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ABSTRACT

The decay of a fermlon of arbltrary spin into an unsta.ble sp1n~3/2
o fermlon plus a spmless boson is treated with den81ty ma.trlx techmques, o

_.The forma.hsm descrlbed is an extension of that developed by Byers and Lo

Fenster for the decay of a fermlon into spin-1/2 and spin-0 partlcles.

. Decay distributions are completel‘y described for three successive decay o

P

i processes. Various tests for spin and parity of the parent fermion are

e .

Y
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o The angular distribution of the decay and also the angular dependence

) spih-i/ﬂ.z particle and a spinlevss boson was developed ove-r'va year-ago by - -

Further, we wish to treat the decay of X into Z in the syétem which _ ' e

o= L UCRL-11903
I S Lo : Rev,
i 1. INTRODUCTION - ..~ | *
A formalism for treating strong or weak decay of a fermion into a

PP
’

Byers and 'Fenster.i . The purpose of this article is to extené_l the formalism - . i

to treat fermion decay into a spin-3/2 fermion plus a spinless boson. '

of the fermion's polarization components afford tests for spin and parity

hypotheses concerning the parent fermion. In general, the ana.lysisl of

~second-rank tgnSor polarization of the spin-3/2 fermion is possible; in

addition, vector and third-rank tensor polarizations may be analyzable.

II. THE DECAY MATRIX
The decay process
X~+2+B : W
\ .
(spin: J ~ 3/2 + 0)
may be described (in the rest f;ame of ;)\ by.expressing the spin-space )

density matrix of Z in terms of that for X:

oy = Moy N - @

where 77? is the decay matrix. 2 we suppose py to be given in the

i

usual J, M representation, with some convenient direction defined by

X production (e. g., the production normal) as the quantization axis,

yields helicity states for the Z. Thus the decay matrix may be considered

_as having two parts: a rotation matrix which transforms Px into the

L N . 5 . :
"helicity systefn" for Z (with quantization axis along Z, the direction
i

of "'particle’ Z in the X rest frame); and a diagonalized transition

v

7B



matrix (A)vdes_cribing_f:he decay X -+ Z + B. That is,

‘referred to as a  '"'symmetrical-top function"). ™’

et
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Pz

where R represents a rotation operation.’

The complete element of the decay matrix may be written .

MM = Ay 123+ 1)/47] /2 SN (4.6,0, 3

‘with N = -3/2, -1/2, 1/2, and 3/2 for the case under discussion here.

" The J is a matrix element for a rotation operator (and may also be

M\
3,4

- amplitudes, the elements of the diagonalized transition matrix describing

: i
X = Z + B.” Their form depends on the spin of Z, the spin of X, and the

 relative X-2Z parity. -

The helicity amplitudes are obtained as follows. Each A)\ repre-

‘sents the probabiliéy amplitude for \the breakup of a system of total spin J

(with projection A on the helicity axis) into a system which has spin 3/2

(and helicity component X) and any allowed orbital angular momentum

"1, (with helicity component zero). The A may have contributions from
. four orbital angular-momentum waves; £ = J.-3/2 through J+3/2; two

of these £ waves have even parity and tv;}o have odd parity. The relative °
contributions from the different orbital states may be express;ed in terms

of the complex decay amplitude a, and the Clebsch-Gordan coefficient"

for combining £ and spin 3/2 to obtain spin J: >

Ay

%: () -J+3/2 2, [(2.4+1)/(23+1)] 1/2 C(2.32.0;0,0)
= I(-))“3/2 §a2 C(I:32. 45\, =N) o - , (4)

1

The second expression for A)\ given in Eq.(4) follows from the first

by the use of symmetry properties of the Clebsch-Gordan coefficients;

.the form of the second expression is reasonable, in that a, multiplies‘_ -

= A(Rpy RN AT,

“The A)\ are the helicity
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o the coeff1c1ent g1vmg the probab:.hty amplltude for formmg the angular
momentum state 2 (For the fa.mlhar case of decay into spin 1/2 the
‘~he11c1ty a.mphtudes A1/2 =a+b and A 1/2 = a - b may be found by .
‘evaluating A,y = (~)M- -1/2 %: a, C(J 1/24; X, -\) or by diagonalizing the
transition matrix a+b o'p. See App.éndix I for fufther discussion.)

It is perhaps more practical to discuss strong rather than weak Sy -

decay of the X, and to keep the opposite-parity amplitudes separate. %I‘he»-, R

Ay amplitudes receive contributions from orbital angular momenta
= J-3/2 {(not allowed for J = 1/2).,and T+ 1/2 if the X has spin and

parity, relative to the Z, of 1/2%, 3/27, 5/2%, etc.; they have con-

 tributions from f=J-1/2 and J+3/2 if the\ X has J© =1/27,3/2%,5/27,.etc. -

- The two sets of helicity amplitudes have the fbllowing forms: ‘i

B

r;.o.J + c"J.—Z’; ﬁJ 7 F-'b'sf—g oy +;1PJ T
aN3 By - pr-d'ﬁai L
Acx ' én:%A' . L F.
af\/? pJ - C(,J'J' -pr + d.‘\/ga ‘ ‘ Lo
}L _ aa;+ c'\r?:_'ﬁJ | 1 -b's/—o, - dﬁJ_’.».

for the 1/2 and the 1/2” parity sequen\tes. respectively. All four A, .
elements are actually applicable only to\\he decay of an X with J 23/2, |
since the \ = 3/2 and -3/2 spin states ar;pot accessible to an i.nitia.l
particle with spin 1/2. The coefficients a.‘:ﬂb, c, and d in these rﬁ;trices |
. .:‘represent the complex amplitudes a, for decay through the channels with / - |
" g=J-3/2, -1/2; 41/2,and +3/2,, respectively; the remaining symbols are

T =~)J+3/2 and with

=N J-1/2. géglese Ay amplitudes are subject to the constraint of

 dependent on the original X particle's spin, with a

normalization (total decay probability being equal to 1}):

TrAAT or Tra'a't=y, : (6)

Equation (6) is consistent with the usual condition Z alz =1.

