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ABSTRACT

We investigaﬁe fhe hypothesis that the ultraviolet singularities
of quantum field theory are connected»with conformal inveriance at very
high energles, and we demonstrate how they can be removed.in an
elementary way; |

The main point is that a whole class of new and independent
sqlutions of the field equation is connected with the conformal gréup.
These solutions cannot be described within the framework of the usual
test function class S of the distribution calculus. But it is |
possible ﬁb define new test functions which are appropriate for.
dégligg with these new solutions and thelr essential singularity on
tﬂe light cone. |

In the quantum field theory of the Klein-Gordon equation one
néw obtains two sets of creation and annihilation operators, the second
of which 5elongs to the new solution. The metric of the Hilbert épace
concerned is semidefinite and degenerate. It also turns out that the
vacuum is Infinitely degenerate. But the secondary vacuva have a
vanishing norm; As an imﬁediate consequence of the semidefinite metric
the mas;éindependentvsingula?ities on the light cone of the generalized

Green's funétion'cancel each other.




The results obtained:fear a striking feeemblance t0o the ideas
already discussed by Heisenberg in his attempt to remove the fundamental
difficulties of currenﬁ quantum field theory.

| Aﬁ unknown world of new physical quantities; which is
-isomorphic to that of the linear momente but nevertheless quite
different, seems to be connected with the additional conformal

symmetry at very high energies.
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I.. INTRODUCTION

4. It has been conjectured previoxislyl’2 that the.fundamental
difficulties in guantum field theory caused by the gltrayiolet
singularities of the Green's functions;,5 are closely cdnﬁected with
conformal invariaﬁce at very high energies. The reasons are the
following: we obtain the nonrelativistic limit of the“relativistic
kineﬁatics by expanding the basic relationu

X
E = (22 + m?) 2

~

between the energy E, the momentum p and the rest mass m of a

perticle in a ?ower series of p/h and‘considering only the first.

term in p

~

E = m(l + pe/h?) ~ oo+

[N
e}
N
B

This approximatioﬁ changes the group theoretical structure of the

relativistic framework and instead of the Lorentz group we have the
Galilel group in the nonrelativistic limit. If we now éonsider the
extreme relativistic limit, we can expand the above energy-momentum
relatioﬁ in a power series of m/]ﬁlf end again consider only the

first term in p

\ 2,2
E = p(l+uw/p) ~ p, with p = (p



. . . . l
group are discussed in references.”’

2=

If'we confine ourselves to this extreme relativistic approximation,

we agéin have a different group theoretical frameﬁork: in addition to
Lofentz invariance we also have invariance ﬁnder dilatations and the
spécial four-parameter conformal group; The ph&sical béckgrouﬁd and
some aspects Qf tﬁe mathematical structure of this larger symmetry'

2,5,6 7-1k

Several authors also have

analyzed the dilatation invariance in connection with special field

_ theoretical models.

There are two basiC~difficultiesvwhich make it very hard to
study the physical significancé of conformal invariance{at very high
energiles., The first one is connected with the gxperiéental situation:
the energies of the present accelefators are not high enough to fest

the consequences of the cdnformal invariance with sufficient accuracy.

 But this problem is mainly an economical one and there is hope that in

the near future larger acceleratgrs will be built.

The second difficulty is by far more fundamental and is -
connected with the ultraviolet singularities of quaﬁtum field’theory.
Because of this lack of consistency one cannot rigérously examine a
particular fileld theory mathematically aﬁd ask whether it really has
the properties at very high energies, which are suggested by conformal
invariance.

But perhaps one should reﬁerse the quéstion: is it pbssible
that the ultraviolet singularities have their origin in the conformal
invariance a@»very high energies? There are several reasons which

favor this éonjecture, and though many questions remain to be answeréd,

e present: strong evidence in this paper that those singularities are

s e —— AR £ 2
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indeed connected with the conformal symmetry and that they canvbe
removed by taking into account the whole fifteen-parameter conformal
group.

