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I. The Scattering of High Energy Neutrons by Nuclei 

1.' INTRODUCTION 

Results obtained from experiments on scattering of neutrons 

are valuable in ,the study ofl-mClear. structure. With the aid of 

various models representing the nucleus it is possible to build 

up a consisterttscheme,wherebyall nuclei can be described in 

terms of a limited number of parameters. Low energy scattering 

is characterized by series of resonances. As the energies increases 

up to approximately 1 Mev, the cross sections,especially for the 

heaVy elements)level off. The neutron wave length becomes smaller 

than the radius and we approach the classical region where the 
2 

total cross section' should be 2lTR 0 At still higher energies 

the wave length of the neutrons becomes small compared to the 

radius and the nucleus becomes somewhat tr~nsparento This partial 
I 

transparency was discussed by Serber ~ who pointed out that at 

100 Mev the scattering mean free path becomes comparable with the 

nuclear radius. 

The first very high energy experiments were performed by 
1. 2 

Cook, McMillan, Peterson, and Sewell with neutrons having energies 

in the vicinity of 90 Mev. To explain the results obtained the 

model described in this paper was devised.: It represents nuclear 
i 

matter as having a mean free path for scattering ne~trons such as 

suggested by S~rbero It also ,turns out that nuclear matter must 

be characterized' by an index of refraction' as well. Thus all 
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i 
nuclei are treat~d as spheres of uniform density having a 

refractive index and absorption coefficient, differing from 

each other in size only. Such a ,model may be referred to as an 
) . 

"optical" or "transparent" model of the nucleus. 

In the following section we shall set up and calculate the 

cross sections from the "optical" model. Then, in section 3we 

shall compare the results obtained from the calculation with 

existing experimental data. 

2. CALCULATIONS 

Nuclear data obtained from experiments at lower energies 

show that the volume of a nucleus depends upon the, number of 

particles contained in it. This leads to the relationship 

R = roA 
1/3 

for the radius of a nucleus. ro has been determined in many 

ways, one of these being from experiments on the scattering of 

neutrons. In the low Mev region it turns out that the nucleus 

is quite opaque and absorptive with a sticking probability of 

unity for incident particles. In this region, scattering experi­
,3, 

ments have been performed by Grahame and Seaborg , at 7 Mev, 
4 5 

Amaldi et al at 14 Mev and Sherr at 25 Mev. From the results 

obtained, the radii of the various target nuclei can be calculated 

since an opaque sphere theoretically shows a total cross section 
2 

of 21TR. If for example, one calculates R from Amaldi's 
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, 1/3 -13 
data one finds R._ (1.22+ 1.37 A ) x 10 cmo The intercept 

can then be thought of as being somehow related to the wave 

length of the incident particle. As the incident energy increases 

this wave length becomes smaller and for high enough energies will 

be small compared to the radius of the nucleus. In such a case 

then one can neglect the intercept and find a stra~ght line 

R vs. A 1/3 . which goes thru the origin. In the transparent. 

model, the energy is considered high enough for this assumption. 

As a matter of fact, this model is a high energy approximation· 

and explicitly demands that ~ « R, that is, the wavelen~th of 

the incoming particle be small compared to the radius of the 

nucleus. 

The nucleus is to be represented by a sphere o~ constant 

density with an absorption coefficient and an index of refractiono 

These constants are calculable ·from known experimental data if one 

assumes the Fermi description of the nucleus. The differential 

and total cross sections can then be calculated by using the WKB 

approximation; this being applicable because the wave length of 

the incident particle is small enough compared to the radius of 

the scattering center to make the problem almost classical. 

(.2ME Ne.2 )V~ .1.., s the If k = III propagation vector of the 

incident wave outside the nucleus, its propagation vector inside 

is increased by kl such that k + kl :;: [2M (E + w);n2 ]~ It 

follows then that 

(1) 

\ 
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Using R = 1/3 
1037 A 

-13 . 
x 10 cm as deduced ?y Cook et ~l from 

the data of Amaldi et al and Sherr, one obtains·a Fermi energy 

of 22 Mev. The potential is usually taken to be about 8 Mev 

above the Fermi energy, so V = 30 Mev. The high energy 

experiments of Cook et al were done at approximately 90 Mev, 

d 13-1 for which k = 2.00 x 10 cm • Using these values, we get 

12 -1 kl = 3.22 x 10 cm • The absorption coefficient in nuclear 

matter is found from the product of the particle density and 

cross section for scattering of the neutron by a particle in the 

nucleus: 

K = ~ 
41CR 

(2) 

In terms of the n-p and n-n cross sections 0'"'= [z (j~p + (A - Z) 0-J/A. 
Cook et al give for the scattering of a 90 Mev neutron by a free 

protqn rr 
np(free) 

_ -26 2 
8.3 x 10 cm. This cross se.ction must be 

reduced to allow for the effect of the exclusion principle on the 

scattering by a proton bound in the nucleus. According to 
6 

Goldberger , the factor is (j = 2 0- ( ). Assuming a lIE 
np 3 np free 

dependence of the cross section we find, for E = 90 + 30 = 120 Mev, 
n- -26 2 
~ = 4.15 x 10 cm. If, following Goldberger, we take np 

cr-nn = 1 (), , and use the previously quoted radius formula, we 7; np 
12 -1 I obtain K = 2.4 x 10 cm for Z A = 1. However, measured values 

-,: 
of the p-p cross section at 100 Mev7 indicate that a-nn is almost 

equal to (J 0 If we assume that (j :: f cr ,we obtain 
np nn L.j. np 

K = 3.3 x 1012cm-l • This value will not vary much with z/A ~ecause 

" 



," 

I\J . 

-7-

, of the near equality of or and cr In the' ensuing . 
. nn np 

calculation we shall assume that kR > > I, kl and !. < < 1 so 
k k 

that klR and KR 'are of order one. At energies higher than 

90 Mev, it is evident that these conditions will be more valid. 

The scattering cross section consists of two parts 0 The 
2 

. first, the "absorption cross section" is just TeR times the 

probability that a neutron collides ~itha particle in the 

nucleus. This is not true absorption: inelastic scattering and 

scattering with exchange are included. The second part~ the 
:~. 

IIdiffraction" or "shadow" scattering, is elastic scattering arising 

from the distrubance of the incide-ntplane waves ~ by the nucleus 0 

The calculation is readily done by applying the WKB approximation 

to a square potential well with complex propagation constant 

inside and finding the phase shifts for the various partial waves. 

Before doing this, however, it is instructive to see that the 

same results can be obtained from an optical model. To illustrate 

the calculation, we first consider the scattering from a disc in 

which kl and K, rise to their interior values in a distance 

larger than 11k. Then one may neglect scattering at the surfaces 

and, for unit amplitude, of incident waves, the wave transmitted 

through the disc will have an amplitude and relative phase 

a = exp C - i K+ikl)T. The absorption cross section is 

2, -KT = TeR (1 - e ) (3) 



The ,qJff~~,9t§."q>Jl~:ros"s se'<tt-i()~~.@an o:ft}foliJ;ld:r\f.r.p,lAJr:kpe:ug.:§W5.j,Il;~r~:!;.ion 
. ;' r qrrrtii . . " 

,:.!,h.§. 1:> ~i~ a ~la..n~!~eh?-:Pd( t;he51:q.i S'y'2'1t-~~?J!liW@'p., ~~L~~?, J..9..M~~l.Pl.£l:!il~ ];E\@ut 

,~~4·.fe:r:.l3j,~.r'9m:c'.:?l~:p:4.r§l.n~ ~~veo ,9Yo a:fu~l'.Jktu.g~e(lY:LIf' 8i.~n:.~n ~~~ $,M.!ilw of 
. .1.. 

" ~71~prr~i~P9!ls.ti~~t C'!(9Si~;h;>J3&t.it911:r4pJ:)ea a8o'to' eHj:'r'3.fJJ;;~),":; ~H'lT 

<,2f3VJ3t,r JEjJ'I'O! ~lJ~·}.t:::WR2Jc~j '~:/lAJ:t1:rlO 6asrlq srlj' grd:bn.i:1 OftS !~ble(~) 

StU :rp,rLJ !?igeoJ f:iVJ:J8'u'l.:h.ltf'1 B,t jl ("fGve\\lorJ ~EjTj;t gil.rob s"!o1etl 

f:):::'fH,.:i(~,J:b .6 5.11 8Sill;"v 'iol"teJi1.r. "t1:edj OJ $';;,I;'1.)I b.c:f£ Ii. rio tf!tv ..c ' 

Thus for low density or small thickness~ approaches the sum 
e~~:;B'h.(J8 eri.J ,J,C; gfiJ'lEl.jJg:::H.~ .. :h)9Jg;;m 'Csm: !:)rto flerl'j~ a .:;;'\.1 Il:srfJ 1:9;%'1.61 

, of the scattering cross sectionp of the sep?rate n~cleo~s. The 
.o:~jjLfr::'2.n£"rJ S'J·.f>'lfT odd ~e.!),!.f:)1/v .trref.:u:::xf.[ 10 ef)lJ.:r,rlqm.s.:l'.rrm 'lot ,:bf1£ 

diffraction ~ross s.e'ctio,n, !19wever, vantsh~~ in ;the limit,. b~ing 
s~:=;Bflq Gv,d.e.Js''! Dfl,S e.ou,:f .r.Lqm·£, !U:l 9V.6Ii 11..r.N !Je.rh f..H'I;t rlguo'lll,:t 

~rop~fJt~~~J.~f~!:ao (~~~rJ'r~~r~~,!lOi2.tls ~trl1.~°U.~+(,.lf~~~rrl~") axe = £ 
, L -. • 

The corresponding calculations for a sphere are only slightly 

more 
( e) 

complic,cil/ed. T!:1~'rP.9..rtion p'r ! th~ wav~i SWhi_ch~~tr.i;lfes the sphere 
" \9 _ . . k.} J'J.Ji :; \ f ,OJ F~ 1.1 51J! ~ r-,\' 

.;:> 

at a distance f from a line through the center of the sphere 

It 
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emerges after traveling a distance 25, with 
222 

S = R -r. Its 

amplitude on emerging is a = exp (- K + 2ikl~$ ,so that, in 

place of'(l) we have 

-2KS 
(1 - e )r t 

2 r [ -2KR 1 2 2 } = TC'R L 1 - 1 - (1 + 2KR)e . J 12K R . 

