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I. The'Scattering of High Energy Neutrons by Nuclei

1. INTRODUCTION

Results obtained from experiments on scattering of neutrons

~ ‘are valuable in.the study of nuclear structure. With the aid of

various models representing the'nucleus it is possible to build
up a consistentHSCheme,'whereby}allinuclei can be described-in
terms of a.limited number of parameters. Low energy'scattering
is characterized by series of resonances. As the energies increases

up to approximately 1 Mev, the cross sections,especially for the

. heavy elements‘level off"?The neutron wave length’beCOmes smaller

than the radius and we approach the cla551cal region where the
total cross section should be 2TTR . -At still hlgher energles

the wave length of the neutrons becomes small compared to the.

radius and the nucleus becomes somewhat transparent. This partial

transparency was discussed by Serber s who p01nted out that at
100 Mev the scatterlng mean free path becomes comparable w1th the
nuclear radlus

The flrst very high energy experlments were performed by

2 .
Cook, Mchllan, Peterson, and Sewell w1th-neutrons having eénergies

in the vicinity of 90 Mev. To explain the-results obtained the

model descrlbed in thls paper was dev1sed It represents nuclear

7 matter as hav1ng a mean free path for scatterlng neutrons such as

suggested by Serber It also turns out that nuclear matter must

be characterlzed by an 1ndex of refractlonxas well | Thus a114
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nuclei are treated as spheres of uniform density having a

refractive index and ébsorption éoefficient, differing from
each other in size only. Such a,model may be referred to as an v
"optical"»ér "trahsparent" ﬁodel_of thé nucleus.

In the following section we shall set up and calculate the
cfoss sections from the'ﬁéptical" model. Then, in sectipn 3 we
shall compare the results obtained from the palculétion with

existing experimental data.

2. CALCULATIONS
Nuclear data obtained from experiments at lower energies
show that thetvolume of a nucleus depends upon the number of

particles contained in it. This leads to the relationship v

for the radius of a nucleus. r, has been determined in maﬁy
ways, one of these being from experimenﬁs on the scatterihg of
neutrons. In the low Mev region it turns.out that the nucleus

is quite opaque and absorptive with a sticking probability of
unity for incident particles., In this region, scattering expéri—

. : , .3 4
ments have been performed by Grahame and Seaborg at 7 Mev,

el

L _ 5 _ . O
Amaldi et al at 14 Mév and Sherr at 25 Mev. From the results
obtained, the radii of the various target nuclei can be calculated .
since an opaque sphere theoretically shows a total cross section

- 2 . _ N .
of 2TWR . If for example, one calculates R from Amaldi's
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data one finds R = K1,22*+ 1.37 Al/g) x.lO_ch° The intercept
can then be thought of as being sémehow related to the wave
lenéth‘ofrthe incident particle. As ﬁhe incident energy increases
thié wave length becomes smaller and for high enough energies will
be small compared to the radiusvof the nucleus, In such a case |
then one can neglect the inﬁercept and find a straight line

1/3 . :
R vs. A which goes thru the origin. In the transparent.

- model, the energy is considered high enough for this assumption.

. As-a matter of fact, this model is a high energy.approximation'

and explicitly demands that A << R, that is, the wavelength of
the ihCOming particle be small compared'to the radius of the
nucleus.

The nucleus is tp be represented by a sphere o? constant
densit& with an absorption coefficient éhd an indei of‘refracﬁi@no
These constants are calculable-from known experimental data if one
assumes the Fermi description of the nuéleus, Ihe‘diffefential

and total cross sections can then be calculated by using the WKB

approximation; this being applicable because the wave lengthiof

the incident‘particlé is small enough compared to the radius of
the scattering center to make the problem almost classicale,

If k = (ZME/ﬁ ) {s the propagation vector of the

1ncldent wave outside the nucleus, its propagatlon vector 1n31de
. _ ”
‘is increased by k; such that k+ kl . ['2M (= +V) A ]

vfollows then that

k) :-k'[(1+%’)2m1] N ¢
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- 1/3 -13 |
Using R = 1.37 A x 10 “cm as deduced by Cook et al from

the data of Amaldi et al and Sherr; one obtains a Fermi energy
of 22 Mev. The potential is usually taken to be about 8 Mev
above the Fermi energy, so V = 30 Mev, The"high energy

experiments of Cook et al were done at approximately 90 Mev, '

for which k = 2.08 x'lOl3

12 1.
cm

em™L, Using these values, we get
. The absorption coefficient in nuclear

ki = 3.22 x 10
matter is found from the product of the particle density and
cross section for scattering of the neutron by a particle in the

nucleus:

K = AT . o ‘(42)

4LTCR
In terms of the n-p and n-n cross sections ¢~ = [Z o-ﬁp + (A - 2) O'm;l/A.
Cook et al give for the scattering of a 90 Mev neutron by a free

-26 2 .
proton - 8,3 x10 ecm . This cross section must be

T
np(free) ,
reduced to allow for the effect of the exclusion principle on the
scattering by a proton bound in the nucleus. Aécbrding to
. -6 o
- Goldberger , the factor isl 'an = % G:1p(free)° Assuming a 1/E
dependence of the cross section we find, for E = 90 4+ 30 = 120 Mev,

a
np

G.-nn = 21: G-ri > and use the previously quoted radius formula, we
1

obtain K = 2.4 x 10 vzcm"l for Z/A =1 . However, measured values

~26 2 , :
4,15 x 10 cem . If, following Goldberger, we take

of the p-p cross section at 100 Mev7 indicate that o—nn is almost

equal to O . If we assume that G =30 , we obtain
np ) nn np

_ _ 4 L
K=3.3x lOlzcm-’l. This value will not vary much with Z/A because
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. of the near equality of CF'm1 and o-np . In the ensuing - -
calculation we shall assume that kR 201, %L. and %(( 1 so
that klR -and KR 'are‘of order one. At energies higher than
90 Mev, it is evident that these conditions will be more valid.

The scattering cross section consists of two parts. The

;first, the "absorption cross section" is.just TER2 times the
prbbability that a neutron collides with a particle in the
nucleus. This is not true absorption; ineiastic scattering and
scattering‘with exc?ange are included. The second part, the

_"diffraction" or‘"éhaddw" scattering, is elastic scattering arising
from the distrubance of the incideht'plane wavesfby’the m’xéleuso
The calculation is,readily done by applying the WKB apbroximation
to a square potential well with complex propagation constant .
insidevand finding the phase shifts for the various partial waves.
Before doing this, hbwever, it is.instructivevto see that the
same results can be obtained from an optical fnodel° To illustrate
the célculaiion, we first cﬁnsider the scattering from a disc in
which k; and K rise to tbeir interior values in a distance
larger than 'l/k;'vThenxoné may heglect scattering at the surfaces
and, for unit amplitude.df incident waves, the wave transmitted
through the disc will have an amplitude and relative phase

azexp (-4 K'+'iki)T.' The absorption cross section is

s WA fa)) = WRa-) L )

a
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The diffractien gross segbiom;can Y& found,from;the;consideration
yisd o

- <z - { o . . . . ’
»4hat: onia @:lﬁne;:,}eh}.pdi theddisg-the;waves s/ ne: longer: plapesadut
differsifrom:a;plane wave by, ap, pmplitude; (L% a)ydn the shadew of

. thesdise.y Thisramplitudenrepresentssadscatiiered waves anddthe
\ 7 ) . .
s eorrespondingt crossispctionidsines szoto aniresdsse edl

‘noldosz seord notdyiroads™ e [dewil
2 2 . KT | KT
2o5i M08 (domrRer & de0s ¥iiTidnesg) .

SRy

qT L aps Lodd)

The:abserption, eressisection isy; oftcounsess:always: lessidhame

.

2
oo bs TR R s pbubs dhe diffraction erosstsection may.beyeithersdargemor

zSmaller,depending, oziuth,e magnitudesof thes phase:shif terls Forylarge

T

2
ot KwaxoSigs :Z-}‘fk}'lfp.@ F oS Rgqe Tnd theo opposides 1dmit, of; smalds &Tr and

kiTysderon nobissegorg xelgmoo dibw Lfsw Isidnedog evsupe & od

ceavew I “310; sz.r.’r<:=.£::‘;:€;v'2%d.:l“ 10 edtide ezsdg edd wnibnil bas :ab;r.an(i'
= RKT = ACQ : 5
ard Ferld sse of svidourdesd el $i isvewor (sbdd gatcbh sroled

sisvFenlli o

e

Lebom 2:0iR2y0 6@ moR} bsnisddd ad neo K,%'-‘fo 29T SMSR

= TR (] + k )T = 1+4_1 |KT.

l’t
bo s mowl goitsddeon edd qsblanoy derll ew (wofslyolso sdi

BEiack

A
A,

ausisdalb s of eeulsv wolvsdnl siedd of eaiv A bue o dokdw

Thus for low density or small thickness ¢ approaches the sum
sonstove efd J8 paivedtice Joslgen wem sno podld (H\L asdd texisl

, of the scattering cross sections of the separate nucleons. The

pedtizenend evew oifd ,eevew Jnebrort %o sbusilams Jins w0l bns

A
diffraction cross section, however, vanishes in the limit, being
svitalsy bas eputifaqme 08 eved Iliw o2ib efdd rdasound

- b

aapily
roportional to the probability of double scattering.
prop £J P 7 "'Q}Li < 4 ;.n§ Y axe = 8

ar pgotdoss zrotd moldgirosdsg odl L1 &
The corresponding calculations for a sphere are only slightly

s

 nore complicdted. The: portion fo':-féthf wavie‘&h%%c:h mgtnizlges the sphere
L4 ‘ » o\ j By Ly oss = LY

<« L s a3t i3

at a distance /J from a line through the center of the sphere

A .1,.1‘1
Lal

—
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emerges after traveling a distance 25, with S =R —(3-, Its

amplitude on emerging is a = exp (- K -\- Zikl)_S , 50 that, in

place of (1) we have

i - . R

/-'o‘a = 21tf (- e'zx_s)()d(o = 2T __m”(l - eEZKS)s‘ ds
=-rr122 1-[1-(1+2KR)e ]/ .

n

This fbrmula for the absorption cross 'se’ction has previously been |

' : .. 8 o _
given by Bethe . Similarly in place of (4), we have

' (=K + 2ikq)s | 2
U'd ol |1 -6 T2

[

1{'R2 ' 14 (1/2 K2R2) ; _1 - (1 +2KR)em2KR]
2. 52 2 2
/et K5 YR | ax -k

22
+ e . 2klR(£K +kl )..f:le ]sin 2k;R

v xr [ 2 2 T 2 2
-e L(EK -k )j— KR (2K -tfkl )] cos 2kqR

(8)

Here we have neglected _refrac’t'ii_gvn 'a:_t the _surfacé of the sphere.

