
! The 1 operators are formally defined by F'addeevll to be a mappihg

of one Hilbert space onto another. Define the sﬁace“%' by the orthogonal sum



\‘

/\ .
h as follows:

i . "16-
2 = h.®n ®h, BOh | (4,13)
0 1 2 3 ¢ ' ¢
where ho is the space of functions of the variables w,v,A that‘aatisfy
o« [} .
Zf dwf dv Ifo(m,v,l)le <o : (b.1b)
A O. ¢] ) .
and h_  is the space of square integrable functions of W, s

fdu lf (w )|2 . | . . (bas)

, ' " n ‘
The subspaces h hu reduce the total energy operator H defined on

h

Al
¢

0 ’

if fye hy, then

if f e h , ‘then 'fm = (--130‘4»1;;01)1’Ol o (4.16)

Here R is the total energy of & free or "asymptotic" system, either a bound
state plus |a free particle or ail particles free,  The total Hamiltqnian ,
H acts-on a space h which is formally identical to ho « We now define
an isometric operator 3 which maps ‘g onto h , It is reduced by the .

subspaces h_. , hu with

0
Qfo = ﬂofo
and
e, = @ |
fo = 4T, e : (4,17)

The states fo and fa are continuum states and they are mapped. only onto

continuun states of H in .h Hencelif fd

of H , oy fd = 0, The orthogonality relations

is a discrete eigenstate



also ho;d where 1

and

e 8w - w')8(v - v')E(A,01)

Y

0
respectively. Finally then we have’

and - iu are the identity operators on ho and

t t -
a0, + Z Bt = TRy
a - .

vhere I is the identity on h and Py

'the space spanned by the discrete eigendtates of H ., Since h is

formally the same space as ho s I 1is the same as IO and (4.19)
becomes ’ - o - Ny
. :L f - \ f - z - * ' .
Ry = 8p 8 = 8pfty’ B8
‘ L a :

By taking the trace of (4.20) we.have an expression for the number of

[y S N )

bound states of H .

RS,

V. THREE-BODY LEVINSON‘’S THEOREM IN THE PRESENCE OF TWO=-BODY

BOUND STATES

The trace of the first two terms of the Ec, (4.20) has already
‘been evaluated with the exception of the parts having ap-overall'delta_”

function. That part'wasvgiven in Eé. (2.18), AR ‘, j L =

is the projection operator onq

(4,18)

(h,29)

+

v

(h.20),



wtwl = 6w, -a)p = 1P

When there. were no two-body bound states P wvas_zero, but now it must

be included. The identity operator is replaced by ﬂ ta a? since they are

equal, and then Ad becomes
3 . 3 .
a t % sath o
Ay PRERCAR AR CAR SR Y tra,fe, raa (5.2)

a,B8=0 ‘ < a=l
a#B ) ‘

The W operators are given in Eq., (2,16),:and the actual calculation of

the traces is done in Appendices A and B, The number of three~body

bound states is given by | T

- . oo a'rf z
N o= in f dE trace [Too"a?."' Too aE} Zf dE
o - a0
o
. N}
+ 3__ 9 J( + 3 a_ f
* trace [To 3E 10a ~ TOa I Oa] * {Tus 3E aB TaB 3% laB|("
{ agh -m min(B BS) .
i - (5.2)
If we write the T matrix in block form,
Tor  Toa Toz
Ty Tz T3 | ‘
T ¥ : (503)
T T T

21 22 23

31 32 33




- then

«10~

/ . .
+a 3 ' _
N iﬂj 4dE tra.ce.[T 3-5 T T ET ] . ) (5.4)

The S matrix can also be written in block form,

A . . : - A
§ = I«2n §(BE-EUT , | ' (5.5)
with | ‘
IO 0 L B ¢
N 0 :Il 0 0
I =
o o0 ‘I, o _
0 0 0 I3 L ' | “;
and I, , Id- are -defined in Eq. (4,18). With the use of the above

reiation, the expression for N can be rewritten in a form similar to

"

Eq. (308)9.‘
. / : . ' o .
N = -;:TJ dE trace [S+ -g% -'S g%" + gﬁ' (s* - S)J' . ‘ (5.6) .