(7) 

This formula for the absorption cross section has previously been 

given by Bethe 8~ Similarly in place of (4), we have 

cr 11 (-K + 2ikl)S 2 
d = 21t 1 - e " F ~ 

o 

25, 2 2 
= 1( R t + (1/2 K R ) 

'. 2 2 2 2 
- '(l/(~ + kl ) R) 

[ 
-2KR l 

',1- (l+2KR)e J 

[ 

2 2 
CiK - kl ) 

~KR r, . 2 2 '2. 2 l 
e' L(!K - kl ) + KR(~ "t kl. ) J cos 

(8) 

Here we have neglected refraction at the surface of the sphere. 

This is legitimate since it givesa second order effect, that is, 
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The angular distribution can be obtained similarly but we 

shall write it in terms of the WKB approximation applied to a 

partial wave analysis of the scattering. Our problem is to solve 

where kl k forr > R,' 

k' = k 1" kl + iK for r < R • 
, 2 , 

lJ,th, ' The phase shifts are easily obtained ,for, the A.. partial wave~ 

using Langer
'
s
9 

expression 

(,t+ k) 
2 

dr - kr+(i+ ~) 1C'/2 
2 

r 

(10) 

where (r) is the zero of the integrand. We assume that K/k 
o 

and kl/k < < 1 and integrate out the real axis after expanding 

the square root in the integrand. 

dr - kr + (..t+~) lr 
2 

Idr 

v 
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k 

2 
(1.+ ~) 

(11) 

The absorption cross section is given by the usual expression in 

partial w~ve treatment of scattering problems: 
1 

(12) 

This leads exactly to equation (7) if we convert the sum in 

equation ,(12) to an integral and integrate over d-J., taking 

as an upper limit fl < kR - ~. Similarly 

<T"'d (13) 

gives the q-d as in .equation (8). The differential cross section 

per unit solid angle can be obtained from the differential scattering 

amplitude 

= 

through o-(a) 

1 
2ik 

= 

, -2i ~.e. L (2t+l)(1 - e ) P~ (cos e) 

.t 

I fee) \ 2 • Generally, the sum ,has to be 

carried out explicitly at' each angle; only in the ,forward direction 

is it easily possible to obtain an analytic expression. One can, 
. . \ 

of course, also replace the sum by an integral and PJL (cos e) by 

Jo [(t+ ~)9 J ~ valid for small angles and large ~', then 



JW'''''':''':'",_~ .. ~: .. ,..",-.", .. ~·, ' .• """" __ ..... ":'_~~_r 

, (.' - \ )l' , 

integrate numericallyt01 0E~:t~n :t~e) ~ ;,:t~f+th:e integral expression 

is used at zero degrees ~ Sl w: < O~~~i:; 2f ~ -t... •. )f"-_.... ~;. 

where 

and 

2 
u 

The integration yie~ds5.rli1lt(~ 

(U) 
£(0) 

l···,J:r,~ ')"" ,n 1 r ),'.:: );-":"'~'. ;.C: .J..r.~:~.r·,f.'''~ o:.~.~:·t r .. ;: .. · .. t'"',':.', 

where i = .. (2kl t iK)R 

-,<" '--f ! !J i/ ell~: 

1-",(_( "'-'-1' T 
~ {~1 .::!', -«'"~ •• ,; t - { .. L. ",' ~:, ' ,.!..J (; -.. , 
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It is also possible to make a series expansion for the, 

, 10 
'integral .9 but' the series converges very slowly and is not as 

useful as the sum indicated above. 

3. COMPARISON OF THEORY WITH EXPERIMENTAL DATA 

(a) 90 Mev Data 

For the 90 Mev neutrons we have shown that for a potential 

12 =1 
, depth of' 30 Mev .9 kl :::: 3.22 x 10 cm and that K might be 

12, =1 12 =1 
between 204 xlO cm and 3.3 x 10 cm depending on the 

relative values of :o-nn and CT • We find that these values 
np 

are consistent with experimental data if we take 

R :;; 1.39 Al/3 x 10=13cmfor klR/KR ::: 1.1. 

, , ,,12 -1 ( do) the· values kl :;;;; 3.3x 10 'cm V=: 30.0 Mev 

Thus we adopt 

and 

K =3.0 x 1012 cm~lj corresponding to a mean free path in 

nuclear'matter of 3.3 x 10,,",,13cm• In Fig. 1 we have plotted 

222 2 
o;,/1TR :1 Cid/ttRand ot,/ilR :;;;; (~+ G'"d)/lTR as' 

functions of KR for the above 'values of K, and klo It should 

be noted that G"'/lTR2 is a function of KR alone.9 but that a 

1J~/Tt'R2 depends on' KR and the ratio klR/KR. Fig. 2 shows 

how crt / R2 varies with the choice of klR/KR asa function 

ofklR (actuallyR since k:J..' is takent~ be 3.3 x 1013cm=1 

for this plot). ,It can be seen that for' large ratios the cross 

2 
section may'go much higher ,than the limit' of 2TIR obtaih,ed in 

the case of the 'opaque nucleus 0 

, The values of R cal'cula:ted' from the experimental data 

of Cook et al by use of equations (7) and (B) are shown in Fig. 3 
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. -13 1/3 
along the line R = 1.39 x 10 A cm. The fit is exceptionally 

good. Further experimental·cross sections were measured by DeJuren 

and KnablelO at a slightly higher energy, .namely 95 Mev. Here 

again, a good fit of experimental data with an 

is obtained. 

The question now arises as to the accuracy with which the 

constants K and kl · are determined by the scattering data. If 

kl is decreased, keeping' K constant, it is found that the radius 

curve, Fig. 3 is pulled up in the middle; the resultant.curve can 

be approximated by two straight lines, the light elements lying 

on a steeper line thru the origin, ,while the heavy elements lie on 

a less steep line with a positive intercept. Increasing kl has 

the opposite, effect. A variation in kl ± 12 -1 of 0.2 x 10 cm , 

or in V of ± 2 Mev, begins to produce appreciable bending. A 

reduction in· K, with fixed kl , introduces a curvature in the 

radius line, the center being pulled down and the two ends, raised. 

The curvature becomes noticeable if K is reduced to less than 

K = 
12 -1 

109 x 10 cm, howeverK can be almost doubled before 

the opposite curvature becomes very pronounced. 

The total cross section measurements thus determine the 

index of refraction fairly well, but are quite insensitive to, the 

absorption coefficient. Measurements of f'r" and of the "'a 

differential diffraction scattering are required for a better 

evaluation of K. These have been measured experimentally at 

approximately 90 Mevll and the agreement obtained with the constants 
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, assumed' above found to be reasonably good 0 In Fig;, 4'wesee the 

comparison between the theoretical results for the ratio , (!"" fer 
a t 

arid the measured values obtained from attenuation data ina poor 

geometry experiment. Since the absorption cross section depends 

only on ,K and not on" kl y the indications are' that K :;:: 300 x 1012 

cm-l is a fairly good measure of the absorption coefficient. Note 

that the ratio traf (Jt < 05 in this case. If the nucleus 
\ 

were completely opaque Similar agreement was 

obtained in the analysis of absorption cross sectionsnieasured by 

, 12 
DeJuren and Knable 0 

The comparison between the experimental and calculated 

differential cross sections for aluminum, copper, and lead are 

shown in Fig. 50 The' theo'retical curves were obtained!ly summing 

the'partial waves as given in equation (14) using the constants 

which best fit the total cross sections. The experimental points 

are seen to lie high in the forward directionj but fit fairly well 

at larger angles. The reason this does not make the theoretical 

total cross sections too low is that the integral over all angles 

is weighted by the sine factor 3 thus giving a negligible 

contribution for small angles 0' The opaque model of the nucleus 

actually gives a higher cross section in the forward'direction 

than does the transparent model,9 but does not fit sO well at 

larger angles 0 In' shape,' the 'two models give very similar 

diffraction patterns, at least up to the first minimum. This is 

especially true for heavy nuclei" as can be seen'inFig. 6~> Here 
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the diffraction patterns calculated for various transparent nuclei 

are compared with the opaque nucleus, all normalized to unity in 

the forward direction. The curves for the heaviest nuclei are 

just about indistinguishable. For the lighter nuclei, the form 

of the curve is closely the same, but with an altered scale of 

abscissa, corresponding to using an effective radius somewhat 

smaller than the true radius. The increase in the half width 

of the diffraction peak is zero for lead (KR = 1.7g), 3.7% for 

copper (KR =- 1.20), 6.2% for aluminum (KR = 0.90), and 9.6% for 

beryllium (KR = 0.63). 

(b} 2g0Mev Data 

At energies higher, than 90 Mev, only total cross sections 
D . U 

are known. Fox et al have measured these at 270 Mev, DeJuren 
. 15 

at 2g0Mev.Also DeJuren and Moyer have studied the variation 

of total cross section of several elements with energy, the 

energies ranging from 95 Mev to 2g0 Mev. The constants K and 

kl can be calculated in a manner similar to that used for the 

90 Mev data. It turns out, however, that the best fit to the 

experimental data is obtained with kl :: O. This seems surprising 

since it implies an index of refraction equal to unity, or from 

equation (1) an effective potential of zero. One can calculate 

the index of refraction in a different manner than that used 

here and obtain an expression in terms of the forward scattering 

16 amplitudes for the n-n and n-p interactions. Jastrow has done 

this using both his own hard core model of the nucleon17 and the 
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IS 
model proposed by Christian and Hart for the n-p interaction and 

Christian and Noyes
19 

fOt the n-n (actually p-p) interaction. It 

turns out, indeed, that the hard core model predicts a rapid 

decrease in the index·of refraction and that kl does go to zero j 

being quite small even at 160 Mev. The other mod~l also predicts 

a decrease but not so rapid as that of Jastrow's. Experimentally 

the ~ vs. Ecurves show a rather flat cross sectionpelow 

40 Mev, a rapid decrease that takes place roughly in the. next 

120 Mev and a flattening off,· again beyond 160 Mev. 

If we take, then, kl = 0 at 270 -' 2S0 I-iev we must still 

calculate K and see whether this is consistent with the 

experimental results. Bo.th . the n-p and p-p cross sections are 

known at these, high energies and are found to be roughly equal. 

