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ABSTRACT· 

.. J . 

Levinson's theorem is generalized to systems ot three particles. 

.·. 

.. 

The usual two-body resUl.t relates the number ·or bounci states ot given angular' 

momentum to the corresponding eigenphase shifts of the S matrix. Because 

of disconnected diagrams the three-body S matrix has continuous eigenphase :. 
;, 

' .. 
shifts in addition to any discrete ones; however,.lt is possible to define 

a unitary connected_matrix that has only discrete eigenphase shittso 

Levinson's theorem is given _in term~ of these phase shirts, and it is the· 

same as the usual multichannel result except that there are an infinite 

number of eigenphase·shifts to be summed over !or each value of the total.· 

angular· monientumG The proof is ca:rried out withi~ the framework of .the 

Faddeev equations by-generalizing Jauch's proof tor twe-body systemso 

' I 

i • . ' • .... 

.· ... •', :··'.t 
~. ,. . 

•. • . I 

; : .. ' . . -,: ·~.· ; . . ·, 
,t ·, 

.·· 
," '1 

•'. l.. : 

•1-! 

'- ·' 
··.f 

'·:· : . ' ' 
·· .. 

. - -· ' 
•,-' 

I' 

.•. ' 

., 

\ 

_ .. ,' 

, .... 

·,· . 
•.·.:. 



.. 

I 
; 

,1. INTRODUCTION 
; .. 

One of the important .problems in the theory of elementary particles 

is the determination of whether or not & particle is elementar,y or 

composite. In a Lagrangian theory an elementary particle must be put in 

the Lagrangian. In a model based on dispersion theory. ~here is the well 
. 1 

known ambiguity of Castillejo, Dalitz, and Dyson. They showed that an 

infinite number of solutions exist·in the charged sc~ar theory without 

recoil. In both kinds of theories it has been suggested that Levinson's 

2 theorem could be used as a means of selecting the proper Lagrangian or 

the proper solution to the dispersion relations. In its simplest form as 

first given by Levinson the theorem says that in ~he scattering of a 

particle from &.spherically symmetric cen~ral potential, the number of 

bound states of the particle in a given angular momentum state 1~ related 

IJ. 
,' 
' 

' 

. to the phase shift by 
... 

' . 

Nw • 6(0) - 6(•) • (1.1) 

· Jauch3 generalized. the proof to a larger class of potential~ than 

that treated by Levinson, and atso he showed that the relation (1.1) is 

a result ~f the completeness of the eigenfunctions of two operators H .~d· 

H0 • .H ~s the full Hamiltonian for the srstem and HO is the Hamiltonian 

in the absence of interactions. The result has been generalize~ to the 

case in which H
0 

also has a discrete spect~,4 ·5 

(NH - NH )n • 6(0) - 6(~) 
0 

' 

• • (1.2) 

NH and· NHo are the number of bound ~tates of H and H0 . res.pectively • 
. 

Since H0 is the. Hamiltonian operator for a noninteracting system,- all 
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points in its discrete spectrum 'represent elementary particles. Levinson • a · > · > . •J: 
' ' -~ 6 . ·;_':,,·:\·:·:·~ .. 

·theorem has been further generalized to many-channel systems by Kazes. · ._:;. , :; .. ; ,·~.· 
' . ~:·· ~­

In view of the possible application of Levinson's theorem_ to determining 

which equat~ons--and which solutions to them--nature actually selects 0 

it seems ·important to extend -the theorem to systems of more than two 

-~ ,.,_ 
if ..•. i•,.· .... i .., ~ , • . . 

' . r: ., 
' · . .. ~ ' -.: .. 
,• ' 

;. : . :.' ~. ;;_. ·~ ... 
... ". 

. : . ' 

: particles. . . . In this paper we generalize the theorem to three-body systems. ""' ''" _... '· ~ f~ 
.' .. ·-

' .. 
i,. ~ ' .. ~ 

aren't 

The three-body p~oblem has.~wo important com~~ications which 
1:l 

' ':'i 
present in tvo-body' problems o One difference is'· in tbe number of 

t~ 

variables in the system. ~n two-body scattering the S ~trix can be 

completely dia~onalized by projecting out the total angular momentum, 
. . 

:whereas in three-body scattering the S matrix depends upon addittonal 
11

, 
. . . . ' 

energy and angular variables and a further diagonalization· ~s necessary.\ 

,. · ,. ,.0 . · Unfortunately it is not known how to do this. · The second major 
·-: . ·.,_:. .· ·: .·. 

. ~ .. 

· .. ' 

..... 
... ':! ~ -' ·~ .• :: •• 

.. . 
·, i ... ·' 

. . ~- .. ~ 

.. , 
.. ' 

~ . . ~. 

' . . . ~ difference is the connectedness structure; that is 8 . r1n three-body. scattering 
·I 

' •, 
·• 

. .'. ::. '-~ ~_, J there, exist situations· in which tvo particles interact and the third. 
,., .. particle is-always beyond the range of.the forces. As a result of this 

.. : : .:~ _ _I! 

~ . · · :,:·:. ': , disc_onnect~dness 11 the kernel of the Lippntann-Schvinger equation has· a 
.. 

· '' · ·:·_:_~:~-;~continuous spectrum. 7 · Similarly the S matrix will have a conti~uous 
-.' ~ ~ . - . ~ . . . . . 

.L. 
r. ·~ ' 

I .•. ~ . , 

. '··-· 

~spectrum, that isp· it will not have·only discrete eigenp~ase shifts which 

can be SUJ!IJ!led to give an·equation such as (1.1). However 11 because of the·. 
,· .. 

. 
' . . '" 
. * .}. -~ 

, I I O 0 

.. ·, ·· r ·~ · simple origin ot the continuo':'& spectrum, it is possible to define a 
., .··:. ,;·/_: .. -·,.:~ 
... · . : . . ,_ uni tacy operator closely related to the S matrix and having only a 

r • , ':.·. : ·. ~ ~ _ ... ~-_) , • ' 

· · discret·e spectrum. Unlike the two-body case 9 there are here .an infinite 
.. •'., ... -~: 

-..:" . ~- ::. . .. .number of eigenphase· shifts even after the separation of angular momentum, 
."' • .0, ' •• \ • o ~· & o ' - • I . : r ·.' .: ,• ' ·-~<and the expression for the. _number of· bound states involves an infinite 

. • ',I . ~ : ' '' 

sum. In the special case in which there. are no two-body. bound states the 
• ov .. f' •• ( 

; ' ·, ' . :\ 

number ot three-body. bound states is shown to be r-: 

'' 

\. 

