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ABSTRACT 

·.·:·.· 
'\.,. 

The decay of a fermion of arbitrary_ spin into an.unstable·spin-3/2. 
. . . . . I . 

~ermion plus a spinless boson is treated with density-matrix techniques. 

The formalism described is an extension of that developed by Byers and 

Fenster for the decay of a fermion into spin-1/2 and spin-0 particles. 

Decay distributions are completely described for three successive decay 

processes. Various tests for spin and parity of the parent fermion are 

suggested. 
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I.. IN:TRODUCTION .. 
. :; . 

A. !o.rmalism for treating strong or weak dec.ay of a ier~ion into a 

spl~-1./2 _particle and a spinle.ss boson was developed over a year: ago by··.· 

Byer~ and ·Fenster. f . The. purpose of this article is to extend the formalism 

to treat fermion decay into a spin-3/2 fermion plus a spiruess boson.· 

The angular distribution of the decay and also the angular dependence 

of the fermion's polarization ~omponents afford tests for_ spin and parity 

hypotheses concerning the paren,t fermion. In general, the analysis of 
I 

second-rank t~nsor polarization of the spin-3/2 fermion is possible; in 

addition, vector and third-rank tensor polarizations may b1e analyzable. 

II. THE DECAY MATRIX 
\ 

The decay process 

X-Z+B (f) 
. \ . 

(spi_n: J - 3/~ + 0) 

may be described (in th~ rest frame of~ ~y ~xpressing the spin-space . 
\ 

' 
density matrix of ;Z in terms of. that for X:· 

Pz = 111-Px !nt . (2) 

where 'fr{ is the decay matrix. 2 We suppose Px to be given in the 

usual J, M representation, with some convenic=:nt direCtion defined by 

X production (e. g., the production normal) as the quantization axis. 

·. Fu_rther, we wish to treat the decay of X into Z in the system which 

yields helicity states for the Z. Thus the decay matrix may be considered 

. as having two parts: a rotation matrix which transforms Px into the 

I - ~ 

"helicity syst~_ip" for Z {with quantization axis along Z, the direction 
~-, 

of "particle", Z in the X rest frame); and a diagonalized transition 

: ~ . 
\ ,'. 
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matrix (A) describing the decay X- Z + B. That is, 
t t - • .. c -

. Pz = A (RpX R ) A , _ . 
. ' 

where. R. represents a rotatio~ operation.· 

The complete element of the decay matrix may be written 

'Vr1 ' . I 1/2 .D J* 
, '(}I.M = A}l. [(2J+ 1) 41T] <7-J'M}I. (~,8,0), (3) 

with .}I_ = -3/2, -1/2, 1/2, and 3/2 for the case under discussion here. 

The oCJfr.}l. is a matrix element for a rotation operator (and may also be 

referred to as a "symmetrical-top function"). 3 • 4 The .A}I. are the helicity 

amplitudes, the elements of the diagonalized transition matrix describing 
- i 

X - Z + B. ~~ Their form depends on the spin of Z, the spin of X, and the 

relative X-Z parity. 

The helicity amplitudes are obtained as follows. Each A}l. repre­

sents the probability amplitude for -~he breakup of a system of total spin J 

(with projection }1. on the helicity axis) into a system which has spin 3/2 

(and helicity component X) and any allowed orbital angular momentum 

(with helicity component zero). The \ may have contributions from 

four orbital angular-momentum waves; ~ ::: J.- 3/2 through J + 3/2; two 
• I 

of these l. waves have even parity and two have odd parity. The relative 

contributions from the different orbital states may be expressed in terms 

of the complex decay amplitude a1 _ and the Clebsch-Gord.an coefficient· 

for combining l.. and spin 3/2 to obtain spin J: 5 

A}l. = -~ (~)1 -J+3/ 2 a1 [(2.1.+1)/(2J+1)] i/Z C(l. ·~-~;0,~) 

= (-)}1.- 3/ 2 La., C(J::fz·,l.; X, -}1.). 
l. Jf. • ~ 

.. 

(4) 

The second expression for A}l. given in Eq. ( 4) follows from the first 

by the use of symmetry properties of the Clebsch-Gordan coefficients; 
;~ 

the form of the second expression is reasonable, in that a1 multiplies 
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. the .c~efficient ·:giving the probability amplitude. for forming the a~gW.ar 

momentum state J. ~ (For the familiar case. of decay into spin 1/2, the 

-helicity amplitudes A 1; 2 =a+ b. and A_ 112 =a -b may be found by 

. :_evaluating A'A = (-)'A-.:1/2 t a1 C(J1/21;"-, -~)or by dlagonalizing the 

transition matrix a+ b ;;;p-. See Appendix I for further discussion.) 

It is perhaps more l?ractical to discuss strong rather than weak· 

decay of the X, and to keep the opposite~parity amplitudes separate. The 

A'A amplitudes receive contributions from orbital angular momenta 

1 = J -3/2 (not allowed for J = 1/2J-and ·J + 1/2 if the X has spin and 

.. parity, relative to the Z, of 1/2+, 3/2-, 5/2+, etc. ; they pave con­

tributi~ns from i = J -f/2 and J + 3/2 if the', X has JP = 1/2-, 3/2+, .5/2 ':',: .. etc . . 

\i 

The two sets of :helicity amplitudes have th~ following forms: 

ao.J + c ,J3 ~J -b~ o.J +d~J 

a,J3 ~J-co.J b~J - d,.[3 a.i 
A a:. an~ .N a; . 

atJ3 ~J- co.r -b ~J + dl{l o.J 
. . \ 

ao.J+ c.JJ ~J 
·•. \ 

-b,J3 a.J - d~J I\' 

for the' .1/2+ and the 1/2- parit~ seq~en\es, respectively. All four A'A. 

elements are actually applicable only to \e decay of an X with J ~3/2, 
. \ 

\. 

since the· 'A = 3/2 and -3/2 spin· states are _not accessible to an initial 

\ particle with spin 1/2. The coefficients a, b, c, and d in these matrices 

,,• -·-

(5) ·. 

. -: represent the complex amplitudes a1 for decay through the channels with ~ " 

l.'=J -3/"ll~. -·1f~:;.,+1/2,_and +l/2, respectively; the remaining symbols are 

dependent on the original X particle's. spin, with a. J = ,J J +3/2' and with 

~J = ,J J -_1/2: ¢;.rese A'A amplitudes are subject to the constraint of 

normalization {total decay probability being equal to 1): 

Tr A At or Tr A'A't = 1. 

Equation {6) is consistent with the usual condition L a1 
2 = 1. 