K calculated from these values . ( t5"np = 3.5 mill barns at 2S0 Mev) 

turns'out to be of the order of 
12 -1 ' 

2.S ~ 10 cm ,when one allows 

a 10% correction for exclusion effects. 

and experimental data, however, gives a 

The best fit of,theoretical 

12 -1 
K = 2.5 x 10 . cm • The 

radii calculated with this value of K and kl :: 0 are compared 

with the best radius curve, for the 90 Mev data in Fig. ·7. The 

agreement here is not as good as at 90 Mev, but is not too 

unreasonable. The large radii lie below and the small,radii above 

the curve. Since, for kl = 0, the total, cross section is very 

sensitive to, K, it may be that the densities of the light and 

heavy nucleido differ somewhat. ,The model proposed here, however, 

is a statistical model and should fit the heavy nuclei much better 
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than the light ones. Thus 4res,the.nght nuclei". one 

13 -1 finds that a K= 2 .3 x' 10 . ~m . c.dmbined with' kl =O~ ,arid" 

r o = 1.39 x 10-13cmfits the nucl~iheavier than c6pper,very:well. 

It should be mentioned that at these ,high energies the absorption 

cross section makes up a large fraction of the"total cross section. 

This is seen in Fig. B where.. cr /it'R2. and 
a 

2 
~lTiR' areplotted 

for the case kl = O. DeJuren14 has measured a lower limitori 

~/ crt and has found it to' be 0.5. Recent unpublishedreslilts20 , 

however show that the actual ratio may be much higher, in agreement 

with,the transparent model. 

4.· CONCLUSIONS 

The scattering high 'energy neutrons by complex nuclei'can 

be described reasonably well by a simple, optical model for the 
'. , 

nucleus. This model assigns ,a common.index of refraction and, 

mean free path for, absorption to all nuclei; these constants 

varying with energy, the former, rapidly decreasing, the :latter 

slowly increasing. The distinguishing .feature,of differerit·· nuclei, 

then, is size. With reasonable accuracy the 'radius of the nucleus 
. 1/3 -13 

can be taken to be 10.39· A x 10 ' cm. 

This mod'el represents a high energy'approximation and d'oes 

not describe the scattering of neutrons with energy much below 

90 Mev. For example,at42Mev,the next lower energy for which 

scattering data ,is available, is already out;ofthe region of 

validity. At this energy 'kR ,is not large compared with klR 

~' 
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and KR. Also at this energy the boundary conditions require 

more thorough investigation, 'since one begins to get into a 

region, where the radius cUrVe'may-have ,a finite intercept. 

No definite conclusions can be drawn concerning the fit 

to the highest energy data available; namely 270 - 280 Mev, until 

more, information is available concerning the relative magnitude 

of the absorption and total cross sections and diffraction 

scattering. 

," 
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. FIGURE CAPI'IONS 

222 
Figure 1. q-aj1tR, O'""d/1t'R, and C7"'t,/1tR as a function of 

12 -1 KR for kl = 3.3 x 10 cm • 

Figure 2. "'"'t/Tt'R
2

. for various ratios klR/KR as a function 

of, klR. 

Figure 3. Nuclear radius vs. calculated for 90 Mev data. 

Figure 4. Ratio of absorption cross section to total cross 

section as a function of radius. 

Figure 5. Comparison of theoretical angular distributions for 

almninum, copper, and lead with experimental data. 

Figure 6. Comparison of shapes of diffraction patterns of 

transparent nucleus with that of opaque nucleus. 

Figure 7. Nuclear radius vs. 
1/3 

A ' calculated for 280 Mev data. 

Figure 8. ~a/lt R2 and (J" t/'Tt'R
2 

as a function of 'KR for 

kl = O. 
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II. Lateral Spread of Particles in Cascade Shm"lers 

1. INTRODUCTION 

The lateral structure of large air showers has been under 

extensive investigation. 
1 

Euler and Wergeland first calculated 

the expected distribution functions rather crudely. Moliere2 

later improved on their calculations and obtained the radial 

distribution of both electrons and photons as well as the 

angular distribution of electrons. These calculations do not 

take into account energy loss of electrons by ionization 

(approximation A of Rossi and Greisen3) •. Under the same 

approximation, Belenky4 also calculated the angular distribution 

.of electrons, but with better accuracy. Others,Roberg a~d 

Nordheim5, e.g., have calculated. quite accurately.the mean square 

angles and displacements integrated over the shower for electrons 

and photons down to rather low energies, where ionization losses 

become important. More recently, Borsellin0
6 

has calculated mean 

square values as a function of depth. 

The reason that more .calculations. of the distribution . 

functions themselves have not been made is that j,t is extremely 

difficult to solve the diffusion equations when the terms 

involving the lateral spread are included. It turns out, however, 

that it is easy to calculate the moments of these functions quite 

accurately. When the calculations are made, it is found that 

the "exact" moments do not agree very well with those obtained 
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from Moliere I s distribution. functions. This' is eS,pecially true 

for large arguments. Now, knowing the moments for a function, 

one should be able to reconstruct the function. Mathematically 

this is feasible if the moments can be expressed in analytic 

form,and if the function satisfies certain conditions~ Moreover, 

the function so derived is unique. Since, however, we can not 

obtain the moments in proper form for such a procedttre;we'have 

tried to reconst'ruct the function graphically. That this is 

possible and gives'a unique solution can'only he inferred ,from 

several test examples which will be presented in ,the next s'ection. 

It appears that a monotoriically decreasing f'smooth" function 'can 

be reconstructed fromakriowledge of its first few moments, 

covering the region of interest'. Sirice the distribution 'functions 

physica.lly satisfy the above 'conditions, it seems highly reaSonable 

to expect a good approximation to the function over a. useful range 

of values. 

In this 'paper, then, we first show in Section 2 h6w~ to 

reconstruct a function from its' moments. lin Section 3, weca.lculate 

the mdments'in approxi.Jnation A 'a.t the'shower maximuma'nd obtain an 

'asymptotic expansion doWn to twice the critical erie'rgy, taking 

into account loss' of energy by ioniza.tion.~ In Section '4~:we '" 

show' how the moments may be obtained' for varying depth of the ' 

shower, in approxima.tion A ailly. Finally-in Section 5 we ca.lculate 

the actual distribution fUrtction 'using the moments found 'in the 

previous sections~ 
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The basic assumptions of our calculations are that the 

scattering angles are small and that the asymptotic expressions 

for radiation and pair production are valid. The calculations 

hold for any element for which, at the energy considered, these 

assumptions are valid. 

2. RECONSTRUCTION OF A FUNCTION FROM A FINITE NlJ}ffiER OF ITS MOMENTS 

In this section we shali'present some -evidence for the fact 

that knowledge-of the first few moments of -a 'reasonable' function 

essentially determines the function over a limited range. We shall 

consider functions which are ismooth', decrease monotonically ~rom 

o to 00 ,-and which mayor may not be singular at the origin. 

For physical reasons these will be the characteristics of the 

actual distribution functions that we shall seek later. 

Our confidence that a few moments determine the function 

rather well rests on several iexperimentsi in which known functions 

were reconstructed from about four known moments. After trying 

*' various analytical schemes' for these test cases we found that the 

* While this work was being carried out we received a Copy of a 
paper-by L. V. Spencer and U. Fano entitled "Penetration and 
Diffusion of X-rays~ VII. Calculation of Space Distributions 
by Polynomial Expansion!i. One of the points of their paper 
seems to be the same as that of this section, viz., the first 
few moments of a reasonable function essentially determine the 
function over a limited range. Unfortunately, the neat method 
of polynomial expansions that they describe is not directly 
applicable to our problem, since our functions may be singular 
at the origin. 
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IJlost·convenient method for reconstructing the function was simply 
.. 

to graph an arbitrary function, calculate its moments numerically, 

alter the fUnction as indicated by the discrepancies from the 
. . 

correct momentl?, recalculate the moments, make a second correction 

and in this way approach a function which would give the correct 

moments. 

The results for three functions we attempted to fit are 

· given belowo We think these cases give fairly strong evidence 

· that in general one can with considerable accuracy reconstruct 

functions of " the type considered from their moments 0 

The first function attempted was f(x) = 
-xl. 25 e In 

x 
.. this caSe the only information used was that f(x):::! I _ ~o25 

x 
for small X, and the values of fO' f23 f 4, f6' where we define 

· the n I th mOiD.ent f by~ n 

f :: 
n 

5000 

xn + 1 rex) dx 

f:xr (x) dx 

· The value.s of the exact function and its moments, and the final 

fitted function and its moments are given in Table L 

..... 
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We see that the agreement is excellent. The fitted function 

begins to diverge from the true one around x = 7. This is not 

surprising, since the integrand of f6 has its maximum near 

x = 305, and the lower moments have the maximum of their integrands 

at smaller Xo Therefore j not much information about the function 

·for large values of x is contained in the four moments given. 

The data on two other sample functions that were fitted is 

given in Tables II and IIIo For these examples only the values of 

the moments were known and not the behavior at the origin. 

If one can draw any conclusions from th~se examples, it 

would appear that one is easily able to fit a function over most 

of its range to within a few percent, even when not much care is 

taken in fitting the highest moment. One cannot, however, determine 

the behavior at the origin with any certainty. This fact is 

particularly troublesome because one often wants to know the cosmic­

ray distribution functions near the origin. In the last two 

examples the errors become greater than 10% for x of the order 

of 003 or 004 and increase rapidly for smaller x. The reason that 

the behavior at the origin is not determinable is as follows. The 

integrand for the n'th moment is of the form xn+ 1 f(x), and 

for increasing n the maximum of this function moves farther 

and farther along the x-axis. Moreover, this integrand vanishes 

very strongly for small x, so the high moments are essentially 

independent of the behavior of the function at the origin. Thus, 

most of the information about the origin is contained in the 
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second moment j but the integrand of even this moment vanishes 

very strongly at the origino For example~ if f(x) has a . 1 
x 

singularity the integrand behaves like x 2 • Unfortunately we 

know only the even moments, knowledge of fl would help 

considerably in the fitting the function for small Xo 

30 MOMENTS OF THE DISTRIBUTION FUNCTIONS IN SHOWERS 

(a) Approximation A 

In this section we derive expressions for the moments of 

the ~ngular and radial distribution functions in a large shower 

* for energies much greater than the critical energy 0 We shall 

consider the distribution functions which have been integrated 

over the length of the shower. These will also be the distribution 

functions at the .shower maximum.'l since the ~ energy spectrum of 
E 

particles at the maximum is the same as the energy spectrum 

integrated over the length. Also~ it will be convenient to assume 

that the showers we consider are initiated by a single electron of 

energy EO but the results are really independent of this partic= 

ular boundary condition so long as the initiating particles have 

energies much larger than the energy of the electrons or photons 

in which we are interested • 

. * 
The essential results of Section 3.a appear in an unpublished 
thesis by L. Eyges (Dissertation~ Cornell University~ 1948). 
These results were derived indeperidently 'by Professor John Blatt 
and incorporated into some lecture notes. We are very grateful 
to Professor Blatt for allowing us to see copies of these notes. 
We have profited from several illuminating observations in them j 

as well as from suggestions for notation. 
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We specify the lateral position and direction of an electron 

or photon in the shower by the coordinates x and y in a plane 

perpendicular to the shower axis and angles 9x and 9y in two 

perpendicular planes whose intersection is parallel to the shower 

axis 0 We denote by T(E, 9 , 9 , x, y) 
x· y --or, more briefly, Tr(E, 9, r) 

the number of particles of energy E at the point (x, y) in 

dx dy travelling at,an angle (9, e) in d9 d9 and by 
x y x Y 

(E, e , e , x, y) the analogous quantity for photons. Then the x y . 