This is.legitimate since it gix}esé second or"»derieffect, that is,
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of order "(kl/k)-klR. : . |
- The angular distribution can be obtained similarly but we
shall write it in terms of the WKB approximation applied to a

partial wave analysis of the scattering. Qur problem is to solve
A+ x -ALt1) ug (1) = 0 (9)
: 2 .
. r :

where k'

k for r) R’

k!

ktky +iK for r{R.

The phase shifts are easily obtained for the kth partial wave,

9
using Langer's expression

Sx“' r -l-l>meo " \{ k'2 - gl: 21)2 dr - kr+(2+ 1) T2
, r, _

(10)
where (r)oi is the zero of the iﬁtégrahdo We assume that K/k
and kl/k (( 1l ard in;'tegrate out the real ?.Xis after expanding

the square 'rodt 'in the integrand.

S, -

' (k; &+ iK ) k :
- 1-+ 2l+ 2 > dr
k* - (L%
L}%L

+ \sz - L’Lﬁ- 1 !’2 dr - kr + (zﬂi‘%) -I_F
' 2 o 2
; o) N & - . - %
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g 3K | b 2
DR 3 5 a7 E SV
K o

(11)

The absorption cross section is given by the usuwal expression in

partial wave treatment of scattering problems:

| -4 83, .
0; = ’5 ;(2{!—1-1) (L-e. FA_) | | - (12)

This ‘leadv‘s exactly to equation (7 ,i,f. we 6_onvert the sum in
equation (12) to an integré,l and integrate over aL s taking

as an upper limit ,Q < KR - 4 . Similarly

' ‘ | 0 =2i SL 2
T, = T Z (28+1) [1-e (13)
k2 I .
gives the V'd as in equation (8). The differential cross section

per unit solid’ angle can be obtained from the differential scattering

amplitude
| 21, |
£(e) = _LZ (22.-\-1)(,1 - e ) Pﬂ— (cos @)
2ik ' , v
£ .
through T(8) = ‘f(e) \ . Generally, the sum has to be

carried out explicitly at each angle; only in the forward direction

is it easily possible to obtain an analy't.ic expres‘sion. One can,

of course, also replace the sum by an integral and -Pp_ (cos 8) by

I [(,Q-\-%')G] ; valid for small angles and large A, then
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integrate numerically t{oiobt m f 8) E. ;?,‘;,gr.-f-g-ntne integral expression
Vg R I TR . -

is used at zero degrees, we obtain: -

53’.'-15 v
-k ﬁdld&'ﬁ‘ff(@) I @o3)ogy geots nokfqroeds ol
iteddsoe to Jusmiseid evew Isifred
where 5
et f St Ao
(s0) W2 . L %)3?) (1+Xs %Bk - 2V
B
and _ ‘
nk musgedd Seviga tﬂ‘) nobdsups od ylinsxs ebasf =idT
e 2 i .i_§. ) |
canied b 1eve edsriednk Dms fevesdni ne od (SI) fotdsups ”
The integration yieldszlimi& . £~ §bf > X gimiL Toqqy 18 as
- Y
A - -3
Jz A
8 b’”’i?’ Bt esviz
IeidnoteYYih ol oY beniaddo 59 nso niuriﬁ bifoz JJ'[‘U’ 19t
2, 2 :
kK (k, - 1K ) KR o+ 12k R shud b lgme
B! Z e (L +KR = 21k9R) |
2 2.2
oo MK 4+ E0)
( P S D
(8 zoo} 4 o - DII+A8) & L = (8)%
= L SES | (15)
A
This equation can be written more simply in terms of the spherical
ad of 284 mre s llsvened . | f(‘]))li = (@)D dgurendd
Hankel function of the first k:!.nd, .
sebbsealh biswiol efd ul wine jelansidose ’rfs ‘{.I.:?'iff?iq:if_»' Juo beiyyse “-

. - - . o S
onm dplt ff'[ g >~\f\j J0 e

, f(O) w1y 4 24hy

fone alsddy)of siffasoy vllizss 4I el
( ‘ '
(5’7‘ S Pain [iazNert fr ey etd %;f e Ln L ant '

TN {* ameis [ Ty AT e ] orft B EEenre { m(‘ + %3 ] Te
where VoL ) I
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. Tt is also possible to make a series expansion for the.
. .10 - | L
- integral , but'the series converges very slowly and is not as

useful as the sum indicated above.

3. COMPARISON OF THEORY WITH EXPERIMENTAL DATA

(a) 90 Mev Data

For the 90 Mev neutrons we have shown that for a potential
“depth of 30 Mev, k; = 3,22 x 1012cmf’l and that K might be
between 2¢A-xllOlZCﬁ%1 and "3.3 x 10120m=1 depending on the
relative values of';CThn and ‘O;p ; ‘We.fipd that these values
" are consistent with experimental data if we take

"R = 1,39 AI/B X lOél3Cm',for -klR/KR = l;l; 'Thus we adopt
‘the values kj = 3.3 x 10/%en™l (V= 30.8 Mev) and

K = 3.0x 1012 cmflg corresponding to a mean free path in .
nuclear matter of 3.3 x lOTl?cma in Fig. 1 we have,blotted
.-0;/7T32 5 GA/TIRZﬁ'and,~ G_IG/TrR2 = (Q, + G&)/TTRZ as’
functions of KR‘ for the above values of K and kyo It should
‘ be‘notedvthatl~'5;/TTR2 is a function of KR alone, but that
U;/TTR2 depeﬁds on" KR and the ratio‘-klR/KR; Figu 2 shows
how 0}/’ R® varies with the choice of klR/KR as a function

" of kR (actually R since ky. is taken to be 3.3 X 1083em™t
for this plot)wv_It can be seen that for large ratios the cross
séction may go much higher than the 1limit of 21TR2* obtained'in
the case of the'bpaque-nucleuSa’ |

' The values of R calculated from the experimental data

of Cook et al by use of equations (7) and (8) are shown in Fig. 3
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along the line R = 1.39 x 10 cm.. The fit is exceptionally

good. Further experimental cross sections were measured by Deduren

and Knablelo

at a slightly higher energy, namely 95 Mev. Here _ | ¥
again, a good fit of experimenﬁal data with aﬁ ro-= 1.38 x lO-lscm. |
is obtained.

' The question now arises as to the accuracvaith which the
constants - K and kl- are determined by the scattering data. If
ki 1is decreased, keéping’ K cdnétant, it is found that the radius
curve, Fig.AB is pulled,up-in the middle; the resultaﬁt.curve can
be approximated by two straight lines, the light elements lying
on a steeper line thru the origin,,wﬁile the heavy elements lie on
a iess.steep line with a positive intercept. Increasing kl has
the opposite effect. A variation in k; of %£0.2x lolzcmfl, | 7
or in V of £ 2 Mev, begins to produce appreciable bending. A
reduction in K, with fixed kl’ introduces a curvature in the
Hradius line, the center beingvpulled'down and the two ends raised,
The curvéture becomes noticeaﬁlg if K is reduced to less‘tﬁén

K = 1.9 x 1012cm‘1

o however K can be almost doubled before
the opposite curvature becomes very pronounced,

The total cross section measurements thus determine the -
index of refraétion fairly'wéll, Eut are quite insensitive to the
absorption coefficient. Measurements of o, and oflﬁhe o
differential diffraction scattering are required for a bettei |
evaluation of K. These hafe been measured experimentally at

11

approximately 90 Mev ™ and the agreement obtained with the constahts
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" assumed above found to be reasonably good., In Fig. 4 we see the
comparison between the theoretical results for -the ratio ° G;/Grt

~and the measured values obtained from attenuation data in a poor

gebmetfy exberiment° vSince.the‘absorption cross sectioﬁ-depends
only on K and nét on- k; 9 the indications are that K = 3.0 x 1012
cm.m:-L ~is a fairly good mgasure of the-absorptionrcoefficient,’vNoté
that tﬁ'e‘ratio' Tav/d"t‘ & .5 in this case. If the nucleus |

. » _ {
were completely opaque O-;/G't = .5, Similar agreement was

‘obtained in the analysis of absorption cross sections measured by

Deduren and Khable?’z°

The comparison between the experimental and calculated-

* .differential e¢ross sections for aluminmn5 copper; ‘and lead are

~ shown ianigo-SaV'The“theOTetical curves wére obtained by summing
the partial waves as given in equation (14) using the constanfs

- which best-fitvthevtofal cross sections. The experimental points
‘are seen to lie high in the forward direction, but fit fairly well

“at larger angles. The reason this does not make the theoretical

total cross sections too low is that the integral bver all angles

is weighted by the sine factor; thus giving a negllglble

‘contribution for small angles. The opaque model of the nucleus

actually glves a higher cross section 1n the forward direction
than does the transparent modelg but does not flt so well at

larger angles° In shape, the two models give very 51m11ar

- diffraction patterns,.at{least up to the first minimum, - ThiS'is

especially true for heavy nuclei, as can be seen in Fig. 6i- Here
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' the diffraction.patterns:calculated for various transparent'nuclei
are éompared with the opaque nucleus, all normalized to uﬁity'in
the forward direction. The curves for the heavieét nuclei are
just about indistinguishable. For the lighter nuclei, the form
of the curve is closely the'sameg but with an alﬁered scale of
abscissa, corresponding to usingvan effective radius somewhat
smaller than the true radius. The increase in the half width

of the diffraction peak is zero for lead (KR = 1.78), 3.7% for
copper (KR = 1.20), 6.2% for aluminum (KR = 0.90), and 9.6% for
beryllium (KR = 0.63). | |

(b) 280 Mev Data

At energies higher than 90 Mev, only total cross sections
are known. Fox et al13 ha&e measured these at 270 Mev, DeJuren‘l
at 280.Mev. Also Deduren and Moyerls have studied the variation
of total cross éection.of several elements with energy, the
'enefgies ranging from 95 Mev to 280 Mev. The constants K and
kl can be'calcdlated.in a manner.similar to that used for.thé
9OLMev data. It turns gut, howéver; that the best fit to the
éXperimental data is obtained with ky = 0. This seems surprising
since it.implies an indék of ref?action equal to unity, or fr§m
equation (1) an effective potential of zéro. One cén calculate

the index of refractioﬁ in a different,manner than that used
he:e and obtain an expression in térms of.the forward scattering
' amﬁlitudes for the n-n and n-p in’geracti'ons° Jastrow16 has done

17

this usiﬁg both his own hard core model of the nucleon and the.