1 

{6) 

.• . 
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' . . ~ 
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Expressions for the angular distribution and for the polarization 
I 

components of the Z !~.particle" are obtained by expressing Px in matrix 

form and carrying out the transformations of Eqs. {2) and {3). We take 

2'.Jx 

L 
L=O 

[ (2L+1) t~M T LM 
M 

{7) 

in the manner of Byers and Fenster. 6 It is convenient to use the. irre-

d . bl t T . b . · · 3 ' 7 . Th uc1 e ensors LM as as1s ·operators 1n sp1n space. ese are 

traceless tensors, except that T 
00 

= I; · · their use simplifies the 

satisfaction of normalization and hermiticity requirements! for the density 

matrix. Further, they combine ~turally with the orthog~,Eal Y LM(O, cp) and 

.Bthlr{<j>~8, 0) in deGay distributi0ns deri~~d:.~~o_I?_~de~~~.~L.:!l:trix. These 

tensors have forms in spin space which correspond to those of the Y LM 

in coordinate space; e. g. , Y 11 oc (x+iy)/ r and __;T 11 ex {Sx +iSY)/ IS I, where 

the Sx and SY are spin op~rators and Is 1' is ~ J(J+1). The TLM 

tensors obey the symmetry relation T L. -M = (-)M T LM· 
In Eq. (7), the T LM operators have a maximum rank (L}')equal 

to .2J x· The tLM represent th~ expectation values ( T 1M) ·which 

describe the X initial s~in state. \he expression for an element of the 

final Z density matrix becomes, by the use of Eqs. (2) and {3)1,. 

Pz)AA' = ·L · A, /JJ* [ 2: (ZL~) tL* M TLM] " 1 /)J 1 , A~/4:rr. {8) 
_ M';M' 1\. M"X. L~M \ M M M X. n· . 

Then, as shown by Byers and Fenster, C~ebsch-Gordan coefficients may 

.. be substituted, for the matrix elements of the T LM: 

TLM1Ml.'.M'= C{J LJ; )~~M) with M'.'= M' + M (9) 
"t" ~i . . 

for the repres:~I1tation where T LO is diagonal. This substitution yields 
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* ,· A-J*. ffJ 
(2L+1) t LM C(J LJ;M M) cUM"~ M'~' 

(10) 
. . . ~ 

With the use of various properties of the fj functions and of Clebsch-Gordan 

coefficients, this reduces to6, 8 ~. 

} J-~' ~ Pz ~~' = (-). (A~ A~, /4-rr) 2J+1· 
I 

X L [ ~ 2L+1
1 

C(J J L; -~. -~1 ) 
L,M 

* L* . 
X tLM Jj M.~-~~ (cj>,8, 0)]. · 

. l 

(11) 

Evidently the derivation of Eq. (11) is a general one, which is valid for 

any spin of X or of Z (integer as well as half-integer). 

The elements of the Pz density matrix may be used to derive 

theoretical expressions for decay distributions after simplification of 

terms. It is convenient to defi~e the symbol9 

(12) 

where ~ assumes the usual values from '}-3/2 to -3/2 and where, "'rY\.,.. has 

.. . 

a value of 0, 1, 2, or 3 (m bei~g ~-~1 ). The diagonal elements· of the density 

matrix then may be expressed·as 

(13) 

with Y·LM(8, . .'<!>), replacing J (2L+1)/41T-,: ~·to(<!>, e, O)*. The three 

elements just a~ove the diagonal of pi\ are similar, but contain ..8 t~ ; 
the two elemen:s above these contain e,::;.; etc. The density matrix thus 

,,,, . L , 
has the following form [with DM ll\. replacing the orthonormal function 

,J(2L+1)/4-rr'bi1h
1

(cj>,8, 0)): . 

'v 
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As the density matrix is. self-adjoint, ·all.terms of Pz below the 

diagonai are ~asily obtained from the terms. a~ove. 
. (2A.) . . . 

·The n Lm coefficients may be related by the use of symmetry 

properties and recursion relations for the Clebsc.h-Gordan coefficients; 

e. g.' 

n<- 2"-)- ( )L n< 2"-) for any L, A. 
· LO - - LO (i 5) 

and n~J = {1- L(L+1)[(J+3/2)(J-1/2)]-
1

} . n<ib for even L. 

See Appendix II for other n~~ expressions. 

IV. DECAY DISTRIBUTIONS . I 

The angular distribution and all possible polarization distributions 

for the Z may be found by taking the expect3:tion v:alues of all spin 

operators required to describe the Z ·spin state: T 00 (the identity), 

T 10, T 20 , T 21 , T 22 , T 30, 'T31 , and T 32. These are the same tensor 

' operators as those described above; but here they have a dimensionality 

of 4 (are represented by 4 by 4 matrices) rather than 2Jx+1, as above. 

The theoretical expressions for the expectation values are der:ived 

(in terms of the tLM describing the original X spin'state) by taking 

10 
the trace of Pz T LM. (and normalizing through division by Tr Pz>· 

The angular distribution of the Z in the X rest frame is found, 

. 11 12 .with the use of Eq. (15), by evaluatmg ' . •' 

Tr(pz Too>.= Tr Pz = I(9, cp) 

= 
2J-1 . 

f ~ [~~~/2+ A ~3;i :~~6 + (A~/2+A ~1/2) .n~J] 
e ·: ., 

.- ~ 

The index L .,.: takes on only even values because the combination of 
e 

r 
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X. and -X. elements of . Pz causes odd-L contributions to cancel (for 
.. 

strong d,ecay) •. The appropriate forms of the Ax. amplitudes and of the 

h LO coefficients may be substituted to p~edict the angular distribution for 

any spin and parity of the initial X system. · As an example, the distri­

bution for Jp = 3/Z- i.~ [if the production normal is the polar axis, Fig.{1)] 

I(9, 4>) = 4(a2+c2 ):n00t 00 Y 00-8 Rea* c .J~)0[t20 Y 20+2 Re{t22 Y;2)] , {17) 

whereas that for Jp = 3/Z+ is 

\ ' 

I(9, 4>> = zo(b
2

+d
2
)n 00t 00 Y00 -8(Zb

2 
-zcr+3.Re b* d):Ji~ [t2 ~ Y20+ z· Re{t22 Y;z>] •. {18) 

Because of the normalization requirement of Eq. (6), the ftrst terms (or 

average cross sections) are identical in these two c;ases. (Each is equal 

to n.· 00t 00Y00 = 1/41T.) The complexity of t~e 1(9, 4>) distribution demanded 

by experimental data of course gives information on J, the X spin. 