Since the trace of each amplitude T, is_éssumed to vanish at its

8
threshold and &t infinite energy, and since the amplitudes are continuous

- through other thresholds, ‘the term

/ ' . _
' +. RPN :
Jf éE trace.[%ﬁ (S - S)] = Q Yoo
. Define a unitary operator, U , by '

¢
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0. o, 0. 0. | . L
vel Sl CR?)
0 o 1, 0 | ;
0 e 0 Iy [ A .

3 : .
t bt |
The operator 8. 5253 was discuased in Section 3. A upitary connected

s matrix can now be defined by

s, =us , (5.8

o -
and a connected T matrix by
A R ' o .
§, = I~2mri §E«EIT, . . . (5.9)

Substituting U'S, for S in Eq. (5.6), we obtain .

N ;f ‘dE trace {(s*u) (U*s ) - u*sc é--(sfu)} . .

. N A v'. . .
With the ude of Scsz =1, vty = I , and trace (AB = BA) = 0, the above

expression simplifies‘to

| dE trac | an -yt s* s EEE L (5.10)
race 3%E ¥ Se aE =% IE e .

" The prime on the integral requires that the terms with an overall delta

function be omitted, that is, the U terms, .Finally then we have

+

N am?de trace [Sc Tfl-isc'-a-f“ - ° ‘ N ,'(5'-11)

At
AR

D R . N » ,' . L ] ‘ 'b [

Yo

-, .



Sy

A

The eigenfunctions of Tc are used to compute the trace, For fixed
energy T¢ is a normal operator, since unitarity requires

cc cc ' ' .

and it is square integrable, since all integratfons are over a finite -
range and there are no singularities in Tc « Hence it has a spectral

<

decompositioh,
c - n
' n

where ¢n form an orthonormal set not necessarily complete, To make &
- .‘1
the set complete an orthonormal set of functions spanning the null space’

6. . '
e B gin én'“n)“nl o (5412)

‘of T, is added, The trace in Eq. (5.11) is computed with the ¢'s. as.

a basis, The diagonal elements are given by : .

st as: B :

et e 35, ' n
K4l gE-SesEd ) = M m O (5a3).

I : '
Suppose the thresholds are ordered in ﬁpe following way: -

0 > -Bl > -32 > fB3 T3

- then the answer for the number of_three-body bound states is

N ) 18,00 = 8 ()] ), (8,08 - (0] + ) [8,(-B,) - &, (-B;)]

n n . SERRTE N |

o

B N X ) O © X9

L

\



'w22w

L
" The phase‘ehifts-are determined only modulo r , and siZce they must be
& multiple of T at infiniée:enefgy, ve are free fo choose them to be
‘ zero.l Vie can funther require them to be continuous across the thresholde
= of newly opening -channels, Rathervthan require the bhase.shifta at " x;
. infinite enefgy'to be zero, be wili epecify that only a finite number can
be nonzero. The sum of the phase shifts will converge at any energy and
the only contribution will be from the elastic phase shifts at their
| thresholds, B L o |
- : | , | Z Z éﬂ, -B ) - Z ceﬁ(o) Z 5 (u) _;-. o .7(5.15)

¢ ..
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APPENDIX A

In this appendix we evaluate the trace of the right-hand side
of Eq. (2.17),
3
t ooty ot
A= }: [wu,w81‘+ {wo,wO] e

a,B8=0
a#B

We have left out the term [w:,wa], since it is given by Eq. (2.18).
Although there are a great many terms to evaluéte, oﬁly three of thém-

are different, so it is sufficient to calculate .