Q{
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' 18
model proposed by Christian and Hart  for the n-p interaction and

1 _
Christian and Noyes ? for the n-n (actually p-p) interaction. It

»

V turns out, indeed, that ﬁhe‘hard core model predicté'a'rapid

decrgase‘in the index of refraction and that kl does go to zero,

_being quiﬁe small even at 160 Mev. The other model also predicts

a decrease but not so rapid as that of Jastrow's. Experimentally

the ¢ vs. E ‘curves,shOW a rather flét cross section below
AO‘Mev,'a fapid,decrease that takes place roughly in the next
120 Mev and a flattening off. again beyond 160 Mev.

If we take, theh,'kl = 0 at 270 --280 Mev we must still
calculate K and see whether this is consistent with the
experimental results. Both the n-p and p-p cross sections'ére
known at these‘high,enefgiés and afe found to be roughl& équal°
gl.galéqlated from theéé'values"kfﬁ}m)= 3.5 millbarns at 280 Mev)
tﬁfns’out‘to.be of the'crder'gf'2,8 x lOlzcmfl,_yhen oﬁe aliows
a'lO% correction for exélﬁsion:effééts.,_The best fit,of"theoretical
éhd expérimental,data, however, giﬁes a kK ;’-2°5 b4 lolzcmfloi'The
radii caleulated with this value of K and ky = 0 are compared
with the best radius curve. for the 90 Mev data in Fig. 7. The
égfeemént here is not as-ggod as:ét 90 Mev, but is not too
uﬁpéasonable. The laréé.radii lie below and the small‘radiikaﬁove
ﬁhe'curve. Since, for ;kl_z 0, the total cross section‘is véry
sensitive to K, it msy be that the densities of the light and

heavy nuclei do differ somewhat. The model proposed here, however,

'is a statisticailmodel and should fit the heavy'nuclei.much better



. -18- T

than the 1ight-oﬁes,'vThus %ﬁ-one,ignoresfthfulight;nucleiyxone

. finds that a _K.='2.3fx’1013cmfl ~00mbinedﬁwithi ki“=505:and:7

r, =1.39 x lO_l ¢m fits the nuclei heavier than copper: very: well.

It should be mentioned that at theseshigh:enefgies>the~absorption

cross section makes up a large fraction of'thé;totallCrbss section,

- This is seen in Fig. 8 where . G;/TUR?u and ;OE/TYR%. are plotted

for the case ki = 0s Dedurent¥ has measured:a lower limit: on
U;/Crt»:and has found it to be 0.5.. Récent:unpublished*resultszo,

however show that theractuél ratio may be much higher; in agreement

with . the transparent model.

k.. CONCLUSIONS
" The scattering.high:eﬁergy neutrons by complex nuclei - .can

be described reasonably well by a simple:optical model for:the
nﬁéieus.. Thi% model'assigns,avéommon;index of refraction and.
mean free path' for absorption to all nuclei, these constants
varying with(energy, the former. rapidly decreasing, the :latter
slowly increasing. The distinguishing feature .of different nuclei,
then,,is'size, With reascnablé accuracy the radius of the nucléus
can be taken to be 1639§Al/3 xA107l3cm; R |

‘This model represents a high enérgyﬁapproximation and does
not describe the'scattering.of neutrons with energy much below
90 Mev. For examplé,'at?h2'Mev,~the'nextflOWer energyrfor-which
- scattering data -is available, is already .outiof the region of

validity. At thisienergy KR .is not largevcompafed'ﬁith ;klR

-
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and KR. Also at this energy-the boundary conditions require

more thorough investigation, ‘since one begins to get into a

region where the radius curve may have .a finite intercept.

No definite conclusions can be drawn concerning the fit

to the highest energy data aVailable; namely 270 - 280 Mev, until
‘more- information is available concerning the relative magnitude
~of the absorptien and total cross sections and diffraction

_ scattering.
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FIGURE CAPTIONS

2 2 2
Figure 1. ¢a/TCR R O'd/Tl'R , and CT't/TfR as a function of

KR for kj = 3.3 x lOlzcm-l.

A 2 .
Figure 2. ql/TFR . for various ratios klR/KR as a function

of klR.

A1/3

Figure 3. Nuclear radius vs. calculated for 90 Mev data.

© Figure 4. Ratio of absorption cross section to total cross

section as a function of radius.

Figure 5. Comparison of theoretical angular distributions for

aluminum, copper, and lead with experimental data.

Figure 6. Comparison of shapes of diffraction patterns of

transparent nucleus with that of opaqﬁe nucleus,

o 1/3
Figure 7. Nuclear radius vs. A /~ calculated for 280 Mev data.

2 2 \
Figure 8. Q;/TCR and Gi/TFR as a function of KR for
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II. Lateral Spread of.Particles,in Cascade Showers

1. INTRODUCTION

The lateral structure of large air showers has been under
extonsiverinvestigation. Euler and Wergeiandl fifst calculated
the expected.distribution‘fnnctions rather crudely. Mo_liere2
later improved on théir:calculations and obtained the radial
distribution of both electrons and photons as well as ﬁhev
angular distrioution of elect,_rons° These calculations do not
take into account energy lossvof electrons by ionization
(approximation A of Rossi and GreisonB),_ Under the same
approximation, Bele‘nkyl+ also calculated the‘angular distribution
.oflolectrons, but with botter accuracy. Others,‘Roberg.and_ .

5

'Nordheim ,'e.g., have calculated. quite accurately the mean square
angles and displacemonts integrated over the shower for electrons
and photons donn to rather low energies, where ionization losses
become important, More reoently, Borsellinoé has calculated mean
square values as a function of de_pth°

The reason that more:calculations,of the distribution i
- functions thomselves have not been made is that jt‘is extremely
difficult to.solne'the diffusion equations when the terms
involving the lateral spread are included. It turns out,.howéver,
: that it is ogsy to_oaiculate theMmomonts of these functions quite
accurately. When the calculations are made,'it is found thatn

~ the "exact" moments do not agree vé}y well with those obtained
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, frém Moliere's distribution funictions. This'is éspecially true
for large arguments° Now, knowing the moments for a function,
one should be able to reconstruct the function. Mathématically
- this is feasible if the moments can be expressed in analytic |
‘form and if the function satisfies certain conditions. 'Mor66Ver,
the function so derived is unique. Since, howeVer,:ﬁe can not
obtain the momenté in proper form for such a proéedure;~weihave
tried to reconstruct the function graphically. That this is
possible and gives'a unique solution can only be inferred from
several test examples which will be presented in the next séction;
It appears that. a monotqnically decreasing "smooth"‘functidﬂﬂcanv
' bé*réconstructed from a krowledge of its first few moments, .
covering'ﬁhe region of ihtérestu Since the distribution fundtions
" 'physically satisfy the above conditions, itﬁseems-higﬁly reasonable
~ to expect a good approximation to the function over a usefﬁlirange
.-of values. |

In thiS'paﬁer;'then,-wé'fifst shoﬁ in Section 2 how to-
reconstrucf a function from its moments. In Section 3, we caleulate
the moments in approximation A &t the- shower maiimum*éhd.obtain an
'aSymptotic-expansion'doWn to twice the eritical eriergy, taking
into account loss of energy by ionization. Iﬁ'Section'u;fwer
-.show how the moments may be obtained: for vérying depth of the’
shower; in appr§ximation'A only. ' Finally in Section ‘5 Wé calculate
the actual distribution function7usiﬁg the moments found 'in the

previous sections.’
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The basic assumpﬁions of:our:calculationsvare'th;t‘thé
scattering*angleslare small and that the asymptotic expressions
for radiati&n and pair production a'revvalid° "The calculations
hold fof any element for Which,>a£“the energy considered, these

assumptions are valid.

2. RECONSTRUCTION OF A FUNCTION FROM A FINITE NUMBER OF ITS MOMENTS
In this section ‘we shallwpresent some - ev1dence for the fact
that knowledge of the first few moments of -a 'reasonable' function
'esseﬁtiailyvdetermines the funcﬁion over a limited range, We shall
consider functions which are 'smooth', decrease monotonically from
0 to ©9 ,-and which may or ma& not be.singUlar.at the -origin.
For physical reasons these will be the characteristics of the
actual distribution functions that we shall seek la.tei-°
Our confidence that a few momeﬁts deterhine the function
rather well rests»oﬁ several ”exbefiments“ in which known functions

were reconstructed from about four known mdments. After trying

various analytlcal schemes 'for these test cases we found that the

¥* , S
While this work was being carried out we received a copy of a
paper by L. V. Spencer and U, Fano entitled "Penetration and
Diffusion of X-rays: VII. Calculation of Space Distributions
by Polynomial Expansion". One of the points of their paper
seems to be the same as that of this section, viz., the first .
few moments of a reasonable function essentially determine the
function over a limited range. Unfortunately, the neat method
of polynomial expansions that they describe is not directly
applicable to our problem, since our functions may be singular
at the origin. :
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¢05£ 66hfénient method for recpnstructing the function was simply ‘
 ”‘to-gré£h aﬁbafbiﬁrary'funqtiOn, calculate its moments numerically,
aiper:tﬁé‘fUncﬁion as.indicated by the discrepancies from the
‘:'dorfécﬁ'mpments, recalculaté the moments; make a second correction
T; andrin_this Way approach a function which would give the correct
imdﬁentsa | |
| The‘reéults for three functions we attempted to fit are
: {-given below. We think theée cases give fairly strong evidence
A '£héi'iﬁ genéral one dan with considerable accuracy reconstruct
v fﬁﬁétionsvof‘ihe type considered from their moments.