Polarization determinations are necessary to establish the X parity, as 

well as to obtain more information on the spin. 

Although (T10 ) z·~ (T11 ) Z' and ( T1 , _1 ) Z' the components of 

"vector polarization" of the Z, are produced by the X- Z decay process, 

strong decay of the Z cannot serve for analysis of th1s polarization. A 

' tensor component of· Z polarization which will be found in the angular 

distribution of Z decay is (T20 ) z ex: (3 S ~·- s 2
) •. {This is the Z $.pin 

alignment along its direction of flight, as the density matrix Pz used to 

derive (T20 )'·= T~(p T 20) is in the helicity representation.) Further 

·contributors to the Z decay distribution are ( T 2 :l:i) z and (T2 :I:Z) zi 
I . I . 

however, these 1,:are observable only if azimuthal as well. as polar decay 
:r: A 

angles (relative ·to Z) are investigated. The expressions for these tensor 

polarization c~~ponents are given by the following: [I (T1 , -m> =(-)mi (T1m)*J 

,··~ 
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r ( T zo)z = ;r(p~ Tzol ~ (1/S) 1/2 J:M. 
. . . . e, \ ' 

'. 

(19) 

'·. 

·) 

. X : .. (3.) ((2L 1)/4 .. )] i/2 A··L :("- 6 0) 
. n·r;z tLM . +, tr "'--'M2 't'• ' • 

As these are unnormalized,. they represent 1(6, ~) times ( T.tm:) z·(6_~ 4»). 
\ 

[All of the relations in Eq. (1..9) may be readily derived with the use of 
1.; ,. 

the T.lrn:: matrices for· spin 3/2, which can be calculated from ~q .. (9). 

These are presented in matrix form in Appendix lli.] 

In order for the polarization components of Z to be a~alyzed, 

the nature of Z decay must be examined. The. simplest possibility is 

the strong decay 

. z-F+b· (20) 

(spin: 3/2- 1./2 +'0),· 

where F may be an unstable fermion (:=: or A) or a stable one (p or n). 

The original Byers-Fenster formalism may be applied to obtain angular 

and polarizatio~ distributions for F (in the Z rest frame) in terms of 
;, ~ . 

< T ) pa~~.·_ameters described above. (If the fermion F has spin 3/2 ·lm Z 

·, ··. 

/ 

· .. 

. ... 
... . 1 

. ,, 

v 
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· ·rather th,an i/2, the expres·sions developed above for Pz _ should .be 

. · reappli~d to determine pF and hence the various:·:r-(~.fm )F.)' 

!: 
I 

·The formalism predicts that the angular distribution of F (spin 1/2) 

in the Z .}"est frame is (with azimuthal angle ignored) 

1 . ( ) 2 cJ (lJJ) = 41T I{O,q,) [1 - T 20 z ..f5(~cos lJJ-1)/2} • (21) 

A A A 

Here the angle ljJ must refer to the angle between F and Z (Z being 

now defined as the direction of transformation into the z rest frame), a 

"correlation" angle; this is required by the interpretation given ( T 20 ) z 

in deriving Eq. (19). Equation (21) has a particularly simple form if the 
I 

direction of Z {specified by angles 0 and$) is averaged over, as all 

terms then vanish in I(O,q,) and I (T20) ex~ept for the L, M = 0, 0 terms 

of Eqs. (f6) and (19); thus I{O, q,) becomes ~qual to TrAA+/41T = 1/41T 

and I (T20 ) z becomes a constant dependent on the helicity amplitudes 

for x- Z. As the helicity amplitudes are functi.ons of JX and these 

functions depend on the X parity, some spin-parity information may 

· A A 

be extracted from a simple F - Z correlation analysis. If only the 

lower 1. wave [amplitude a or b of Eq. {5 )] is included, the -expected 

d . t "b t• . 13 1s r1 u 1on 1s 

o 2 2 (2J -3) 2 . ~ (ljJ) ex: a [ 4J -(1/2)( -2J+3){3 cos ljJ-1)] ex: [1+ ZJ:+_1 ·cos lJJ] 

for the 3/2-, 5/2+, 7/2-, etc •. parity sequence (.f = J -3/2); and it is 

~ (ljJ) ex: b 2[ 4-J+4- (J+S/2)(3 cos 24J-1)] ex: [1.-... (6J+15 \ cos2·'·J 
. . · ~OJ+i~ Y 

(22) 

(23) 

for the 3/2+, 5{2-, 7/2+, etc. parity sequence (1. =J-1/2). For the case 
.. :~ 
t' . ;~~ 

of JX = 1/2, t~~bre is no parity discrimination; the correlation distribution_ 
+ ~ _· ~ . 

for 1/2 or 1/ll. 1s 

j .(ljJ)cx: [1 + 3~o.s 24J]. (·24) 
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· I£ all angles are· observed. in th~ .X.-· Z ~ F decay· chain, t}le · 
' •. . . . 

' .. ·~ \ . . ' . . . . . . ' : . . . ' . 
angula! distribution of the, spin•1/2 F may be expressed as follows': 

· .. (25), • 

+2. ( 15/2) 
1

/
2 

[\ Re ( T21) (0, cf»)cos ~ + Im ( T2·1) (0, cf»}:sin.t"] sin"' cos~ · . " 
,, . ..~ . 

A . . 

where 0, cf». angles give the direction of Z, and "'· ~ angles give the direction 

of F (in the X and Z rest frames, respectively). · The experimental 

evaluation of these angles should make use of "direct Lorentz trans-

· I · 14 
formations" to move reference axes from one rest frame to the next. 

q the (vector) polarization components of the F. It is only in these polar-

izations .. that the odd-1 (T..em )z appear, if the F has been produced 

by strong decay. The expressions for these (T1 m )z· in ter~s of the 

tLM parameters describing the original X spin state are (with L
0 

taking only odd values) 15 

;. ) _ _ I t/2 \ 
I \.T10 z = Tr(pz T 10)- (1 15) L 

·L M ·. o, <' 

... 

(26)' 
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cont. (26) 

The contributions of these expectation values to the longitudinal and trans-

verse polarization components of the F are given by the following: 

J. 'I': f = (4") -
1

/
2 

{0.448 [ ( T 10) Y10 + 2 Re( (T 1 ~ Y ;! )] 
. ·. -1.34[ (T30) Y 30 + ~ 2 Re ( ( T 3) Y;v)]} . . . . •. (27) 

rf} ('I' • ii• + ; ts. y• l = -v < 4") -
1

/
2 

·{ 1. 21 .J 3/ 41r'[ ( i 10 ).l151 + (r 1 ~.,8! 1 

.. ~. 