A = trace IWI.Wal . . . S

= trace [w* W] ' L
001 . 1*70% ¢ ' ‘
and ' _ : L ..
AOO = trace [W W ] | . . T (A.1)
It is convenient to use the set of variables used by Omnes13

|
and discussed in Section 2. We add one redundant variable, the total

energy E = W <+ wy + w

3¢ . With this choice of variables the operators

W becorp

(wl‘wa,m3,M|W lwltm 3' '>

t (wl,w2.m3,w .w'.w3 = el 4 w)+ wé;- w4 1eiM,M7)

Ee B = ic . o
' (A.2)

= G(wa -.ﬁ&)



, - present, To further simplify the notation, the set of variables

o -21"&- - ;
K . ' e
(“ﬁ)”gt“30M'wol“15“20“39M'? ‘ "%'”,7
= T o6y 59,5 w33 1’“2'“3’3 = w + wh + w0l + fesMM!). . ;’f T (A3) -

The total T matrix as-given in Eq. (2.20) is just the sum

“Z Sluy ~wlt +T, . 5 (Ab) .

The variables M , M' , and s are omitted,‘as thei M , M' variables

t

are always involved in finite sums which present no problem. The arguments .

w, are always positive, so if one of them is replaced by E - W o= Wy

for example, the entire expression is to be multiplied by a step‘functien

1 - w2). This is also omitted, but implicitly understood to be,q:

0(E = w

RLTL is denoted by w whenever there can be no. misunderstanding. )

In this nota.tiono the'expression for. K12 becomes

1‘ ” ‘ " (] ;" ”" - [ ]
tl(m,w )t2(w o0 )6(ml - wl)é(w2 wl)

) 2.
Ay = trace_}r~ dw (E = E" = Le)(E' - E" + ie) .

{ 0
) té('w,w")tI(“’"’w')Gl(w; - wi)&(wa - mg) .
ST (E - E" - 1e)(E' - B+ 1c) ‘ :

.To evaluate this expression we separate the singuler denominators into

principle parts and delta functions, We assume that all integrals
converge absolutely and uniformly at infinity 8o that it is permissible

to interchange orders of integration except at the point where the

.denominators both veniéh. For simplicity of notation we let 'A be the‘“‘-

contribution from the preduct of the two delta functions, C be from‘

the product of the principle parts, and 3~ be from the cross terms,




a

,\

: 25 N
7 : y e

A and C are shown to be zero. A12 is easy to evalq;te because of the

delta functions,
A.. = 7° trace G(E.; E')(tf(w W oE = 0, = 030, g0 B - w, = &)
12 ER Rt e~ Ll | 28712 T 2
«1 27

x t2(w 2’B - wl - wz,w '] 2' E. - w. - w.)

- t1( 190p0E = w) - 2' W sugeE' = @) -.up)

i

BRE

2’ le2OE - "’ - m )} .‘ " - (Ao6)

x ta(wlﬂp E -(ﬂ -

‘The diagonal elepents of the term in the brackets vanish identically,

and.since XGGd‘é 0 * A12§;00 ’ . r‘ . a ' . . .Wi

The trace in €, is written out explicitly,

© © ® o’ : ’
o dw,, . B
P d[de vf dE! ;[ dm J[ S ————— . ‘ \
0 0 Lo 0 b
x {tf(w Eeww, = W30, p0.E! = 0, = Q )
1 29 1 2712 l, 2

¥ - - - . - - L. - ¢ -
x ta(wl,wz,E Wy w2,wl,w2,§-m1 wa) tl(wl.ma,E ) =W 30y 9 W, g Bty m2)

- -, . ! - - ’ .
x tz(ml,wz,E w, ,wafqi,wa!E, W), 92)} e (A.T)

Since the numerator vanishes‘ht E =:E% and the integrals converge

absolutely and uniformly at infinity, it is permissible to interchange

the orders of integration. Since the integrand is antisymmetric in E

and E!,

12 =0, The only nonvanishing contributionto A-, is B._ ,

12 % P12



B, = AT trace g% erwldw {t (wl

X

. . ‘et
tz(ml,wa,Enml-wa,ul,wz,E w, =

x

wa,E'-m

,t2(ml'w2'E.wl‘w2;wl’

x

Vot ot ;0 v
ﬁz(wl,wa,E liy =y 30y 5y 9B =t

x

tz(ml,wa,E - - wzgwl,w2,E
)
This is of the form

trace 5775%37 (£(E,E")g(E,E) - £(

which, when we take the limit E + E' .