diffusion equations which describe the propagation and scattering 

in the shower are?: 

where Es:: 21 Mev and in the notation of Rossi and Greisen3, the 

integral operators Ll and L2 are 
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1 ' 

-J, '[lL(E~ e;i-) ~ 1 1f( E ~ 9, -;)l, ¢(V) dv 
" ,1 - v 1- v U 
o 

+ E OTt (E, 9, 1) 
" oE 

C3.a) 

C3 .b) 

In this' 'se'ctionwe will set, E. equal to zero. ' This is approximation 

A 'of Rossi and Greisen. Defining TC (E) as mn 

""IT (E) 
mn 

we have 

- 00 

average 
for electrons 
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where Troe is just twice the electron track length, Le., 

2 0 Z (E, E) 
1t 0 

= 2. 0.437 EO 
E2 

(6) 

<:)( mn(W):> is defined analogously. Now we get a recursion relation 

for 1Cmn and v . We multiply equations (2.a, b) by (xIIlert + ylDen) Qrnn . x y 

and integrate over x, 'y, ex' e. The terms containing derivatives . y 

with respect to the spatial variables are then transformed 'in the 

following typical manner. Consider 

+00 

J Jf f(Xm 6: + ym 8;) e 'all 
x--

'bx 
de . de dx dy x y 

_00 

+00 

r;)1l: - Iff 6~ + ld6x d6y dy dx -
~x 

_oc 
- ()(Q 

+00 

f~1t + f f f y m 6
n 

e de d6 dy dx 
- y x x y 'Ox 

-oa 
-I)() 

The last term in the above equation vanishes since there are no 

electrons at infinitely large radial distances-from ,the axis. 

Under the further assumption that the distribution function vanishes 

strongly enough at infinity we' can integrate the first term on the 

right hand side by parts, whereupon it becomes 
+00 

-~JJ f f~ + 1 xm - llt(E, ex' 6y ' x, y) dex d6y dx dy • 

-00 
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) \.~ 

, ·Ifwe carry out a similar integration by parts on terms 

iike 

anq. remember, e ~g., that 

+00 

Sf fr (8: + 1 x" ~ .1+9; + 1 ym - 1)1t(E, e ,9 , x, y)d9d9 dx dy 
x y x y 

-0() 

= TLn+ 1, in _ l(E) , 

we finally find that our equations become: 

o = ~ crcmn (E) ''(nm (W») + Es 
2 

n(n - l)lT n _ (E) 
4E2 m, ~ 

+ mlC ,(E) 
'1n - 1, n +.1 

(7.a) 

(7.b) 

Equations (7.a, b) have. solutions of the following form: 

d- mrt 

m+ n 
IT (E) 

E. := s ; mn 
~+n+2 

(8.a) 

'mn(W) = fmn 
EmT n 

s , (8.b) 
Wm 1- n~ 2 
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where 0( mnand r. IJ1n are. independent of E and W. If. we 

substitute from (B.a, b) into (7 .a, .. b) we are led to the following 

,equations, for E ~ EO 

o :: - A(m + n + l)cX mn + B(m+ n 1-1) fmn 

-I- .E; ri(n - i)O( ·2+ mOe n +. 1 , . m, n ~. . m - 1, 
4 

o = C{m ,+ n + 1) 0< 
mn 

, 
(9.a) 

The functions A, B, C, and <r that appear here are the same ,as 

those that appear in ordinary shower theory and are defined by 

Equation 2ol7a of Rossi and Greisen's article •. 

Since TC. 00 and (00 are known, one can solve 

Eqo (9.a, b) by successively putting: m = 0, n = 2; m = 1, n= 1; 

m :: 2, n = 0; m = 4, n :: 0; m :: 3, n= 1, ..• . The quantities 

olmn and ~mn are then successively determined in the manner 

indicated by the following scheme: 
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We have calculated' (j.. mn and' f3mn for m, n up to Ih + 'n :;:10, 

" : B:nd' then used (5) to find <11: ," 'and < '( " over the same mn/ mn l 

range. Our results are given in Tables ,IV and Vo The moments for 

which m + n is odd vanish by symmetry. 

The infinite sequence of moments, whose" fir'st terms are 

given in these tables, ,determines in principle the distribution 

functions we d~sire. We shall see in .the next sections what can 

be deduced about the distribution functions from the partial 

sequence above. 

First, we shall use these moments to check Moliere's 

and Belenky's calculations of the distribution functions. Moliere 

'has' derived,' expressions for the radial distribution functions, ' 

integrated over all angles, for both electrons and photons and the 

angular distribution function, integrated' over all lateral dis.;.. 

placements, Tor electrons
2

• Belenky has calculated the angular 

distribution of .electrons4 • ," To determine the accuracy of Moliere is 

and Belenky's results we have calculated < rn> and < f)n> * 
frdm their distributions and compared these moments with those 

derived from Tables IV and V using, eog., for electrons 

<1tmo,> = 

<.-rron) = 

* 

<xm+ ym) = 2<Xm> 

<en -+ en> = 2(fP> 
" x' y" x, ' 

", 2'" "2 ' ,,2 
and e = ex + ey 

,- 2 (rm> <cos
m ¢ 2 ) 

(lOoa) 

= 2(en> <cos
n ¢/. 

(lOob) 
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The results are given in Table VL ' It is seen that there'are 

large discrepanc'ies between'the exact moments and those of 

Moliere. 

(b) ASymptotic Expansions for the Moments 

We will now consider the problem of finding the distribution 

functions for energies where collision loss of electrons is not 

negligible, i.e., when we retain the term E OlL, in Eq. (3.a). 
'OE 

First, consider the equations 'for the track lengths, neglecting 

scatte~ing.We call the electron track length Z"Tr(EO' E) and the 

photon track length Z y(EO' wh They satisfy the following 

equations: 

(ll.a) 

(11. b) 

The procedure for obtaining an asymptotic solution for these 

equations, valid doWTt to energies a ~ew titnesthe critical 
, ' 

energy is well known). One assumes that, Z it and Z ~ have 

their high energy form, modified b;y- a correction factor in the 

form of a series in t and 
E 

Z1C'.(EO' E) = 
,.437 EO . t 

~ , respectively, i.e., 
W 

Co 
'n 

an ( E ) 
E2 Ii = 0 

.437 EO 
00 

( ~ ) 
n 

Z iEo' W) = 6 bn 
~w2- W 

n = 0 

(12.a) 

(12.b) 
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If one substitutes these expressions into:(3.a,b) one gets the 

~ollowing infinite set·of equations· 

- an A(n +1) = (n + 1) a '. 
n - 1 

, n': 1, 2, •.• 

, .. (13 .a) 

.' 

The functions A(n)., B(n),. C(n) 'in these equations are 

the same as those appearing in equations'(9.a, b)'. These equations 

can be solved, One obtains, setting aO= 1 : 

4 ' + 11.lS ~ + ... 0) 4 . 
E 

2 
(1 .... 711 !. + .S66 f. W -2 

W 

, '4 
+ 2.07S!:.. + .•• ) . 

w4 

3 
- 1.231 f.. 

~ 

(14.b) 

It is possible to take somewhat different forms than (120a, b) 

for Z '1C" and Z '(. Following Rossi and Greisen, one can assume: 

, I 
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1 , 

1 

. .. ) 

(15.b) 

Using the binomial expansion, (15.a, b) can be brought into the 

form (12.a, b) and ·the relationship between a, band (j.. , ~ 
. n n n ,-n 

can be determined. Doing this; one gets the well knoWn expressions 

of Rossi and Greisen o 

-.437 EO 
2 

E 

1 

~+ .S19W- .394 (~)2 -t- .591 (i)3 -r .. T 
(16.a) 

.572 EO 1 

if (1 + .77~~)- .27~~)2 -t .354~t + ... J 
. (16 o b) 

We would like to emphasize that this last form for the 

track length is arbitrary in that orie could assume series 

expansions. in and f.. ,raised to any power, and determine 
W 
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the coefficients in the same way as above. The essential 

behavior of the series is not changed by wr:iting it in a form 

other than that of (14.a, b). Thus~ both (14.a, b) and (16.a, b) 

~eem to be valid down to £ ~ 1/3 ~and break down for higher 
E 

values. It is true that for numerical computation one sometimes 

~eeds' fewer terms in the series when it is in the form (16.a, b). 

The coefficients in (14.a, b) increase slowly, and in any 

, computation if one continues either of the series up to the 

point where the terms begin to increase they give the same answer. 

Now let us turn to the pr9blem of calculating the moments 

when energy loss is taken into account. One transforms Eqso 

(2.a, b) by integration by parts and defines ~ and v as 
o mn' 

before. Eqs. (3.a)and (3.b) still hold with the understanding 

that in the operator Ll CTr;nn' « IIl11) one retains the term 

e.'UTtmn 
, (.) E 

One can get a formal solution of these equations by 

~etting 

00 

( ~ ),L 1t: (E) ~ 
Em t' n Z (ft) .. s a mn 

Em + n -+ 2 mn E 
).:= 0 

(17 0 a) 

'~mn E:+ n 
00 J-

'( , (w) 2: ' (~ ~ - b ( Vi ) -, mn wm .... n + 2 mn 

J.= 0 

(17.b) 

Putting these expressions into Eqs 0 (7.a"b) and equating to zero 

various powers of E, and,L one gets the following-set of 
'T W' 

equations, for J.. = 0, 1, 2 • 0,0 • 
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+ (m ... n -t R..-r 1) 0( a(il - 1) 
, mn mn 

- E: n(n _ 1) 0( a (,e) 
'4 ,m, n:-: 2m,. n - 2 

+ m 0<. a (I.) , 
m - 1, n + 1 m -: 1, n + 1 

. ., . 

eX (..t.) C ( t -r 1) " ~ b (J .. ) + a b (L) = 0 
mn amn m ~ n + - I mn ~ m I ~ - 1, n+ 1 m - 1, n+ 1 

In these equations a~) 
'Co) , 

= b '= 1 mn d (-1) - ',0' an a -. 
mn 

For 

'J- = 0, Eqs. (18.a, b) ar,e ideriticalwith Eqs. (9.a, bL Thus, 

the quantities ~ , and f!' \ are known from the work in section 
ron' f -ron . 