- (T 11 )*,e-_ !,t l -1. ss.J 7 I 4". [ ( T3o) ,e~1 + ~ ( ( T3v/.fX1 ~ (T 3 v) :,e-_3
• ,1> l} 

......----..... ......-.... 
where x' = F 'X(FXZ) and<_Y.' = ZXF. The summation index v runs from 

1 to 3. The Y1 and /J J. 1 symbols represent the functions Y1 (~. ~) m mm · m 

and j;J J. . , (~, ~. 0), respectively; also, in both equations, the substitution 
mm .• , " m "'~~ .,, .. 

of(-) (T1 rdf~r(T1 ,-m'> has been made. In the second of these equations, 
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. the symbol y · .. is to be taken as +1 or -1 if the relative Z-F parity is 

such that the a~gula:r momentum in Z decay is J -1/2 or J+i/2, re-
• • . . ! 

spectively. The polarization components of' Eq. (27) are determined 

experimentan; by taking (3/a.>'[ p . .F, (3/a.> I: p · x', a~d (3/a.> [ P: 9', 

where a. is the usual. asymmetry pa:rameter for F;· decay and p is the 
. . 

decay momentum in the F rest fr~me; the sums are taken over all events 

with F at some particular ljJ, t; .orientation. 

' ' 

V. EXPERIMENTAL TESTS FOR SPIN AND PARITY i . 
Prescriptions f(?r Tests 

One possible test for parity and, ~in of the X is to
1 

be found in 

the sign and magnitude of the cos 2
ljJ coefficient of Eqs. (22). through (24), 

·which are valid under the assumption that only the lower angular-momentum 

wave contributes to X decay. Equation (23) is not very sensitive to spin 

assumption, and Eq. (24) yields no information on parity. Other possible 

tests, some of them more general than the aboye, are presented in the 

following paragraphs. 

The ( T 2m) z values describing the Z spin state may be determined . 

from the angular distribution observed for the process z·- F.' [See Eq. {25).] 

If F undergoes weak decay, the ( T1m)z with 1 = 1 and 3 may also be . 

determined [Eq. (27)], (ln principle, a sc~ttering ofF with a kn~wn analyzing. 

target would also yield the (Tim )z d.na (1: 3m) z. ) The exp.t'lrime.ntal cval~at.i,on!3. of 

1(9, cp) for X - Z and the three ( T 2m )z (9, cp) from X- Z - F yield a 

total of four evaluations of each even-L. tLM describing the initial x· 

state; further, the two (Tim )z and the four <TJm )Z yield six evalua-
j {; 

tions of each oda-L tLM describing the X state. Odd-L (even-L) tLM 

may also be ~~·~ained from (T2m) ( (T1m) and (T3m)) form -J. 0; but 

these arise from interference of the two orbital amplitudes permitted for a 

given X parity [the a and c or·b and d amplitudes. of Eq. ( 5. >]and thus are 

probably small. 

• 

l 

... 
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Every· nf~". coefficient appearing with a tLM in the 1(8, cj>) 

or (T1 ~) distributions may be. ~xpresse~ ·as neJ times some. fa.ctor. 

containing JX and L. (See Appendix II.) The A"A. helicity amplitudes 

also depend explicitly onJ for J ?:::3/2. Thus, by comparison of the· 

·A A):< ( 2"A.) ff'.. f Y* . .c..i. "A. ').! nL '""- coe 1c1ents o i or d.J , 
.rr~ m mm from one distribution 

with those in another distribution, various tests of J may be made. One 

way of estimating J is to construct a function similar to a X 2 which 

compares values of n~J tLM obtained in two or more distributions and 

to treat J as a variable parame'ter in this function; 16 another possible 

approach is construction of a general likelihood function treating all 
I 

stages of decay and maximizing of this function for various J as sump-

tions. A final and possibly very .useful method is evaluation of a J-dependent 

. (1.) \ 
function multiplying some nLO tLM by taking ratios of terms in various 

d . 'b t' 17 
1str1 u 1ons. 

A possible approach in setting up a general spin test function might . 

l: be the following. Let the definition of :\ornenl' be the coefficient of 

YrM or [(2L+1)/ 4~] 1121} i;{Mi projecte'~ out of a distributio~ Eq. ( 1.6), (19), 

(byweightingthatdistributionwith YLM or [(2L+i)/41f] 1/2l}~~' and 
. ' 1.8 

·summing over all events). If tLM (1) stands for the L, M moment obtained 

from one distribution, and if fJ( 1) is the function of i wliich m~st be 

divided into this moment to obtain n~J tLM' and if tLM(2) represents 

a similar term from a second distribution, etc., then a comparison can 

be made of the four evaluations of even-L tLM' s by calculating the follow-

or (26) 

ing for various J values •. (A minimum "x2" yields the best. J estimate.) 
16 
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. . The' indices ... _f ·and· j .design~te the ·four evaluations; and ( ) represents 
.. 

·~n) average of -these. The symbol G stands 'for ·a variance matriX •. {That .is, :_; 

GLM(i), .L'M1(jfis.the se~o~d-moment mat.rix, the average.vaiue of 

[tLM (i)- (tLM(i))] [tL~.M•(j)-(tL'M'(j)J .} ·.A .':·'~X 2u for the six evaluatio~s 
of odd-L moments may be developed by analdgy with Eq. (28). 

Construction of a· likelihood function is not difficult; the proper 

. distribution function is 9 (~, ~) if' the fermio~ F does not decay, ~nd 
is ~X [ 1+a. 15 F · p]. if it d~es de~ay •. ~ither of thesedistribution functions 

would be most useful if expressed in te_rm:s of nL~ tLM times the fJ(i) 

,. 
'. ' ~ ... . . ~ •, 

. . . 

function of .J discussed above. A high-spin form of the likelihood function,. 
I 

one appropriate for the maximum J assumed, might be use_d; then ·a. 

,·_, 

\.·.··· 
·, ,-

. ·' 

. .·:. 

• 

maximum could be sought as a function of J, nLOtLM' and the i. ~wave 

amplitudes (without changing the_ form of the likelihood function). 
. ... . ~. ·. 

Finally, known functions of spin may be· evaluated by taking r~tios of ..• ·: 

corresponding L, M moments found in two different experimental distri;. . ' 

'\1 butions, For example, after substitution of expressions for helic'it~ 
·. a~plitudes and for nL~) coefficients (see Appendix 11),· the ratio of an 

· .even-L moment inl(8,ct>) to the same momen~ of·l(T2o> (9,ct>) yields 
.. 

[from Eqs. (16) and (19)] 19 ' \ • . 