~[;E £(E,E) Eﬂigﬁﬂl'

‘ <

"Finally then we have

By, = J[ .jr dw, dw {tl(wl’92’E

B
*E tz(“l'“a’E““l' 2'“1'

‘u-a— -f - - e
* gz by (0 sy oE = 0y = wyu, puy,

26=
Owatn - wl aiu!jl“twa’E - ‘_"l - wa)

)-t (ml,ma,E -t E'ww -uz)

2? 1l

1-0)2;0)1,&)

g )+t 1(8y st o Betdy =y sy g B =) ~u,

-~

L, ' |
l-wa) tl(m 2,E-wl-m ,ml,wa,E -wl-gé)

!

C- wl - ua)} e ’ A (Aoa)

c ‘ ' I

BEDa(E B))

And integrate becomes

-w - wa;wl,wz,E - w -.wa)

oBewy =uy )=t (0, 2'E' ) g3y o Emit =u,)

E = wl - N2)} E ° | - (Ao9)
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J -27= \

This can be put in a compact form by using T ;

' , and cg.'a ‘(see Eq.. (2,10)>
where Tl is now an on-~the-energy-shell T matrix, ’
y $
| " LA, com |
B12 s iﬂ: dE trace Tl 5 T2 You °
Y

(A.10)

The analysis for A is quite similar,

: J[ | *(w,m")T (w",m‘)&(m —w")-T (9,w“)t (w"yw )6(w -w")
Roy = trace | du TE - E";*'ie)(n' TE A i)

(A1)
Proceeding as before and doing all the traces except the E itrace, we
:have '

¢
L]

I

Ay = n2 trace G(E-E')J’dw"du -dw {tl(ml,u

2,E—m -wz,ml,mg,E-ul-w")

x To(wl,wa,E -t -ua,wl, 2, --wl-w2 -t (wl, 2,E -0, = 2, l,mz,E ~wl-w2)

. - - . '3 1" - - 1" Iy ’ ' L]
x To(wl,wa,E O] = W30y, W oE =0y wz)} (A.12)
Interchange LWy and mg in the second term and then the expression is
explicitly antisymmetric in E and E'

and hence vanishes,

In the
expression for 001 we do ali the traces explicitly,



3‘(
f d‘”ad“'ld“’a )
ot - - o S
= dE J[ dE p— {t (w ,wa,E-wl wa,ml,wz,E ) = ) s .
. (E <E')" . , C
. 0 °,
- - ¢, a - - E ' * ‘r
x T (w ,ua,E . ?1 @330 oWy 0B = wy wa) .
-t (ml,wz,E -ml-wa, Wy 9Wy o Bty =t )T (wl,wz,E-u -ma,wl, B! -wlowz} .
) p (aa3) .
- Again we interchange Wy and mé in the second ter@. .The expression is .-
" then explicitly antisymmetric in. E and E! » and the integral therefore .
vanishes. As before, the entire contribution comes from B:
- i
= e ' S
By, = in trace gp—— J(dwldwadw {t (w wz,E-wl~ 2,wl,w2,E-ml-w2) |
x T (w, ' W,y E' =ty =W -ﬁf(é 0! JEf ety =} s Ef -wy S
R Rt Rt~ A l 2’1’ i Wik Tinkd R R L 12 l°2’ 2, .
; . . " A
L] - o - i LI
x To(wl,w oEmtdy wa,wl,w »E Wy ma)*tl(w E-ml z,wl,wa,E W) =) ') OO
‘ - . -'I.
. t
% TO(wI,w E'ew -wz,ml,wz,E - =, -tl(w 2,E-wl, 2'“1' 2,E -wl 2)
. . ’ ' ‘ g;
x To(w) y0,,E = @) U3y s0hs E=u w?)} . | | (a lf*)
5'After intérehanging 432 and. w2 in the appropriate placegtand takihg the
limit E+E', ve obtain |
_ + 3T1 - .h; . : . | ey
J( dE trace '1‘l 3 0 aE Taer e (AWlS)