2
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II. FINAL DENSITY MATRIX
- Expressions for the angular distribution and for the polarization
Tk . : . : B
components of the Z “particle" are obtained by expressing px in matrix

form and carrying out the transformations of Eqs. 7(2) and (3). We take

| 2.3y |
pv = (2Ju+1)" Y L (2L#1) tF T | (7)
X p'e Eo 6 M Tom |

in the manner of Byers and Fenster. 6 It is convenient to use the irre-

ducible tensors TLM as basis-operators in spin space. 3,7 "These are

traceless tensors, except that T + their use simplifies the

00=I;

satisfaction of normalization and hermiticity requirements for the density

_matrix. Further, they combine naturally with the orthogonal YLM(O, ¢)and

ﬁ;M'(¢'e’ 0) in decay distributiens derived from the density matrix. These

© ey 4

tensors have forms in spin space which correspond to those of the YLM

in coor'dina.te‘space; e.g., Y, o« (x+iy)/r and Ty = (Sx+isy)/'S!, where

the Sx and SY are spin operators and I'S l" is Y'JJ(J+1). The TLM

: | ion ° oMt
tensors obey the symmgtry relation TL. M= (-) TLM' |
In Eq. (7), the TLM operators have a maximum rank {(L)'equal
to ‘ZJX' The tLM repx.'ese'nt the expectation values <TLM> 'whichv
describe the X initial spin state. &'he expression for an element of the
final Z density matrix becomes, by the use of Eqs. (2) and (3);.

A, B [ LZM (2Lk1) ¢ TLM} w'ar Capns idm. ()

* )
Pz] A M | M

CMUM!
Then, as shown by Byers and Fenster, Clebsch-Gordan coefficients may.
be substituted, for the matrix elements of the TLM:

TLM}MuM.: T L35 MM) with M= M' + M .

for the represiéx'itatioh where TLO is diagonal. This substifution yields
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' = (A A ,/41r) Z Z (2L+1) t C(JLJ;M'M)aB’J " .
] MU MM LM S
(10)

With the use of various properties of the .,8 functions and of Clebsch-Gordan
6’ 8

coefficients, this reduces to

]
X Z [N2L+1 czL;, A"
L,M

Xthyy DL\ a@s o) o
Evidently the derivation of Eq. (11) ;'.s a general.one. which is valid for
any spin of X or of Z (integer as well as half-integer).
The elements of the Pz density matrix may be used to derive

theoretical expressions for decay distributions after simplification of

terms. It is convenient to define the symbol9
n(BN = (TN er/an Y2 e meon, (12)

where \ assumes the usual values from +3/2 to -3/2 and where Y has

N

a value 0o 0,1,2, or 3 (m beiﬁg X-)s'). The diagonal elements of the density

matrix then may be expressed as

i .
2 2\
o = 14y Z g..o) t1m Yo (09

LM
= |yl LZM }fo” boag Yo (0:0) (13)

- -y
with Yy'1,(6,4), replacing N (2L+1)/47 - L 1 (4,6,0". The three
i _— L%
elements just above the diagonal of pz\ are similar, but contain B h 4
the two elementa above these contain E\MZ ; etc. The density matrix thus

has the following form [wzth pX

Mm
Jerr)/arOf. .6, 0] :

replacing the orthonormal function



2. (3) ‘ ~ (3)
LM|A3| YLM LMA3A1 LiDMi

% SRR o A ey g A k(1) lE A1) pL®
- tLMIAil nLOYLM tLmA A ' D _LMA1A3 LZDMZ

S L e s Skt

|
CE0BTISTNON. o shegeli i




-8 | UCRL-11903
7 .
_ : Rev.
As the densny matnx is, self-adjomt all terms of pZ below the
d1agona1 are ea.s11y obtained from the terms above. ' N
“The 3(12,);,)1 coefficients may be related by the use of symmetry

properties and recursion relations for the Clebsch-Gordan coefficients;

e.g., _ .
‘ 2\ L _(2\ | o
a2 2 ()L al2N for any L (15)
and (3) {1 L(L+1)[(J+3/Z)(J 1/2)] - } (f}) for even L.
T (2\) . .
See Appendix II for other Ny o eXpressions.

IV. DECAY DISTRIBUTIONS .

The angulé.r distribution and all possible polarization distributions
for the Z may be found by taking the expeét;tion values of all spin
operators required to describe the Z 'spin state: T00 (the identity),

T T T 2 T 0,'T31, and T32. These are the same tenso‘r

100 Taor Toqr T T3

‘. operators as those described above; but here they have a dimensionality |
of 4 (are represented by 4 by 4 matrices) rather than ZJX+1, as above.
The theoretical expressions for the expectatioh values are derived

(in terms of the tL describing the original X spin'state) by taking .

M
the trace of Py TLM (and normalizing through division by Tr pz).10

The angular distribution of the Z in the X rest frame is found,

with the use of Eq. (15), by evaluating'® 12

2J3-1 '

= Z Z[(A a%; ) w3+ (ad a2, 1) 0] t i (0:9) (16)

The index L takes on only even values because the combination of



- Nand -\ evl‘eménts' of Pg, ca.ﬁses odd-L'contribuvtAions to_canéel (for

~
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strong d:ei:'a.y_)., The appropriate forms of 'th‘e A)\ amplitudes and of the

‘n’Lo cpefﬁcients rhay be substituted to p:i-edict the angular distribution for . -

. any spin and parity of the initial X system. As an example, the distri-

whereas that for J

bution for J¥ = 3/27 is [if the production normal is the polar axis, Fig.(1)]

_ 2, 2, | % . (‘1) ‘ % K
16, 4) = 4a’+c?) my o V) B Rea* c my [, (¥, (+2 Relty, Yp)l 5 - (47)
P 3/2+ is

| 2, 2., i : R , ok e
100, ) = 20(b%+d%)ii o ot o Yoo~ 8(25 -2°+3 Re B*d)myy [t o ¥, o+ 2 Relty, Y3,0] - (18)

Because of the normalization requirement of Eq. (6), the_ first terms (or

average cross sections) are identical in these two cases. (Each is equal

to ngatoeY oo = 1/4m.) The complexity of the I(6, ¢) distribution demanded

‘by experimental data of course gives information on J, the X spin.