. .. 
I. 

.· ' 

_I~m_o--:-m_en_t __ = (Y )/ /<T o> y ~ rs r 4J(2J-1l .. 2L(·L~1) .. ] :(~cJa) 
I(T

2
o> moment LM \ \2. L'!Jf-- ~3-2J)(2J-f)·-2L(L+1)J . · 

\\ for one parity of decay (orbital wave 1\=.J: 3/Z);·and the same i-atio yields 

\ · . for the other parity (i. = ~ -1/2), · \ 
\ . . \ 

:, 
y \ ~ rs·:[4(2J-1)(J+1) - 6L(L+1) l. (29b) _ 

LM/ (2J+5){2J-1) - 6L(L+1~ 

(In terms of ~licit;·functioris of .angles, the moment rati-o of Eq·. (29) is 
t . ~ 

evaluated for a particular L, M by dividing ':' Y LM(8i' ct>i) by the quantity 
1 

,. 

' 

. . ..... j' 

' ~· ... 

-~ 
\~Y 
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~ Y 20 (\jl.) YLM(6.,<j>.};n(2
1
0) ~ .The sums are to be taken separately over 

1 . . 1 1 1 .. 

real and imaginary parts; the index i runs. over all events; and the n~~ 

constant is that of Eq. (12) with J set equal to 3/2.) Equation (29) pro-. 

(In terms of explicit functions, the moment ratio of Eq. (30) is evaluated 
N . . L * . - :N L,~ 

by dividing .I Y22(\jl.t;..) £J,M2 (cp., 6.,0) by [Y21 N., t;..)£/M1(cp.,6., 0). Here 
·. i 1 1 1 l '. . 1 1 1 1 

the nJ~) constant is common to both term~ and can be ignbred.) 

Care must be taken in the interpretation of these J estimations; the 

ratio of two normally distributed quantities 'is itself not normally ·distributed. 20 
. ' ---

Ratio calculations may be made separately for the real and imaginary parts 

of each moment. (Only M value's greater than zero need be used, as any 

~'I· moment with -M is the charge conjugate of that with +M. ) . 
I 

A simple test may ·be made for the X-Z relative .earitx for any J 

assumption, the test being the determination of the relative sign of a 

moment in I (T22) with respect to the corresponding· moment in I (T21). 

[The helicity amplitudes for these moments are the same except for sign, 

which depends on parity, as shown in Eq. (5).] Thus if r = +1 o'r 

p ;- ;+ ;+ ;- . -1 for J = 3 2 , 5 2 , etc., or 3 2 , 5 2 , etc., respectivelyj . 

for even L ~2 a:t;1-d J ~3/2. [This .is of course the same moment ratio as in 
J ·. .. 

Eq. (30).] A X~~ which tests the eq\1ality of corresponding moments with 
{ 

r = +1 or -1 i~/easily constructed. The parity test of Eq. (31), and a 
' . • r 

similar one (below) for odd-1 Ifr1m) ar\":alogous to the test that may be 

I 

\ 
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:' 

made for the parity of dec.ay 'int~. spin 1./2: 'the dete~mination of relative· 

sign of ~ny two corresponding moments in transverse (I (T 11).~ ·and 

·longitudinal {I ( T 1 0) ) polarizatio~s. 1. 

If the F polarization can be analyz_ed, more tests for spin and 

parity may be found i~ the odd-1 (T1m)_ di~tributians. So~e obviou_s 

tests :[from Eq. (26)] ~re the following: 1.S With the higher orbital wave 

neglected, 1.9 

'·. 

.. .... -. 

I (T10) moment/ 1 (T3o) mom~nt = «T10) ,Y LM)/((T30) YL~ . , , .. 

• ••• 

I ... 

:::: (7/3-)1./2(3/ 2) [(2J-1)(2Jt1.) -2.L(L+1) 1·. (.32a) . 
· · . (3 -4J)(2J -1) -L'(L+1) l . . . 

I 

" for one parity o(decay (orbital wa~e.(=J --3/2); and the same ratio yields. 

for the· other parity (.t =J -1./2) 

«T ) y ) /1<± ·> y ·~J:::: (?/3)1/2(~/6) [(~J-1))(10Jt1.3)-18L(L+1)].(32b) 
\ 10 LM \ 30 L!Vf . 2J -1 _ L(~+1) . 

; ' 
i 

It These equatio_ns are valid for any odd-L moments. (In terms of explicit 
I 

functions, this ratio may be found experimentally from 

or from ~ (p • ~'+ ip • y1
) ~; (ti' \jli' 0) Y LM(8i' ct»i)/n~ ~) diVided by· 

1 
/ 

L (p · ;• + ip · y') 4;(i) YLrJ~/n~~), with· n~!l ·and n~!! 
i 

evaluated for J = 3/2. ) 
' 

Further tests may be made by combining I ( T 1 0) and I (T 30) and 

also I (T11), a~d I (T31). From Eq. (26) it is apparent that :V 

(15)
1

/
2 

I (T10) -3(35)
1

/
2 

I (T3;) = 20A~/2 JM nL~tLM Y~JJB.q.) (33) 

o, 

~-
1 
\ . 
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), 

and that 

I ·"' . * · \_ (1) 10rL [. ~- ]112. . 
-(5 "'3) A _112A 11Z L nL1 tLM oVM1 (cl>, 9, 0) (ZL+1) 41T • 

L,M 
(34) 

Dividing Eq. (33) into Eq. (34) yields the relative sign of A 11z and A_ 11z 

and hence the relative ·x-z parity. Also, the ratio of nL1 to nLO. gives 

a function of spin J. Thus, with the parity factor r. defined as above, and 

with R and S representing the left-hand sides of Eqs. (33) and (34), re-

spectively, 

S momentiR moment = (s b ~;) [ZL+1 >I 41T] 
1121 ( R Y LM) 

= r (ZJ+1) 1 4[3L(L+1)] 11z· (35) 

for any odd L. This relation is rigorously true, without any approximation 

for amplitudes; it is meaningful for odd-L values. (Explicit functions for 

moments of'I(T1m) distributions in Eqs. (33) and (34} are eas·ily written 

11 out, as derived from the longitudinal or transverse polarization dist_ribu-

tions of the E, Eq. (Z7); they have the sa.nie form as the functions given for 

the evaluation of Eq. (3Z).) 