1o
e~X 5 » In

 The first function attempted was f(x) =
IS . X 5
_this case the only information used was that f£(x) & 1 - xt°20
L b'd

for small X, and the values of f

0? f29 fA, f6; where we define

" the'n'th.moment f, by:

w .. .
J xn+lf(x) dx

Coie= Jo o
S ~[~ xf (x) d&x-
- Jo

w”=;¢?héi§élﬁ¢§ éffthefexaét function and its moments, and the final

(1)

-'fifted function and its moments are given in Table I,
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We see that the agreement is excellent. The fitted function

begins to diverge from the true 6ne around X = 7. This.is not
surprising, since the integrand of fé has its méximﬁm neér

X = 3.5, and the lowér moments have the maximﬁm of their integrands
at smalléq x; Therefore, not much information about the function
for lafge values of x is contained in the four moments_given,

The data on ﬁwo other sample functions tha# were fitted.is
given in Tables IT and ITII. For these examples only the values of
the moments were kndwn:;nd not the'behévior at the origin. | |

If one can draw'any conclusions from these examplés, it
would appear that one is easily able to fit a function over most
of its range to within a few’pérceht,'even when not much éarenis
taken in fitting the highest moment. One cannot, however, determine
the behaVidr at the origin ﬁith any certainty. This facﬁ is.
particularly troublesome because one often wants to know the cosmic-
ray disfribution functions near.the origin. In the last two
‘examples the errors becomé greater than 10% for x of the order
of 0.3 or Qah'and increase rapidly for smaller x, The reason that
the behavior at’the origin.is.not determinable is as foll;)ws° The
integrand for the n'th moment is of the form x" 7T 1 f(x), and
for increasing n the-maximum of this function moves farther
aﬁd farther along the x-axis., Moreover, this integrand vanishes
very étrongly for small x , éo the high moments are essehtially
independent of the behaviof of the function ét the origin., Thus,

most of the information about the origin is contained in the
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second moment, but the integrand of even this moment vanishes
Very strongly at the origin., For example, if f(x) has a 1

x
2

gingularity the integrand behaves like x~. Unfortunately we
know ohly the even moments; knowledge of fl would help

¢onsiderably in the fitting the function for small x.

3., MOMENTS OF THE DISTRIBUTION FUNCTIONS IN SHOWERS

(a) Approximation A

In this section we derive expressions fof the moments of
the ;ngular and radial distribution functions in a large shower
for energies much greater than the critical'ehergy*° We shall
- consider the diétribution functions which have been integrated
over the length of the shower. These will also be tge distribution

functions at the shower maximum, since the di energy spectrum of

B

" particles at the maximum is the same as the energy spectrum
integrated over the iéngtho Also, it will be convenient to assume
that the_showérs we consider are ihitiated bj a single electron of
~energy En but the results are really independent of this partic-
ular boundary condition so long as the initiating particles have
enérgies much larger than the energy of the electrons or photoﬁs

in which we are interested,

¥

"The essential results of Section 3.a appear in an unpublished
thesis by L. Eyges (Dissertation, Cornell University, 1948).
These results were derived independently by Professor John Blatt
and incorporated into some lecture notes. We are very grateful
to Professor Blatt for allowing us to see copies of these notes;
We have profited from several illuminating observations in them,
as -well as from suggestions for notation. '
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We épecif§ thé lateral position'and direction 6f an electron

~ or photon in the shﬁwer by the coordinates x and 7y in a plane
perpendicular to the shower axis and angles ex..and 9& iﬁ‘two
perpendicular planes whose intersection is parallel to the shower

j axis. We denote by TCU(E, GX, 9y, x, y) or, more bfiefly, T (E, Ei )
the number of~particles 6f ehergy, E at the point (x, y) in

dx dy.'travellipg at an aggle (ex, Gy) in de_ dey and. by

KKE,‘GX, Gy, X, y) the analqgoqs quantity for photons. Thén the
diffusioh equations which describe the propagation and scattering'

72

in the shower are

(5, - B)8() 5() 668 (8) = Ly (T ¥)

b

. E52 ( 321.[ BZ'IT) _ GX b_TI_ ~ ,gy B__T_t

-+ +
2 2 2 : o
LE b%: B%_ ox -‘By
. (2.a)
0 = L(T,X) -6 2¥ - eybx o, (2.b)
PESArY , |
~ where ES = 21 Mev and in the notation of Rossi and GreisenB, the

integral operators Ll and L, are
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L TY) = 2| Y(E, 8 F)Pm du
0 u ‘ . u

l .
| ’[TC(E, 8, ';‘j -1 Tl'( E , g, ?)] @(v) dv -
e L '.O - . .

1l - l.-v

cAM &3P, G
L o
L(TY) = | T4, D s aw-o¥ @, 78,7,
L - O v : ‘ v v .
| (3.b)

In this js-e’c'tién’_fv;{e" will set’ € equal to _zero‘,' " This is approximation

Aof Rossi and Greisen. Defining Tcmn(E) as

+ 00
_ — : m .n m.n ' »
_\-Emn(E) : (fff(E, exs eys x, y)(x ex ry ey)dex dey dx dy,
~ w0 v | | '

(1)

we have '
e 8;1 +7" 6} average = Wmn ~{TC @) ,
: " for electrons TCOO - mri

(5)



38

where Trbo is just twice the electron track length, i.e.,
= 2+2 (B,E) = 2. 0:437F “
T < (B E) = ' ()

<:X/ (W):} is defined analogously. Now we get a recursion relation
for ‘T'mn and Ximf We multiply equations (2;a5 b) by (xmen ymen)
and integrate over x, Y, ex, e ; The terms containing'derivatives

w1th respect to the spatial varlables are then transformed in the

following typical manner. CGConsider

jf{(xe+ )e_?fr_fdededxdy
o x }

+C>O , : B . +o0
' (((n+1 ” 3
- 3 de de_ dy TC ax
% x Oy =
JJ | , ) o 0%
- 00
ﬁfo | | o +00
+ yeedededy O 4x
y 'Bx
4 } -—00
)

Thellast term in the above eéuationivenishes‘SinCe-there are no
electrons at infinitely large radial distances;fromhtnevaxis.

Under the further aesumption that:the distribution function vanishes
strongly enough at infinity we' can integrate the first term on the

right hand 31de by parts, whereupon it becomes

ffj{“*l m"l‘r[(E o, 6 ,x,y)de a6, dx dy .
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Vo

*«If-we'carrj out a similar‘integration by parts on terms

like

400 i
DT (6 + 7" &P) 4o de_ dx dy.
~ . 2 Ty ox ¥
be-x_

1t 2

and remember, e.g., that

teo

f (,(_(.ﬁ.ex. ATl TN T TR, 6, 6, x, y)40.d0 dx 4y
IR T , |
TC (®)

= M+ 1,m-1

we finally fiﬁd that our equations become:

| o 2 . , .
0 = L(TG,E), ) + 25 nt- T B
. S . LE- '
+ Hﬂtﬁ -1, n;+f£E) ?
B : (7.a)
»_(’f) = L?(Ttmn(E?; \(Hm(w)> + ni\/m -1, n+ 1 (W) ) (.7,,b)
7. Equations (7.&,4b) have solutions of the following form:
- o ﬂEf1+ AA o o ,
-~ YC (B) = Aon Bs 5 : : - - (8.a)
mn gh+ 0+ 2 : ‘
S m+n L . .
Ymn(W) = Lmn®s P - R (8.b)

Wit n+2
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~where O(mn and an : arevj_'ndepex'qden? of E and W. =If,we‘
substitute from (8.2, b) into(’?\.a,_b) we are led to the following

equations, for E # E,
0 = - Alm +n+1)X__ =+ B(m+n -i-l)[imn-

, | . v
_t_._f n(n-svl)o.(.m’ n—"2+' m-o(m_l, n+1 °?

S (9'03»)

St 0+ DK = T+ ﬁm'-l,n+1 - (9.9)
The functions A, B, C, and {° that appear here are the same as -
those that appear in ordinary shower theory and are defined by
Equation 2.17a of Rossi and Greisen's .article. -

| Since TU 0o and XOO are known? one can solvsa‘

Eq. (9.a, b) by successively putting: m =0, n =2;m=1, n= 1;
m=2, n=0;m=4, n=0;m=3,n=1,... . The quantities'
d‘mn and (an are then successively determined in the manner

indicated by the following scheme: -

( &oo’ /3 00’ ] |

L

L(cxoz, 02) = (% ()= (%, 20

A

E—(;ozjﬁou) = (Y3, /313) = e



_[;1_'. -

Wémwéwmmmwd~%m*mﬁiﬁhlfw-mr1HPW;h+hglm
“fgnd(then used (5) to find'<:Ttﬁ;> “and <:sz;> over the- same
range. vOur results are giveﬁ in Tables IV and V. - The moments for
which m+4+ n is odd vanish by symmetry.

The infinite sequence of moments;, whosé first terms are
given in these tables,~de§ermines in principle the distribution
functions weAdqsire.' We shall see in the next sectibns what can
"be'deduced aboﬁt the distribution functions from the partial
sequence above. .

First, we shall use theéeimoments to check Moliere's
and Belenky's calculations of the distribution functions. Moliere.
"has’ derived- expréessions for the fadial distribution functionsg:
integrated over all angles, for both electrons and'phétons and the
angular distribution function, integrated over all lateral dis-
placements,’fofielectronszg Belehky has calculated the angular

L

distribution of;electrons','7To'determine-the‘aCCUrécy of Moliere's
I . . . ¥

and Belenky's results we have calculated '<rn>' and <@n>

from their distributions and compared these moments with those

derived from Tables IV and V using, e.g., for electrons
<1tﬁ10_\>‘ | <xm+ 7 > _2 <xm> = 2 <r°m> <vcos:m @ (>ioja)
ERCETYERIE PARLCHLCEL

"~ (10.b)

1l
il
3]

A
- B
v
'

2 - x2+y2 and 82 = 6}-2(-\'- 9327-
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The results are given in Table VI, It is seen that there-are:
large discrepancies between 'the exact moments and those of

Moliere.

- (b) Asymptotic Expansions for the Moments

We will now consider the broblem of finding the distribution
functions for energies where colliéion loss of electrons is‘nét »
negligiblé, i.e., when we retain the term Z:;g%}g “in Eq; (3.a).
"First, consider the equations for the track-1engths,‘néglecting _
scattéring. We call the electron track length: ZWf(EO’ E) and the

photon track length Z}?(EO’ W):- Theyfsatisfy the following

equations:
S(EO -E) = 'L'l(zﬁt, Zy) S  (1l.2)
0 = LZgsZy) . - ° - (11.b)

The procedure for obtaining an asymptotic solution for these
equations, valid dpwg to energies a ﬁew_times5the:critical 
energy is well known3° One $ssumes that . Z Hana Za.“havé
~their high energyvform,‘modified:by a cérrection factor in the

form of a series in € ~and & , respectively, i.e.,
E W

. . l+37E S oo

Z (B, E) = Z ') _(;2oa)
‘ _ ,14,37 E oQ g n .