O
The final term we have to calculate is AOO’ i
S Y a0t )T (T (¥ ) N

For A00 ve have,i

ot

' 2 . [} ' [] t, ' - !
Ay = " trace G(E-_-E.? / amldggdmldwz{ro(wl,wa,z-m w2,ml,w2,E-w 3)

g

1.1 Yoig! o R - b0 ' (P
x To(wl,ma,E-ml-wa,Ql,wz,E-u mz) T (wl,m ,E-ml 5301 o0} s Emta} wa)

A (wl,wz,E-wi-wé;91,u2,3-w1-w2)} . ‘ (A.1T)
. oy

- Upon interchange of wl, wé and Wi Wy the expression inside the:

brackets vanishes identically, and therefore Ado = 0. For coO we have, ;

dm dw dm'dwé + '
C = trace _jr J[ de! Jr )2 (To(w .we.E-wl-wz.mlywa.E -m'-w )

!

!

=,
¢ L. - T . ® -
% Ty (w ) wl 2,w ,mz,E-m -w, To(w 5 oE -wl w53 l,ma,,E-m mz)

. S BN S L SN TP | f '
x To(ul,m B wy NI A wa)} B - . (A.18)

‘ The integrand is_antisymmetfic upon interchange of all variables and hence

vdnishes. “The: fihal contribution comes from B

00

RN



«30=

¢ .
T

o :
By, = ir trace g Ej:w du,dw)dw) {'1‘ (ml

]
199299 209 Emtt) —t0y 1’ 2’E“" ~ap)
w! 1, ' L% LIPS P - .
% To(u 2,E-wl-w2 10 2,E -, ) T ( »0) B v} 2,m1, 29E -y m2)

' - et e
x To(ml,ma,E-ul-wz,wl, 2,E -] -0} )+T (ul, W, s Emty Z'ul’mQ’E -u “2)

;r
f

1.
LR L L ' o t ! 't -l -
x T (ml,wa,E 0] ) 5 W, 40, E -ml-ma) To(w ,ma,ELm l,wz,E 0, w2)
'1‘ (w ,wa,E-wl-we,wl,m ,E-w'- 2)} .
. h
. This reduces in the usual way to ‘ o
f 3Tz . Ty o
dE'trace Ty 55~ To 35 o (A.20)

+

From Eqs. (A.4) and (2.20) the three-body T matrix associated with -Soo

is given by
| Too 'rl +'*1'2 +Ty+ TO "

» - - '
) S00 .. 1~-2ni §(E-E )'1.'00 . | | (A.21)

. Combining all the results of this appendix, we have

T aT
: + 700 00
Ao = ir J( dE trace { T,y 55 = Too —F . (A.22)
. G5

where the prime on the integral means that the disconnected parts-~that

is, the terms with an overall delta function--are to be left out.’
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APPENDIX B s

|

In this appendix we derive in detail the trace of the third

€

term in Eq. (5.1), which we call Age

3 .
A, = trace {P n*n -0 Of} - (B.1)
B/ aaa oa ‘. *
a=1 . ‘ .
, . , ;
The Q_ operators were defined in (4,10), i
a . ) i
. L em?) - e
g. . . Z - . Laﬁ(w,\’.x,wa) ; . | S
a w*tveuw +B «1c ‘0 :
8 a a t
L . ' . _ l
and the LaB and KaB in (L.7) anda (4.8), . | . | h
'.LaB = ‘va + Ba)wa(va)a(wa - Q;)Gus + KuB ' g ¥
. .
C mo e (vg * B (v )F o(w ;03)
‘af af w, = B, = w! + B, - ic ¢

8 B
i .
Here Pa is a projection operator on the two-body bound statey

Py = Lo D0vg G . (B.2)