Another combination of the above distribution~ gives 

(36) 

We may compa-re this to the I (T33) distribution to evaluate both spin and 

parity. With the left side of Eq. (36) designated as U, and with the appro­

. priate ..et; and _Y LM moments (L ~3), 
~-

I (T33) mo:rh~nt I U moment= r(ZJ+1) [1110tJ7)] [Z-L(L+1)] 

X [(L+3){L-Z)(L+Z)(L-1)L(L+1)] • 11Z. (37) 

Appendix IV describes the lJ J:; . .'M(c!>,91 0) functions utilized above. 
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. 
~ . Utility of Tests 

' 
,· 

Although it is. difficult for one to make generalizations as to the 

desirability of using one test rather than another in particular experi-

mental situations, it is clear from the forms of the above J -dependent 

functions that experimental evaluations of these t~st functions can be made 

only for certain values of L, and hence only for certain initial (tensor) 

polarization~. Further, the tests that ignore the higher I. wave of decay 

are applicable only in situations in which the "Q value" of decay is low enough 

that little contribution can be expected from the higher J. wave. The follow­
!. 

ing statements summarize the relationships between the test functions and 

particular data characteristics. (The latter of course may not be known until 

the tests have been at least partially completed!) 

If the lower J. wave of X decay does not predominate - all test 

functions except those of Eqs. (Z9) and (3Z) are applicable. 

If only even-L tensor polarizations ·of the X exist (L=O being the normal• 

ization, present even in the absence of any form of polarization; L = Z · 

"polarization" being alignment; L = 4 "polarization" being the expectation 

4 
value of Sz or a similar-rank tensor; etc.), tests given by Eqs. (~9) 

through (31) are applicable. 

If only odd-L tensor polarizations of the X exist (L = 1 polarization 

being the usua~ "vector polarization"; L = 3 po1ariz_ation being (s~) or a 

. similar quantity; etc.), tests of Eqs. (3Z) through (37) are applicable. 

(The L = 0 test also hold~.}· 

If~ po.~arization of any sort exists (L = 0 yielding the only nonzero 

moment), only Eq. (Z9) or the earlier Eqs. (z'Z) through (Z4) provide tests. 

If only vector polarization (L=1) exists, only Eq. (35) furnishes a 

rigorous test {in addition to that for L = 0) .. 

•-
~-
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If only alignment (L=Z) exists, Eq. (30) or (31) provides a rigorous 

test (in addition to that for L = 0). 

If only 1.,=3 moments exist , . . . Eqs. (35) and (37) may be used as 

rigorous tests. 

There ar_e as many independent tests for a given L (and a given test 

function) as there are permissible values of M (f~om -L to +L). (Inpractice, 

· the tests are made separately for real and imaginary parts of all L, M mo~·l 

ments with M ~ 0. ) 

If .the spin J of "particle" X is 1/Z, only the quantities I, 1( T zo> 
... I (T10) ,. I (T11), I(T30), and! (T31) canbenonze~o, as Pz~x.x.' 

is zero for I X. I or I· X.' I> 1/Z. Parity of a spin-1/Z X may be found by 

comparis.on of the L•'M = 1, 0 moment in 1 ( T 11 ) with the corresponding 

moment in I ( T 1 0) , or by comparison of. a. moment of I ( T 31) with the 
~ . 

corresponding one in I ( T 30), etc. [See Eqs. (Z6) and (5).] 

In the course of analysis, it may be useful to study the odd-L 

. \ i moments from the I ( T zm) distributions. and the even-L moments from 

I (T1~) or I (T3m) distributions; these are proportional to Z_Im Ax_A~, 

i.e., to terms like a*c or b*d, and thus give a measure of the interference 

of the higher .1. wave. 
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VI •. : . .APPLICATIONS·. 
~ 

•" .,i ' • )·.' ., • ' .... 

· ... Some of the tests. described above· are being applied to· the decay. 
. . . ' 

sequence :;:* (1820) -+' ::;::* (1530):+'11', ::=:* (1530)- :=::~'II', :=:- A +'II' •. 

· Unfortunately, the n\lmber of useful events is small and the backg~owid 

is appreciable. 21 Other processes to which the fo~malism for spin J 

decay into spin 3/2 might be applicable are (a) higher lying N* ·~ N;3 

and (b) Y * ( 181 5) - Y * ( 13 8 5). 
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.APPENDICES 

I.· Helicity Amplitudes 

The general form of a helicity amplitude fs 

~-S ~ 
A~ = (-) . 7 a1 C (J S 1; ~. -~) 

UCRL-1.1. 903 
Rev. 

(38) 

for the decay of a particle of spin J into one with spin S plus a spinless · 

boson, where J and S may be either integral or half-integral spins. 

The helicity amplitudes may be constructed without the use of Eq •. (38) for spin 

J: [spi~'J .plus spinless boson] .by taking combinations of irreducible 

tensors in the spin space of dimensionality 2J+1. In analogy with the 

I 
construction of the transition matrix for decay into a spin-i/2 object, the 

·matrix for decay into spin J . 

to be
22 

is required'by invariance arguments 

2J 
A= [ L (ptM ~ LM X complex coefficient), 

L M . 
(39) 

'i j• 

. , where pLM ·represents an irreducible tensor formed from components of 
q 

decay momentum. In the helicity representation, only the pLO terms are 

nonzero; these in fact become constants becau~e Pz = p. With- the absorp­

tion of pLP fact~rs, the transition matrix becomes, in the helicity 

rep res entation, 

A= a+ b T 20 for one parity 

and ~ = b 'l'_10 + d T 30 for the opposite pa_rity of decay • 

.... 1 

-However, when the initial and final spins differ in a decay, factors dependent 

on initial spin modify the various elements of A; and these must be calculated 
. -. --

by a prescriptiqn similar to that of Eq. (38). Decay into final spin 1/2 is 

an exception to. this statement, as there is only one initial-spin factor 

which is common to A 1; 2 and A_
112

, and this is absorbed in the normal­

ization of the amplitudes. 
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. . :' n:. Relations ~~o~g n~~-C~eff_icients.. . 
. . . . . . 

The derivation of geneial expressions for 

Re.v. 

in terms of n~J is _useful because comparison of experimental distribu- . 

· tions containing these coefficients may te·st for._ J,. the ~pin of· x.9 The 

· identity C(J J L; x.1 x.2 ) = (- )2J +L C(J J L; x.2 X-;1) permits derivation of 

relatio~s b;tween the X. and -X.· forms of n~;) .and als~ relations be­

-. tween t~e n~~ coefficients i~ the ·(X., X.') and (:-X.";,-X.) elem~nts of Pz 

(Eq. ( 14)): 

(-2X.)·_ ( )2J+L+1 (2X.) 
nLO - - nL_O 

(-1) _ ( )2J+L. (3) 
nL1 .- - nL1 

~, n~J = (-)2J+L+~.n~J . : (42·) 
q . ' 

Recursion relations for Clebsch-Gordan coefficients (p: 39, Edmoncls, 

Ref. 3) may be utilized to obtain the following: 

(!43) 

which becomes n~6 = (1/X)[X -L(L+1)) n~6 for even L 
.· 

and n~J = (1/X)[~J(J+i) -1/4- L(L+1)] n~J- for odd L, 
. . '· 

. . 