The crucial point is that the eigenfunctions of the energy-
momentum operators no longer form a complete set if one éonsiders the
whole conformal group. This was proved in referencej.for all finite
dimensional representations. The situvation is, of coursé, far more
complicated for representations of infinite degree. In the latter‘case

15,16

there are unitary repfesentaéions, ? but if one considers special
physical examples, it seems as 1f these unitary representations are not
the physically interesting ones.l

We here consider theiKlein-Gordon equation, first without rest
mass and later with reét Qass, and obtain the following results: the
elgenfunctions of the four-parameter special conformal group have an
essential singularity on the light cone and for that reason they cannot
be expanded in terms of plane waves. In order to regularize these
eigenfunctions we define in Section II a new class of test funétions,
which can be constructed by a simple mapping of thé test functioﬁ class
S in conventional distribution theory].'T’18

In Section IITI we consider the Klein-Gordon equation without
rest mass and its two different types of classical solutions: +the

first ones are the usual superpositions of plane waves; the second ones

are the superpositions of the eigenfunctions of the special cénformal

-group. It is possible to define a metric for a joint subclass of these

two classes by means of the usual scalar prbduct of the classical

Klein-Gordbﬁ equation. The metric is semidefinite and degenerate.



e

This subclass of solutions serves as the class of test functions ~

in Section IV, where we consider the quantum field theory of the Klein-

. Gordon eration’in the framework of operator-valued distributions. We

get two 1ndependent sets of creation and annihilation operators, and the

etric of the Fock space of the two combined sets i1s semidefinlte, but
remains positive definite for -each set alone.
Because of the commutation relations between the two sets of

creation and annihilation. operators, we can define a conformal invariant

_:generalization of, for instance, the usual Green's function A( )(x-y) s

which now vanishes in the case of rest mass zero and which does not
contain the mass independent singularities on the light cone for a
particle with finite rest mass.

Since these mass independent singularities cause the main

- difficulties in conventional quantum field t_heory,5 it should now be

possible to construct consistent quantum field theoriesv'without

‘ultraviolet divergencies. Whether this is indeed the case has to be

determined by analyzing special examples, for instance,quantumi
electrodynamics- or the pseudoscalar coupling ﬁ(x)y5 v(x) o(x) , ete.

The above discussed method should at least be applicable for all

"couplings with a dimensionless coupling constant, for in these

theories the interaction terms become conformasl invariant in the

 1imit of negligible rest mass, too. The special significance of this

" class of field theories in connection with the high energy limit

has recently been emphasized by A. Bastail et al.l9

=
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In Section V we compare our results with the qualitatively

‘similiar approach of Helsenberg and co-workers to the problem of

ultraviolet divergencies.go-22 We also discuss briefly the possible

physical significance of the‘eigenvalues, which belong to the
gener;tors of the‘special conformal group and which seem to constitute
an isomofphig yet unknown, wé?ld to the world of the linear momenta.
Finally, we mentlon how the field theoretical concept of.causality is

concerned by the confdrmal group.
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II. THE GENERATORS OF THE SPECIAL CONFORMAL GROUP AND THETR EIGENFUNCTIONS

The speclal conformal group consists of the transformationsl

- N q-;(x)(x“'- M), with p = 0, 1, 2, 3, B
o(x) = 1 -2cx + o2 s
o | | (1)
0,2 2 2
2 = (x7)° - (xl)2 -v(xe) - (x3) ,

- . , oy _
r:where cu are the four real group parameters. These transformations

have the basic property

as'z = 0-2(x)d52 s d52 = (dxo)2 - (dxl)e - (dx2)2‘_ (dXS)g ;
| D | )
as® = (ax'%F - (ax)P - (ax®P - (@?)P

|
and therefore induce a local change in the units of length. If we denote }
. . : - i

by R the transformation
2 - '
M ort = HAT, with op = 0, 1, 2, 3, ()
then the special conformal transformations (1) can be written ast ' R

\ |
x" = RP(c)R* , with u = 0,1, 2, 3,




[ d

-{-

. ps u u
where T(c) means a transiation x - x + c“ -~ We get therefore the

. eigenfunctions of the generators of the infinitesimal conformal
transformations by applyirz R to the plane waves,. the corresponding

eigenfunctions. of the translation group,

~
2

ipx ~itex/x
e =" - 2 ' B

where h is a four-fector, the anelog to the momentum four-fector p.
The appropriate mathematical framework to deal with the

ipx . . .
e™= 1s the theory of distributions on'the tect

eigenfunctions ]
. 2
e~1hx/k

5.17, 18

function class haw an essential

Since the functions
singularity on the light cone, they do not £it into %his framework.
But we can define a new type of distributions by considering the class
Sy of test functions ¥(x) , where, for instanée,