,. 
: ·.: . ' ,. 

' ... ,. .. 
-·~- .... 

• . .. : - s ·-~ ~. : 
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.- ~ :; ' :' 
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• (1.3) 

1 where the cS are the eigenpha.se shitts or the unitary operator: mentioned 
n 

above. 

_The proof of (1.3) is carried out within the·framework or the 

6-11 set of three-body equations developed by Faddeev and it is based upon· 

the completeness relationships of the eigenfunctions ot the operators H 

and H0• If there are no two-body bound states, the eigenfunctions or 

H and. H0 are related to each other ~ one isometric operator, the 
'12 . 

M~ller wave matrix. In Sections 2 and 3 we restrict ourselves to this 

situation, as it contains all the essential problems without the many 

algebraic complexities that arise when two-body bound states are permitted, 

In Section 2 ve introduce the Faddeev11 .equations and the proJection 

operator onto the three-body bound states. In Section 3 we derive Eq. (1.3). 

In Sections 4 and 5 we relax the restriction on two-body bound 

states to permit one bound state between each pair of particles. 

Section 4 contains the generalization of the M~ller wave ~trices to 

allow for this possibility, and Section 5 contains the generalization of 

Eq. (1.3). Finally, the more tedious calculations can be round in the 

Appendices. 

2. THREE-BODY WAVE MATRICES 

In this section we outline ~~~ method of proof and introduce the 
8-11 . . 

. Faddeev·: equations and the isometr~c operators which a_re the generaliza-

tion of· the.M~ller wave matrices12 to three-particle systems, A complete 
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account of the operators and their properties can be found in 

reference 11. 

The basis for the proof is the same as tor Jauch's original proot3 

for two-body systems. All calculations are carried out for tixed total 

angular momentum L • 'fhe total Hamiltonian is split into two parts, 

. H • H
0 

+ V , 

where H
0 

is the tree-particle Hamiltonian and V is'the interaction 
I 

term. We assume that all the.eigenstates,· ~E' ot H0 are continuum 

states with energy E > 0 , 

and that H has N points in the discrete spectrum with En < 0 

'(n a 1,2, ••• N). H is assumed to have the same continuous spectrum 

HIP • E .P n n n • 

with E > 0 . 8 

with E < 0 n 

.. 

• 

The isometric operator that maps the continuum eigenstate& of H0 onto 

12 the continuum eigenstate& of H is called the M~ller wave operat~r, 

and is given by 

• 

(2.1) 

(2.3) 

(2,4) 

The c~mplete1,1es.s of ;the eigenstate_& ot: H and H0 . gives the relationships 
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)' 
00 

... • gtg ~ dJ1: ~~E) (95EI = I ·(2.5l • 

and 

ggt ., ]~dE· ''E><~J~EJ • I-P . . '(2.6) d 
0 

Here I is the identity operator.-· ,e.nd P d is the projection operator 

on the dfscrete spect~ ot H • CombiningEqs. (2.5) 0 and (2.6) ve have 
0 0 ~ 

Since the trace .or .a projection operator is the dimension ot the space ll . 

it projects onto, we have, tor the number ot bound states. 
! ~ 

0 (2 .. 8) 

It is convenient to use two sets of variables in the calculation 

of the trace in (2o8)., ~e tinalAnswer is independent of the variable~ 
t . 

used, but the proofs are often simpler tor a particular choice ot· variables .. 
' • 0 

13 . 
One set is the same as that used by Omnes 8 which consists of the individual 

kinetic energies (w1 ,w2 ,w
3

) in the overall center-of~mass system, a total 

angular momentum J and its proj.ections M · on ·a space-fixed axis, and 

W · on a body-tix.ed axis .. 

The second set of variables is essentially an angular mome.ntum 

decompos~tion of Faddeev'so A pair ot particles is denoted by the symbol 

a • tor example the 2-3 pair is denoted by a • 1., In the center of mass 

of pair a we introduce the kinetic energy v and the relative angular 
0 • 0 (I 

mo~entum.variables· t 
(I 

and m 
. (I 

0 These variables rerer·only to parr (I .• 

.) 

,· 

'. 

~ ...... 

·0 
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In the total center-of-mass system :we let . wa . be the translational energy 

of the center of mass of pair a and the•thirdparticle. A third total 

energy variable E • wa + va will often be.used instead of wa • For 

.. •• .I' 

., .. , . 

simplicity we denote the angular variables 1 and m by A ; sometimes a a a · ._ 

~ . is omitted entirely, as it is inessential to the calculations. a . . . 

Obviously there are three sets. of. variables as there are three distinct 

pairs o1~articles 8 .and we will often change from on~ description to 

another. The total an~ar momentum J and its projec~ion M 
:,~ 

on a 
. ' . '. 

··space-fixed axis complete the set of variables. . . . We will always work in a ·· 
i 
' 

system with J and M , fixed, so they will ·be omitted.i 

Before discussing the three-body problem;it is necessary to havi 
•. ' 14 

the' solution to the two-body Lippmann-schwinger equation for the t mat'rix 1 

t (v-:•v'·A 's).= V (v ·v'•A) a a' a' a' . a a' ·.a' a 

CID ; 

J 
V ( v • v" • >. )t .( v" • v' • >. • s) 

a a' a' a a a' a' a' ~ dv" ...;;;.......;;-...-...---;.--....-.-----
.. · ~ a " 

0 . va - ·B:; .. 
• I 

·/ We have assumed that the·potential is of the form. Vi2fli\ .• ; 2 p: in 

coordinate 1 space so that V and t · are diagonal ·.in >. ·o :The ·kernel 
a a . 01 •• . • 

of the three-b.ody equations involves· the operator T ( s) . . a 

0 

(2.9) 

.. . , 
" 

<v .. >.,wjT (s)jv'~A',w') = o(w - w')o(A .. >.')t (v ·,v',·A ·,s,:· ... ~CII) • .a • . . a a · a.• a. a a a- a a 0 (2.10) 

I 

Although the three-body tran·sition operator satisfies an integral 

: ~ equatiOz:l like ( 2. 9). the kernel is not compact,· because of the disconnected . 

graphs. However, it is possible to define operators that satisfy a set 

of coupled integral equations ·in which the disconnected terms. are ·explicit+y 

. summed. · An :l. terate of the kernel of t-hese equations· has been shown by . 

