UCRL-110
Cy. B

UNIVERSITY OF
CALIFORNIA

, Ernest O awronce
Radiation
caab orator

- B
TWO-WEEK LOAN COPY

This is a Library Ciréu'la_ting Copy
which may be borrowed for two weeks.
For a personal retention copy, call -

Tech. Info. Division, Ext. 5545

Y,
BERKELEY, CALIFORNIA

N

Qi —TIFom

TV



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



ve R 4'/;‘51/0,
. | - AR | ‘ cfgz 43‘/37‘

THE INELASTIC SCATTERING OF PROTONS FROM CARBON

By

oo

e R Pster Adalbert Wolff

A.B, (University of California) 1945
M.A. (University of California) 1950

DISSERTATION
Submitted in partial satisfaction of the requirements for the degres of

DOCTOR OF PHILOSOPHY
in
Physics
in the
GRADUATE DIVISION
~ of the
UNIVERSITY OF CALIFORNTA

L3

. _ Appreved:
V0009 QYN BL eDOOQCOOYENCODOQO0O00OCGQO0CO0O00OC0BDOSLCEOOSS
, 00 0PAacCO00A0REALO000B0C 000000000000 o000 0

*0000NOVOOBROOENO0OA000000000000000000

Comittee in Charge

n".'ited in the University Li‘ra!vyooooooo0070_00oona‘eeoqco-‘eoo-caoo'
' : Date- ' Librtrian



to,

'y

P

INTRODUCTION

The purpose of this paper is to study the spectrum of high
energy protons that have been inelastically scattered from carbon.
In particular, it will be shownvthat this spectrum depends in a
rather direct way upon the momentum distribution of particles

within the target.nucleus., Thus, by comparison with experimental

~ data on scattering, it is possible to test vafious assumptions for

this distribution and thereby gain some knowledge of the ground
state of the carbon nucleus.

To illustrate £he method a simple problem, that of scattering
from a harﬁonically bound particle, is solved firsto” This
calculation embodies many of fhe important features éf scattering
ffom the carbon nucleus anq, in addition, possesses ﬁhe advantage
of being soluble directly (at ieast in Born approximation) since
the harmonic oscillator wa%e functions and matrix elements are

known, Comparison of results obtained in the two ways then gives

- some idea of the validity of the approximations used and also"

. provides further insight into the mechanism of the scattering

pfocesso

" The second part of“the paper deals with the more complicated
prdblem of scattering from the nucleus, In this sectioh the method
illustrated before is used to obtain formulae for the energy spectra
of protens'scattered at various angles from carbon. 'Finally; by

making various assumptions about the momentum distribution in the
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nucleus, we attempt to fit what experimental data is available
thereby testing the theory and also providing some infbrmation a8

to which momentum distribution is most acceptable.

©I. METHOD AND ILLUSTRATIVE PROBLEM

Consider a harmonically beound particle (coordinate'?i,

Hamiltonian Ho)’ initially in the ground state, which is being

bombarded by another of the same mass whose coordinate is labelled

F Furthermore, assume that a potential V acts between the two

[s)

and let the incoming momentum,.'iﬁ be large enough that scatterings

induced by this potential can be described in the Born approximation.

Finally, assume that the incoming particle is unaffected by the

oscillator potential which binds the other. This system, which will

serve as an illustration of the method, is about the simplest

imaginable which represents, even crudely, the interaction of a -
fast nucleon with a neutron or proton within the nucleus.

~ Our problem, then, is to obtain (in so far as possible) a

'fprmula,’involving only the ground state of the harmonic oscillator,

which desgribea the energy distribution‘of the scattered particles.

'To do this consider the total current of particles scattered in

| the direction & (@ is a unit vector in the direction of

observation)., It is
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or, in a self-evident matrix notatien,
2,2\ - -t “;mo‘rf: i-.l?n"rrct“’l‘c’?) o
J = (M/2vwh")" lle e (Ekn/M)Von(ro)Vno(ré)
dr.
. o o
: ‘ (2)
Here
2 2 _ w2 -
Ao /MR /M- -E) Lk FETE,
‘ (3)

“the "\Yr-",s are wave functions of the particle bound in the
oscillator pbtent.ial, and E = (n<42)hwd where w3 is the
frequency. In what follows it will be shown that it is possible