Polarization determinations are necessary to establish the X parity, as
well as to obtain more information on the spin. |

Although <T10>Z"' <T11>Z’ and '<T1,"-1>Z' the components of
""vector polarization' of the Z, are produced by the X— Z decay i)rocess, '
strong decay of the Z cannot serve for analysis of this polarization. A
tensor component of - Z polarization which will be found in the angular
distribution of Z decay is <T20>Z « <3 Sz - g > (This is the Z spin

alignment along its direction of flight, as the density matrix pi used to

derive .<T20>.'=‘ Tr(p TZO) is in the helicity representation.) Further

contributors to the Z decay distribution are <T2 +1 >Z and <T2 +2 >z;’

however, these%;}f_are observable only if azimuthal as well as polar decay

] -~

"angles (relative to Z) are investigated. The expressions for these tensor

s

: | *
polarization c’ﬂmponents are given by the following: fx <T£, -m> =(-)™1 <T1 m> ]

e
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1 <T20>z = Tr(Pz 20) .(1/.5)1./2 LZM o

\

2J+L}
L, M

EERCHD MR 2 ['A1_/2_A.:§/2+A~ /A%

X 0]t (ZL”)/‘*“] /2 31\41 (4. 6,0 .L' e
- ' -_" 1/2-) . [ w0 * 2J+LI,.
1 (Ty; ) 5 = (2/5) / L, M [‘A-1/2A3/;'A-3/251/2(‘) ]

Coxn I‘j’z’ toag [<2L+1)/4w)] Y ZﬁMZ ($.6,0) .

As these are unnormalized,. they represent 1(0, &) times <Tlm > (6 ¢) -

[éll of the relations in Eq. (19) may be readily derived with the use of
the T, . matnces for spin 3/2, which can be calculated from Eq..(9).
These are presented in matrix form in Appendix 1. ]

In order for the polarization components of Z ‘ to be a;iélyeed,
the nature of Z decay must be examined. The simplest possibility is.
the strong decay | _ :

Z~F4b. (20)
(spin: 3/2 - 1/2 +°0), |
"where F may be an unstable fermion (= or A) er a stable one (p or n).
The original Byers-FenstezL formalism may be applied to obtain angular
and polarizati‘op distributions for F (in the Z rest frame) in terms of

.

< T1m>z patdmeters described above. (If the fermion F has spin 3/2



- ra.ther than 1/2 the expressmns developed above for pz “should be
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. reapplled to determme pF a.nd hence the various: I<T1 >F )

The formahsm predicts tha.t the angular d1str1butmn of F (spm 1/2) .-

in the Z rest frame is (with azimuthal angle 1gnored)

Da(w - —,—,-1<e,¢) (1 - (T,,), BcosPy-1)/2] . (21) |
Here the angle ¢ must refer to the a.ngle between F and Z (Z be1ng
now defined as the d1rect10n of transformatmn into the Z rest frame).

correlatlon" angle, this is required by the 1nterpretat10n g1ven <T20>

in deriving Eq. (19). Equation (21) has a particularly simple form if the
‘ ot

~ direction of Z ('épecified by angles 6 and ¢) is averaged over, as all

terms then vanish in 1(6,¢) and 1 <T20> except for the L, M = 0, 0 terms

of Eqs. (16) and (19); thus I(6, ¢) becomes equal to TrAA'/4m = 1/4rn

and I <T20 >Z becomes a constant dependent on the helicity amplitudes

for X+ Z. As the helicity amplitudes a,re functions of JX and these

' functions depend on the X parity, some spin-parity information may

be extracted from a simple F - Z correlation analysis. If only the

lower wave [amplitude a or b of Eq. {5)] is included, the expected

distribution is13

S ) « a®[47-1/2)(-27+3)(3 cosy-1)) = [1+ (;%) cos?y] . (22)
for the 3/27, 5/2%, 7/27, ete. parity sequence (4 =J-3/2); and it is

| '§ () & b2[4T+4- (T+5/2)(3 .co‘sztv-i)] wl;ié(‘f-g—:.’éf-z’) cos?y) E (23)

for the 3/2%, 5/2 7/2%, ete. parity sequence (£ =J- 1/2). For the case |
of Jx =1/2, thbre is no parity discrimination; the correlation dlstrlbutxon

for 1/2% or 1[2 : . . .
9 (W) « [1+ 3cos?y). (24)
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If a.ll a.ngles are: observed in the X - Z - F deca.y cham, the

' angula.r d1str1but1on of the spin- 1/2 F may be expressed as follows

t

+2'(15/2)1/..2' [(rRe <T21> (6, d)cost +Im <T2-1>(6,. e?)',sin.t,;] sin¢ cesq.i_‘-

(15/2)1/2 [Re <T22>(6 $) cosZ§+Im< 22> (R ¢)sm2§] sin \l;}

where 6 ¢ angles g1ve the direction of Z, and ¥, Z_, angles give the d1rect1on :
of F (m the X and Z rest frames, respectively). . The experimental
evaluation of these angles should make use of "direct Lorentz trans-

| .
. : ‘ 14
formations" to move reference axes from one rest frame to the next. .

‘/\
- used for constructmg Py this is found by taklng x =ZX (Z X3) where

1}

i3

! the (vector) polarization components of the F. It is only in these polar-

" izations. that the odd-{ <T2m >Z appear, if the F has been produced

. by strong decay. The expressions for these <'T£m >Z' in terms of the

2 is the polar axis for 0 (probably the productmn normal) See Flg. (1).

If the fermion F is unstable, its decay provides an analyzer fpr.

s

.

t; M Parameters describing the original X spin state are (with Lo

taking only odd values)!®

LM,

1(T )y = Trlp, T,q) = (1/151/2 | Z

2 2
X [3(A.3/2+A-3/ .(LO+(A1/2+A 1/.2)n ]tLM LM(e o

1 <TM>Z /15)1/2 LZM {[A1/2A,§/:2f‘f‘- 3/28 1/2( FINE R (26)'_: |

$'(6, &5 b, ;)_=- z,,—‘ 1(9.'4;)‘:{1-(1*20} <e._¢)~f§(3 cos q:fi)/z . (25)
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t2A 1/2 ’;/z (Lh)} LM[(ZL“)/‘*"] 1/2431‘1 (¢;-6.¢5 | c0nt (26)

*

1 <T30 >z = (1/35)1/2 Z {[‘”‘3/2+A 3/2]

X n(u; '3[A1/2*»A§1/2] “(1%} tLM’YiM(e’ 4’.)' |

i <T31>Z = 2(1/35)1/2 Z

L, M

o) ax () gL
X [‘A1/z 3/2 Li”"’—A 1/2 1/2 Li~8.3/2804/2711 JtLM’&M;{“"e’.O)