The first term factors intq -Pa(va,v&)é(ua - w&), Fnd the trace of Pcl is
unity;;LdB' has a term which is essentially & unit operator and commutes
with thsjother terms ‘to give zero. Therefore"AB can be written in terms

of K, _

»



| | ' K " "
A = Z trace Z f d. ngu" QYJ(“’Q!N 'V )\)Kau((ﬂ ' ,A,w )
A0

’1nterchanged except for the singularities from the dgpominators. There

B AR I L The first is exhibited explicitly gbove and is located

different points so they can be discussed separately, ~ -
_ . .80 ; (

" is, a step function of all arguments is 1mplied. With this restrictioh; 'fw?‘vﬁf%

 the integration on all variebles 18 taken over the region of positive

will refer only to E . All other traces'will'be done explicitly. . f,ﬂﬁffo” 
First the éingularity at w" ¢'v" a’" B_is discussed as _‘ =é{
1Zthough the one from the F term didn't existo Then, presuming th&t the : £~fH.ﬁ~l

.:first singularity is o.‘osent° ve treat the F term° The evgluation 1%:2.5”'T7

| -32-

Rl

‘B (w =B ~w" =V -ie)Qm'—B -m"-v"+ie) s
a B.Y ‘: :;f»‘
2T L Ky, A,w;)KuY(ma,w°,v° A) oo

= J[ dw (w e+ Vv a m + B, ~ iew' + VvV = w ¢ B + ig) ) ° (3'3)g e

0 a” a” C T

. -

The usual assumptlon is made that the orders of integration could be L
‘4 Coe

l

. are two sources of singularities, which occur when &’ = wy and

&

at w' o+ V' o= u, - B o The second is hidden in the K term itself, and

L e ‘

-; can be seen in Eq. (4.8). . It is located at ¥, - Bafc o) - BB » and will

_ , B
occur only wvhen 8 = y in Eq. (B.3). The two singularities occur at ‘,

In the proofs there will be many changes‘of yariable of an -

essentially trivial nature, As in: Appendix A,‘we omit all explicit

reference to changes in the integration region. - If an argument of a K wl L e

or an F function is negative, the function is taken to be zero; that

arguments of the functions K and F . The variable E is used for the

total energy, either w + v..or o -~ B; . Hereafter the operation "trace"

s . . 'l,v , . - Lo IS
RN : e R SR R T TS
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t

follows the by now familar procedure of splitting the denom1nators into

principal parts and delta functions, The term from the product of delta
functions is called AK or AF depending upon which singularity is being
K .

) " or 'CF. The cross terms are B, and BF. The first contribution to be

discussed. The tern. from the product of pfincipal parts is called c

evaluated is AK :
6,

Z trace §(E = E")fz dv[l( (E = V,V,A3E + B )K (E + B, 3E" = v,v ).)
u,B,y . . . : .

M N . , .".; PO )
- Ksa(‘E - VyV,A3E" # Bq)KaY(E + B ;E - Vy¥yA)] Ny (B.b)

"
H
-

The term in brackets vanishes at E = E", so A = 0 . Hereafter the variable

A will be omitted, as it adds nothing to the proof.f The evaluation of CK

is straightforward:- C o ‘ ' .
) » A
’ ‘ J[ : e ¢ ? B
» | . Z dE T Idv[Kuy(E_f ByiE' = Vo)Ky (E' = voviELB.)
' &, Bk 0. . _ - o
- . ¥ . - N - 'Sl . .
‘Kay(E + B_3E v,v)KBa(E‘ V,V3E +.Ba)] . (B.5)

The term in brackets vanishes at E = E' ,-eo the principal part integratioh-
'-is well defiﬁed. Therefore the orders of integration may be interchanged
- and CK =0, because of the antisymmetry of the integrand. |
We now consxder the contribut;on from the term involfing\only

- one ‘delta: funetion. S o U
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“3ka

. ..;;2;_3 rd ‘ f. SR
B = in j{: trace E—F d[-dv{KuY(E + B IE - y,v)KBa(E - v,v,g f Ba)

a’B.Y ‘ 0

ns ‘ NS )
. -Kay(E + BE' v,V)KBq(E' - v,viE* + By) ¢ KGY(E+BG;E°-v,Y)KBa(E-v,v;E+Bal

' :an(g' + Ba ;E! -.v,v)KBa‘E - v,v;E‘ +~Bu)} . | (B.6)

i.