3a. The quantities a (.,.t) andb (~ can then be determined 
ron ron 

successively in the followin~ s~quence 

(1) (1)" 
all ' b ,. 11 

,(2) (2) 
a b '. 04' 04' 

As before, we are not directly interested in -nc and ~ 
ron ron 

but in these quantities divided by ~o and (00 respectively. 

If we then formally carry out this division using lr ::: 2 7_ 
00 ~ 
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a,nd Yoo = 2 Z ?( as given by Eqs . (14.a, b), we get expr~ssions 

:for ILmn and. '(' mn in the form of the high energy expressions 

m~tiplied by a series in powers of e or ! For convenience 
T w 

;n computation we can convert these series to the form 

.. [ ~o(:!;.) ( ~ lJ m+ n 

J..- 0 . . , 

<. Ymn(W)\ 
If. = 0 

We will not present here our numerical results for all the 

, 

. (Q) (0) 
quantities O\m. and f~' since they are of no. great 

interest. The quantities of real inte;est are (rn (E» 

a,rid <en (w) >. In the Tab].es VII and VIII we present our 

r.esults for'these quantities. 
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It· is hard to -estimate'thEL rarig'e·6:f~ validity' of·the series 

in the denominators of the 'expre'ssl'onsiri:Tables VII and VIII. 

.' First, we. have derived them purely formally" ~and in the process 

have divided dubiously 'convergEmt":series intd 'oneMl0ther ;Co': Also, 

it is clear that for small E and ~ they diverge rather 
T e. , . · ...... r 

violently, particularly' for ,the higher: radia~ ;moments'~,:': .'Ne"J3.~~ 

theless, it is probably all right to use them, provided one 

terminates the series when the terms start to increase. The 

reason we believe this to be' so' 1'8: that the series for the track 
'I i • 

lengths in Eq. (14) seems to show the same dubious convergence, 

but they have been checked and found to be quite ac~ur,ate 'for 
.\, ' ("'.: .. ', 

E 
£: 

'greater then two or three ~ 
.; ."; ! '. \-~·I. I.' ~, 

". c. ., "(~-; ," ~ 

As a further check we M.ve 

'compared our results for the mean squares with the fairly accurate 

calculations >b£ Robe'rg and .Nordheim: and f·ind· fa'irly; g'ood a.'g:r~'E;}­

. ment o. The comparison isgi vert· in Table: IX> " "'.' " ,i,'· ;"; .':'.' 

The discrepanCies betweeh ourva,luesand:tho'se :of· Roberg 

and Nordheim for high energies 'are due to the fact that they did , 

not use' the' usua.l~symptotic expression for trie, radiation ,qross 

section, but an approximation to it. The discrepancies at lower 

energies may also be partly due to this fact, but more prob~bly 

arise because the Roberg...,Nordheim calculatl0n is much more,. 
.. : .I " ./ J) 

accurate than ours. It is worth no;ting that our results 'for 
I"," 

the moments of the angular distribution are valid down to some-

what lower energies than for the radial distri'bu'tion~' This': is 

also true for the higher order moments; from Table VII and VIII 

we see that the series for the higher radialmoment~ converges 

more poorly than that for the angular moments of the same order. 
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4., MOMENTS OF THE DISTRIBUTION FUNCTIONS AS A FUNCTION OF SHOWER 

DEPTH (APPROXIMATION A). 

If we consider the variation .of number of particles "lith the 

depth of the shower, equations (7.a, b) can be rew'rittenas' 

dll, (E,t) 
.. ·mn 

'Ut 

. E2 
- Ll (1tfun(E,t), ~ mn(W,t» + ~ n(n - l)rr (E,t) 

4E2 m, n- 2 

+ mT[ (E,t) 
m - 1, n+I, '._' 

(19~a) 

'1l4~ (E,t) - .L2~(E,t), Y mn(W,t»+~~ _ 1, n +l (W,t) 

K1.9.b) 
t 

These can be solved by performing a Mellin'ana Laplace transform and 
.' . I 

f 
doing the final integration by the saddle. point method, jU;'st as in 

i 

the case of the longitudinal shower. This means introduc~ng 
" 

" .. ~--. 

N(lt" ; s, X) . mn . 

,(20.a) 

and 

N(~; s,).) 
=)\t s 

e E '( (E , E, t) 
mn 0 

then solving for the N' s. 
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_ n(n - 1) E2 
4 s 

(" -f- cr) N (1t" . • s - 2,,,) 
m, n - 2., . 

m (K+q-) Nl'1r" '. ; S;A) .-
. "hi. - 1, n + 1 

;-
r~-~l(S)J'[ >"-~2(s)] 

(21.a) 
., 

-

Net ;s,~) 
. ron 

_ n(n _ 1) E~ O(s) N(~. n _ 1..) s - 2, " ) 

4 L" -~ (s)][ A - A2 (s)J 

. \ 

(2Lb) 

where, as before A(s)"B(s)~ C(s), and ~ are the functions 

which arise in longitudinal shower _theory} 'and. -~l (s), 'and 

A
2

(s) are roots of the equation: \. ~ + A(s)1 t~:~Q"J - B(s) C(s) = o. 

/ . i 
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All these functions are tabulated in Rossi and Greisen's review 

~rticle. 

The N's ~ay now be calculated in sequence as in Section 3, 

namely, m = 0, n = 2; m = 1, n = 1; m = 2, n = 0; m = 0, n = 4; 

n = 1, n = 3; •••• It is then easy to' invert the Laplace 
, " . 

t-ransform for each case of the sequence, after substituting for 

~he ~'s of lower order. The simplest case is that for 

~0t02; s, ~ ). In this ex~ression N(noo' s - 2,}.) must be 

replaced by twice the value given by Rossi and' Greisen, i.e., 
, . 

where E ,is the energy. of the initiating electron. o . , , ' . 

The resuit of the inversion is : 

• 

{ 

[AI (s) +c:r 12 exp[,X'l (s) tJ 

,[~l(s) -~2(s)1[~(s) -Al(S - 2)][A l (S) -"2(6 - 2)1 

+ • . [\(6) +.,.] 2 expl).2(6)tl. 

("2(s) -AI (s)][A 2(s) -AI (5 - 2nl~2(6) -A}s - 2)] 

[~1(5 - 2)+ o-J 2 exp[A ,(5 -'2) t] + =--__ ---=~_ ' 1 , 

~l (s,- 2) -}.. i' s)] [A l(s - 2) -~2(s~[)'l (s - 2) -~2(s - 2~ 

~l (6 - 2)-\-Q"1
2 

ex [A2(s - 2) t] , , } 

, -+ ["2 (s - 2) - Al ( s ~ [ A 2 (5 - 2) -" 2 ( 5 ~ ~2 (s - 2) -AI (s - 2 ~ .. 
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TC
02 

can be determined by a saddle point integration of each of 

t~e above terms just as in the case of the longitudinal shower 

theory. In the above expression [~(s) -)..2(s ..,. 2) J has a 

zero at s ~ 2.7, so one has to be careful in the, evaluation. It 

* turns out that 

(23) 

1 r[\ (51) T J (~) 51-t~~(51) t y~ exp [>;1(81 ) 10J 

E ll~ (81 ) -"2 (81)][ Xl (81 ) -Al (51-2)][}.1 (81 ) -"2(51-2)] 

·21 

+ [>-}82) + V"]2(i) 82-If}S2)t+(52-50)-~P ~2(S2) tJ 
[A2(S2) ~ "1 (S2~['A2(s2) - 'Al (S2-2~Q'2(,s2) - ~2(s2-2)1 

'. , , "1 . J ~ (52) + ,a2 (i) 52 [A~( 52) t +(52- 50) -J .", exp[>.2 (52) ~ 
[A2(s2) = ).2( s2t" 2~[~2(s2) ~ ~2(s2+2~[f.2(s2~ - ~l (S2)J 

* These expressions for the second moment' appear in the riot,es of 
Professor Blatt~ mentioned previously 0 

" 
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where so,s1' and s2 are defined by 

\ I E -1 
"2(s2) t + log -2. - (s - s) = 0 

E 2 0 

In equatio~ (23) it is apparent that the first two terms are 

small compar~d wi~h the last two respectively, especially for 

. l(a;g)e:~lues Of:O 'since the terms are in the ratio of 

EO' Also for reasonable values o~ t, ~ 2(s2) is 

sufficiently more negative than ~l(sl) to make the fourth 

termsmall compared to the third term. If~then,· t is not too 

small, we can write, dropping the subscript on s . 

1(" (Eo' E, t) .~ 02 . .--=l-,rr--l : s ) 2 • 
(2\C)2 

.' 1 . 

1 lA1(S) +11"12 ttY [A~(S) t r' exp[\ (8) t] 
E [~l (s) -~ 1 (s+ 2))(/'1 (s) - 'A2(s"," 2)](~1 (s) .- A2(S~ 

• • f 

ror each pair of values of m and n we find a similar 

situation, that is, we find that ""'frmn(Eo ' E, t) can be 

approximated by one term of the many involved in the. double 
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transform. Succeeding terms .of the sequence become so involved 

that we shall not write them l:lere. The procedure,,> howeye!"is 

exactly as in the case above. 

From these expressions, we obtain the moments by dividing 

by 

1 
E 

(25) 

[n-+\l(S~) r\li(s) tl=~ ., 
" 1\ ) J 11'1 exp (A 1 ( s ) ~. 