2 (Bpp W) = 27000 > b () (12.b)
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" If one substitutes thése expressibns into: (3.2, b) one gets the

following infinite set of equations:

by Bln + Do an'A’(n +1) = (n+1) a'_y » @n=l, 2.
v 7 (13.a)
by = Cln+1) a, S P ¢ N )

The functions A(n), B(n), .C(n) -in these equations are
the same as those appearing in equations (9.2, b). These equations

can be solved, One obtains, setting. ag' =1 3

s (g 5 . MTE | 2 3
Zﬁmyx):_u 9(1-L$8§+am9§-54m£

| L o
+11188° L ...) - (1k.a)
gk
2 B, W =B (L-.me oy .68 -1.018
¥ 3 Fo -
W | W
T
+2.078 8 4 ..)) . (14.b)
wt o

It is possible to take somewhat different forms than (12.a, b)

for Zycand Zy. Following Rossi and Greisen, one can assume:
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2By, E) = P -2
: “'(1508-)
f _ 572 E, o
W (1+ (51 (3 -E'—2 Socee )
' (15.10)

Using'the binomial.éxpahsion, (15.a, b) can be broﬁghthinto the
" form (12.a, b) and the relationship betweén an; Bn and K (Srl
can be determined, Doing this, onéegets the well known expressions

of Rossi and Greisen,

Z (Bps B) = --‘*372Eo | N ! |
¥ > 2
. |
1+ .819/&\- .394 SN L.,
[+ (E) (E) + ("‘E) *
| . (16.a)
Z (By, W) =572 E .,
7
' [1 +. 771( )- 272( QBSA(W + ]
‘ (16 b)

We would like to emphaéize that this last form for the
track length is arbitrary in that one could assume series

expansions in & and _& , raised to any power, and determine
E W L
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the coefficients in the same wéy as above. The essential
behavior of the series is not changed by writing it in-a,fdrm :
~other thah that of (1&.&;5 b). - Thus, both (iaoa, b) and (16,a, b)
geem to be valid down to _E& ~-1/3, and break down for higher
- values. It is true_that fqi numerical computation one somgtimes:
needs' fewer terms in the series when it is in the form (16.a, b).
fhe coefficients in (1l4.a, b) increase slowly and in ahy
\'gqmputation'if one continues either of the series up to the
ﬁqintVWhere>the terms begin to inqreésehtheyvgive:the‘same aﬁswer.
Now let us turn to the problem of calculatipg_the moments
whén energy loss isrtaken intq accountol,One transfprms Egs.
(2.a, b) by integration by parts and defines Tqm and ¥, . as
before. Egs. (3.a)and (3.b) still hold with the understanding

that in tbe operator Ll(jTgn’ B/mp) Qne re£§ins the permz‘:

e‘thmn - One can get a formal solution of these equations by

T DE

setting
, oo : o

- - grt : @ s A .
Trmn(E) ) Ortmr-:-n i 2 Z *mn ( E) ,v . | : .(l:'7.,a)

: E : - R=0 ' R

L | m=+ n “bo .: N > _
{mn(w) = Gm B . Z b;:? (%) . (17.b)
.Wm-+ n -+ ‘

},::.0

Putting these expressions into Egs. (7.a, b) and equating to zero

E W
equations, for Q= 0,1, 2 ....

various powers of &_ and _& one gets the followingaéet of
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®)

n.:’i2am,'n-2

| .+(m+n'+£+ 1)O<mn}algf_‘.l)' (n-1)<><

*‘Im AS

fmX 2L
m-1l,n4+1 m=-1,n+1

3

(i8oa)

o o v ne 2 -cr(amn o +mﬁm el P2 el ®

mn mn

(18.b)

(0) (- 1) -

In these equations a(o) =‘ bmn =1 and an 0. For

L = 0, Egs. (18.a, b) are 1dentical with Egs. (9 a, b) Thus,

the quantities o mn> and (3 are known from the work 1n section

3a. The quéntltles ( A) and b(X)'.can‘then be determined

successively in ﬁhe_follow;ng sequence

L1 D), (2) '5(2)‘ WL (2) (2)

%022 P02 % %02 "o bttt Prpd 2y Ppydoee
L@ @ @ 1 D@ @)
20 bl 20 b} 20 F) 20 3 00 a‘oh 5 OL" 3 Oh s OL" b 0.00 °

As before, we are not directly interested in -Ttmﬁ and Y
_ mn

but in these quantities divided by Tt;o and K&O respectively.

If we then formallylcarry'out this division using'WIBO T 22
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and \X;O = 2 Z~U’ as-given by Eqs (lh a, b), we get expre551ons_
| for -Tcmh, andv K:MT in the form of the hlgh energy expre351ons
multiplied by a series in powers of &€ ‘or _& . For convenience

: E . W
in computation we can cohvert these series to the form

T (5) @’m>= o
e T

MI(“ @
S’
b

"
Q

<¥ (w)> ) <Y (w)> ]
[Zpeer

We will not prégent here our numerical results for ail the
(<) (£) -
quantltles CK. ~ and /5 , since they are of no great
_interest The quantities of real interest are <:; (Ei>>
and <e (W) In the Tables VII and VIII we present our

results for these qpantltles,
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.+ + It is:hard to estimate the.rangé of: validity of- thé series
in the denominators of-the“expfésSths:iﬁJTables VII and VIII.
“First, we have derived them*purelyiformallygwandfin the process
have divided- dublously convergent series into-one another. i “Also,
it is clear that for small _E  and _W_ they diverge rather
:v1olently, partlcularly for. tie higher Sadlal momentsow)Ne;e;;
‘theless, it is probably all right to use them, prov1ded one
terminates the series when_the terms start to increase. The
~reason we believe this fovoe;so‘isftha%'therseries for the track

'lengths in Eq. (14) seems to show the same dubious convergence,

but they have been checked and found to be qulte accurate for

_E_- greater then two or threen As a further check we he#é”
*Cimpared our results for the mean squares with the fairly accurate
~- calculations of Roberg and Nordheim and find- fairly good agiee-
-ment.. The comparison iSQgiven*iu Table IX.o i Troh Lo puleh
.The,discrepancies between our valués and those of ‘Roberg
and Nordheim for high energles ‘are due to:-the fact that they did
not use the usual asymptotlc express1on for the. radlatlon cross
- section, but an approximation to 1t° The dlscrepanc1es at lower
energies may also be parﬁly due to this fact, but more probably
arise because the Roberg—Nordhelm calculatlon is much more. . .
accurate than ours. It is worth notlng that our results for‘“
'the moments of the angular distribution are valid down to some-
what lower energies than for the radial distribution,  TRig’'is
also true for the higher order moments; from Table VII and VIII

we see that the series for the higher radialfmoments converges
more poorly than that for the angular moments of the same order.



-L49-

4,, MOMENTS OF THE DISTRIBUTION FUNCTIONS AS A FUNCTION OF SHOWER
DEPTH (APPROXIMATION A).
If we consider the: variation of number of particles with the

depth of the shower, equations (7.a, b) can.be rewritten .as-

2

_Ifﬁm_%___ = I Og,E, ¥ )45 - T 6
+uC B,
m = l’"n'.fl.:‘fr' G S
L 19.2)
P 2 B, D E Y a0
19.1)

These can be solved by performing a Mellin and Laplace transform and
doing the final integration by the saddle point method, just as in

the case of the longitudinal shower. This meanS'introducing

: R -At g
NTC 5 5,A) = dt dE e E°TC. (Eg. B, t)
0 o - :

. -(20,a)

Q. o0 v
. v N A
j dt j dE e E \(mn(Eo, 3, t)‘ .
o 0 ' . ' A (20.b)

then solving for the N's,

and

N(‘gn; sv-,7\)
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o v | N‘rt‘ - )\ |
'N(%E s;A) = n(n-1) E2 (7‘-‘-0-) ( n-25° W)
T [7\ 7\1(3)][7\ %2<S>]

L STURT R

'_—}‘ )\ (s)][x >\ (s)]

- mB(s) N(Y. 1 SHN)

m - 1, n4 .
Den@]ne]

: . !
N 0 AP -

T+

(21.2)

NCY ,s,x) - ngn-l E2 C(S>N<Tl;n . >s—2%)
D\ xl<s>][x N, <s)j|

L Y
D‘ - l(,s>] [ =x2<s)1

.‘—

mCNEA) NOY s N)
o100

(2i,b)

where, as before A(s), B(s), C(s), -and U‘ " are the functions
which arise in longltudlnal shower theory, and )\ (s) and

)\2(5) are roots of the e‘quat.lon-»y [>\+A<(s)-]<_{_>\+q']- B(s) C(s) = O.

o E
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A1l these fu_nct,ioﬁs ére tabulated in Rossi and Greisen's review '
1 article.

Th_e N'smay now be‘c_a..]’.éulated.':’i‘rl SeCiuenéé és iﬁ Section 3,
namely, .mv:O, h_—_2; m:l,vn_:l; ms=2, n=0; m:OQ n=h;
n=1, n = 3, . . It is then easy to : invert the Laplace |
transform for--each. case ”of the'Seque.nce, after substituting for
the N's ofr lower order.b The simplést case is that for
N%z; sy,W). In this e?cpreésion N(Troo,f_sl- 2, N) must be
‘replaced by twice the v‘alll;té: given by Rossi and Greisen, i.e.,
2N+ T)E o

[)\ A (s-z)] Y_)x A (s-z)]

where ~}Z‘. is the energy. of the 1n1tlat1ng electron.