Faddeev to ~e compact. . ,: .. 
: ~. 

' . . . . . ,• ·: ..... 
.··' . . . · 

-~ . , . . . 

' '. 

. J 

I 
·. I 

·, 
. '. \' .•. 

' ·>-

. .. 
' 

\ 

\ 
\ 

... 

. 

• , 
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Let M08(s) be the amplitude for an interacti~n where·pair a is 

the first to interact and pair . a is the last. These operators satiety 

the equations 

0 (2.11) 

Here H0 is the energy operator tor all particles free and noninteracting. 
I 

In our_representation it is just multiplication by E· •' v +- CIJ • · The . .. Cl Cl . 

kernel of the operator will be written 
. ' 

or 

. . 

(w1 ,~2 ,w3 ~MIM08 (s) lwi ,w2~wj,M') .a M0B (w1 ,w2 ,w3 ,M;wi ,wa•wj~M~ ;s) ,, t 

depending upon which variables we are using. 

Th~ generalization of the wave matrix is given by 
.. ~~. 

n0 = 6_(CA1-CA1. >~cv-v• )6(.,_,,.., - I 
a,B 

M (w v >.'w' v' >.'•·s a w'+v'+ie) · < 
~aS • • ' •· • ' . . 

w+v-w'-v'-1£ • 

(2.12} 

.n· 

(2.13)· 

It there are no two-particie bo~d states, .the projection operator on the . ' 

• ' . '~ ·.! -. ' . ' 
·, • .. '.· 

· ... 
.. . · .. ,. 

'. !,, '> 
·,· J 

... ·(2.14) 

' . 
•I • 

' ~ . . . 
. ;.: ·.·. 

t(~-
. ,• .. ' '.": :' ~ .-' .. 

( . ~ ' . 
', 

. ' 
; .... 

' ' 
. ,\ 

. i 

.. \ 

.' 

-,J 
'I 

./' 
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The operator a
0 

is a sum or several terms which we write as 

g • 
0 • 

with wl. w2. w3 being the disconnected terms, 

The term wo is that part or (2.13) with no de1ta·tunctiona, 

connected part •. Using Eq. (2.15) we have, tor A • 
3 

A 1: I [w!•.ws] + . [ t ] + I _(w!,wa] wo·· .wo 
a=S=O acl 
a;s 

(2.15) 

(2.16) 

that is, the 

• . (2~17) 
q 

' ' 

The last term is the two-body expression equivalent to Eq. (2.7) and can 
be written 

• (2.18) 

where Pais .a projection ope.rator on the two-particle bound states or 

pair a .• Since we assume there are no two-particle bound states, p • o. 
a 

Later we include the possibility or these bound states. 

Because pa· = o, we need only take the trace of the terms in 

(2.17) that don't have an overall delta function. The answer is given in 

terms or the three-to:-three .. s. matrix • which is defined by 

(2.19) 
• 



.. 

•· 

.. 
' 

• 

. -9-· 

with 

T
00 

= L M08(w,v,>.;CI)' •"' .. ,>.' ;.s .a v' + t~S' + it:) . . (2.20) 

a,6 · · 

Th~ tr~p~ of A is eva1uated in Appendi~ I and the se~ar~tion ot.eigenphase 

shifts is discussed in the next section. · 

3. THREE-BODY LEVINSON THEOREM 

The number of three-body bound. states of. the system can nov be 

\ obtained by. taking the trace of both sides of (2 .14}. The result. as ' .. 

given in Appendix I, is 

N = 
.,. . . 

1 . . J t aToo 
i1T 

0 

dE trace LT00 CiE- T00 • 

, • . I 

The prime on the integral means that terms with an overall delta function 

are to be omitted from the trace. To obtain a result in terms of a sum 
l . . ' 

over eigenphase shifts, it is necessart .to have a compact opez:atoro . .A . 

connected T matrix is de~ined'by 

\ Sc a 1- 21T. i 6(E .~ E')Tc I). (3.2) 

with 

(3.3) 
\ · .. 

;. 

. . 

. I, 

- .. - .. ,._,4 .. 

. ;.,: 

, .. 
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Sc is a unitary o~erator and it is easily verified that Tc has no 

delta functions· in it. For fixed total energy, T is a square integrable c 

operator, since its kernel is bounded tor all values ot the variables and 

the integration is over a finite range; that ·is •. 

trace T T t < • 
c c • ' 

Because of unitarity, T~ is also a normal operator, 

T tT a T T t 
c c c c I 

and the~efore it has ·a spectral expansion of the form 

T c 
n 

i6n 
e sin 6 I e )( e I n n n .. 

· The eigenvalues depend upon the particular order of the s in (3.3) a .. 
but the final result does not. For the total energy E a .Q 1 trace 

(T tT ) : 0 1 since the subenergy integrat.ions .are over an interval of c c 

(3.5) 

<3.6) 

'\ zero lengt~. .Therefore the eigenvalues sin26(E a 0) all vanish identi~ally. 

We ·now.write (3.1) in terms of s00 , 

•/ J dE trace 
0 "' 

t . 
asoo ] 1 a· t:\ 

aE - Fi ai (Too + Too !J • 
(3.8) 

N a i11' 

then we use the fact that trace T00 vanishes at zero and infinite energy 

to eliminate al1 but the 8 matrix. Substituting (3.3) tor s00 , we have 

l oot [< t t t t ) . a ( ·, ). ( ) a ( t t t ~ )1l N a 411' dE~race ses1~2s3 aE ~3s2s1sc --s3s2s1sc aE. Scs1s2s 3 j 
0 

. ( 

.. 