In this manner, we have calculated the angular moments for both 

electrons and photons as well as the. radial moments·. for electrons 

as a function of parapleter s. The.relationship.between. sand 

the depth of the sh.ower is given thr.ough the llsual. expressi.on, 

log (E.o/E) +A~ (s). t - 00 Figs. 1, 2, and 3 show the variati.on 

.of the angular electron and photon m.oments C!,ndradial electron 

moments, respectively with s. An analytic expressi.on for the 

angular moments is easily .obtained. In terms of the functions 

used above,these are 

(26.a) 

n n/2 

k::l 
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= C.(s ±. n) 
CCs) 

(26.b) 

6 
Similar eXpressions have been obtained by Borsellino. The 

radial moments cannot be written in such simple form and will not 

be g"i ven here. 

5. THE DISTRIBUTION FUNCTIONS 

.(a) Approximatio~ A 

We now turn to the problem 6f calculating the actual 

distribution function under approximation A, using the moments 

found in Sections 3a and 4. We will concern ourselves with the 

angular distribution integrated over all displacements; from 
1 

symmetry these distributions are a function of e = (e!+ e~)2 g 

Similarly, the radial distributions are a function only of 
. 2 1. 

r = (x2+ y )2 .. Moreover, from the structure of the equations.:/ 

the distributions depend on E, rand W, r through the 

combination ErIEs and wrIEs. We can denote both of these 

quantities by x with but confusion. The angular distributions 

depend onEe and ,we , both of which we call y. r is 
E;" """'E 

measured in radiation un~ts and e in radians. We shall call 

Pre Er) - Pr(x) the radial distribution of electrons and 
Es 

P ( Ee) = Pe(Y) the angular distribution of electrons. 
e Es 



Similarly we call 0 ( Wr) == Q (x) ,the radial distribution 
""r - r 

E 
of quanta and 0e( we ) Sthe angular distribution. The 

Es 
distribution functions are defined so that P r( Er )r dr is­

Es 
proportional to the number of electrons of energy E in the 

annular ring between rand r + dr, and Pe ' E9 )9 de is 
Es 

proportional to the number of electrons of energyE in the 

solid angle between e and e+ d@. 

so that J[;:CX)X dx ~ 1 and 

We normalize the functions l;eCy)Y dy ~ 1 and 

similarly for the photons. 

Consider first the radial distribution of electrons'at 

the shower maximum (s = I). As we have explained in Section 2, 

our method of fitting functions by their moments does not give 

the behavior near the origin. Fbr the higher moments Moliere's 

function seems to be quite inaccurate 3 but the second moment, 

which depends most sensitively on the behavior near the origin 

differs from the correct value by only 12%. It seems' reasonable 

then to assume that Moliere's function is essentially correct 

for small X3 and to start calculations on this basis. Actually, 
, . .' 

we reversed the procedure and used the higher moments first, 

Le., we found the form of the function for large x and worked 

down toward the origin. If one can base an estimate on the 

examples in Section 23' our function should be quite accurate 

down to about an x of 0.40 Our function joins smoothly to 

liJ:oliere is at this point 0 In Table X, column 2 we present our 

results 0 
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In ,calculating the radial distribution of photons therE? 

is agai!l the difficulty that the distribution function has a 

~ingularity at the origin. For this case also, the second 

moment as calculated-from Moliere's distribution f~nction is not 

;very different from the exact moment. We have felt justified 

then in assuming his distribution, function to be correct up to 

·x = 0.4, and calculating the function for higher values from 

the moments. The results are given in Table X, column 30 

The calculation of the ~lar distribu~ion of (3lectrons 

is som,ewhat simpler than for the above two cases, since there 

i~ no singularity at the origin. Our results are given in 

Table X, ,column 4. 

The angular distribution of photons can of course be 

calculated py the same methods ,we have used for the other 

distributions. Alternately, it is clear on physical grounds 

that it is determined once the angular distribution of electrons 

is known, since photons are not scattered, but inherit their 

angular distribution from parent electrons of higher energy. 

Mathematically, this is clear from Eqs. (2.b) and (3.b) which 

give 
1 

Q ( Ee ) ....L I Pe ( Ee ) ¢ (v) dv :: . e Es cr Esv v 

If we take ¢(v) l/v and write y E9 
= :::: 

Es 
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Pe ( Iv ) dv 
v2 

Now to a rough approximation Pa(y) is just an exponential, 

Pe(Y) ~ 12. exp ( -[12 y )' 

Therefore, 

JO

l 
~(y) ~ 12 

cr 
exp ( - {12' ~ ) ~. oC exp· ( - fl2 y) 

v Y 

is an approximation to the angular distribution of photonso 

We have improved on this approximation by the method of mo~ents, 

assuming that the above expression for ~(y) is almost .correct 

near the origin. Our results are give~ in the last column of 

Table X. 

It is interesting to compare the results of our calculations 

of the distribution functions with those of Moliere. Figures 4 - 6, 

curves A and M show the results.of the high energy approximation 

at shower maximum as derived from the moments and as calculated 

by Moliere;> respectively. Consider first Pe(Y) in Figure 4. 

Our calculations agree with Moliere's to within a few percent up 

to y:= 1.7. Beyond this point Moliereis function becomes smaller 

than burs by a factor 0 091 at y::o 2 and 0036 at y:; 2.5. 

Near y = 3, Moliere's function becomes negativeo Our calculations 
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of Qr(x), Figure 5, also agree with Moliere's to within a few 

percent up to x = 0.5. At this point they begin to differ, but 

by no more than 25% even up to x = 5. The greatest difference 

between our calculations and Moliere's is in Pr(x), shown in 

Figure 6. There is good agreement up to approximately x = 0.6. 

At this point Moliere's function begins to drop below ours and 

becomes lower by a factor 0.85 at x = 1.2. Moliere's curve 

then crosses ours at x = 1.8 and exceeds it by a factor of 

2 at 'x = 3.5. It then again approaches ours and crosses in the 

opposite direction at x = 5.5. 

(b) Effect of Collision Loss 

We now turn to the problem of calculating the distribution 

function for energies when collision loss is not negligible, 

using the moments derived in Section 3a for s - 1. There are 

no essential differences in this work from that of Section 5a; 

the main difficulty here is that for the lowest energies with 

which we deal the behavior of our series for the moments is 

rather dubious. For energies down to about five times'the 

critical energy the latter difficulty is probably not very 

serious; our expressions for the moments are probably accurate 

within a few percent. Moreover, we are helped by the following 

fact: as one goes down in energy the, distribution functions 

become steeper and their shape over the range of interest 

becomes less sensitive to the less accurate higher moments. 

" 
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Also, when collision loss is included we have less 

knowledge of the behavior of the functions at the origin. In 

Approximation A, for s:: l,we could rely more or lesson Moliere's 

calculations; in the present case we must ,guess. The best guess 

seems to be that the singularities at the origin are the same 

as for high energies. Thus, from Table VII we see that the 

effect of collision loss on the moments is least for the lower 

order moments, i.e., for small distances and angles. It does 

not seem unreasonable then to guess that the behavior of the 

distribution functions for small values of their arguments is 

unchanged from that when collision loss is neglected. In 

calculating the distribution functions, however, we have not 

made use of this guess. The functions away from the origin are 

determined by the moments and we have calculated them in the 

same way as the examples in Section 2. Thus it seems that the 

functions are determined fairly accurately down to x or y of 

about 0.4. Nevertheless, we present our'values down to 0.2 

in Tables XI and XII for E:: 10 t and E = 5 t , respectively. 

We have also calculated the distribution functions for 

E = 2f.. • For this case,the expressions for the radial moments 

are probably very inaccurate, and our radial distributions may 

very well be quite far off. The numbers in Table XIII thus 

represent an educated guess rather than a reliable calculation. 

The angular distribution functions are probably somewhat more 

accurate than the radial functions since the expressions for the 
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angular moments converge much better than those for the radial 

moments. But even so one ca'nnot put much faith in even the 

angular functions since the asymptotic cross sections we have 

used are poor approximations at this energy even for the ligher 

elements. 

The distribution functions for the cases E:; 10~, 5 £ ~ 

arid 2£. are aiso plotted in Figures 4 - 6, being marked 

B, C, and D, respectively. It is seen that the lower the energyj 

th~ steeper the function and the fewer the particles at large 

distances .' from the shower core ~ 

(c) Distribution Functions at other Shower Depths 

We have also calculated the distribution functions for 

s :;:: 0.6 and 1.5. These correspond approximately to a depth, 

equa~ to half the shower maximum and twice the shower maximlli~, 

respectively~ Again, our method of reconstructing the function 

from a finite number.of moments does not give us the behavior 

near the origin very accurately, especially if there happens to 

be a singularity a~ th~ origin. Pe(x, s) is not singular and 

should be quite a9curate down to x ~ 0.3,Qe(Y~ s) is 

singular ,and goes lik~ l/y for small y and s:;: 1. For 

s = 0.6 and 1.5, a l/y, singularity is consistent with our 

results also, ,although it seems clear that for s:::: 0.6 the 
, . ~ . 

singularity sho1+ld be stronger than for s::: 1.5. Mainly for 

ease in expressing the normalization ll we have assumed that the 

singularity is exactly l/y for both s:::: 0.6 and s::: 1.5. 
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In Tables XIV and XV we present the results for the high energy 

angular distribution functions for s = 0.6, 1, and 1.5. These 

are also shown graphically in Figures 7 and' g.' 

The radial distributionbf electrons is also singUlar at 
.' . -1/3 

the origin, this singularityheing of order r at the 

shower maximum, if we assume Moliere'! s . calculation to give an 
\ . 

accurate picture of the' shower spread for small r. In 

calculating the distributionf~nctionsfor s ='0.6 and 1.5, 

we again assume the functions singular, but have'no way of 

specifying the order of the singularity. This means that we 

have to guess the behavior of the function for sJIiall r. Since 

the major contribution to the area under the distribution 

function, namely < r O > comes from small r, the amplitude 

of the function is not greatly changed at large r ,so long 

as we continue the curve back toward the origin smoothly and 

make < r O '> unity. The shape of the function for large r 

is correct, since it depends only on the higher moments and 

not at all on the type 6f singularity. The amplitude, however, 

does depend to a slight extent on how well we have guessed 

the behavior at the origin. The normalization, therefore, may 

be off .by several percent. In Table XVI we present our results 

for x ) 0.2, but we do not believe the value for x = 0.2 to 

be very reliable. Figure 9 shows the results graphically. 
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Table I 

e 
1.25 -x 
x 

""'", 

from Four Moments 

.' 1:.-
,~ , 

and :the Knowledge of Its Behavior at the 'Origin. 