‘to transform J', which is a sum of the form

e’ Z‘ﬁonl ® iy )

n
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| into an integral

J = -(M/zw”rﬁz)? | \F (@] ? ) da W

where q has replaced k.  and \ F(Q)\ 4 may'bé'interpreted as
the probability of scattering inté the differential momentum
interval dq. Furthermore; the original requirement will be
satisfied bécause \F(q)\ 2 depends only upon the ground state
wave function of the bombarded.system and thus a formula for the
energy distribution will have been obtained that does not involve
any of the excited states. |
In order‘tq perforﬁ the transformation which eliminates

these excited states the first step will be to carry out the sum

ovey n.  For instance; if there were no n dependence in the term

i knorourg
e Cﬁkn/M) this could be done immediately to give
[ = : ?
V (r ) Von(ro) V(ro) V(ro)

'n : 00 (5)

of coufée, iﬁ the present case such a simple procedure is not

possible. What will be done instead is to ~expand

i knor uré Cﬁk /M)

into a power Serles in (E Eo)° This gives rise to a sequence

of suins of the form.

E & -E) Y RERRANCH

n



b

each of which can be summed to give gzero~zero matrix elements ef

products and/or commutators of H, and V. For example, if we.

let ?‘ = p'?, the first three terms in the expansion are

RN A
i k °p =T} i p'oro—r'

\.,. : e noo(ﬁk/M) 9 ¢ p/M)
1o 30+ 2 4B TR (BB 2 M b —

%[l-ip“ﬁ“'-\w(‘“r;r')]w )(ZH/E p)
- (6)

In the first term there is no n dependence and the sum can be

1

evaluated as was done in equation (5). The second term gives

‘j’on(ro) (B -E,) Vno(r&)]
n

- Von(ry) HOV(ré.)> - Von.(r'o) <V(r5) H>

N _nwhich, by f.heiusugl rules of matrix multiplication; is

Virg) (H,, V) ) . (7)

By the same method the higher sums are easily found to be

5 Vonlr ) BB T o(xy) = {(¥ir,), H)(x3), B)

n o \ 00
(8)



T % Von(ro) ByB) Voo(rt) = (V(xy), B)(H,, (B, V(x2))) .

n

L o (9)
and so forth, This expansion is now substituted back, term-by-term,
into equation (2), The first term is merely

~1(F=p") * (Fpord)
(M/ZTI‘E) "Yk(r ev.pp T~ Cﬁp/M) V(rﬂl) V(r!-r,)

r\v (rl) d"" d?

(10)

The second, which is more complicated, is
-1 p«=p'°r°=rg
-(u/7)? '\\f (r) e V(r arl)eﬁp/m(zm/ﬁ 5 )
- . —
(H,, V(ré-»rl)) 3(1417p'F 1)) dr_ dr! d??;
o - (11)
The commutator appearing here is easily_ found to be
o (< v/ 17

- ' - o .

/20 (V] Virier))+ z‘Vl V(rger))* V) (12)

To evaluat.ev these derivatives fourier analyze V(ré»rl) and

'\‘(o(rl), i.e., write
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‘This is not an unreasonable way to calculate the integral since
the square of the fourier trahsform of ,qf; determines the
momentum distribution which we wish to appear in the final formula.

 Substituting the transforms back inté_equation (ll) gives

el | coo——
=1 p=pior =ré

2.2 o | |
- a/2wE)” | (e thp/M) V(r -r)) 30+-ip' FFL)
2 2 —— itof‘:ﬂ):?i iR’ ;I?i - - - -
1/p (K gl;'i)NEv? e e dr, dr} dr al g

| (1)
Now, by making the change of variables R = rg-ro s all the

integrations except that over R can be performed easily to give

4B KR

Mo+ 1P R Fad
(15)

In exactly the same way the contributiod to the current from

the third term in equation () can be calculated. It is'
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% L(’ﬁﬁ?ﬁ) - iG’“R)*'l]}dR afdx

o)

" Unfortunately, the higher termsvin the'expans’ion-('cq° (6)) cannet

be evaluated in this simple manner since thoy always invalue

commutators of the form (Ho, (V(r ), H )) which will contain

derivatives of the Hamiltonian, Ho° However, if the serios converges
: well (convergence will be discussed later), the first three terns

 shou1d be adequate to determine J. They are

el e

2 = - . 2 2 > \?
1',.-(;-\—1 p"’R) k4 2%\ - (B R) -1 B R41) [kt Rk
2 < 8 2
SN o p '
G
ak a d