The result. of the inversion is :

2

S
M(TE ;5 s, t) E
T2 ERRE

[>‘ (S) +Q'] exp[>\l(s) t]
[)\1(5) -\ (5)]‘?&(3) “hp (s = ][N () =N (s - z)]

D\ (s)+s1'] expD\ (s)t]
[>\ (s) =X <s>][A2<s> A (s - z)][)\ () =X (s - 2)]

[)\ (s - 2)+ v*] exp[)\ (s - 2) t] |
{xl(s =) A [A G - 2 NI G- 2) - (s -2

DG - 2)+<,:_|2 expD\ (s -2) ]
[A (s - 2) -\ SRR Y (sﬂ[)\ (s - 2) -x (s- 2]
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02 can be determined by a saddle point integrat_;ion of each of

the above terms just as in the case of the longitudinal shower

theory. In the above expression {}\2(5) —}\2(3 - 2)] has a

zero at s = 2.7, so one has to be careful in the evaluation. It
turns out that

C - 2 - S (23)
TCOZ(Eos E, t) = _1 . (E_S) .
(27rt)2

D\ (s )-%- Viz 2[?\"(81) t] exp [}\ (sl) t]
{D\l(sl) N (s >][>\ (s.) =N <s1-2>‘][)«1(s1) >\ (sl-z)]

[}\ (s )+v:] ( ) " P\w(sg)t-ﬂs -5 )_ﬂ-%'eXpD\' (82)' t]

a2 NelDte,) Ny <32_z>][>\2(s2> N (s z)]

Do’ (&) oo 1 b ]
K >\1<sl+-z> {)\ <s1> Dol +2]Ul<sl >\2<s >]

b @ev@c(sz-) e o T el 1
+

D\ (s ) M (st 2)][)\ (82 - N, (s +2)][)\2(52) -2 (52)]

These expressions for the’ second moment,’ appear in the riotes of
Professor Blatt, mentioned previously.
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where 8,5 51, and s, are defined by .

7

%2(5‘0) = >\ 2(50 _. 2)

. ’ ' .
NG t+10g B = 0
E

' E ., -1 :
)2(52) t +log Eg— (52 - so) = 0 -
In equation (23) it is apparent that the first two terms are
V'Small gompéréd with théilast two respectiVely, especially for
- large values of ?9 since the terms are in the ratio of

0 .- Also for reasonable values of t, );2(52) is

E
sufficiently more negative than )\1(31) to make the fourth

term small compared ﬁo the third term. If then,- t is not too

.small, We éan write, dfopping the subscript on s.

_ (24)
2
T _(E,E t) =S __1 Lfg) .

(2r)z \E

: v ) _ ] o ) . —% : ' o
ol () o] oDy
- E N X Gl ) N ter 2] ) - X060

For each pair of values of m.and n we find a similar
situation, that is, we find that TT;n(EO, E, t) can be

approximated by one term of the many involved in the double



Ttoo(Eo’ B, t) = —%(f) :

“5l- .

transform, Succeeding.terms of the sequence become so involved

that we shall not write themrhére; The procedufe;;ﬁowéjer3ris

exactly as in‘the'caée‘above; B .
From these expressions, we obtain the moments‘by dividing

by
o (25)

(2™®)=

, feogel o 1 ewbywd
| i[%l(_s)")\z(sﬂ |

Iﬁ this mannér, we have caiculated the apgular;momspts for both
.eleptrons and photons as well és the radial mqmgnpg;for elecprons
Jas a function of parameter s. Thevrelationship_betwegnv é _and
the depth of_thé shower isvgiveh throggh‘the gsual_exprgssioQ,
log (E,/E) +>\]ﬁ_(s)‘th_ = 0. Figs. 1, 2, and 3 show the variation
of the angular electron and photon moments and radial electron
moments, fespectivelj with 8o An.analytic exp;gssipn for the
angulaf moments is easily obtainédo In term; of the'functiéﬁs
used above, these are

N | o - /2 o (26.2)
AN = a0 Dy YL
(%) <8 >el'ectr0ns"m‘ ' P:l’(\s) +¢] I

n/2

| o iﬁ ‘Lin e
ﬂk:l A (s) =M s+ n)]a(s) -hp(s+nf] 7
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.o.n /o - ;. n n

W\ <<¥3 D -\ ,<<: ) ’:> S,
g photons T electrons
B »

(26.p)

Simi_lar expressions have beén obtained by B9rsellino . The
radial moments cannot be written in such simple form and will not

be given here.

5. THE DISTRIBUTION FUNCTIONS

(&) Approximation A

We now turn to the problem of calculating the actual
distribution function under approximation A, using the moments
' féimd_ in Sections 3a and 4. We will concern ourselves with the
angular distribution integrated over all displacements; from .
symmetry f,hese dis‘ﬁri‘b‘u’.c.ions are a function of 6 = (ei - 6;)5 .
SjJnilarly, the radial distributions are a function only of
r o= (X2+ yz)% + Moreover, from the strﬁcture of the equation‘s,
_ the distributions depend on E, r and W, r through the
combination Ez‘/ES and Wr'/ESY '+ We can denote both of these
quantities by x without confusion. The angular distributions
depend on _E6 and .We_ , both of which we call y. 1r is
méasured in Ea.diatio.n uﬁits and © in radians. We shall call

P.(Er) = P (x) the radial distribution of electrons and

Eg

PG( Ee) = Pe(y) the angular distribution of electrons,
By o . .
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Similarly we call Qr( Wr ) = ‘Qr(x) .the radial distribution
: T .

" of quanta and 'Oe( We ) Sthe angular distribution. The

distribut_ion functiogs are defined so that P_( %_5 Jr dr  is
' propértioh;l to the number of electrons'df'enérgys E 1in the
annular ring between r and r + dr, and P9( %@ )6 de | is
probortional to the number of electrons of energ; E ' in the"

‘solid angle bggween € and 6+ de. Wigpormalize the functions
S0 thgt J‘Pr(x)x'dx = 1 and »fpé(y)y dy = 1 and
‘similarly fo: the photons. T

Consider first the radial distribution of electrons at
the showef maximum (s = 1). As we have explained in Section 2,
our method of fitting functions by their moments does not give
the behavior near the origin., For the higher moments Moliere's
function seems to be quite_inaccurate3 but the second momént;
which>depends most.sensitively on the behavior near the origih ‘
differs from the correct value by only 12%. It seems reasonable
then to assume that Méliere's function is essentially correct

- for small x; ana to start calculations on this basis. Actually,
we reversed the procédure and used the higher moments first,
ioeo,.we found the form of the furiction for large x and worked
dbwn toward the origincr If one can base an estimate on the
examples in Section 25 dﬁr function should be quite accurate

_down to.about an x of 0.4. Our function joins smoothly to
Moliere's at this point. In Table X, column 2 we preéeﬁt our

results.
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- In calculating the radial distribution of photons there
is'agaip the difficulty that £he distribution function has a -
singuiarity at the origin. For this case also, the second
momént_as calculated -from Moliefe?s distribution fﬁnction is not
very diffgrent'from,the exact moment., We have felt justified
then in assuming his distribution function to be correct up to
‘X = O.4, and calculating the function for higher values from
~the moments. The results are given in Tablevx, column 3.

The calculatidn of the pngular distribution of electrons
is somewhat simpler than for the above two cases; since there
is no_singulérity at thve.origi;n° OurAresﬁlts are given in
Table X, column 4. .

. The angular distributioh of photons caﬁ of course be
calculated_by the same methods we have used for the other
distributions. Alternately, it is clear on physical grounds

.~ that it is determined once the angular distribution of electrons
is.knqwﬁ, sihce photons are not sdaﬁtered, but inherit their
- angular distribution from.parent electfons of higher eneréyai

Mathematically, this is clear from Egs. (2.b) and (3.b) which

giVe
1 .
Q (28) - L Po ( B8 )@ (V) &v .
0
oy , E0
- If we take #(v) = 1/v and write y = =



Now to a rough approximation Pe(y) is just an exponential,

P'e(y) x 12‘ exp (. =-'I\rl—2‘_y )

Therefore,
1

W) ~ R exp ( - \ﬁ?% ) Q%.oc exp (( -{12y)
T v y

0

is an approximationvto the angular distribution_éf.pﬁéponso
We have improved on this approximation by,tﬁe method of mqments,
assuming that the above.expression for Qg(y) is almost correct
near ﬁhe origin. Our results are given in the last»golumn'of
Table Xf

It is intereéting.toicompare thé résults of our calculations
of the distribution functions‘with those of Moliere, Figures L - 6,
curves A and M sho& the results.of the high energy.apprqximation
at shower maximum.gs derived from the_momenps and’as Calculated.
by Moliere, rsspectivelyo- Consider firét Pe(y) in Figure L.
Our calculations agree with Moliere's to within a few percent up
to y =z 1.7. Beyond this point Moliere's function_becomes smaller
than ours by a factor 0.9l at y = 2 and 0.36 at y = 2.5..

Near y = 3, Moliere's function becomes negative. Our calculations
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of Qr(x), Figure 5, also agree with Moliere's to within a few
pércent up to x = 0.5. At this point they begin to differ; but
by no more than 25% even up to x ; 5. The greatest difference
between our calculations and Moliere's isvin Pr(x), shown in.
Figure 6. There is good agreement up to approximately x = 0.6.
At this point Moliere's function begins to drop below ours and
becomes lower by a factor 0.85 at x = 1.2. Moliere's curve
then crosses ours at x = 1.8 and exceeds itvby a factor of

2 at x = 3.5. It then again approaches oﬁrs and crosses in the

oppésite direction at x = 5.5.

(b) Effect of Collision Loss

We now turnAto the problem of calculating the distribution
function for energies when collision loss is not negligible,
using the moments derived in Section 3a for s = 1. There‘aré
no essential différences in this work frpm.that of Section 5a;
the main difficulty here is that for the lowest enérgies with
which we deal the behavior of our series for the moments is
rather dubious. For energies down to about five times the
‘eritical energy the latter difficulty is probably not very
serioué; our expressions for the‘méments are probably accufaﬁe
within a few percent. Moréovef, we are helped by the following
fact: as one goes down in energy the distribution functions
become steeper and their shape over the range of interest

becomes less sensitive to the less accurate higher moments.



~60-

Also, when}collision loss is included,we:have iessl
knowiedge of the behavior of the functions at the Qrigin.:_ln
Approximation A, for s = llwe cQuld rely more or less on Moliere's
’caiculatiénsg in the present case we mustfguess. The best guess
seems to be that the singularities at the origin are the same .
as for High energies. Thus, from Table.VII'we see that the
effect of collisién loss’on_thelmoments is least for the lower
- order moments, i.e., for small disﬁances and anglés. It does
not seem unreasonable then to guess that tﬁe behavior bf the v
distribution functions for smal} values of their arguments is
unchanged from that when collision loss is heglected. In
calculating the distribution funcﬁiéﬁs, howevef;'we have not
made use of this guéss° The funétions away from the origin are
determined by the moments and we have éaléulated them in the
same way as the examples in Section 2. Thusvit seems that the
functions are determined fairiy éccﬁrately down to x or y of
about O.4. Nevertheless, we preseﬁt our'valﬁes down to 0.2 |
in Tables XI and XIT for E = 10€ and E = 5 & , respectively.