, , , 

fn(exact) fn(fitted) x xf(x) 
, -xL 25 
=e ,rl'(x) (fitted) 

1 1 0, 1.00 . 1,00, 

1.066 1.069 ' .5 • 656 ,;".661 

5.15 5.16 1.0 , , .36S .35S 

52.S 53.5 2~0 .092S .0930 

3.0, .0193 .01S7 

4.0 .00339 .00339 

5.0 .0005S .00056 

6.0 .OOOOS7 .0000S7 

7.0 .000012 .000020 

r, 

.' <i··.~, 



,0 

2 " 

4 

,6 

, Ta:blelI 

ReconstructiOI) of' iH(l) (ix) from Four Moments*. 
,0 " ' 

1.00 1.00 

'4.00 4.11, " 
" .. 

' ' :64.0 ' 65.4 

"'2304 2212 
, 

x ' f(x) = i H(l)(ix) f(x) (fitted) 
,,0 , , , 

.1 4.85 2.98 

.2 3.51 2.59 
, , 

.3 2.74 2.25 

.4 2.23 ' '1.96 

' , ' .6 1.56- 1.45 
, , .8 1.13 1.11 
:., ' 

1.0 .842 .843 

2~0 .228 .228 

3.0 .0695 .0674 

.4~0 .0223 .0226 

5.0 .00738 .0073'2 

6.0 ,00249 .00259 

7.0 .000849 .000846 

* , ' (1) 
The Hankel' function iRO (ix) is defined as in Jahnke-Emde, 

Tables of Functions, Dover (1945). 
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Table III 

-x Reconstruction of f(x) = ~ from Four Moments. 
x 

n fn(exact) fn(fitted) x f(x) e-x 
f(x) (fitted) =-x 

0 1.00 1.00 .1 2.86 1.90 ' 

2 3.75 3.67 .2 1.83 1.53 

4 59.1 58.4 .3 1.35 1.24 '. 

6 2112. 2382. .4· 1.06 1.03 

.6 .708 .725 

.8 • 502 ~519 . 

1.0 .368 .390 

2.0 9.55 x 10-2 .100 

3.0 2.87 ,2.75 x 10-2 
.. 

4.0 -3 9.15 x 10 . 8.34. x 10-3 

5.0 3.03 2.78 

6.0 1.01 9.36 x 10 
~4 

7~0 3.44 x 10-4 3.30 
. 

8 0 0 1.18 1.20 

10.0 1.44 x 10-5 -5 
1.75 x 10 

~ 

12.0 '1.77 x 10-6 2.81 x 10-6 



. TABLE IV 

Evaluatiqn o~. ~n\n (E~ 
'. ~~. ". '. . ....... . 

= {Ufn(E,e:l<=' .9y ' .x.,y)(~e~ .T~.~}de~ dey dx d~' 
-. tOO . .. . Iff! It(E, ex, 9y ' x, y} dex dey dx dy 

-~ . . 

in Approximation A. , ( ) m + n The tabulated quantities are ~s • It (E) mn 

~ 0 1 2· 3, 4 5' '6 7 a 9 10 

0 2.00 0 .' .570 0 ' .719 0 1.94 0 a.al 0 ' 59.5 
I 

1 0 .394 0 .579 0 1.77 0 a.9a 0 66.a 0' 
-...J 
I 

2 .725 0 .754 0 2.24 0 11.7 . 0 91.1 

3 0 1.4a 0 3.93 0 19.7 0 131 

.4 5.43 0 10.6 .0 47.0 0 315 

5 0 45.7 0 1. 72 x 102 0 l.07 x 103 

6 3.10 x 102 0 .970 x 103 0 5.4a x 103 

7 0 7.56 x 103 0 3.94 x 104 

a 7.57 x 104 0 3.62 x 105 

9 0 
. 6 

3.97 x 10 

10 5.09 x 107 



TABLE V 

roO 

Evaluation of (Ymn(W» J If f ¥(W~ e , e , x, 'Y )(xm eU + ym en) dQ dQ dx dy 
.0() "x .. y.. -' , ... x -.. y x y 

rfT[tcw, ex, 9y ' x, y) dQx dey dx dy 
-00 

in Approximation A. The tabulated quantities are ( ~s f;- n · t' (,W) 
mn 

~o. 1 2 3 4 
. .. 

5· 6 7 8 9 .10 
. 

0 2.00 0 .176 0 .134 0 •. 259 0 .922 0 5.12 
I 

i 0 .350 0 .280 0 .• 573 0 2.13 0 12.4 0"-
00. 
I 

2 1.13 0 .864 0 1.78 0 6.74 o· 38.9 

3 0 3.63 0 7.43 0 28.2 0 166 

4 19.8 0 39.8 0 1.51 x 102 0 885 

5 0 . 2.64 x 102 0 .992 xlo3 0 5.81 x 103 

6 2.085 x 103 0 7.79 x 103 ' 0 4.55 x 104 

7· 0 7.13 x 104 0 4.15 x 105 

8 7.45 x 105 0 4.32 x 106 

9 0 5.06 x 107 

10 6.59 x 108 
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, ' 

TABLE VI 

Comparison of Exact Moments with Those Derived from the Distribution 

Functions Calculated by Moliereand Be1enky. 

n 

0 

2 

4 

6 

S 

10 

n 

'0 

'2 

4 

6 

S 

10 

* 

Electrons: <rn/AV '(~r Photons~ (rn)AV ( ~s) n , E " , s 

Moliere Exact* ' Moliere Exact 

1 1 1 1 

0.S30 , 0.725 1.02 1.13 

6.40 7.24 ' 16.0 26~4 
, 

' '2 1.06 x'10, 
' 2 

'4095 x 10 
: , 2 
5.45 x 10 3.34x 103 

2.?6 x 103 • 1.3S x 105 3.19 x 104 1.36 x 10 6 

' 5 1.03 x 10 ' S 
,1.03 x,10 " 

' ,,6' 
2.S5 x 10 1.34 x 109 

, ',' E1ectr~'ns: < en> Av 0 (tf Photons~ ,(en;AV '(~sr 
Moliere Be1enky Exact Exact 

1 1 1 1 

00602 0.655 0.570 0.176 
i .. ' 

1.72 -1.43 0.959: 0.17S 

,)0.4 6.56 3.10 0.415 

1012 x',103 51.6 ,16.1 1.69 
," '4 

5.42 x 10 620 121 10.4 

.', ~ 

Similar results for the exact "radial moments of electrons have 
been obtained byLo :W. Nordheim, Lo Osborne ,and J. Blatt, 
Proceedings 'of the Echo Lake Cosmic Ray Symposium, December, 1949. 

. "". .t, " .... "', 
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TABLE VII . 

Electron Moments Including Correction for IonizationcLoss. 

(A(.t) 
. mO 

2 4 6 

1 1.73 1.60 1.52 ; 

2 -1.16 ... 2.02 -2.53 

3 2.57 5.42 6.62 . 

4 -7.60 -19.6 -30.8 

(J,(l) 
On 

2 .. 6 

1 .813 .915 1.02 

2 -.747 -.950 -1.17 

3 1.46 2.09 2.88 

4 -3.73 -6.05 -9.31 
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TABLE VIII 

Phot.on"Moments. Including Correction for Ioni'zation Loss. 

~rm~ '~,',;~'r,m>. .~'''' ,,' [~'" 2~:~' (,2.) ~.£. ~LJ m c " " ,C'_ 0 + 0--" ~' ~- "m' . W' , 
.' , " 0- l' ,.- ~ , 

1 

2 

3 

4 

1 

2 

3 

4 

2 
, 

~." " .. "",. "._ ~ ,.... . ...... ~'. . ..... ~ ...... 'l'" ~ 

('. ;', 
'. " " 

1.,J., 

- .766 

1.54 

-3.80 

2 

~ ..... -.. 

rUl 
On 

0836 ' ... 

- .556 , 

.949 

-2.15 

, , 

4 

1.16 

-1.10 
. , 

2.52 

-7.71 

4 

.916 

- 0755 

1.50 

-3.98 

6 

1.21 
, 

-1.95 I , 

2.66 

-13 0 0 , 

n 

6 

1.01 

- 0952 

2.23 

~6.70 
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TABLE IX 

Comparison of Mean Squares with Calculations of Roberg-Nordheim. 

Electrons ;.., 
." 

(i r . (e2 > (is) 2 
. </) 

\ s 

E Roberg- Present Roberg- Present 
£ Nordheim Calculations Nordheim Calculations 

00 .545 .570 .642 .725 

10 .47 ' . .493 .49 .535 

7 .44 .467 .46 .481 
, 

5 .42 .44 .43 .42 

3 .38 .40 .40 .35 

2 .34 .29 .33 .29 

, 

Photons 

( ~s) .-< e > ~) • r " 

, s 

2 2 2 

( 
W Roberg- Present Roberg- Present 

E.. Nordheim Calculations Nordheim Calculations 

DC .181 .176 1.13 1.13 
.. 

10 • 16 .152 .95 .893 

7 .15 .143 .~8 .816 
\ 

5 ~14 .133 .80 ' .73 

·3 .12 .12 .71 .61 

2 .11 .09 .62 .52 
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TABLE X 

Distribution Fun~tions in Approxim~tion Ao 

x = Er or Wr y E9 or we 
Es Es = Es Es 

.,\ .. 
X ~or y Pr(x) Qr(x) Pe(Y) o.e(y) 

0 * ';H'- 9.27' *** :1 7.13 " 

.,2 7.62 7.33 5.35 8.60 
J4 2.74 1.12 , 2.78 2.19 
.6 1.01 3.73 x 10-1 1.52 7.68 x 10-1 
~8 4.84 x 10-1 1.96 8.20 x 10-1 . 2086 

1~0 2~52 1.21 4.46 1.18 
1.2 1.47 8.58 x 10-2 2.32 4.56 x 10-2 

1.4 8.72 x 10-2 6.04 1.18 1.96 
1~6 5.36 4.55 6.04 x 10-2 8.6 x 10~3 
1.8 3.49 3.48 2.90 3~82 
2.0 2.26 2.67 1.46 1.72 . 
2~2 1.53 2.08, 7.13 x 10~3 7.82 x 10-4 
2~4 1.02 1.62' 3.56 3058 
2.6 7.20 x 10-3 , 1.29 1.74 . 1.66 
2~8 5.16 1.02 8.29 x 10-4 7.79 x 10-5 
3~0 3.73 8.25 x 10-3 3.92 3.59 
3~5 1.74 4.70 
4;.0 8.72 x 10-4 2.73 
4~5 . 4~52 1.57 .. 
5 ~o 2.51 9.70 x 10-4 
5;5 1.46 6.04 
6~0 8.80 x 10-5 3.82 
6~5 2.46 
7~0 1.60 

* For o~ x ~ 0.2 we assume Moliere's distribution function is 
valid. In expanded form it is 

** 
Pr(x) = 21.37 x-1/ 3 - 30.79 + 66.75 x 5/3 = 66. 99 x 

2 
• 

. For 0 ~ x ~ 0.2 we again use Moliere is distribution function 
(renormalized) viz. 