¥x) = —é—)ﬂ o(Rx), with o(x) e§ .
- 2

Since o©(x) vanishes faster than any power of x if x goes to

infinity, ¥(x) +venishes faster than any power of % on the light

cone,

. The analog to the Fourler transformation is the H transformation,

- 2
g(x) = -—-]'—-Ejdhh g(n) e-ihx/x ,
(2n) :
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of a certain‘functibn g(x) ' It follows that

g(Rx) jdh“(h)e ,

and we therefore have the inversion’

O‘QZ

faxg(meihx ,

or,,by‘again.making‘the_transformation R under the 1ntégré1,

‘l

g,-<h)_=.j(—.d-2—’)%;g(x> e/

For the test functions ¥(x) 1t follows that

. 4 o~ - I
¥(h) = 0 6¢h), with O = — —,

' ’ XM
_ } "
where o¢(h) 1is the Fouriler transform of ¢(x) €s . This means that
Y¥(n) es ! |

If g(x) 1s a distribution on Sy » Ve have

6) ) = [ g6 1) = 2 Jat & )
ex) = (n) $(-h).

= 1 “'_"
= W g(h).(<P( h))A |

»
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For &(h) = 1 we get the analog of the usuwal & finction in x space
o , .
1 L -ihx/x .
SR(x) = — dhe / s _ (5)
(2n)
with

L
500 (40 = [62)" 4]
| % = 0 i where p = 0,1,2,3.

X
The 8 function in h space has the reiaresentation

1 db'x _ eih-x/x2

‘. 6
(’2n)h (xz)h ©

5(h) =
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"III. THE SOLUTIONS COF THE XLEIN-GORDON EQUATION

As to the physical applications the situvation is as follows:

 since at low energies the discontinuous energy and mass spectra play an

important vart in’atomic physics,_conformal‘invariance cannot always be

valr%:ﬂr:&ecanformal group transforms a glven .value of a physical
quantity continuously into other wvalues of the samé quﬁntity.. Buﬁ iﬁ
éeems as though at extremely high energies; where the rest masses and
thé.discohtinuous’part of the energy spectra are négligible, the
dilatations and the special conformal group become essential.?’5’6

!

If, for example, we neglect the fest mass in the Klein-Gorddn v

equation, the eépation
OF(x) = O ~ ‘ (7)

is invariant under the special conformal group (1), Vhich has been well
known since 1910 (a comprehensive list of:references 1s.given in |
reference 1) ! The essentiai new point here is that a whole class of
newAand independent solutions is connected with this additional
invariance. This class is perﬁabs not as important for classical
field theory aslit obviously is for quantum fieid theory, and this

may be the .reason why no one yet has consideréd these solutions in

connection with modern quantum field theory--as far as I know. It also

N —

*r

23

turns out that the mathematiqal calculus of operator-valued distributions

is extremely appropriate for dealing with these new functions. Taking
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into account this additional physical and mathematical framework,
it is quite easy to remove the troublesome singularities on the

light cone in current field theory, at least those which are

‘mass-independent !

If the pléne waves

1 | ipx 2
e (x) = e™=" , with = 0 , (8)
P ()P , .

and their superpositions

£(x) = '(';%‘575 a'p 8(:) ¥ (p) &P (9),

are solutions of Eq. (7), then the functions

5
1 1 1 -ihx/x 2 A
g (x) = =Se (Rx) = = e , withh™ = 0, (10)
h 2 n" (2:{)572 2
and thelr superpositions
g(x) = 1 Lj'd“h s(h%) E(n) e'ihx/xe (1)
(2n)5:2 x? '

are solutions, too.
For any two solutions Fl(x), Fé(x) of the Klein-Gordon equation,

(7), we have the scalar product

. - . 5 : A ¥ - * .
(F; 5 Fp) = -1 J' a’ x Gl OFp = ¥y F2>
. ' 0

X =0 -



(e - e ) = 2p,8(p, = 0) »  (12)

or -

oy [T e
(fl »fp) = 5. 11 () £,(p) -

: : . . 5 1/2
In a similar way we obtain, for ho = () 20 ,
!
(e, » & ) = 2hy8(n, -1h,) (13)
hy" Thy 02 |
| | &n
. ~ ¥ .