L

To evaluate BK take the limit E ->E', which gives 8 derivative, and then

'integrate'over ‘E + .The fin&l result including the angular variable A is

K ; 2, o B Ly
= in Z Zf f dv{KaY(.E*Ba,E-‘V,V,X) 35 KBG(E..“’\.’A'E*B“)
a8,y A O )

- Ky (B = v, M5E + n“) aE LR BE4BE-vuN)) ()

In terms of the transition operators - T,, defined in Eq. (5.12), the result
. . . ‘ : . '

is {
anOQ . aT;a . '
BK = iw f dE trace (To “E - TOa =S5 } . ~ '(3.8)

a O

In addition to the singularity from thé three~-to-two amplitude,
there is a term from the two=to-two amplitude, It comes from the
singularity of the F té?m implicit in (B.3). Referring to Eq. (U4.8)
and substituting the F term for the K term, we see that the only new

singularity will come when 8 = y ., Therefore we have
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. o0
) L
AF = 2 6BY tra.pg j dvs ;
} a.B,y 0
. oo o dw"ﬁ'-(m ;w")F u(w"-w')(vB+BB)2|¢B(vB)I2
B _-;'”~]’ [(w =B~ )(w'mB -m“-v“il[? W =B - +B -ic)( -w 4B +ic)] ’
R AR Y 8 8 Y““ '
‘ S AW (m u)")“ (w sy 'Y(v _+B,) ]q; (v )|2 i
- ‘ o a Ba B’ o ’ 8 8 B8 S
[(b+v-m"+B Huw'+v' w"+B )][(w cB8+B -ma-xe)(w'-avc‘"43 +ie)] Lo
0 . ) i o
' (309) '.,:
The ic has been left out of the denominators already treated, as they are . '
- . (} . s
, presumed to be nonsingnla.r. The ¥ dependencfe‘ lias been indicated in the
o :/  denomina.tors to make 1t: clear that only 8 = v terms are singular. The
- expression is now evaluated in the usual way 1n.term_s o_f principal parts
. and delta funétibns. For A‘F ‘we have - - "l\i:,
- ‘ , . IR : Ca

::',:._- ) .' S :L:B trace f dvlwa(v)l (é(u ~a! )F (ma,BB-e»m -B, )F ('Bﬁfwg"Bawa) -

ol

'l;,v L -vs(u )F (mB-BB+Bm,wB)Faq(QB;ue~§3fna)}Jﬁi{.fﬂ ;;¢  ﬁf X N (3.19)

A smple change of va.riablee, h ‘:' )
| | d,m"+'E +B o E + B :
‘and o
S g R By B¢ By




36

‘L

puts the expression in a form in which it is explicit%y antisymmetric in
E and E' . It therefore vanishes, since it mnltiplies (E - E').
The calculation for CF proceeds along similar lines. Ve change variables :’-}'\

to E=w =~ B and obtain : ' B S E vﬂ'
' Y Y -

(v.+.8)% 4 (0|
‘/. ‘[ dE* J’ dv . 2
(E - E)

AR R
*

T L) ¢ . e '
FQB(E+BG,E_+BB)FSG(E +BB,E+BG) FBG(E¢BB,E +Ba)FaB(E +BagE+BB)

x -~ .