) X[(2L+1)/41r] 1/2
1 <T.32>Z‘ (2/7)1/2 Z

_ L, M
1 <T33>’z

The contributions of these expectation values to the longitudihal and trans-

* (3)_4 (1)
[A-1/2A3/2“Lz -3/28 1/2 n Nt aOn - 6 0
X[(2L+1 )/4w] 1/2

21/1/ %A, 12832 LZM nPle O (4.6, 0)[(2L+1)/4m) 1(2

' verse polarization components of the F are given by the fo‘llowing:

d B.F=(am /2 {0.448[<T10> Y ot 2 Re.( <T“> Y]
-1.34[<T36> Y36+Z 2Re ((T,, Y;)]}_ | o (27)
v : . _—

J P £+iB- ;:') = -y(41r)-1/.2'{‘1.27‘\/3741r'[ (T'm)@-1 + <T“>.ﬁ11

_<T“> ﬁi’il .85 7747 <T30>ﬁ(3)1+2<< v)B:‘d <T3v>o®'.v 1)]} :

where X' = F X(FXZ) and"§' = ZXF. The summatxon index v runs from

1 to 3. The Y, andﬂ m! symbols represent the functions Yl ($, L)
and ,Q £ m' (; Y, 0), respectively; also, in both equations, the substitution

of (-) <T£m)f0r<Tl > has been made. In the second of thgse equations,
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., the éymbol y ' is to be taken as +1 or -1 if the relative Z-F parity is

~where a is the usual asymmetry parameter for F:decay and P is the

such that the angular momen@ﬁ.m in Z decay is J-1/2 or J+1/2, re-
spectively. The polarization components of Eq. (27) are determinea

experimentally by taking (3/0.)2 $-F, (3/a) 3. - %, and (3/0.)2 P

decay momentum in the F rest fra\me; the sums are taken over all events

with F at some particular ¢,{ .orientation.

V. EXPERIMENTAL TESTS FOR SPIN AND PARITY
Prescriptions for Tests
One possible test for pa.nty and s\pm of the X is to be found in

the sign and magnitude of the cos 4: c0eff1c1ent of Eqgs. (22) through (24),

which are valid under the assumption that only the lower angular-momentum

‘wave contributes to X decay. Equation (23) is not very sensitive to spin

assumption, and Eq. (24) yields no information on parity. Other possible
tests, some of them‘ more general than the above, are preseﬁted in the
following paragraphs.

The <T2 >Z values descnbmg the Z spin state may be determmed
from the angular distribution observed for the process Z '~ . [See Eq. (25) ]
If F undergoes weak decay, the <Tlm>z with £ =1 and 3 may also be ‘
determined [Eq. (27)]. (In principle, ascattering of F with a known analyzing‘
target would also yield the <T1m>z and <T3m> 7° ) The expnrimgntal evaluations, of
(6, ¢) for X =+ Z and the three <T2m >Z (6,¢) from X—+Z —+F yield:a
total of four evaluations of each even-L, ty M describing the initial X
state; further, t;he two <T1m>Z and the four <T3m>z yield six evalua-

tions of each odd-L t describing the X state. Odd-L (even-L) t

LM LM
may also be é;ﬁtained from <T2m> (<T1m> ‘and <T3m>) for m # 0; but

these arise from interference of the two orbital amplitudes permitted for a

 given X parity [the a and corb and d amplitudes of Eq. (5. )]and thus are

" probably small.

=
SN
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Every. M fort aonear |
Every R coeff1c1ent appearmg ‘with a tLM in the 1(0, 4>)

(1)

or <T£ > dlstnbutlons ma.y be expressed as nyg t1mes some factor

"conta.mmg J'x and L. (See AppendlxII ) The Ay helicity amphtudes

also depend explicitly 'oanor J ?3/2. Thus, by comparison of the:

'A)\Aﬂ;\u n{2M coefficie'nts of YE" or‘,@':nm, from one distribution

Lm

with those in another distribution, various tests of J may be made. One

way of estimating J is to construct a function similar to a xz which

(1)

compares values of nyo LM obtained in two or more distributions and
to treat J as a variable parame‘ter in this fun_ction;ié another possible
approach is construction of a general likelihood function treating all

i} a
stages of decay.and maximizing of this function for various J assump-

tions. A final and possibly very useful method is evaluation of a J -dependent

()\

function mult1plymg some nLO LM by takmg ratios of terms in various
distributions. 17
A possible approach in setting up a general spin test function might
be the following. Let the definition of ""moment'be the coefficient of
&
YLM

or [(2L+1)/47] 1/2-,9'1‘ M pIOJected out of a distribution, Eq. (16), (19), or(26)
(by weighting thatdistribution with Y, ,  or [(2L+1)/4m] 1/208’ |

MM and

. summing over alL events). 8 tLM(1) stands for the L, M moment obtained

from one distribution, and if fJ(1) is the function of J which must be
. . . . (1) .

divided into this moment to obtain nyot LM’ ar.ld if _tLM(Z) represents .

a similar term from a second distribution, etc., then a comparison can

be made of the four evaluations of even-L t M's by calculating the follow-

\ 1
ing for various J values. (A minimum "x.z" yields the best.J estimate.)

ZM; ([t 0/ £5(0] - (tLMu)/fJ(:))}GLM(l,, vt 29

><{[t_r_',r\,f(J)/fJ(J)]-<t M(J)/fJ(J)> b

=)
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. The indices i and 3 designate the four evaluations. and < > represents - 'L

S a,na ‘\ average of~these The symbol G sta_nds for a varlance ‘matrix, {That 18’ .( :

_ LM(1), L Mi( y is. the second-moment matnx, the average value of

[t ty v (- <tLM(1)>] [tL Ml(J)o<tL Ml(])] } A "xz" for the six evaluat1ens

"+ of odd-L moments may be developed by analdgy with Eq. (28).

Construction of a likelihood fuaction is not difficult; the proper

- distribution functmn is 3(4;, ) if the fermlon F does not decay, and

“is dx [1+a PF p] if it does decay. E1ther of these distribution £unct1ons B

. (1), '

would be most useful 1f expressed in terms of nLO LM times the fJ().). |

function of .J discussed above. A high- spm form of the likelihood functmn. -
| -

one appropriate for the maximum J assumed mlght be used; then a.

‘ maximum could be sought as a function of J, nLOtLM' an_cl the £ g-wav.e

amplitudes (without changing the_ form of the likelihood function).