• 
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I 

Using the unitarity of the S ~tr~ces and the· identity trace A B • trace B A, I 
~~ I 

N . i 
11::4'1f J

., 
. 0 

• 
(3.10) 

The prime on the· integral reminds us that all the terms vi th an overall 

delta function are to be omitted. Finally then we have 

. .. 
N • i J 4; 

0 

This can be rewritten with T rather than S • 
0 c c 

N = - T -·T. a t} 
c aE c 

• 

·' 
\ 

To dompute the trace 11 • we. _use the. eigenfUnctions .of T
0 

The diagonal elements are easily computed to give 

3T . ~ I . H . 3T ---
t c g t n · I el <e IT -- T - T e '- • e· sin 6n(en 1 ~E en) n c 3E c 3E. c n' g 

. . 

I 

(3.11) 

{3.12) 

as a 'basis. 

• (3.13) 

The eigenvalues of'. Tc··l are given as ~ functional w~ich is sta~ionaey 

with respect to variations of the wave .tunctions 11 . 

-e 
icS 

n 

11' 
sin c5 n 

II • 

• . ' 

. (3.14) 

I 
' 1 

r 

.. 

. c-
• , .. 
I . :. 
1 •• · 

I : . 
i ... 
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~· 

~. 

· .. 
·' 

"-..... 

i 
I, 

Taking the derivative of both sides with respect to. E • we have 

. ;1:6 
:!<e · .n sin ·6nl .. 
· naE t 

·' 

since th4! derivativ~ of the eigenfunction gives zero becau.se·'~t.·the 

(3.15) 

.I 

: · .... 

! ' 

; ' 

' .. 
: . ·;~ : 

·: 

~ ·•_.! 

":·,; . stationary property. Finally then (3.13):becomes 
• ··, 4 .I 

', ,. 
' .. ·, 

e~ 
do 

• 2i i 2 ~ '.......!!. . . 7 s n . u n· dE . o (3.16) 

To obtain the trace, the above expression is summed oyer ,n · to yield 

oo' 
h ~1 .I 2 

deS ; ' . 

N· dE sin 0 n .. .. '·' .. (3ol7) = ~ • ., 
n ' 

0 n . '• ·.' .. ~ 

Interchanging integration .and summation 0 we have 

N = 
sin 2c5· (0) 
--~n.___+ 

2 

sin 
. ' : \ 

(3.18) . 

.The integration ·and summation can be interchanged if.'.th~partia.l sums are 

bounded by an integrable functigne The partial. sums are bounded if only 

a.finite number of phase shifts have arbitrarily large derivatives. We . 

. , ~ assume that this is the caseo The bound is in~egrable provided that the 

· ' · · ·.T matrix falls to zero sufficiently_ rapidly as E ~ ~. ·:,. 

Since the amplitude vanishes at infinite energy0 sin 6(•) 1111 0; nrlJ 

we have already shown sin 6(0) ~ 9~ therefore we have 

N = .~ 2)on(O) - cS (eo)} 
n . 

'' 

.. ,. . ' 
' · .. 

.. ' 

.•·: 

,., .. 
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IV. THREE-BODY WAVE MATRICES IN THE PRESENCE OF TWO-BODY ~UND STATES 

In::this section ve extend ·the discussion of' Section II ·to allov 

· for the presence ot tvo~bo~ bound states. In that case it is necessary 

to know the bound-state vave function, ;a, 

,,, (v ··>.) 
"'a a·• a 

.. '1' 

va: + Ba 

Cl) • 

J dv' V (v ·v'' •). )•1• (v ·>. ) . a <~ a' a' a "'a a' a 
0 ' .. 

t 

where the binding energy is -B · • The vave functions are normalized to 
a 

unity, ·: · 

(4.1) 

1 dv ltjl (v· ;>. 11'2 -· ~ 1 
a a ·a ·a • '(4.2) 

o. . 

We will assume that there is one s-vave bound state in each two-body 

system. This .is not· essential, but it sim:plif'ies the algebra considerably.· 

In· this case .' >. = · .{.t,m} :: 0 f'or the bound-state pair::. "a ., a a 0 

The bound state causes the two-body t matrix to have a pole at 

s = -B :J The three-body amplitude· M B will then· have a pole at 
a I . a . 

s = wa - Bao Similarly Maa has a pole at s =· wB - BB • The residue 

·at these pol~s and at the double pole s = wB - BB = wa - Ba are closely 

related to the S matrices f'o~ boUnd-state scat~ering. To be more precise 

it is not the residue of MaB ·but rather.the residue of'. MaB with the 

tvo-body vave function projected oute We list these residues and their 

, r~lationship to the S ~trice~ and the M~ller wa_,;e matrices in Eqs. (4.3) .. 
I ' • • ~ • ' 

to (4.12). For a complete discussion ·of their properties. the reader may 

. consul: t reference· .11. The residue at .s. •. wa .. ;~B vi~h the vav~. tunctlon : . 

1 projected out is giv~n by<·. , .· 

.; .-. . . ' ... 
. .. ·;;: .. . ·:~ '~' •,. ~ ' f .. ~ 

. '-~ 
,· · .. ". :..;. . 

. .. I 

'. 
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· and the residue at s • (I) - B by ca · a 

"' ·(v' )dv' S B B 

(4.3) 

rv 
L (w ·w' v•· ~··s) • (s + B - w) 

* dv M 8(w ,v ,o;w,v,~;s)~a(v ) a a a a a 
caB a' ' ' ' a a, va + ~ca - s 

~4.4) 

The M satis.fv the relation 
aS· " 

' 

and the .LaB satisfy 

0 (4.6) 

The .LaB operator has a unity term iQ it coming from the proJection of the 

term TacSaB in Eq. (4.3).: Separating this term out 0 we define an 
t tv 

operator KaB and the corresponding operator KaB by 

L S • (v + B )~ (v )~(w - w')cS 0 + K 0 (w,v,A;ws';s) a a a. a ca. a a a..,. a..,. 0 

The residue of M . at the double pole with both wave functions removed as· 
is denoted F

0
B , .and it is obtained by ~eparating K08 into a term 

regular at s • -B + w and a pole term: a a. 

(4.8) 

1 • 

• 

.. 
I 

' . t 

! 
! 
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We def~ne three isometri~ operators by 

n = a L 
B 

(w,v,A;~';s = -B + w' + ie) L a a .a 
Ba --~(~w~+-B~+~B-----w~,~--1~£~)---

a a 

The S matrix is given by 
.. ,, ,, 

and 

• 

where 

and ·. 
I . 

.' 

• 

• 

... 