where 6&(h) 1s the three-dimensional analog to the four-dimensional
& function (6).
The most important quantity is

(ep s gh)- = 7(p, h)= [po% - ho 4\}2‘] t(é, E); hy » Py >0,

vhere A = laplace operator, (b))

. ' : g o - i 2
6p, 8) = —hs o oIBX SHWX
- (2x)” |~

P
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Here t(p , h) is the mixed Fourier-H- transform of the distribution
)+ 8x) = [y 8 - y) slax - y)

This is the convolution of the distributions &(x) and SR(X)

(see Appendix); 7(p , h) has the essential properties

2hy 8(h) - h,) , - (15)

]

7(p, n) 7(p; hy)

"

Zhy 7(p, 1) 7(p,, h) 2p, 8(p; - ) -

The norm of the function F=f+g is

d3p . 3 d5p &n ., .
(7, F) = |5z~ £(p) £(p) + |55~ 5= £ (p) E(n) 7(p, )
D p, 2h :
0 0 ¢ )
(16
&n oadp an .
* e spe & () £(p) 7(ps B) + |5= £ (n) B(n)
0 0 0
where the E(p), g(h) are such that the norm exists (see Appendix).
This norm is zero if
dip 3 .
gm) = -f{5= 7(p, h) £(p) , (a7)
| Po .

for it follows from Egs.(17) and (15) that

- an |
£(p) = - 533 g(n) 7(», h)

and
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ch f'5 L
(h) g(h) *(p) T(p) ..

 If we therefore have a basis { @k(ﬁ) } of the F(p) with
PE

D o~y o | o |
'2'1% cpk(P) cpz(lp) = 8kﬁ PR S 4 = 1, ?) S v ' (18)

‘we can define a basis {@k(h)} for the g(h) by

- ng'_ o R |
B - emEe (1)

¢

It follows that the function cy fk +Cy 8y has the norm

le. |? - & AP PO

Sinée the determinant of this quadratic form vaﬁishes, the metric
is degenerate and semidefinite. This can‘easily be seen by trans-
forming the expression (20) into diagonal form.

Further mathematical(details cohcerning this section are given

in the Appendix.

. ‘ - (20) -

B
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IV. QUANTUM FIELD THEORY OF THE KLEIN-GORDON EQUATION.

First we consider the Klein-Gordon equation without mass and
éxpand the real scalar field operator A(x) as usual in terms of

creation and annihilation operators:

-
a’p ) 1/2
1 | = ipx -1ipx 2
Alx) = 575 |55 e(@) e at(p) e, g = (7).
. 4oy . 23
Here A(x), a(p), and a (p) are operator-valued distributions

on the space S of the test functions ¢ , and with |

o(x) = -;lsﬁ~}’dhq a(q) e;qx) with o(x) real,
7

we have

Ax) < m(X)>Efihx o(x) Ax)

. 1 dBp - ~
= - )5/2 zp;‘ a(p) o(-p) + aT(p) $7(-p)
: k18 .

1 e ~ a+ oF(.
— [<p> Gep) + =700) <cp<p>>] ,

- 1/2
where p,= (p7)

~

If we now put

- N 1/2
o(-p) = 3(0), py, = () 30,



(25)

-

1
o
*

+ .
bys by } K

L

‘Most important are the commutation relations between the two

sets

;a2 hy s p T
{ak;ak}; {bk’bk}.

According to Eq. (14) we define

[ 2] - o [aﬂp),_ wm] - o

(26)

a(o), mh)] - (o) .
If we now make the same mapping of the basis {5P(p)} on the basis

(¥ (p)} as in Ba. (19), we get

(27)
R

+ . .
[ak) bﬂ J = Sk,Z o

Thé minus sign of the right~hand side of the last relation is de-
cisive. Although this minus sign is a consequence of our special
ﬁay of congébting the two sets {5k(p)} and {ﬁk(h)} with each other,
it can alvays be obtained by redefinition. The reason is that the

two sets
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.o T .y T
are mutually independent !
We can cohstruct the Hilbert space in the usual way: Let

[0) be the unique vacuum state with the properties
a, [0} = 0, v _[0o) = o, (ofo) = 1;

by means of the creation operators a

kT’ bkt we then construct the

state vectors’
a,f oy, b7 10y, ata o), afs, lo), o,To,t o), ete.