Finally, known functions of spin may be evaluated by taking ratios of - f

corresponding L, M moments found in two different experimental distri-
mabid . ‘ |

' kl butions. For example, after substitution of expressions for helic'it'y

Lom
" .even-L moment in 1(6, ¢) to the same moment of T <T20> (9, ¢) y1e1ds

- a-ﬁlplitUdeS and for nlM coefficients (see‘Appendix II), the ratioofan @ = -

[from Eqs (16) and (19)] 19 \

I moment 47(23-1) - ZL(‘L+Ail)”:..- Lo
Y <’1‘ b}-»‘l— | (29a)
1(T,o) moment . QLM>/ < 2°> (3-27)(27-1) - 2L(L+1) "( e

for one parity of decay (orb1tal wave 2 =J- 3/2);'and the same ratio yields

- for the other parity (£ =J~1/2),

(2T+5)(2T-1) - 6L(L+1.)

(In terms of ex’i)hcxt -functions of angles the moment ratio of Eq. (29) is

" evaluated for a particular L, M by d1v1d1ng 2 YLM(O $; ) by the quantity
' i,
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, z Y 20 (q; ) Y. M(G ¢ )/n(i) . The sums are to be taken separately over

(1)

real and imaginary parts; the 1ndex i runs over all events; and the n,
constant is that of Eq. (12) with J set equal to 3/2 ) Equation (29) pro-

v1des a separate test for every non-zero even-L, M moment. Also, the

-ratio of moments from 1 <T22>. and I <T21> yields, for even L 22 and

- (@+1/2)/[L2)L-1)] Y2 (30)

1o B )/ (@3

(In terms of exp11c1t functlons, the moment ratio of Eq. (30) is evaluated

by dividing ZY 2(¢g),@L2(¢ 0, 0) by ‘[_Yu(q; g)@ 1(<p 6,,0). Here
'1

the nZ(O) constant is common to both terms and can be 1gnored )

Care must be taken in the interpretation of these J est1mat10ns; the

Ratio calculations may be made separately for the real and imaginary parts

-of each moment. (Only M values greater than zero need be used, as any

moment with -M is the charge conjugate of that with +M.) .

A simple test may be made for the X-Z relative parity for .any J

assumption, the test being the determination of the relative sign of a

moment in I <’I‘22> with respect to the corresponding moment in I <T21>

[The hehczty amphtudes for these moments are the same except for sign,

which depends on parity, as shown in Eq. (5)] Thus if I’ = +1 or

1 for ¥ = 3/27,

ol [(enei

5/2+, etc., or 3/2+. 5/2°, etc., respectively;

- for even L 22 and J 23/2. [This is of course the same moment ratio as in
i .

Eq. (30).] A xz which tests the eq\lality of corresponding moments with

. I'=+4+1o0r -1 1s eas1ly constructed The parity test of Eq. (31), and a

similar one (below) fOr odd-{ I<I'£m> are analogous to the test that may be

>= (I+1/ /[(L+2)(L-1)] /2 (31)

ratio of two normally distributed quantities is itself not normally'distributed.zo
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: inade for the pe.rity of dec‘a}; into ‘spin 1/2: 'the determination of relative'
" . sign of any two correspondmg moments in tranaverse (1 <’I‘“>) ‘and

- v-long1tud1na1 (1 <T10>) polarlzatmns ! ' - | : - t:-':v‘ ) ‘_j‘gg

If the: F polarization can be analyzed, more tests for spin and

.,\?

parity may be found in the odd-£ (T, ) distributions. Some obvious .

" tests [from Eq. (26)] are the following:18 With the 'higher orbital wave = . -

neglected

\

19

1 <T10> moment / 1 (T, o> moment = \<T10> YLM>/<<T30> YLM

(7/3)1/2(3/2 [(ZJ -1)(2J+1) ZL(L+1)] %32.3)
(3 4J)(2J 1) -Li{L+1)

for one panty of decay (orb1ta.1 wave £=3-3/2); and the same rat1o y1e1ds

for the’ other panty (£=J- 1/2)

<< o) YLM> / <<T3o> YLM/ (7/3)*/ 2(1/6) [‘“ '1_”(1°J“3”18L‘L”’] (320)

2J-1 - L(L+1)

(, These equat1ons are valid for any odd- L moments. (In terms of expli'cit

. functions, this ratio may be found experimentally from

L (B ), ¥, () Yy 00,00 /nlh) aivided by T (BB, Ya o4 ¥y /(05 65)/nlY)
) v - |

i

or from ¥ (p- x%ip- %)0%2‘(;.,4,., 0) Yy (0,1 4,)/n8?) eliv'idéd by

1

z (p x' +1ip - y ).Dgih) Mgi)/nu), with nﬁl "and néit)_

eva.luated for J =3/2.) . ' o .

Further tests may be made by combmmg 1 <Ti 0> and I <T3 0 a.nd

‘- a.lso I <T“> and I<T31> From Eq. (26) it is apparent that
(15)1/21 <T10> 3352 1(1,9) = 204% ), ZM e Yraf0: 8 (33)
0) L

=
3
=]
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5.

(5/2)1/21 <T“>-—(35) 1(1‘31)

. and that

1/2

LMLiLM M

-(5/N'3) A_i/zAi‘/z Z nii)y D@L1 (¢.e 0)[(2L+1)/41r] . (34)

D1v1d1ng Eq (33) into Eq (34) yields the relative s1gn of Ai/Z and A-i/z
and hence the relative X-Z parity. Also, the ratio of n,, to hL0< gives
‘a function of spin J. Thus', with the parity factor VI‘. defined é.s above, and
with R and S representing the left-hand sides of Eqs. (33) and (34), re-

spectively,

(s ﬁL*> [2L+1)/47] 1/"'/(RY )

S moment/R moment

1/2" (35)' .