. ~-
. . ~; 

.. ' .. ' ~· 

where X = (J+3/2)(J -1/2). Further, by use of the same recursion relations, 

n~l =-(2J+1)[L(L+1)J. - 1/ 2 n~6·{1t( -) 2J+L] /2 (.44) 
. ·. 

n~l = x-
1
/

2 {L(~+~)- (Jt1/2) 2 ( 1-~( -) 2J+L]} [L(L+i)) - 1/ 2 n~6 (45) 

_, 
·-. . 

nL~) ::: x-i/~(J+1/2) . (:1+(-)2J+L. -L(L+_1)} [(L+2)(L-1)L(L+1)] - 1/2n~6 (40) 

( 46) 
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. , ill. Matrix Forms for T LM Tensors 
.. 
' ' 

·The T LM may be defined in matrix form (in the representation 

where T LO is diagonal) by the following: 

TLMJ , = C(J LJ; m' M) with m' + M = m. mm . 

The matrix forms for all required TLM~ s for sp~n-1/2' and spin-3/2 systems. 

are given below. Only those with positive M are .. presented, as TL, -M= (-)MTLM· 

Spin 1L2 

[: _:] [: 
·-11 .. 

T if = ·{2/3)1/2 T10 = (1/~) 
' 0 J 

Spin 3/2-
I 

3 0 0 0 0 ,.[3 o· 0 

T =(1/.15)1/ 2 0 1 0 .o . I 112 0 0 z 0 
10 ' ' 

T 11 = -(2 15) 

0 0 -1 0 0 0 0 t.[3 

0 0· 0 -3 0 0 0 0 

1 0 0 0 0 ;.1 0 0 0 0 1 0 

T =(1/ 5)~/2 
0 -1 0 0 

T2~~(2/5)1/2 
0 0 0 0 

T22=(2/5) 1/2 
0 0 0 ' 1 

20 . . 
0 0 -1 0 0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 

p 0 0 0 0 -1 o· 0 0 0 1 0 

otJJ 
T3o=<1/.35) 1/2 

0 -3 0 0 
T31 =(4/ 35)1/2. 

0 0 
T 3i=(2/7).1/2 

0 0 0 -1 
. 

0 0 3 0 0 ·o 0 -1 0 0 0 0 

0 0 0 -1 0 0. 0 0 0 0 0 0 

0 0 0 -1 

T33= (4/7)1/2 
0 0 0 0 

' 0 0 0 0 .. 

0 0 0 0 

The T LM a;e orthogonal tensors in the sen~e that Tr TLM TL'M'= 6LL'r6MM'· 

X (2J+1)/(2L+1). 
' , . I 

V'7 
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T~-~ gene~~!: expressioh forlJ;j_M, (a,~. y) is e -i~adtM' (~) e ~iM'y, ·'::_:·.:: 

.where d~• (~), is a: polynomial in sinj3 and -cosj3 (if indi~es.are ~nt~gral) · ··.·· .. '·. ~,_· 
and the a, j3, and y ar~uments represent Eule·r a~gles. Only di1M' functions'.· 

with integral indices are required for the analysis described in the text. All 

such functions ~ay be readily derived from ~e well-known spherical 

harmonics through the use of the following r~lations· (found in Jacob and 

Wick 4 ): 

d"l~O Un = [4'11'/(2L+1)] 
1

/
2 

Y LM( 8,0) -. . 
. I . .. 

di11 (8) = [L(~+1)] - 1
/

2 
{-M(1+cos8) ~~/s.in8 -[(L-~)(L+M+1)] 1/

2
di1+ 1, 0(8_>} 

L L+M' L 
d-M,M'(8) = (-) dMM'('~~'-8) 

'i 2[(L+M')(L+M' -1)]
1

/
2

di4M•(8) = [(L~M)(L+M-1_)] 1/Z(1+c~s8) dt-_;~ M/-1 (B) 

1: , . . , 
. ;. ~ 

+ 2(L~M2) 1/2.sin8 di1:~~- 1 (8) 

[ 1/2 L-1 
+ (L-M)(L-M-1)] (1.-cos8) dM+1, M' _1 (8). 

•. ~ t. 

't· 

' 

., 
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The first expression in Eq. (4) follows from Eq.- (BS) of Jacob and 

Wick, Ref. 4. These Clebsch-Gordan coefficients are written in the 

form used by Jacob and Wick, C(j 1j 2j; m 1m 2). 
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of Spin a,nd Decay Parameters of Ferx:nion States," N. Byers and 
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These T ~M tensors have been previously 'utilized to describe the 
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spin state of the deuteron in scattering P.:rocesses. See W. Lakin, 

Phys. Rev. ~. 139".":(1.9.55). 
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The useful relations, found in Rose and Edmonds (Ref. 3), are 

8~1 m /3~2 m = L C(j1j2j;·~1~2)C (j1j2j;m1m2) ~ +~ m +m 
1 1 2 2 j . 1 2' .1 2 

"* . ' . . 
· andLJ:i ' (a.~y) = ( -)m-m . .l) J • (a.~y) and also 

m m · -m.,, -m 

kmz C(i1i2i;m1m2) C 01i2i';m~m2) = 6ii'· The first relation here 

holds also forprod:ucts of spherical harm~mics Y LM' as 

aL * y LM(O, cj>) ex: f\.../MO (cj>, O, O) • 

The tJ~, functions are described in Jacob and Wick4 as well as 

·in Rose and Edmonds; so~e are. tabulated in the former referenc'e 

in terms of simple 8 and .cl> · fl.mctions. For evaluation of .Eq. (11), 

symrnetr~ properties of .the T L~ (see T L, -M expr~ssion· in text) 

.and ,e~M' are useful [.8~~~~ (cj>,O, 0) = (-)L+~oE)~~(cj>,1T-6, O)*]. 

.'An alternate definition, more convenient for calcul~tion,is 

r ]1/2 (2X.)= l2L+1 C(JLJ·X.-"Y'''\ m) nvm 4'11' . ·• ' • 

Taking Tr(p T1m) is equi~alent to finding ( Xn !Tim ·lxn} for each spin 

state n and summing over all spin states with proper )Yeighting. 