T
0 

(w,v,>.;w') - \ K
8 

(w,v,>.;w' ;s a -B + w' + 1£) 
a· aLa a a a 

a 
• 

~e subscript zero denotes a state with all particles free, for 

(4.10) 

(4.11) 

IJ. 
~(4.12) 

example, s01 is the S matrix for P,article l scattering on a bound state 

of Particle~ 2 and 3 with all final particles fre~··· .. sl2. is the S matrix 

for a rearrangement collision with Particle 2 free initially and Particle l 

free in the final state. 
. 11 

The n operators are formally defined by Faddeev to be a mapping 

of one Hilbert space onto another. Define the space ~ by the orthogonal sum 
•. 



\ 
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• (4.13) 

where h0 is :the space of functions of the variables flttv.,A that satisfy 

and h a 

- -
is the space of square integrable functions of 

-~ dwajfa(wa>1
2 

< • • 
0 

(4.14) , 

(AJ' 
Cl • 

.A 

The subspaces h0 • 
;"\ 

h reduce the total energy operator H defined on a , 

h as follows: 

A 
if r 0 .t ho ' 

then H ·f'o = (w + v)r
0 ; 

A. 
(-B + ciJ )f' (4.16') if t E h • then H t = 0 

Cl a a Cl Cl Cl 

Here li is the· total energy or· a free or "asymptotic" system, either a bound 

state plus 1a free particle or all particles free. · The total Hamiltonian . 

H acts on a space h which is formally identical to b
0 

• We now define 

an isometric operato~ ~ which maps ~ onto h • It is reduced by the 

subspaces h0 , ha with 

and 
A or = o r a a a 0 (4.17) 

The states t 0 and fa are continuum states and they are mapped.only onto 

continuum states of H in .h. Hence if fd is a discrete eigenstate 

· of H • ~ t f d a 0. The orthogonal! ty relations 



' ' 

\ 

and 

n tn = I 6 • 8 a a a8 

g tg a 0 
0 a ' 

6(w .. w' )6 B a G a 
I . 

' 

n tg · = . t . = 6(w - w' )6(" - "' )6(A,A!_}_ 0 0 0 -

; ' 

also hold where I 0 and· 'ra are the identity operators on b0 and ha 

respectivelyo Finally then we ~ave' 

a 

n n t a 
a. a 

(4.18) 

(4.19) 

' 
where I" is the identity on h and P d is the .projection operator on\j, 

' I 

... 

the .space spanned by the discrete eigenstates of· H • Since h ·is 1 

formally the same space as h0 • I is the s·ame as I 0 and (4.19) 

becomes 

I . 

n n.t 
a a 

.. 
• 

By. taking the trace of (4.20) we-have an ,expression for the number of 

bound states of H • 

0 

Vo THREE-BODY LEVINSON'S THEOREM IN THE PRESENCE OF TWO-BOnY 

(4.20). 

'~ BOUND STATES 

I 

The trace of the first two terms of the Ec: •. (4.;20) has already 

been evaluated with the exception or the parts ~aving an overall'delta 

function •. ~hat part was given in Eq. (2.18), 
.. , 

. ' 
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[W t,w] • ~(w - wf)P • I P a a a a a aa • . 
When there. vere no tvo-body bound states P vas zero • but nov 1 t must .a . 

be ineluded. The identity operator is replaeed b,y n tn • einee they are a a 

equal, and then Ad beeomes 

3 

I • 
a,B=O 

a;EB 

The W operators are given in Eq. (2.16), '-and the aetual ealeulation ot 

the traees is done in Appendiees A and B. The number ot three-body 

bound states is given by 

It ve write the T matrix in block form. 

Too T01 T02 T03 

TlO T11 Tl2 Tl3 
T • 

T20. T21 T22· T23 

T31 T32 T33 
• 

(5.2) 

( 5 .• 3) 

,. 



• 
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\ 
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then 

li a 

I . 

1 [+·a . ··a •] 
iw dE trace. T aE T - .T _ai T . .. 

The S matrix can also be written in block form~ 

A 
o(E • E! )T S· a I - 2tr1 • .. 

with 

Io 0 o· 0 

0 ·-:Il 0 0 
'-' 
I a 

0 0 I2 0. 

0 ·o 0 I3 • 

.and I 0 •· I a· are ·defined in Eq. (.4.18) .•. With the use of the above 

relation, the expression for N can be rewritten in a form similar to 

Eq. (3.8), 

I 

N = ~J· • 

Since the trace 'or each·wm~litude T06 is assume~ to ·vanish at· its 
. ' ' 

(5.4) 

II 
I. 
'I 
I 

' 

threshold ~d at infinite energy, and since the amplitudes are continuous ·.J 

through other thresholds, .the term 

I . 

J . [a + ] .. . dE trace . aE (S • S) E 0 • 

Define a unitary operator 0 U 0 by 

\ .. 



.. 

·----------------~------

· -2o-· i 0 

0 ° 0 0 

o. Il 0 0 

U· ·• (5.7) 
0 0 f •• 

·o 0 0. I . 
0 3· 

• 0 

• 
. t t t 0 

• 

\\ The operator ~1s2s3 was discussed in Section 3. A ~i tary connected 

S matrix can ~ow be defined b.y 

and a connected T matrix. by . 

S a U S 
C'" II 

0 

Substituting uts for s in Eq. (5.6), we Qbtain c 

/· 

.. 

/. [ 0 ] 

N •. f.; J -~ trace. c·_s.!u> fE {_~tsc) - uts~ k <.s!u> · '. 

(5.8) 

' 
'(5o9) 

With the uae of Sst a 1; UtU =r, and trace {AB-BA). • 0, the·above e c 

expression simplifies to 

0 

The prime on the integral requires that the .terms with an overall delta 

. function Qe omitted, that is, the. U terms .•. Finally th~n we have 

(5.10) 

\

0 

• 0 (5.11) 

1 • , 

.· 

.. 
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The eigentunc~ions of Tc are used to compute the tr~~·. For tixed 
~, . 

energy Tc is a normal operator, since unitarity. requires 

• 

and it is square integrabl~. since all integrations are over a finite 

range and there are no singularities in T • Hence it has a spectral .c 

decomposition, 

where 

T 
c 

1 
a -

11" 

n 

To make 

(5.;12") 

~ form an orthonormal set not necessarilv complete. . n " :I 
the set complete an orthonormal set of functions spanning the null space' 

of T is added. The trace in Eq. (5.11) is computed with the +'s. as. c . 

a basis. The diagonal. elements are given by. ... 