\ o - = T (27+1) / 4[3L(L+1)]
for any odd L. 'fhis relation is rigorously t.rue. without any approximation
for amplitudeé ; it is meahihgful for odd-L values. (Explicit functions for

moments of'I<T1m> distributions in Eqs. (33) and (34) are eééily written
‘i“i out, as derived from the ‘longitudinal or transverse polarization distribu- -
tions of the FE, Eq. (27); they have thelsam‘e form as the functions given for

the evaluationof Eq. (32).) -

Another combination of the above distributions gives

1)

3(15)1/27 {t,0 +(35)1/2.I- (T500 = ZOAg/Z Z nI(JO tLMYiM.(e,cp). (36)

L, M

We may k:ompé.-re this to the 1 <T33> distribution to evaluate both spin and
‘parity. With the left side of Eq. (36) designated as U, and with the appro-

o - priate ﬁi‘;; and _YLM moments (I, =3),

I <T33> morhgnt / U moment = T(2J+1) [1/10N7)] [2-L(L+1)]

-1/2

X [(L+3)(L-2)(L+2)(L-1)L{L+1)] (37)

Appendix IV describes the ﬂ AI/EM'(¢’8? 0) functions utilized above,
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Utility of Tests

3
3

Although it is difficult for one to make generalizations as to the . 9

- desirability of using one test rather than another in particular experi-

mental si_tuations, it is clear from the forms of the above J-dependent
functions that experimental evaluations of these test funcfions can be made
only for certain values of L, and hence only for certain initial (tensor)
polar.ization.s. Further, the tests that ignore the hiéher 2 wave of decay

are applicable only in situations -in which the "Q value' of decay is low enough
that little contribution can be expected from the higher £ wave. The follow-

Cb
ing statements summarize the relationships between the test functions and

.particular data characteristics. (The latter of course may not be known until

the tests have been at least partially completed!)
If the lower £ wave of X decay does not predominate - all test

functions except those of Eqs. (29) and (32) are applicable.

If only even-L tensor polarizations 'of the X éxist(L=0 being the normal-~-
ization, present even in the absence of any foArm of polarizatiop; L=2 |
""polarization' being alignment; L = 4 ""polarization'' being the expectation
value of S: or a similar-rank tensor; etc.), tests given by Eqs. (29)
through (31) are applicable.

If only odd-L tensor polarizations of the X exist (L= 1 polarization

being the usual "'vector polarization"; L = 3 polarization being <82> or a

.similar quantity; etc.), tests of Eqs. (32) through (37) are applicable.

(The L = 0 test also holds. ) . G

If no polarization of any sort exists (L = 0 yielding the only nonzero
moment), only Eq. (29) or the earlier Eqgs. (2'2) through (24) provide tests.
If only vector polarization (L=1) exists, only Eq. (35) furnishes a

rigorous test (in addition to that for L = 0). .
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If only alignment (L=2) exists, Eq. (30) or (31) prOVides a vrigor'obu_s

test (in addition to that for L = 0).

 If only L=3 moments exist ,. .. Eqs. (35) and (37) may be used as
rigorous tests.
There are as many independent tests for a given L (a.nd a given test

function) as there are permissible vé.lues ofAM (fx:om -L to +L). (In.p_ra.ctice,

" the tests are made separately for real and imaginary parts of all L, M mol .

menté with M =0.)

If the spin J of "particle" X is 1/2, only the quantities I, I<T20> ,

1T ey v 1(Tyy) s 1(Tsy) s andl (T5,) canbe nonzéll%f), as 50"

is zero for |\ | or |\' |>1/2, Parity of a spin-1/2 X may be found by
comparison of the L;M =1, 0 moment in I <T11> with the corresponding
n{?ment in I <T10> , Or byl comparison of‘.a.moment of I'<T31> with the
corresponding one in I <T30>, etc. [Seve Eqs. (26) and (5).]

In the course of analysis, it may be useful to .study the odd-L

! moments from the I <T2m> distributions and the even-L moments from

. L3 . . ' 1 *
1 <T1£11> orl <T3m> distributions; these are proportional to Z‘Im A)\A)"

i.e., to terms like a¥c or b*d, and thus give a measure of the interference

of the higher £ wave.

-
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V1, -APPLICATIONS =

. .Some of the tests described above are being applied to the decay - -
sequence E*(1820)— E*(1530)+w, E*(1530)+ E+w, B A + T, ,.;*"{_.'
- Unfortunately, the number of useful events is small and the backgi‘ourid S -{f‘«.
is appreciable. Other processes to which the formalism for spin-J Q }
N decay into spin 3/2 might be applicable are (a) higher lying N* - N’g3 e
and (b) Y*(1845) - Y*(1385). ' L
B . . o T P ’
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APPENDICES |
v+ IL- Helicity Amplitudes
i ' . ) - .
The general form of a helicity amplifude is
A, = (-))"SZ a, C(ISL; \, -\) )
)\_ Cp 2 . : L

for the decay of a parficle of spin J into one with spin S plus a spinless'
boson, where J and S may be either integral or half-'integral spins,
The helicity amplitudes may be constructed without the use of Eq. (38) for spin

J -+ [spin-J .plus spinless boson] by faking combinations of irreducible

' .. tensors in the spin space of dimensionality 2J+1. In analogy with the

: |
construction of the transition matrix for decay into a spin-1/2 object, the

‘matrix for decay into spin J. is | . required'by invariance arguments
to bez_2 ,
A= E 1%1 (pLM TLM X complex coef£1c1ent), N (39)

where P1Mm vrepresents a;n irreducible tensor formed from components of

decay momentum. In the helicity representation, only the Py,o terms are

‘nonzero; these in fact become constants because pz=p. With the absorp-

tion of Pro factors, the transition matrix becomes, in the helicity

“representation,

A=za+g ’I‘20 for one parity o
. (40)

and A'=b Tib +d Ty, for the opposite parity of decay.

-However, when thé_initial and final spins differ in a 'decay,_ factors dependent

on initial spin modlfy the various elements of A; and these must be calculated
by a prescnptmn szm11ar to that of Eq. (38) Decay into final spin 1/2 is
an exception to{'this statement, as there is only one initial-spin factor.

whxch is common to Ai/Z and A-i/Zs and this is absorbed in the normal-

. ization of the amplitudes.
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The denvatzon of general expressions for

RN )J g [<2J+1>/4w] 12 C(JJL - )\) x’= ,\‘I--m} (-4'1,)

_in terms of ngjg is useful because comparison of exper1menta1 dxstnbu- _. '

' tions contammg these coeff1c1ents may test for . J, the spin of X ° The -

’ 1dent1ty C(JJ L; )\.1 )\2) =.(=)

2J+L C(JJL; xz )\4) perrmts denvatxon of

2)\)

rela.tlons between the A and )\ forms of nLo and also relat1ons be-.