(E~v-E'-BB)2 ' ' (E+BB+v-E')2

| (B 11)

. The integrand vanishes at E = E' , and therefore the principal part integran
tion is well defined. Interchanging orders of: integration and using the.,
- antisymmetry of the integrand, we obtdin c = 0 .»_'-_’; i

The final term'to be evaluated is BF . Sy

2 v+ 8P u(w)|?
= in j{: trace- d» (E' ) . S
. a'B 0 , ’ . . ) ’ Coe i‘.g?wk
o —~ . . ' . . ~ ) . x . ) . o _;:‘
x FGB(E+BG33':38)FB°(E°+BB,E°+Bu),_—Fca(gfsa,n +BB)FBa(E+BB,E+Ba)' :
' (E'+v+B _«E}(Vv+B, ) ) o {v+B,)(E'+B_+V=E)
B 8 . , ] 8
. *fI;J ' - ,
. ' . ¢ RO P hi
, B(E+B sE+Bg )p (E+B E'+BQ{A“FGB(E,+BQ,E4+BB)FBG(E+BB,E +Ba) R
. R e JRTE YR L] I T
!(Bs+v) (E+v+BB Fg)‘»‘;;‘f}“»{vﬂﬂ;ﬂ(EfV*?B‘E’)(vfgﬁlr: S e
Ny S el ST Lo (Ba2)
o N . y "
".1 ¥ [» o ; k ”’



. Upon expansion of the term (E' # v + B - E)"1 in powené of (E’é:E'), it -

'is easily seen that the only term ‘that need be kept. in the ex- -‘Ef: R

1

L pansion. is the constant term, as all others cancel in the 1imit E E'

From Eq. (h 2) we have the normalization integral,

f dvh{ta(v)l? == 1 .

0

| In the limit. E + E' the remaining terms give & derivative to -
. yield . ‘

| | v, o |
BFéiw f dEF(E+B E+B) (E+BB,E+B)
| i

L . ’ N1
:_ - R

- F, (E + BB,E + B ) F (E +'B ,E + B {} " i .;5  ; (3.13):

This'expression can be'rewritten,in terms ofl TaB defineq in Eq{‘(S.ll),

e Colat e o oaot L
B, = ~i“,,fE; - 4B ?ea_ 3E ? Taa-aE ?Ba o

“*'(B;lh);ffgifj
e agB:.fgin(Ba§BB) S

"+ Combining Eqs. (B.1k) and (B.S),'We have .




< 9.

1.
2.

3.

s,

6.

T+
. 8,

10.

12,

13.
b,

L. Castillejo, R. H. Dalitz, and F. J. Dysom, Phys. Rev. 101, 453

| (19h9).

. S, Weingberg, Phys. Rev. .33, B232 (1964),
translation: Soviet Physics-JETP 12 101h (1961)]

translation: Soviet Physics--Doklady 6, 38k (1961)].

- Gagts). S T T T

REFERENCES vy

(1956).
N, Levinson, Kgl« Danske Videnskab Selskab, Mat.=Fys. Medd., 25, Noo 9-  «

Je M, Jauch, Helv. Phys. Acta 30, 143 (1957).

J. C. Polkinghorne, Proc. Cambridge Phil. Soc. Sh, 560 (1958).

" M. Ida, Prog. Theoret. Phys. (Kyoto) 21, 625 (1959).

E, Kazes, Nuovo Cimento 13-, 983 (1959). - - 'ia{

L. D, Faddeev, Zh. Eksperim, i Teor. Fiz. 39, 1h59 (1960) [English!

,'n- C

L. D, Faddeev, Dokl. Akad. Nauk. SSSR 138, 565 (1961) [English

L. D. Faddeev, Dokl. Akad., Nauk SSSR 145, 301 (1962) (English

translation: Soviet Physics-~Doklady 7, 600 (1963)]. - . L SR

L. D. Faddeev, Mathematical Problems of the Quantum Theory of '
.Scattering for a Three-Particle System ('Publicagtions of the

© Steklov Mathematical Instituteg'Leningra.d, 1963, Noo 69) [English

translation: H, M. Stationery Office (Harwell, 1964)].

C. Mdller, Kgl. Danske V’idenskab.‘Selskab Matj.«=Fys, Medd. 23, Nos 1

R. Omnes, Phys. Rev. 13h Bl358(196h).,

B. Lippma.nn and J, Schwinger, Phys. ‘Rev. 12, h69 (1950)



L3

il

This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:

A.

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the

Commission"” includes any employee or contractor of the Com-
mission, or employee of such contractor, to the ‘extent that
such employee or contractor of the Commission, or employee

of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.