The metric in this Hilbert space is no longer positive definite;

because of the commutation relations (27) the vector
c. a T ]o) +¢c, v T |o)

has the norm

Icll2 - e e, e el + |c

'2
1l 2 2 1

2

2

O .
which is the same as in Eq. (20). The norm of the special vectors

a.t o) +n T fo)
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vanishes. As a consequence of the relations (27) these states also

have the property

It
o
A

a, lakT o) + ka |O{>_ -
(28)

b

it

P akT lo) + ka [0) 0, for all £, k .
This means that the vacuum is degmerate. But these secondary vacua

have a vanishing norm. The degenerétion of the vacuum is an obvious

rconseéuenéé.df fﬁe méss'ééro of the particlés—céncerned)- Iﬁ ﬁhis
sense the above result is a kind of an inversion of the Goldstone
theorem that a degenerate vacuum implies a particle without mass.
There 1s, of éourse, the problem of how the probability
interpretation i1s concerned if the metric in Hilbert space is no o
longer positive definite. We shall not discuss this queétion hefe
_because it has to be considered in connection with a detailed
dynamical theory. But it is clear that the metric in the subspaces
of the sets |
(a,; akf} or (b} bkf}

respectlively remains positive definite. Yet the completeness

relation has to be altered, since, for example,
B T
a, ' ]0) {o] by

is an addikional projection operator for the state akT loy .

U O o .



- of the semidefinite metric. : ‘
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- It éan be.seen~immediately that the-qonformal invariant -
generalization bf, for instance, the usual 'Aﬁ+) function

A y) = (o] Al A [0)

vanishes:

With Fk(#).‘ﬁ A(x) ﬂwk(x)5_+ B(x) (¥, (x))

1t follows from Eqs. (22), (25), and (27) that

i
i

(ol_Fk(#j F,(y) Jé) ; 0, for all kl, L. ': " (29)

The cancellation of the different parts obviously 1s a conseguence

L4

The saﬁe procedure can be used toAremove fhe mass;independent'
singularities'of the Green's functions fpr a particle with fiﬁite» ’
rest mass m. The corfeépoﬁding créationland anhihiiation distributions
are a(p) and aT(p) with the commutation relations '

: | : :

Pa(pl); a(pz)] '=.v0:'[a+(pl); a*(pej}.:= o,

) ’ o .\p S
alp,); @ (92)] = 20 8(pm ) By = 0 =

\

We then define. '



P2

a
o = |55 2@ el ;mn=0),
3
a"p *
t_ = ot(p) &
ak - 2 a (P) (pk,(P s O) .

with the same set {ék(p.; m = 0)} as in Eq. (18); d5p is mass-

independent, too, It follows that

Lak, az} = Nu(m) , (30)
where
3
dp ., ~ % ,
N,m = [ 5= 9, (im=0)9(p;m=0) = Ny .

1 (m =0) we have

Since afl‘(m #0)<w
Nkk(m),< 1__ for. m 4 O (31)
and the boundary conditions

N, (m = 0) . 8., N, m=o) = O . (32)

In addition we define




o - [y [ 50
. Jaeo
ot '
ak(O)T ’p E(}Bl 9, (p)

with the same commutation relations for the ak(o), ak(o)T as for the

8y akT in Egs. (22). We now set

ot e o O, ()

and assume for these operators, in accordance with the relations (22),

(30), and (32), the commutation relations

{ak(o):az(m)} o, [ak@)t'az(m)*} o, [akm),az(m)] o, [ak(mn,ag(mw] -0

(33)

{ak(o%%(mn} i} [akm):ag(o)f} Sy, -5, {ak(m)’%(m)-’rJ Sa, oW, -

L

In the same way as in the case without rest mass we now

introduce the operators bk’ bk+. We merely have to substitute the

k(O) s ak(o)+ ” ak+ in Egs. (27). The same

reasons which led to the relations (33) suggest the commutation relations

gquantities a



.{ak(m?, b£1 = 0, [ak(m)"t» bﬂ+]  = o

\ 7 Y
[ak_(m)’ bf}f _[bk’vaz(m)w = Oy - Ny oo
From Egs. (30), (33), and (3k4) it follows imﬁediately'that
o] (o, + ) (o, v, f0) = By -m, . (35)