. . tween the n(2 ) coeff1c1entsvm the (N, \') and (7)\'5,-)\) elem!ents of pz '

(Eq. (14)] :

( 20 274L+1 (20
n o ‘( ) Dy .0

(-1) _ 2T4L _(3)
nry =) Ny

A1) ;;( LA (3) .

"L2 nL2 ey

Recursion relations for Clebsch-Gordan co-efficients‘(pl 39, Edmonds,

Ref. 3) may be utilized to obtain the follow{ng:

23 = (/% & L(L+1)+(J+1/2) (14374} nf! “) S e
which becomes (3) = (1/X)[X -L(L+1)] n(i) for even L
and n{3) - (1/X)(33(3+1) - 1/4 L(L+1)] n“-’. for odd L,

where X = (J+3/2)(J-1/2). Further, by usé of the same recursion relations,
ald) ez L)) "1/2 “) 1 TTE St VR PP
f} - x1/2 {L(L+i) (+1/202 (14277} (L)) Y20 as)
al3) - %1/ 25a1/2) | {an- BIE _LLe)) (a2 L] Y Zal) (4o

a{3) 2 x*1/2 (1402 (LesyL-2)) /2 nf3) (46)
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' » III, Matrix Forms for TLM Tensors

© -

" “The Ty ™2y be defined in matrix form (in the representation

where T, , is diagonal) by the following:

T ) mmt = CUILJ; m'M) with m' + M = m.

The matrix forms for all required TLM’B for spin-1/2 and spin-3/2 systems

are given below. Only those with positive M a_re”presex.lted, 'as_ TL, _M.-; ('-')MTI,M'

Spin 1{2

1 0 ) 0 -1
T, = (1/N3) = (2/3y1/2 ‘1
10 = (1/ L , =AY
Spin 3/2. b )
3 0 0 0] 0 N3 0 0

1/2
T,o=(1/.15) /

0 0 0 N3
0 0 0 -3 0 0 0 o]
1 0 o o] 0 -1 0 o 0 0 1 0
. 0-14 0 0 . 0 0 0 0 0 0 01
1/2 o e e d/2 1/2 -
T,4=(1/.5)" T, =(2/5) T,,=(2/5). :
20 o 0-1 o] 2 0 o o 1] 22 0 0 0 0
0 0 0 1] o 0 0 0] 0o 0 0 o
'[t 0o o o] 0 -1 0 o 0 0 1 0]
- 0-3 0 0f 0 onN3 o 1/210 0 0 -1
Tyo=tt/ 35)*/2 Ty=(a/ 392 o | Tty
1o 0o 3 o 0.0 0 -1 - 0 0 0 0
0 0 0 -1 | o 0.0 o 0 0 0 0
0 0 0 -1]
0 0 0 0
T,,= (4/1)1/2
, 0 0 0 0
0 0 0 0]

The TLMva“re orthogonal tensors in the sense that Tr TLM TL.MF GLL',GMM'-
X (2J+1)/(2L+1).
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IV | TheoB' M (q‘,’ﬁ,_y)'fﬁnctioné.":' e

...“

e (m MY,

where- dMM' ([3) is a polynomial in sinp and -cosp (1£ indices are mtegral)

The general expressmn for,,@‘LM. (a, ﬁ,y) 13 e IMO'

: and the a, B, and Y a.rguments represent Eule‘r angles Only dMM' functmns .'

with integral indices are required for the analysis described in the text. All-

. such functions may be readily derived from the well;known,spherical'
harmonics through the use of the following relatioﬁS' (found in Jacob and -
Wick4)':

dl\lio(q) = [47m/(2L+1)] ?/2 Yy 06,0

dr () = [L(L+1y] ~1/2 M(1+c039)dM6Q/sm6 -[(L- M)(L+M+1)] 1/2 ijm o(e)}
L o \M-M' L ‘
ak (o) = (M g LM(v e) S
2[(L+M' Y L4+M' - 1)]1/2 L M (6) = [(L+M)(L+M 1)] 1/2(1+cose)d1{"4 11 Y. 1(e)
1 z L-1
E 2(LeM?) / ing dy g 1(e)
+ [(L-M)(L-M-1)] 1/2(1 cose)dh"‘Mi M-8

)
3 1
2}

b st
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. 1
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M. E. Rose, Elementary Theory of Angular Momentum (John Wiley " »
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M. Jacob and G. C. Wick, Ann. Phys, 1, 404 (19595 showvthat th'e

matrix element connecting a J, M representation of a state with a -

helicity representation is [(2J+i)/4Tr] 1/2/%‘;:)\ (6,0, ~$). The third

argument is not observable in processés discussed here. |

The first expression in Eq. (4) follows from Eq. (B5) of Jacob and

Wick, Ref. 4. These Clebsch-Gordan coefficients are written in the

form used by Jacob and Wick, Clj,j,j;im,m,).

See reference 1 and-also the unpublishéd appendix of "'Determination.

of Spin and Decay Parameters of Fermion States, ' N. Byérs and

California, Los Angeles, May 27, 1963.

LM tensors have been previously utilized to describe the

- spin staiié of the deuteron in scattering processes. See W. Lakin,

Phys. Rev. 98, 139°(1955).



e - S vy e A i) e Dt it bt T e et M vt

. b,

9.

10.

28 " . UCRL-11903
‘ . . Rev.

The useful relations, found in Rose and Edmonds (Ref 3), are

BM

i, By, = Z Cligiphibgh)C igiziimymy) O}

; and@j (aﬁy) = ( )m-mbl ' .(GﬁY) and also ’ L

m1m2 (_)1_123,m1 Z)C(Ji']ZJ’mi 2)- 6 1. The first relation here

holds also for products of spherical ha.rmonics YLM' as
L *

Y (60, 0) < Oy (6, 6,00

The U@L

MM functions are described in Jacob and Wick4 as well as

-in Rose and Edmonds; some are tabulated in the former reference

in terms of simple 6 and ¢ ‘functions. For evaluation of Eq. (11),

symmetry properties of the TLM (see TL M expréssion'in text)
?

,and '@;M' are useful [BI_‘M’P_W.G, 0) = (_)L+P~0@I\I&p(¢m-e’ 0)*] .

"An alternate definition, more convenient for calculation,is

1/2
f.,’;‘) l.%.l.;r‘;i] / C(JLJ; A=, m),

Taking Tr(p T, ) is equivalent to finding <xn |T1m Ixn> for each spin
state n and summing over all spin states with proper weighting.