We have also calculéted the distribution functions for'
E~-2¢& . For this case, the expréssions,for the radial'momenté
are probably very inaccurate, and our radial distributions may |
very well be quite far off. The numbers in Téble XIITI thus
: represeht an educaﬁed'guesébrather than a reliable éalculation.
‘The anguiaf:distribution functions are probably somewhat'mofe

accurate than the radial fﬁnétibﬁs“since the éxpressions for the
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angular moments conVerge ﬁuéh better than those for the radial
moﬁents° But even so one cannot put much faith in even the
angular functions since the asymptotic cross sectiéﬁé:wéihave
used are pobr approximations at this energy even for the ligher
elements. |

The distribution functions for the cases E = 108, 5¢€,
and 28 are also plbtted in Figures 4 - 6, being marked
B, C; and D,bfeSpeétively. Tt is seen that the lower the energy,
thé'stéeper the function and the fewér the particles at large

distances from the shower core,

(c) ‘Distribution.FunctiQns at other Shower Depths

. We hgve also paléulated the distribution functions fér.
S = 056 and l,5. xThése'correspond approximately to a depth.
equal to half_the shower maximﬁm and twice the shower makimum,
respectively. Again, our method.of réconstructing ﬁhekfunction
from‘a_finite numbgr.of momentsAdoes not give us the behavior
near'the origin very accurately, especially if there happens to
be a singularity at.thg originf Pe(x, s) islnot singular and
should b'e,quit_e accurate down to x A2 0.3, Q@(y, s) is
singular and goes likev.l/y for small y and s = 1. For
é = 0.6 and los, a 1/y. singularity is consistent with our
results also, although it seems clear that for s = 0.6 the
singularityvshould pe stronger“than for. s = 1.5. Mainly for
ease in expressipg the normalization, we have assumed that the

singularity is exabtly 1/y for both s = 0.6 and s = 1.5.
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In Tables‘XIV and XV we presént the results for the high energy
angular distribution functions for s = 0.6, 1, and 1.5. These
are also shown graphically in Figures 7 and 8.

~ The radial diStribufionEof"eiécfrons is also singular at
the\origin, this singulafify:beinggof'ofdéf‘ r_‘ll/3 at the
shower maximum, if we assume Moliere*ﬁvéaiculation'to éin an
accurate picture of the' shower spread for émali‘ r.' In
caléuléting the.diétribﬁtion-fﬁncgibns"for"stg’CLén.and 1.5,
we again assume the functiohs singular3 but havé;novway Of
“specifying the order of the éingularityf This meaﬁé that‘we
have to guess the behavior of ihe fuhction for small r. Since
the major contribution to the area under the distfibution.
funption, namely <r° > comes from small r, the amplitude
of the function is hot gfeatly‘changed at largé r so iong
as we gontinue the curve back toward the origiﬁ smoothly and
make <<\r°\> unity. The shape of’the function for large' r
is correct, since it depends only on the higher_moments and
not at all on the type of singularity. The amplitude, héwever,
does depend to a slight extent on how well we have guessed
the behavior at the origin. The normalization, thérefore, may
be off by several percenﬁ° In Table XVI we pfesent our results

- 0.2 to

for x > 0.2, but we do not believe the value for x

be very reliable. Figure 9 éhbws the resulté graphically.
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Table I

Reconstruction of _e

6l

125

X

from Four Moments

and the Kﬁbwledge of Its Behavior:;'axt,--f’c.,h‘i-:»"‘Orign':n;--E S

N O oOlB

fo(exact) £ (fitted)
1 1
1,066 1.069
5.15 5.16
52.8 53.5

0
5
1o

2.0

3.0
4.0
5.0
6.0

7.0

o 1.2
x  xf(x) .= ¥ °

o xf(x)(fitted)

l.oo . _.“"A".

656
368
.0928
.0193
.00339
.00058
.000087

.000012

S, 1,00 -
V;ﬁ;éél
.358
.0930
.0187
.00339
00056
.000087

.000020



n

0
2
L
6

e5e

© Table Il

Reconstruction of 1 KO

fn(exact?‘wfn(fitted)" ox

1.00 1,00 1

2w00 L oaa o

2
3
672304 2212
. , o . : 6

7.0

® _ Sy,
-~ 'The Hankel function iHél)(ix) is defined as in Jahnke-Emde,

(ii) from Four Moments#*.

L.85

S 2.7
2,23
1.56
1.13

o
.228
0695
.0223
.00738
,00249

.000849

Tables of Functions, Dover (1945) .

3

B Ml

2.98

259

2525

1,96

1014-5

1,11

843
.228
0674
- .0226
00732
.00259

.000846



Reconstruction of . £(x)

‘fn(exact) fn(fitted)

1.00
3.75
59.1

2112.

1.00

3.67

58.4
2382, |

bl

Table III

= &* from Four Moments.
x  £(x) = E;f f(x)(fitted)'
1 2.8 190"
.2 1.83 1.53
3 1.35 L.
oy 1,06 1103'_
6 L708 725
.8 .502 R9
1.0 .368 .390
2.0 9.55x 107,100
3.0 2.87 2,75 x 1072
4.0 9.15x 1073 8;3L‘§‘1o‘3
5.0 3.03 - 2.78
6.0 1.01 9.36 x 10~
7.0 3. x 21074 3.30
8,0 1.18 _‘ 1.20
10.0 1.44 x 1070 1.75x 107
12.0 1.7 x 1076 2.81x 1078




~ TABLE IV

Evaluatlon of <ét (E5>> ,f[l]}r(E e o %y y)(xm en +_ym Gn)de de o dy--i
f-faj;f W(E; ex, ey, X, y) dGX dey dX dy

in Approximation A. The tabulated quantities are ( E-) e, Ttmﬁ(E) .

E
_:SL »6 1 ; N -~ y 5 "5_* 78 ;é ;“;é;;

0 2.00 o 0 o my o 194 0  8.81 0 59.5
10 .39k o 579 o 177 0 8.98 0 668 &
2 725 o 5 o 2.2l o 17 o 91
30 1.8 0 3.93 o 1907 0 131
L5430 10.6 0 47.0 o 315 |
5 o BT 0 1.72 x 102 o 107 x 10°
6 3.00x10% 0 970 x 10° 0 siex108
70 756100 0 3.9k x 10"

8 7.57x10% 0 362 x10° |

'9 Q; o 3.97 b'd lO6

10 5,09 x lO7



TABLE V

,,,,,

- 10

6.59 x 10°

: m+ n
in Approximation A. The tabulated quantities are (_W_) < ¥ (W)
ES
N .
:?\\ 0. 1 2 3 b 5 6 7 8 9 10
0 2.00 0 176 0 134 0 259 0 922 0 5.12
; |
1 0. .350 o 280 0 573 o - 2. 13 0 12.4 &
2 1.3 0 .86k 0 1.78 o 6.7 0 38.9
30 363 0 7430 28,2 0 166
L19.8 0 0 39.6 . 0 . 1.s1x10° 0 . 885
50 2.64x10%2 0 .992x10° 0 . 5.81 x 10°
6 2.085x10° 0 - 7.79x10° 0 . hs55x10t
70 713 x 10% 0 415 x 100
g 7.45x10° 0 432 x10°
9 0 5.06 x 107
8
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TABLE VI
Comparison of Exact Moments with Those Derived from the Distribution -

Functions Calculated by M'o’lgix'ere:_fé.nd Belenky. v

g AN . /. \n o n
Electrons: <r >A | E_ - Photons: <r >A W
o -8 B S .
n Moliere e Exact* - '.a¢Moliefé | . Exact
o 1 : 1 | | i1
2 0.80 ° . 0.725 . 102 1.3
Lo6uO 7.2 U160 26
. a2 o 2 g 2 103
6 1.06 x 107 4.95 x 10 - 5.45 x 107 3,34 x 10
g 2,76 x 103; 1.38 x 10° 3,19 x 10 1.36 x 10
10 1.03 x 105@ - .1.03 x 1% 2.85 x10° 1.34 x 107 ]
= “ - o | e |
';‘Electrdns:<<en:>kv [ E_\ Photons:,<:en;>kv fw \"
. \ Eg ' ' Eg
g' Moliere ‘vBelenki Exact . : Exact
‘o 1. 1 1 1
2 0.602 . 0.655  0.570 o 0.176
L1727 L3 0,959 0 oarm
6 30., 6.56 3.10 : 0.415
8 ©1.12x100 5L6  16.1 ‘ 1.69 .
10 " s5.02x10% 620 0 121 - 10,4
¥

Similar results for ‘the exacf;'radial moments of electrons have
been obtained by L. W. Nordheim, L. Osborne and J. Blatt, _
Proceedings of the Echo Lake Cosmic Ray Symposium, December, 1949.
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TABLE VII =

Electron Moments Including Correction for Ionization Loss.

2 \ , 2 . L 6
a | 173 160 1.52 |
2 -1.16 -2.02 o ”:" 2,53
3 257 sz 662
b -7.60 -19.6 - -30.8

4R
<>(On
n

3 2 b 6
1 .813 915 | 1,02
2 - T 950 -7
3 146 2,09 - 2,88
L 3.3 =605 - =931
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TABLE VIIT

Photpn»Moments~Including Correction for Ionization Loss..

£ 2 4 ' 6

F A e VT 16 Lo
2 | ) - 766 -1.10 ~1.95
3 | 1.54 2,52 2.66
h -3.80 ~7.71 ~13,0

g n

(L)

/%On

n
- 2 b 6

1 836 - 916 1.01
2 - 4556 .. - 755 - 952
3 * 949 1.50 2.23
14. b —2015 "'3098 ‘='6o70
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TABLE TIX

Comparison of Mean Squares with Calculations of Roberg-Nordheim.

-Electrons |
2 ‘ : 2 o
(E) <62> (z) <r>
E. ' ~ E
\ s s
E Roberg- Present Roberg—v Present
¢ Nordheim -~ Calculations Nordheim ~ - Calculations
00 545 .570 642 725
10 L7 493 .49 .535
7 ohby 467 L6 481
5.1 ;.h2 oLl 43 42
3 038 - .l+0 .1+O 035‘ ‘
2 .34 .29 .33 .29
_ | - Photons :  '
2 - 2
DR RORON
E ' E :
s s
W Roberg- Present Roberg- Present
£ Nordheim Calculations Nordheim Calculations
o0 181 176 1.13 1.13
10 .16 <152 .95 .893
7 .15 143 .88 - .816
5 A4 133 V58O .73
3 «12 «12 A N
2 A1 .09 .62 .52




-73=
TABLE X

Distribution Functions in Approximation A,

~NOONVVMIEIWWPONODONDHRERREE
L3 L] L] ® .