Qr(x) = 31. 94e - 2x./.['07f 
2x/ Jo.i 

*** 
For 0 ~ Y ~ 0.2 

%(y) = 3.44 e~ 3 .. 46 Y 
Y 

~ 
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TABLE XI 

Distribution Functions for E = 10e, W = 10 E.:.. Arbitr.ary ,. 
Normalization. 

:'. \ 

'x = 10e. r , y = 10ee 
Es Es 

x or y Pr(x) Q.r(x) Pa(Y) 
--

0 10.0 
.• 1 7.42 
.2 9.0 7.33 5.51 
• 3 4.5 2.5 4.24 . 

.4 2.45 1.12 3.0$ 

.5 1.35 6.36 x io-1 2.17 

.6 $.7 x 10-1 3.73 1.56 

.7 5.7 2.63 1.11 

.$ 3.$5 1.96 7.95 ;x 10-1 

.9 2.72 1.53 ' 5.73 
1.0 1.9$ .1.21 4.~4 

-2 1.2 1.10 $.1 x 10 2.01 
1.4 ' -2 6.5 xl0 5.73 9.54 x 10 -2 

1.6 3.85 4.13 4.29 
1.$ 2.35 3.13 1.96 
2.0 1.53 2.33 $.$0 x 10-3 

2.4' -3 1.37 " 1.64 ,7.2 x 10 
2.$ 3.43 -3 ' -4 ,. $.33 x 10 3.02 x 10 
3.2 1.75 5.2$ . 5.40 x 10-5 

3.6 . 9.3 x 10 -4 3.32 

4.0 5.32 2.15 
4.5 2.77 1.30 

5.0 1.53 
. -4 . $.03· x 10 

5.5 4.$9 

6.0 5.04 x 10-5 3.06 

~--- ---------~------------
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TABLE XII 

Diistribution Functions for E = 5£, W = 5 £. 0 Arbitrary 

N9rma1ization. 

x or y 

o 
1'1 
02 
~3 
~4 
05 
!,6 

, !'7 
.$ 

,,9 
1!'0 
102 
104 
106 
1!,$ 
2 0 0 , 

204 
2!$ 
3.2 ' 
3.6 
400 
405 
5.0 
5.5 
600 

22.6 
9.9 
4.7 
2~4 
1.4, 
$.0 x 10-1 

4.$ , 
3.3 
2034 
1070 

, 2 
9.00 x 10-
5.1 
3.10 

,1090 
1.,20 
5~'3x 10-3 
2.50 
1027 , 4 
6.70 x 10-
3.70 
1.'$$ 
1005 

3.47 x 10-5 

7.33 
2.5 
1012 
6.36 x 10-1 

3.73 
2063 
1096 
1053 
1021 
7.$7 x 10-2 

5.43 
3090 
2'0$3 
2006 
1015 
6.57 x 10-3 

309$ 
2045 
1057 ' 
'9017 x 10~4 
5035 
3013 
10$7 

y "", ,5 E.. e 
E;" 

1102 
$.29 
6.05 
4037 
3.14 
2.24 
1057 
1010 '. 

1 7;7 x 10-
5.4 
3.75 
1074 -2 
7.7 x 10 
3.36 
1040 
5~6 x 10-3 

70$ x 10-4 
1012 

~(y) 

2600 
900 
4.2 
2.15 
1.20 
6.60 x 10-1 

3.70 
2.00 
1.20 

-2 7.20 x 10 
2.$0 
1.10 
4.5 x 10=3 
1.7 ' 
6.7 x 10-4 
$00 x 10-5 
7.2 x 10-6 

" 



/ 
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TABLE XIII 

Distribution Functions for E = 2E. . Arbitrary Normalization. 
J' 

·x = 2 e r y :::: 2 E. e 
E Es s 

x or y Pr(x) ~(x) Pe(Y) o.a(y) 

0 11.8 
.1 23.0 9.0 29.0 
.2 11.0 7.33 6.8 9.4 
.3 5.6 2.5 5.1 4.0 
.4 2.85 1.12 3.65 1.90 
.5 1.55 6.36 x 10-:1 2.6 -1 9.5 x 10 
.6 8.0 x 10 -1 3.73 1.80 5.2 .. 
.7 4.35 2.63 1~18. 2.87 
.8 2.30 1.96 -1 1.58 . 7.1 x 10 
.9 1.30 1.53 4.4 -2 8.8 x 10 

1.0 8.5 x 10 -2 1.21 2.70 5.0 
1.2 4.0 

.' 2 
7.67 x 10- 1.08 1.5 

1.4 2 .. 18 5.04 3.9 x 10-2 4.7x 10-3 

1.6 1.28 3.48 1.42 1.38 
1.8 8.0 x 10-3 2.37 5.;0 x 10-3 4.1 x 10"":4 

2.0 5.1 1.64 1.65 1.33 
2.4 2.33 8003 x 10-3 1.70 x 10-4 1.15 X 10-5 

2.8 1.14 4.13 : 2.10 x 10-5 1.15 x 10-6 

3.2 5.85 x 10-4 2018 
3.6 3.05 1.24 
400 1.80 7.65'x 10-4 . 
4.5 9.2 x 10-5 4.28 

5 .. 0 4.9 2.52 
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TABLE XIV 

~gu1ar Distribution of Electrons for s:: 0.6, 1.0 and 1.5. 

x 

s = 0~6 , s = Lo s= 1.5 

0 13 9.3 6'.1 

.1 9.1 7.1 5.0 

.2 6.3 5.~ 4.1 

.4 3.10 2.78 ' 2.60 

.6 .1.4$ 1.52 1.58 

.8 7.10 x10 -1 08.20 x'10-1 9.00 x 10-1 

1.0 3.45 4.46 5010 

1.2 1.66 2032 2.75 

1.4 8 .. 00 x 10 -2 1.18 1.50 

1.6 ,3 080 
. -2 

6.00 x 10 
' -2 

8.00 x 10 . 

1.8 1.80 2090 " 4.18 

2.0 .8020 x 10 -3 1.46 2.18 

2.2 3070 
. . .. -3 
7013- x 10 1.12 

2 .. 4 1.58 3056 
' -3 

5.60 x 10 

2.6 6.7 x 10-4 1.74 2.75 

2.8 2.7 8 029 x 10-4 1.38 

3.0 1.12 3.92 6050 x 10-4 



-7a-

TABLE X!J 

Angular Distribution of Photons for s = 0.6, 1.0 and 1.5 .... 

y 

s = 0.6 s = 1.0 s = 1.5 

0 4.7 3.4 2.1 

.1 2.9 2.4 La 

.2 La 1.7 1.5 

.4 6.50 x 10-1 S.76 xl0 -1 1.00 

.6 2.61 4.61 6 . -1 .42 x 10 

.a lola 2.21 3.S3 

1.0 5.06 x 10-2 lola 2.22 

1.2 2.28 5.47 x 10 -2 1.19 

1.4 1.03 2.74 6 -2 .2S x 10. 

1.6 4.S0 x 10 -3 1.38 3.30 

1.8 2.25 6.87 x 10 -3 1.66 

2.0 1.06 3.44 S.44 x 10-3 

2.2 4.S3 x 10-4 1.72 4.02 

2.4 2.25 S.59 x 10-4 1~a9 

2.6 1.05 4.32 8.90 x 10-4 

2.S 5.15 x 10-5 2.1S 4.12 

3.0 2.43 1.07 1.91 



TABLE XVI 

Radial Di5tribut,ion of ElectronS ,for '5 :: 0.'6', '1.'0 and L5 ~ 

x Pr(x, 5) 

5 ~ 0.6 5 :;; 1.0 5 ::;: 1.5 
. ., . 

0 
.2 .·11.0 7.62 5.00 

.4 2.S5 2.74 2.00 

.6 S.OO x 10 -1 1.01 LOS 

.S 2.30 4.S4 x 10 
-1 -1 6.10 x 10 . 

1.0 S050 JC: 10-2 2.52 3.75 

1.2 4000 1.47 . -2 2.40 

1.4 2.1S S.72 x 10 
,e 

1.60 

1.6 1.22 5.36 1.14 

1.S 7.40 x 10-3 3.49 S020 x 10-2 

200 4·.50 2.26 6.00· 
2.2 2.90 1.53 4.50 

2.4 2.00 1.02 3050 

2.6 1.37 7.20 x,10 -3 2.75 

2.S 9.50 x 10-4 5.16 2.15 

300 6~70 3.73 1.70 

3.5 3.00 1.74 9.S0 x 10-3 

4.0 1.36 S.72 x 10-4 6.00 

4.5 6.20 x 10-5 4.52 3.65 

5.0 2.99 . ,"', ,'. '2.51 2.30 

5.5. 1.39 1.46 1.47 

6.0 ' -6 6.S0 x 10 S.SO x 10-5 9.S0 x 10 -4 

700 1.5S 4.70 x 10-4 

S.O 2.40 

9.0 1.33 
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·FIGURE CAPTIONS 

Figure 1. ~ngularmoments for electron distribution function 

vs. depth (parameter s). 

Figur~ 2. Angular moments for photon distribution function vs. 

depth (parameter s). 

Figure 3. Radial moments for electron distribution function 

vs. depth (parameter s). 

Figure 4. Angular distribution function at shower maximum for 

electrons plotted for several energies. 

Figure 5. Radial distribution function at shower maximum for 

photons plotted for several energies. 

Figure 6. Radial distribution function at shower maximum'for 

electrons plotted for several energies. 

Figure 7. Angular distribution function of electrons as a 

function of depth (Approximation A). 

Figure 8. Angular distribution function of photons as a 

function of depth (Approximation A) • 

Figure 9. Radial distribution function of electrons as a 

function of depth (ApprOximation A). 
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