• ( 5.13) .• 

Suppose the thresholds are ordered in the following· way:· 

· then the answer for the number of three-body bound states is . . . 

N [~ (0) 
.n . 

n n . •/ n 
0' 

·' 

+ L [~n(·B3) . .;. ~n~-B2)] 0 (5.14) 

n # 
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!·'' 
· The phase· shi~s are dete'rnU.ned only modulo .1f , . and slnce they must be 

\ 

I· 

a multiple ot 1f at intinite.ene.rgy, we .are free to choose them to be 

zero. vie can further require them to be continuous across the thresholds 

of newly opening~channels. Rather than require the phase shifts at 

infinite energy to be zero. we will specify that only a finite number can 
. i .. 

be nonzero. :The sum of the phase shifts will co~verge at any energy and 
I· 

the only contribution will be from the ·elastie.phase shifts at!their 

thresholds, 

. ·.a n . 
' el 

6 eR. 
(-Bel) 

Del • .. 

. ~ 

; 

···I· 6e1(o)' I: 6 ( •) - • n n . 
n n 

_,,. .. . : 
.. 

.ACKNOWLEDGI.mNTS 

., 

. (5.15) 

11 . . . . 

I should like to thank Professor Stanley Mandelstam tor suggesting 

this problem and ror many ·helpful discussions.. I also thank Professor· 

Steven Weinberg for suggesting ~h~ poasibility of extending Jauch's . . . 

proof. ·.' 

..... ' . ' 

This work was supported by the,United Statea Atomic Energy .. . . . .. 

Commission. 

' ' : -~ . 

,. L -~: • . 
. ,.. ~ 

•.: 

.. . 
• l'•' • :·. 

.. 

.... 
. '· 

~ ' . . ' . 
-.. ~ . 

• 0 ~. ' ' •• ;>. 
.• •. ~- f 

.. ' . . ~ .. 

> .. 

., ll • .. ~ • 

• ·. ' ' ,.. -~ ' .• ~ ...... __ ;.!!'-. ~-

·( 

' I 
. .. . ~ .' . .,_• 

.·. : '. ': .~ 

'. ,' ~ .. .· . . ' ', ~. ''. 

.. : • '· : "r. 

• • ~- J • 
: .. 

" 
< ,. -· . ..,.·_, _-. '.· . .. ' ~ 

·j-
, . ~- · .. _ -· .. 

.I 

. .... , 



\ 

-23-

APPENDIX A 

I' 
I I. 

~.-

In this appendix we evaluate the trace ot the right-hand side 

A = 
3 

I 
a,s=o 

a¢S 

.. 

We have left out the term since it is given by. Eqo (2.18). 

Although there .~e a great ma.ny t~rms to evaluate, ot;lly three ot them· 

are different, so it is sufticient to calculate . 

and 

Al2 trace t = [wl,w2] . .. 

~01 = trace t 
(Wl,WO] .. 

. ' .. 
t 

Aoo 1:1 trace [wo,wo] • 

It is convenient to use the ·set of variables used by amnes13 
t . 

anQ. discussed in Sec:tion 2. We add one redundant variable, the total 

energy E a 'i + w
2 

+ w
3

• . With this choice of v.ariable~ the operators 

W a beco:y 

.. 

(A.l) 

(A.2) 



.. 
-~ 

\ ·" ·' 

·' 

The total T matrix. as ·given in Eq. (2_.20) is just the ·sum 

T00 = 2: 6(w0 - w~)t0 + T~ 
0 

0 

The variables· M , M' , and s are omitted, ·as the¥ M • M' variables 
-~ 

' (A~3) 

(A.4) 

" are always involved in finite sums·which present no problem. The arguments 
f.l 

':: 

wa are always positive, so if one of them is replaced by E- w1 - w2., 

for example, the entire expression is to be multiplied by a step function 

This is also omitted, but implicJ.tly understood to be. 1·1\ 

present. To further simplifY the notation, the set of ~ariables 

w1 ,w2 .w3 is. denoted ~y w whenever there c~ be no.misunderstanding. 

In this notation 0 the expression for. 

t 1(w.w")t2(w" 1 w')6{w1 
. 00 . ~t 

Al2 e tr~ce ~. dw" (E - E" - ie)(E• 

\ 2 becomes 
~--

- w" )6(w" w') 1 2 2 
- E11 + i£) 

I 

\ 

" ... .. , 

.. \ 

·-

... 

• (A. 5 )· 

To evaluate this expression·we separate the singular denomin~tors into 

principle parts and delta fUnctions. We assume that all integrals 

converge ·absolutely and uniformly at infinity so that it is permissible 

to interchange orders of integration except at the point where the 

denominators both vanish. For simplicity ot notation ve let . A be the . _ 

contribution from the product or· the two delta functions 0 C be from 

the product of the principle.parts 0 and B be trom·the cross terms. 

'' .I 
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I 

A and C are shown to be zero. A12 is easy to eval~te because ot the 
< . 

delta functions, 

t t( ' E . ' . ' ' E' ' ') - ..• •.. - •.. - •.• • •.• •.• .- •.• 1 - .•.• 2 
. 1 ~·~· ~ . ~-~·~· w --

• 

The diagonal elements ot the term in the brackets vanish identically, 

and, since x6(x) ·a 0 • A12 = o. • 

The trace in c12 is written out explicit~ •. 

J~ JoodE' J~A.. . f.-· d(l)2 
·~ ~. ~1 2 

0. 0 · .. 0 . 0 (E • E') I . 

0 

Since the numerator vanishes ·at E ::::E.~ and the integrals converge 

absolutely and uniformlY at infinity, it is permissible to interchange 

the orders ot integration.. Since the integcand is antisymmetric in E 

and ~! • c12 : 0 ., The only nonvanishing contribu~ion·-tO: A -12 is B12 0 
· .. 

(A.6) . 