_ Er Wr . E8 W8
X _E_S or E; | . y = Es or E;
.f\ .
x or.y Pu(x) | Qp(x) Po(y) W(y)
0 %* g 9.27 33
11 7.13
6.2.. 7-:62 R 7033: 5035 8060
b 2.74 ' 1.12 o 2.78 2.19
.6 1.01 3.73 x 1071 1.52 7.68 x 107%
8 L.84 x 100t 1,96 ' '8.20 x 107Y 2,86
0 2.52 1,21 RN 1.18 .
.2 1.47 8,58 x 1072 2.32 L.56 x 1072
o 8.72.x 1072 6.04 1.18 1.96
6 5.36 L .55 6.04 x 1072 8.6 x 10-3
.8 3.49 3.48 2.90 - 3.82
0 2.26 2.67 1.46 1.72
.2 1.53 2.08. 713 x 1073 7.82 x 107k
oly 1.02 1.62° © 3.56 3.58
.6 7.20 x 1073+ 1.29 1.74 1.66
:8 5,16 1.02 - 8.2 x 1074 7. 79 x 10™?
;0 3.73 8.25 x 10-3 3.92 3.59
.5 1.74 L.70
.0 8.72 x 1004 2.73
5 L.52. R Y A
;0 2,51 9.70 x 1074
.5 1.46 6.04 '
0 - 8.80 x 107°  3.82
5 . : 2.46
;0 1.60
For O‘< x £ 0,2 we assume Moliere'!s dlstrlbutlon function is
valid. In expanded form it is v
B Pf(x) = 21.37 x"l/3 - 30.79 + 66.75 x 5/3 - 66, 99 x2
3
For 0 ¢ x £ 0.2 we again use Moliere's distribution function
(renormallzed) viz,
00 = snon e Z/VOT g aop om /3025

2x/ JO.1 T 3%

o7 3.46y
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TABLE XI

Distribution Functions for E = 102.,‘7W = 10&. Arbitrary

Normalization.
x = 10&r , y = 10£8
B &y
s S
xory  P(x) Q.(x) Fo(y)
0 | ‘ 10.0
- © . : . 701#2 }
2 9.0 '.» - 7.33. - 5.51
3 k5 2.5 S ha2h
.L" ‘2914'5 1012 I: ) 3.08
.5 1.35 6.36 x 1071 2.17
.6 8.7 x 1071 3.73 1.56
.8 3.85 . 1.96 . 7.95 %10
.9 2.72 1.53° 5.73
1.0 1.98 . 1.21 - A Vi
1.2 1.10 8.1 x 1072 2,01 |
1.4 6.5 x107% 5.73 . 9.54 x 1077
1.6 3.85 L3 4.29
1.8 2.35 3.13 1.96°
2.0 . 1.53 2.33 8.80 x 107
2.4 7.2 x 107 1.37  L.64 |
2.8 3.43 8,33 x 107 3.02 x 107
3.2 1.75 5.28 5.40 x 10~ .
3.6 9.3 x 1074 332 |
4.0 5.32 2,15
4.5 2.77 1.30
5.5 . 4,89
6.0 5.04 x 10'5 3.06
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TABLE XIT

Distribution Functions for E = 5£, W= 5£ . Arbitrary

Normalization,
X = 5&r , y =.5& 86
By Eg
xory Pp(x) Qp(x) Po(y). Qly)
o e o 1.2 S
.1 22.6 . 8.29 26.0
.2 9.9 7.33 6,05 9.0
3 LT 2.5 437 | 4,2
A 204 1.12 3.14 2,15
.5 1.4 - 6.36 x.107L 2.24 1,20 -
.6 8.0x 0%  3.73 1.57 6.60 x 107+
7 Le 2.63 100 . 3.70
.8 3.3 1.96 7 x10T 2,00
.9 2.34 1.53 . 5.4 1,20 ,
1.0 . 1.70 1.21 3.75 7.20 x 10~
1.2 9.00 x 1072  7.87 x 1072 1.74 ©2.80
1.4 5.1 5.43 7.7x107° 1.0
1.6 3,10 3.90 3.36 L5 x 103
1,8 . 1.90° 2.83 1.40 0 1.7
2,0 . 1,20 2,06 5.6 x 1072 6.7 x 107
2.4 5.3 x 103 1.15 7.8 x 107k 8.0 x 10=5
2.8 2.50 6.57 x 107 1.12 7.2 x 1076
3.2 . 1.27. 3.98 :
3.6 6.70 x 1074 2,45
4.0 3.70 - 1.57
L5 1.88 9.17 x 1074
5,0  1.05 5.35
5.5 3.13
6.0

3.47 x 1077 1.87
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TABLE XITI
Distribution Functions for E = 2§& .
x = 2¢&r
S
x ory Pun(x) Qr(x)
0 |
.1 23.0
.2 11,0 7.33
3 5.6 2.5
A 2.85 1.12 -
.5 1.55 6.36 x 107%
.6 8.0x 10T  3.73
.7 135 2,63
.8 2.30 1.96 .
s 9 1.30 1.53
1.0 8.5 x 107°  1.21 ‘
1.2 1.0 7.67 x 1072
1.4 2.18 5,04 ’
1.6 1.28 3.48
1.8 8.0 x 1072 2,37
2.0 5.1 1,64 |
2.4 2.33 8.03 x 107
2.8 1.14 4,13 ¢
3.2 5.85 x 1074 2,18
3.6 3.05 1.24
4.0 1.80 7.65 x 1074
L5 9.2 x 1070 4.28
5.0 2,52

Arbitrary Normalization,

e

o DWW O;sOoON0
° ° e o

7.1 x 10~
Lol

2.70
1.08

3.9 x 1072
l.42 '
5.0.x 1072
1.65.

1.70 x 1074
2,10 x 10~

2E£6
=

s

Qg(y).‘

29 o'O
9.4

4.0

1.90

9.5 x 10
5.2 ¢
. 2.87

1

1.58 -
8.8 x 10
5.0
1.5

L7 x 10_3
1.38

2

L.1 x 1074

1.33 5
1.15 x 10~

1.15 x 10-6
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TABLE XIV

Angular Distribution of Electrons for s = 0.6, 1.0 and 1.5.

x | | P(x, s)
5 =0.6. s=1.0 | 25-’_1_5

o 13 - 9.3 6.1

a1 9.1 7.1 5.0
2 6.3 53 4

L 3.0 2.78 2,60

6 a8 152 1,58 .
.8 7.10 x 107 "8,20 x 107" 9.00 x 107%

1.0 345 D b6 5.0

1.2 - 1.66 2.32 2.75
14 8,00 x 1072 1,18 .- 1,50

1.6 | .3.80 6,00 x 1072 8.00 x 1072 -

1.6 | 1.0 o 2,90 - L.18

2.0 8.20 x 107 16 2.8

2.2 3.70 a3 w07 112 .

2.4 1.58 | 3.56 o 5,60 x 107>

2.6 6.7 x 107 1.74 2.75

2.8 2.7 8,29 x 107 1.38
3.0 1.2 3.92 6.50 x 10“5 
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TABLE XV

‘Angular Distribution of Photons for s = 0.6, 1.0 and 1.5.

y 77, 8)
s = 0.6 s =1.0 s = 1.5
0 - WA 24
1 2.9 : 5.0 . 1.8
.2 1.8 - 1.7 1.5
4 6.50 x 1071 8.76 x 107t 1.0
.6 2.61 | .61 6.42 x 1071
.8 1.8 2.2 3.3 v
1.0 5.06 x 1072 ‘: 1.18 N 2.22
1.2 2.28 57 x100° 1.9
1. 1.03 o 628 x 1072
1.6 4,80 x 107 1.38 330
1.8 2.25 - 6.87 x 107 B 1.66
2.0 1.06 3. 8.44 x 107
2.2 4.83 x 107% 1.72 - . 4.02
2.4 2.25 8.59 x 107% 1.89
2.6 1.05 .32 8.90 x 1074 .
2.8 5,15 x 1077 2.18 L2 |
3.0 2.43 1.07 1.91




79

TABLE XVI .

Radial Distribution of ‘Electrons for s = 0.6, 1,0 and 1.5:

x _ 7 Pr:(x, s)
s =06 s £1.0 s = 1.5

. — B

.2 . 11.0 7,62 5,00

A . 2.85 2 2,00
.6 T g.00x 107 1,01 1,08

.8 T 2.30 , Coaeh x0T 610 x 1070
1.0 | 8,50 x 1072 | 2,52 .. . 3.75
1.2 T oh.00 0 WA 2,40
14 {0 2.18 Cog2x 102 T 1.60

1.6 Lo 1.22 - 536 R % 1 |

1.8 | 7.40x107 349 8,20 x 1072
2.0 | 7 L.50 2,26 6000
2.2 2,90 7. .. 1.53 L 450
2.4 | . 200 102 3,50
2.6 | 137 U g20x100 0 2,75
2.8 | - 950x107% 5,16 © 2.5
3.0 L6700 T L 3,73 1,70
3.5 | 3.00 L4 9,80 x 107
50 | 1.36 g2 x107F 6.00
L5 | - 6.20x 1070 - Ls2  3,65
5.0 | .. 299 or oo 2.5 S 2,30
5.5, . 1.39 1.6 W A
6.0 |  60x10®  s.ox10°  9.80 x 107
7.0 | 1.5 a T L0 x 1078
8.0 |. . S 2,40
9.0 1.33
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"FIGURE CAPTIONS
Angular moments for electron distribution function
vs. depth (parameter s).

Angular'moments for.photoﬁ distribution function vs.

depth (parameter s).

Radial moments for electron distribution function

vs. depth (parameter s). ' o

Angular distribution function at shower maximum for

electrons plotted for several energies,

Radial distribution function at shower maximum for

photons plotted for several energies,

Radial distribution function at shower maximum’ for

electrons plotted for several energies.

Angular distribution function of electrons as a

‘function of depth (Approximation A). -

Angular distribution function of photons as a

function of depth (Approximation A).

Radial distribution function of electrons as a

function of depth (Approximation A).
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