In this gener@lizaﬁibﬁ_gf.the<;égfy function for a field theory with .
: |

a finite rest mass the mass-independent terms cancel each other, as

k2

caﬂ be seen by setting Nkz(o) = B . Since these mass-independent
terms of ﬁhe Green's functions cause thé main troubles in quantum |
:field theory, it now éeems to be possible to construct consistent
theories without divergencies. The qrucial poiﬁt is that, for
instance, the interaction term of guantum eleétrodynamics is cpnformal
invariant for negligible rest mass.g_ If one therefore makes a
perturbation theory of.the nonlinear equations, both types of fileld !
operators discussed above can become important at very high energies.
If one discards one class one can have troubles, and this obviously
has been the case in conventional quantum field theory. Whether the
solution proposed heré of that fundamental problem is really the right

answer has, of course, to be found out by detailed comparison with

experiments,
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V. REMARKS

It is rem?rkable that many of tﬂe basic features which appear in
the framework considered here have already been discussed by Heisenberg
in his approach to the problem of removing the divergencies in quantum
field ’cheory:eo-22 the nondefinite metric, a degeneration of the
vacuum, and even the '"ghosts,"” which here appear to be the real -
quantities ne - 0 . It looks as thoﬁgh the ffamework of the
conformal groupv[inhomogeneous Lorentz group, dilatations and the
group (l)] is extremely appropriate for diséussing Helsenberg's

- | !
ideas in a rigorous mathematical way, +the origin of which is the
basic structure of spacé and'time.

The essential new ‘physical qpanfities which emerge in coﬁnection
with the conformal group are the four-vectors (ho, E). Since E. Bessek
Hagen was the first who noted their existence for electrodynamics,2
we shall call them "Bessel-Hagen momenta." These momenta seem to
constltute a second world which i1s isomorphic to the world of the
usual mbmenta but is nevertheless quite different ! It was shown
in‘reference 2 by some semiclassical arguments that the Bessel-Hagen
momenta may be expressed at very highvenergies by the four-momenta
of the free particle considéred, and by its distance from the origin
at time t = 0. But the question remains whether these quantities
have a physical meaning also for. h2 # 0 in a similar way to that in
which the four-momenta p are essential for p2 + 0. Atlpresent we

know nothing about this second world except that it seems to merge

with the world of the four-momenta at very high energies.
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Finally it should be noted that the concept of local commutativity -
(causality) of field operators has to be altered slightly in cbnnection
with the conformai group.l The reason ié thaé.the transfofmations (1)
are not linear and the coordinate 1lines are no longer straighf. It
follows from Egs. (1) that e goes over into c"l(x) X2 . Since the
sign of 0(x) depends. on the values of the parameters c" , the
usual definition of space-like and time-like distances is not invariant
under the conformal group}’eéht if we define distances by the differential

4

form (2), as is usual in general relativity, then "space-like" and

"time-like" again have an invariant meaning, as can be seen immediately

from Eq. (2).

Since we are dealing with local fields this should be sufficient.

ACKNOWLEDGMENTS

I thank thé Stiftung Vblkswagenwerk‘for a generous fellowship,
which made this visit in Berkeley possible;- I am also very much
indebted to Dr. David L. Judd for the kind hospitality of the
Theoretical Physics Group at the Lawrence Radiation Iaboratery,

where this work was done.

Il



-27-

APPENDIX

We wish to discuss a few more properties of the solutions f£(x)
and g(x), introduced in Section III. We do not here intend to build up
a complete and riéorous mathematical, framework for the new type of
distributions connected with the conformal group. Therefore, 1f we use
the notion -of the iﬁtegral, this sometimes has énly a symbolic meaning,
in the same sense as the use of Dirac's & function in connection with
integrals. There seems to bé no difficulty in dealing with these new
distributiﬁns in the same way és with the known classes! of distributions.l7’l8

The cfucial point, which determines the structure of the Hilbert
space discussed in Section IV, obviously is the fact that the two
classes {f(x)} and (g(#)} of the classical solutions (9) and (11)

overlap. If we call this joint subclass {u(x)}, the functions

u(x) may be expanded either in terms of plane waves e PX or in

2
terms of the functions e.ihx/X :
, 3
, d’p .. .
_ 1l A ipx
1 , [en it /%7
T )2 2 Bp(n)e W