./ 
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• 

• (A.8), 

0 
This is of the form 0 0 

l. trace E _ E' {f(E,E')g(E,E) ~(E,E~ )g(E' ,E')} • 

which, when we take the limit ·E + E' .. an~ integrate becomes 

• 

Finally then we have 

B12 = i• J•dE J•db>1&>2(ti(w1'012'E- 011- 012~011'012°E- 011- 012) 
0 0 

• 
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I 
~-

This can be put in a compact form by using T1 and •fa (see Eq •. (2.10)) 

where T
1 

is nov an on-the-energy-shell t matrix, 

The analysis for A01 is quite similarp 

A01 = trace 

.. • 

0 

~roceeding as before and doing all the traces except the E ·i, trace, we 
l! 

have 

I 
x T0 (w1 ,w2,E - w1 w2 ;w1 ,-..;;-!'w2,E -·.w1 - .w2}} • 

Interchange . ~~ and w2 in the second term and then the. expressic~m .·is 

explicitly antisymmetric in E and E' and hence vanishes. In the 

expression for c
01 

we do all the trac·es explicitly,· 

I 
' ' 

\ 

(A.lO) 

I 

(A.l2) 

• 
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. / .. 

\. 

·····.,:' 

~l .(A.l3) 

Again we interchange 
~ 

in the second term. . The expression is . · · 
1' 

then explicitly antisymmetric in E and E' 1 and the integral therefore 

vanishes. As before, the entire contributio~ comes from B: 

{ 

.. X 
. t . . 

T0 (wi,w2,E'-w1-w2;w1 ,w20E.0-w1-w2 )-t1 (w1 ,~2•E-w1.,.w2~w1 8w2 ,E•-w1-w2 ) 

,\ 

· After .interchanging w 2 and w 2 
limit E + E' , we obtain 

. . 

r 
.• ·,r. 

(A.l4) 

in the appropriate places and taking the 

.... ·, "• 
·.·) 

);'·, ··'·.··. . .. 

. ·"· •. 
r I ~ • ! 

'· , .... 

.. 
,<. 

· .. ·.;' 

(A.l5) 

.• 

•' 
.· .\. 

.... • .... 

... 

,-
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The final term we have to calculate is . A00! . 

For A00 we have, ·. '' 
CD . ' 

A00 c '"
2. trace· ~(E-E!) j 

. . 0 

• 

Upon interchange of ·wi• w2 and w1 , w2 , the expression inside the' 

prackets vanishes identicallyj and· therefore .~oo = o. For c00 we have, . .. 
c00 = trace dE' J 

0 

0 

(A.l6) 

The integrand ~s. antisymmetric upon interchange of all variables and hence 
(, 

·c00 .va.'nishe's .\··"·The· fihal contribution comes ·~rom B
00

, 

I: 
! '•• 
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t 
) 

' . 
'! . 

x ~O(wi,w2,E'~i-w2;wl,w2,E'-wl-w2)-T~(wi,w2•~i~2;wl,w2,E'-wl-w2) 

· This reduces in the usual way to 

• 

From Eqs, (A,4) and (2.20) the three-body T matrix asso~iated with ~ s00 

is given.br· 

·,:. 
i . 

s00 • 1- 2wi 6(E- E')T00 • 

Combining all the results of this appendix, we have 

A a 
0 

, 

where the prime on the integral means.that the disconnected'parts--that 

is, the terms with an overall delta function--are to be left out.' 

(A.20) 

(A.21) 

(A.22) 
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APPENDIX B 

In this appendix we derive in de~ail the trace of the third 

A a 
B 

3 

I 
a=l 

.. 

The g operators were defined in (4.10), 
a 

L 
'; · La~(w,v,>.;w~) 

g· • a w + .v - c.o• + B 
B 

a a 

and the LaB and KaB in ( 4 • 7) and ( 4 ;a ) , 

• 

; 

f 

. 
~ 

- i£ 
·~ 0 

. t 

• 

. L B a' (v + B )~ (v )~(w - w')~ a+ K 8· . a a a a a a ·a a a •· 

(v + B )~ (v )F 
8

(w ;w
8
9 ) 

K ·:r· G + a a a a a a 
aB aB wa - Ba • wB + B8 - i£ • 

Here P is a projection operator on the two-body bound state-• a 

• 

(B.'!) 

. (B.2) 

The first term factors into P (v ,v')6(w ~ w'), and the trace of Pais a · a a a a 