An alternate derivation of the distributions for particle F may be

‘. used which does not demand the calculation of the I <T£m> quantities

. for Z. This is the transforming of the density matrix Py, by use of

a transition matrix (Wi) for the Z =~ F decay; i.e., the calculation of
P =}'}’L' Pz )’)l'T from the expfession for Py in Eq. (8). The transi-
tion matrix W' hére involves the well-known Bir/xfn' functions and the
helicit)'r amplitudes for spin 3/2 decay into spin 1/2 plus spin 0.
Although this is a more elegant derivation, it does.not provide so

v

clearly the means for making spin and parity tests as does the method

presenté’d in the text.

’
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The 6 and" ¢ angles must be referred té axes defined by vectors

~

in’\the X production process. If the normal serves as polar axis_'j

all t with odd M are zero. (Fig. 1.describes the coordinate system. )

LM

- Throughout the text, the netation used in complex expressions has been

- simplified-by omission of the absolute-value signs from squares of ampli-

tu.de.'s._ Thv.S,A2 .s,hév_.ld be interpreted as IA_'Z- or A*A.,'

' Prof. Charles Zemach has derived these same distributions By the

use of an entirely different formalism. Charles Zemach, (University
of Califbrnia, Berkeley), ISrivate communication,’ 1%4 ,

A direct Lorentz transformation means the translating of axes 8o

‘ that their orientation relative to the direction of the usual Lorentz

txzansformation is maintained. See H.. P. Stapp, Relativistic
Transformai;ion of Spin birections, Univeréity of California Ra.diail;;ion
Labératory Report UCRL-8096, December 1'957. (unpublished).

Here the first two expressions represént‘longitudinal and trans-

verse polarization components for Z; i.e., T, « 5-Z and
TMOC(S"?:'& +i8S-. §).

Some relations from Appendix I1 havé been utilized to simplify
expre_ssions.

This function cannot be interpfeted as a tru; xz, but should yield
an unbiased estimate of J An example of the application of a "xz"
test for variable J is presented in an analysis of the Y*(1385),
Janice B. Shafer and Darrell O. Huwe, Phys." ReQ. 134, B1372

2

(1964); the x ° of Eq. (19) and Fig. (2) tests the relation v

v27+ 1) t(d) = [L(L+1)] /% ¢(2), where (1) and t(2) represent moments

“from lorigitudinal and transverse components of polarization,

respectively.
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An example is given in the calculation of (2J +1)2 from moments
for dece.y suggested by M, Ademollo and R. Gatto, Phys. Rev

133, B531 (1964), or in the calcula.tmn of 2J+1 for strong decay
suggested by Byers 'and Fenster, Ref. 1.

For £ £ 0, the I <T1m> (8, ¢) distributions must be found by
application of the analyzing expressions of Eqs.- (25) and (27) to tﬁe
data. The more general forms of these equatmns are

wo) -513 L ) (Ty ) YE L (60) with £ even;

9B Fw.1) =Z ; n{0 (Tom) Vi (¥8) with ¢ odd;
I

and S (P x"+iB.J") = -y 2 “) (T ,,o" L4 (6s ¥, 0) [(22+1)/4m) 1/2

with £ odd; where n(lr)n is to be found from Eq. (12) with J set equal

to 3/2. Thus, thel <T“n> (6, ¢) may be found either by fitting the
expressions in the text to the experimental distributions in ¢ and ¢
or by projectingthe coefficients (moments) of the orthogonal funétions
given above. The evaluation of the sum 2:- Ylm(.q’i’gi) over all events
yields an even-! (1) <T1 > ; and the evaluation from F decay of

2;_ (B F), Ylm(¢i,§i)(3/a) yields an odd-£ ni} <T1m> . The latter

is also obtainable experimentally from

L6 2B 5, Oy (€ 4,01 [2+11/4m /2 (3/a)

(Each of these sums must be understood as taken separately over real

"and imaginary parts of the functions. )

This equation is valid only if the a, amplitude: of higher orbital
angular momentum can be ignored relative to the amplitude of lower

angular momentum (i.,e., ¢ <<aor d <<b).
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In tine. discu’ssion. folléw‘ing. .tl;e '1 -d'esignating orbital angular
nriomézitﬁm has no connection with the 1 used as a subséript
(tl;xe rank) of tensovr TIm' _ ’

See appendix of J. Button-Shafer and D; W. Merrill, "Properties

of the =~ Hyperoxi, " Lawrence Radiation Laboratory Report
UCRL-11884, ljecember 1964 (unpublished). |

As no general formalism-exists for the treatment of interference
or background.prolblems', the experimenter cohfronted with these
problemé can at best (a) throw away e(rents in portions of resc'lma.nce
: l;ands showing interference (by using strong-dec‘ay symmetry :and
spiitting an X resonance band at Z- 3(= 0); (b) tféa:: background :

near resonance separately and compare results; and (c) try to find

22.

tests least sensitive to backgé-dund-.
This may also be compared with the use of spin- and momentum-
space tensors to form invariant terms for scattering matrices '

(see L. Wolfenstein and J. Ashki\h, Phys. Rev. 85, 947 (1952).

\
1

"\



m——

1
1

-32--- -, . UCRL-11903 Rev.
. FIGURE LEGEND - -

A N

Fig. 1. The angles 0,4 and ¢, L describing the directions of '"particles’ -

Z and:F, reépectivél&, are‘de‘ﬁned in this figuré; - The b(a) designates’ .'

the production c. m. frame; (b) designates the rest .£rame of “particle"

X; . (c) refers to the rest frame of Z; and (d) refers to the rest of frame of '
'F. The identity of each particle is given by the letter in parentheses near
‘the vector representing its direction. The vector A is the normal to the

~production plane. The use of n. rather than another vectér, say f(, "as the -

;axis is a matter of convenience.-11 ‘The X, Y, andg axes may be pre-'

. 0
'scribed in any way from the incident and outgoing (X) directions in the

"production system. .For simplicity of notation, the normalization of vector - -

products is not shown; '"x = " means "'axis x lies along." All vectors
drawn within the boundaries of a plane are to be viewed as lying in that

plane. ("Direct' Lorentz tré.nsformations, or parallel-axis transfers,

N )
li are used to move reference axes from one frame to the next. )

e o

v
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d This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
- of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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