From this we can derive a relation between ﬁl(p) and ﬁz(h) , which

serves as condition for u(x), ﬁl(p)"ﬁ2<h>: the same arguments as in

Section II lead to the inversion
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.. - 3 |
uz(h)__ 1 dfuo % \.ih x
S = - ) = et
By (Eﬂ)B/ ) S :
. ~ ~ (’.
' 3 ‘ .
4 ' v 2
L - ih x/x
= e e 575 | 5 u(O,x)e ~ ~/& . _ _(A2)_ »
(27) ’ 2 ~ : , ”
; J )
So that ﬁe(h).vand its derivatives may be reasonable functions,
u(O,x/kg)é xlu(o,x/kg) ete., i = 1,2,3, must have an appropriate
behavior if X" goes to infinity and zero. If, for instance,
, u('o,x) and its derivatives vanish faster than any power of '1/xi'
for xt o w0, 1 = 1,23, and fastér bhan any pover-ofixl fox 1s 0, Fhe
integrals in Egs. (A2) exist: if the .functions considered are continuous,
too.  Such functions are, for example, the products
o(x)v(x)
vhere w(x)es(B).vand W(X)GSR(S) are the three-dimensional analogs
of the four-dimensional test functions discussed in Section IT.
From (A1) and (A2) it follows that
Bl [ e[ ER (el %
oh 3 2 T | Zp. WP ’
0 (2x) 2 0 :
(") =
If we consider the improper limit El(p) = 1, weget .
” i | &
ue(h) = - :rhOB(E) . :



-29-

This follows from

3
d P ~ip x 21
5o ¢ Y~ T %
. -0 X
and
3
d"x e 1.2
- (2n) (xe) :
If, on the other hand, we have El(p) = 2p08(p), we get
~ 1 )
ug(h) = 57
since
d5x 5 5
KL A o
2 0
(x™) .

This last relation can be verified by making the substituticn
x = f/ég and the consequent evaluation of the resﬁlting integral in
fhe complex plane. |

Next we consider the subclass of solutions, whose Fourier and
H transforms are connected by relation (17). If we dencte these

transforms by §i(p), ;é(h) respectively and if we define

d’p .
a 1 .o ip x
Vi (f) = 3 T ?1(P)e 2 })
(2r)”J “*o
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- and zero, the integrals exist. -\

- convolution of distributions,

3
d’p
1 -~ ip x . 1l/2 a
LI R I SRAR A I
where A is the laplace operator ,
we get
‘ a b
. - . 2 { hwv "(x) v, (x) _ :
S - [odk sSWEE |0 o LR (a3)
- () T
The first term apparently has the'sgme_strugxpre_as;‘quﬁLA2)J The

second one is more singular than the first one, as may be seen by
setting ;l(p) = 1l: +the regu}ting expression makes no sense at all
in this case, contrary to the f%rst one, which was discussed abdve.
Equation (A3) cen be anaiyzed in the sameway as (A2): if via(f)f

and vlb(x) vanish fast enough for \xl, i =1,2,3 towards infinity

A

\

Finally we wish to discuss f:éefly the convblutions of two
distributions, the first one of which belongs to the class S of
test funetions, the second one to the class SR" We shali consider
only the four-dimensional case here. There is no difficulty’ih applying
the corresponding definitions to the three-dimensional case, mentioned
in connection with Eg.(14). According to éhe»usual definition of a
17 we define the convolution of the

distributions fl(x) and g(x) = fg(Rx) , where the first one is

defined on S , the second one on SR , as
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4 L :
d xa yfl(x)fg(RY -x)x(y) ,
where X(y) -is an appropriate test function. Tt is essential that

X(x) have an existing_Fourier transform. Otherwlse the definition of

the convolution would be rather trivial, if it had only an H transform.

With,
px) = — o [alpF (p)elPF
L A A ’

o
£,(By - x) = —(;jj)—gfdhq% (q) M2 - X))
Xy) = =2 [atRe)et
(en)
we have

duxdhyfl(x)% ®y - x) X(y)

L o~ -
- L [ )7 et

21) J
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