~nity; :.L08 - has a term which ~s essentially··a ·unit operator an_d commutes 

with th~other terms ·to give zero. Therefore : AB can be written 'in terms 

ot: K • 

. \ 

\. 



~~~f 
"')> 

!•• 

.". " •. ,<: jJ· 
"~ 

( 

A 
.B ·= 

I 

L ·. trace 

a,B,Y. 

-32-

N 

K (w.·w" v" A)K'~·(w" v" A•w·':) ax. a' • ·.• sioij ' • "·' ' a dw" dv". ":'""' .. - .... ~-n-· ""~~'~'"""':;p~"""":-~-...,..-.~--t~ 
(w -B -w11-v11-i&} (iw'-B -(1)

11-v11+ic) .a a ,,a a 
,• 

,.· . 

. :_· .... -· ·'' :: . ': t+:·· 
··-·. 

·-· \ . 

· .. . r -·,;/ -. 

-
:r '"' ••• 

" 
~ . . . Ba . 11 

·' 
11 a ax a' ' · 9 

· J 
K (w v A•w"}K · .(w"•w 8 vv A'} . .. ~ ~ 

0 

dw: .,.(-w-~-v---w~1;;.1 ;;;.+~B~-~i~£~)~(,-w"':!'~+......,v-:,-. ---(1)"'11-+~B-+-~1&...,. ). . " (B.3) • " , 
a · · a a a. . "/ ~; >:: 

'*' . ' , . -~-:~ .... f. 
: ___ . . : ·_· -·.;' 

- ' .. · ,~-
;.- ... 

The usual assumption is made that the orders of integr.ation could be 
. . fii~l 

interchanged except for the singularities from the d~~ominators. There . . .. ,.,f . 

-_ .·. "'i 

. ,. 
f':'. 

are two sources· of singularities. which occur when f.! = w
0 

and 
. ~t . 

· (1)
1 ~ v' = w ~ v • The first is exhibited .·explicitly ·~bove and is located 

... . . t 

·~· .' 

. ' -~ . 
, .. (. 

. at w" + v" = w - B The second is hidden· fn the } K "term itself, and 
a a• . : • 1

1 
• ·t. 

. ' 
, can be seen. in Eq:. '(4o8) •. It is located at wa - B

0 
.'= .CAJB - B

8
. , and ~iil. 

·I -:: ,' 

occur only when 8 = y in Eq. (B.3). The two singularities oc~ur at 
I . . : •. 

different points. so they c~. be discussed separately i · p 

~ • .. 

In the proofs there will be many changes. of ~ariable of an · ' ,· ~ 

essentially trivial natureo As in·Appendix Ae :we omit all explicit 
I 

reference to changes in the int·egration regiono · If an argument of a K .·. 

or an F function is negative 11 the function.is taken to be zero; that 

, . / · is 11 a step function of all arguments is implied. With this restriction 11 

the integrat.ion on all variables is taken over. the region of poSitive 

arguments .of' the fUnctions K and F • The variable E is used fo~ the 

'. j. -~ ... ' . -~ 

'' . ~ 

. "~ ' ~'\ ~ --~- ' 

.. ·. ~ .. "; i~ 
j • ~ • -~' • 

• • • • -~~- • <0 

.-:· 

< '· 
• · ••• j· 

. t'J, . 
..... , .. 

, .. ). ·. 

total energy, either w + v .. or w - B · • a a Hereafter the operation "trace" •., 

will refer only to E. All other traces Vill.be done explicitly. 

First the singularity at w" ~ v". • w ·- B is discussed as a a 
• • • ? •• 

··.though the one :frOJii. the . F terin. didn°·t -:xist~~·:·, Then 11 ·pres11JD,ing that ... the 
. ' ....... 

. , first .singular! ty is o.bsen~ ll we treat ~he. F · 'tierm~ .. The , evaluation···.·· :: ·. 
11 t l. 0 4 )·.· .: .:.· :,~.·.~.·-'.-.~:-... ···~ : • • ·' ;,' •, ,: ,: • 

• J 

. · ~ .• ... /'" 

.. 
,•,' 

'· . . ' 

• .1,-
' .... 
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i 
follows the by now f'amilar procedure of splitting the 4tlnominators into 

principal parts and delta functions. The term·f'rom the prod~~t of' delta 

functions is called ~ or A, depend~ng·upon which s~ngularity is being 

discussed. The term. from the product of principal ~arts is called . CK 

. or · CF. The cross terins are BK and BF. The first contribution to be 

evaluated is ~ : 

{, 

~ == L trace 
a,B,y 

&(E - E"){\ dv(K6· (E • v,v,A;E +. ;" )'; (E + B ;E".- v,v,>.) L a ~:,a ay a 
' . ). . :' . 

IV . 

- K6.(E- v,v,>.;E" + B )K (E + B ;E- v,v,>.)] 
a. a ay . a . · .. 

• J (B.4) 

The term in brackets vanishes atE • E", so ~ == 0 o Hereafter the variable 

>. will be omitted, as it adds nothing to the proof' •. The evaluation of' CK 

is straightforward: .. 

c .. 
K 

v v•E+B •) 
• ' Q 

"-' 

- K (E' t B ;E- v,v}K0 (E- v,v;E' + B )] . ay a pa . a • (B. 5) 

The term in brackets vanishes at· E = E' ,.so the principal part integration· 

is well defined. Therefore the orders of integration may be interchanged, 
. . ' . 

and CK = 0 ; b~cause of. the ~tisymmetry of' ~he integrand. 

We now considerth~ contriput.ion from the term involvi~g'only 

I. 



\ 

• 
''l 'j ~· . 

trace·E' E.,. dv{K (E + B 'E- v,v)K~ (E- v,v;E' . - uy u . pa + B ) 
(I 

. 0 . 

,.., 
-K {E' + B ;E' - v,v}KB (E - v,v;E' + B }} ay . u «· . u • (B.6} 

" . . L. 
To evaluate BK take the limit E ~ E', which gives 'a derivative, and then 

integrate over :E • .The firth resUlt includinf$ the angular variable ). is 

CD CD 

J ~ a . 
dE dv{K (E+B ;E-v,v,>.) ~E KB (E-v,v,>.;E+B ) uy u · o u u 

0 

. • (B.7} 

In terms of the transition op;erato~s · T0a defined in Eq. (5.12); the result 

is 

B = K 

. . 
iw If 

(I 0 

I 

In addition to the singularity from the three-to-two amplitude, 

there is a term from the two-to-two amplitude. It comes from the 

singularity ·of the F term implicit in (B.3). Referring to Eq. (4.8) 

and substituting the F term for the K term, we see that the onl.1 new 

singularity will come when B = y • Therefore we have 

(B.8) 
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The i£. has ·been left out of the denominators already treated, as they are , 
'! 

presumed to be nonsingular. dependence; ~as been indicated in the 
. . I : 

· 1 denominators · to make 1 t: clear that only · B = y · terms are singular. The 

expression is nov evaluated in the usual way in.terms of principal parts 

and delta functions. For · ~- ·we have 
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puts the expression in 'a form in which lt is explicit~'antisymmetric in 

E and E' • It therefore vanishes, since it multipltes 6(E - E' ). · 
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The calculation tor CF proceeds along similar lines. We change variables . ·' 

to E = w - B y y 
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F 
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a. a . ( B .11) . 
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The integrand vanishes ~t E = E' , and therefore the principal part integr~ 

tion is well defined. Interchanging orders· of· integration and using· the., .'' . 

antisymmetry of the integrand, we obt&:in .. 
The final term..,to be evaluated is 
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Upon expansion of' the term (E' • v + B
8 

- E)-l in powe~~ of' (E • E' }. • it 
:/!!'"' 

. is easily seen that the only term ·that need be kept in the :ex- "' 
;'. 
_p; 

.pansion. is· the constant term, as all others cancel in the limit E + E' o 

From Eq·. ( 4. 2) we have the normalization integraJ., 

yield 
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= .. 1· 
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In the limit E + E' the remaining terms give a derivative to 
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F80(E t B8 ;E + .B0 ) kF08(E + B0 ;E + B8 )} (B.l3) . : I 
This expression can be rewritten.in terms ot. TaB defined in Eq. (5.11), . ~ 
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Combining Eqs .... (B.l4) and {B.B). we have 
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