An alternate derivation of the distributions for particle F may be 

1 .:· •.. -..·.used .which does not demand the calculation_ of ~he I (T1m) quantities 

· for z. This is the transforming of the density matrix Pz by use of 

a· transition matrix <»'{> for the Z- F decay; i.e .. ' the calculati.~n of 

pF = }rf_' Pz »t't from the expression for Pz in Eq. (8). The transi­

tion matrix 'Yfl' h~re involves the well-known [)3/ 2 ' functions and the mm 

helicity amplitudes for spin 3/2 decay into spin 1/2 plus spin 0. 

Although this is a· more elegant derivation, it does not provide so 

clearly the means for making spin and parity tests as does the method 

present~d in the text. 

l 

•• 

• 
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H. The 8 and cp angles must be referred to axes defined by vectors 

' in:,the X production process •. lf the normal serves as pol~r axis_,. 
' ' 

all tLM with odd M are zero. (Fig~ 1.describes the coordinate system.) 

12. ThrGug~out the text, the nMation used in complex expressions has been 

simplified.by·omission of the ·absolute-value signs from squares of ampli­

tl,ldes. T;t?-~~~.A2 .§bouldbe interpreted. as IA.I 2· pr A *A. 

13. Prof. Charles Zemach has derived these same distributions by the 

use of an entirely different formalism. Charles Zemach, (University 

of California, Berkeley), private communic:,ation, · 19)4. 

14. A direct Lorentz transformation means the translating of axes so 
! 

15. 

16. 

that their orientation relative to the direction of the usual Lorentz 
\ . 

transformation is maintained. See H. P. Stapp, Relativistic 

Transformation of Spin Directions, University of California Radiation 

Laboratory Report UCRL-8096, Decembe.r 1957. (unpublished). 

Here the first two expressions represent longitudinal and trans­

verse polarization .components for Z; i.e., T 10 ex: S • Z and 

T
11 

cx:(S· x +iS· y). 

Some relations from Appendix II have been utilized to simpli~y 

expressions. 

2 
This function cannot be interpreted as a true X , but should yield 

an unbiased estimate of J. An example of the· application of a "X 
2

" 

test for variable J is presented in an analysis of the Y*(1385), 

Janice B. Shafer and Darrell 0. Huwe, Phys. Rev. 134, B1372 

(1964); the x 2 of Eq. (19) and Fig. ~2) tests the relation .. :,· 

y(2J+,1) t(f} = (L(L+i)] i/2 t(2), where t(1) a~d t(2) represent moments · 

·from lorigitudinal and transverse components of polarization, 

respectively. 
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17. An example .is given in the calcUlation of (2J+1)2 from moments 

for decay suggested by M. Ademollo and R. Gatto, Phys. Rev. 

133, B531 (1964), or in the calculation of 2Jt1 for strong decay 

suggested by Byers ·and Fenster, Ref. 1. 

18. For 1 'f 0, the ·r ( T1m) (6, cp) distributions must be found by 

application of the analyzing expressions of Eqs. (25) and (27) to the 

19. 

data. The more general forms of these equations are 
2 . 

8<~.t) =} ~ n~1J (T1m) Y;m(ljJ,t) with 1 even; 
. 

... 3 ~ (1) * ~p • F (ljl, t) = f fu. n1 0 . (T1m) Ylm {~, t) with t odd; 
I 

and c9 (P • ~'+ iP · y') = -y t. ~ n}!>.· (T1rJ ~1(t, ljl, 0) [(21+1)/4w] 
1

/
2 

with 1 odd;.where n~1~ is to be fowid from Eq. {12) with J set equal. 

to 3/2. Thus, the I (T1rr) (O,cp) may be found eitherby fitting the 

expressions in the text to the experimental distributions in ~ and t 
. . . 

or by projectingthe coefficients (moments) of the orthogonal functions 
~ 

given above. The evaluation of the sum L Y 1 (~., t.) over all events 
i m. 1 1 

yields an even-1 n~~ (T1m); and the evaluation from F decay of 

L (p • F)i Y1 m(~i' ti)(3/a.) yields an odd-1 n~~ (T1m) • The latter 
i 

is also obtainable experimentally from 

{Each of these sums must be understood as taken separately over real 

and imaginary parts of the functions.) 

This equation is valid only if the a1 amplitude: of higher orbital 

angular momentum can be ignored relative to the amplitude of lower 
I 

angular momentum (i.e., c <<a or d << b). 

l 

• 

• 
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In the discussion following, .the 1 designating orbital angular 

momentum has~ connec;tion with th.~ i. · used as a subscript 

{the rank) of tensor T 1m. 

See appendix of J . .-Button-Shafer and D. W. Merrill, "Properties 

of the :=:- Hyperon," Lawre.nce Radiation L-aboratory Report 

UCRL-11884, December t 964 {unpublished). 

As no general formalism-·exists for the treatment of interference 

or background problems~ the expe~m.enter confronted with these 
i • 

problems can at best (a) throw away events in portions of resc;mance 

bands showing interference (by using strong-decay symmetry and 
,. "" I 

splitting an X resonance band at Z • X= 0); (b) treat background 

near resonance separately fl,nd compare results; and (c) try to find 

tests least sensitive to backg~ound. 

This may also be compared with the use of spin- and momentum-

space tensors to form invariant terms for scattering matrices 

(see L. Wolfenstein and J. Ash~h, Phys. Rev. 85, 947 (t95Z) • 

. \ . 

\ 
I 
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FIGURE LEGEND. 

' . 1:· 
' t 

Fig. 1 ~ · The angles 8, c1» and ~. ;t describing the directions ~f "particles" 
. . . . 

' . ' 

Z and ·F, respectively, are defined in this figure. · The (a) designates 

the production c. m. frame; (b) designates the rest frame of "particle" 

X;. (c) refers to the rest frame of Z; and {d) refers to the rest of frame of: 

F. The identity of each particle is given by the letter in parentheses near 

the vector representing i'ts direction. 
. A 

The vector n is the normal to the 

production plane. 
A ' . A 

The use of n. rather than another vector, say X,· as the 

~axis is a matter of convenience •. 11 'The :J.:., !J, andJ_ axes may be pre~. 
. I . 

scribed in any way· from the incident and ·outgoing (X) directions in the 

production system •. For simplicity of notation, the normalization of vector 

products is not shown; "x ;= " means 11.a.Xis x lies along." All vecto~s 

drawn within the boundaries of a plane are to be viewed as lying ~n that 

plane. (!'Direct" Lorentz transformations, or parallel-axis transfers, 

li are used to move reference axes from one frame to the next.) 

. i 
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