(17)

Looking back to the cxpanaion (eqnation (6)) we see that in J
(Eere)ZM/ﬁz P has been replaced by EE:&L%_ELA& so, to the

p
'dppnoximgtion to‘whiph we are workingg the series can be summed



~10-

-
: 1 kyergery ' '
again to give the original e fﬁkn /M) except that in it -

(Enan)(2M/ﬁz) is everywhere replaced by (k2‘¥ 2-§°JL)9 - This

- simplifies the formula for the current considerably and by using the

abbreviations

2 2 .
q=(p -k =2%R)

k)

% . = o
.qg.qe

. it can be written in the following compact_form;'

= o/ ’"""*"_.2’2 \‘&,\2 \Vs:\z SR S &
| 2 | (18)

The R integral gives a delta function of G-P-¥, so that -

el .
when we carry out the k -integration -ET must be replaced

: o ' . ' . -
- throughout by -q. Furthermore, since q is a function of k

a Jacobian is introduced into the formula for the current. Thus

.J becomes

22
= (/2T ) -iN } \ ,‘ €5§/M)
) Ql ﬁ)
| | (19)
where the term in the denominator is the jacobian amd q is now

calculated from the squation

5 5 5 B -

T = -FD -2Fw R O



which is obtained by eliminating k from the two relations

LI —

3 = P+k and g

-, 2 2 —_— > % ,
(" - k" - 2k°RQ)* . Equation (20) is
particularly interesting because it is just the one that would be
£  obtained by eliminating the recoil momentum, T, from the two

classical conservation laws

Thus Tf is the momentum a particle would have after scétteri'ng
in the direction & from another particle movihg with rﬁbmenﬁm_i .
Wher_x viewed with this fact in mind the formula ‘for the current is
quite reasonable because \Nl\z represents the probabiiity of
finding a momentum _,QT and g is just the momentum the bombafdihg
particle would have after hitting another moving withi o

To obtain the differential cross section for scattering
into an increment dq of outgoing momentum the integral iﬁ the

=

current must be carried out over values of l consistent with a

constant q .. To do this rewrite equation (20) as

q2_ - qp cos 8+ chos% - q? {cosgcos e +sin§sin @ cos (@ -'YL)} =0

: o o —_— . '
where 8, §; ‘3 ,’YL are the polar angles of q arnd 2 , both
méasured from ?o Now let us make a change of variables from de

* . to (_iq,v'ioeo, 'd'Yl = g-n: dg . A short calculation gives



. . (1=;=szq)‘q _ | :
M = o q? (21)

éq\ [\62; (; - cos2§ ) - (ols+ ?_COS B )2]_%

where

oL

’

q(p cos & - q)
1_(1? - q cos 6)
q&_sin e

With this change of variables the current is

: 2 2.,k 2 ’
() | Sl ook
- 2vwH E62 1 - 0032§ (ol F cos ‘§ )2]%

(22)

The limits of integration on .the - cos \§ integration are the

branch points of the denominator so it can be evaluated by contour
: 2 : '

~ integration provided we assume \NX\ independent of ‘cosg o

"The result is

252 qQ. Iq Qﬁﬁ)“dq

doe o1 (u) \NKZ\VFE
T W (’"“) . \ \._.—-A

‘“ p a q .
. (23)
The limits on the final integration over X are found by requiring

that dv be real for some value of COS\S lying between -1 and 1.
dq ' v v ‘



This condition turns out to be

8y dezeemels
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- which, incidentally, ié juét the restriction that would be
obtained classicallyo For example, 1f q= p cos 9 the
formula gives, as it should the minimum value of zero far,Q
' The upper limit on .Q. , of course, is infinityo |
Before carrylng out the JL, integration an expression must
' bé obtained for \ql] In the case of the harmonic osc1llator
| this quantity is i
, ' | 2 )

(1 oy 52 TR Eme

So the integral can be performed'immediatély to give

Ge 1 (%) [FAw

- ¢*(a-p cos 8)> (‘E/Mob)

P R \v._;l mq/M)qdq
= | |

~(24)

This is th§ £inal result in which, as was mentioned previous1y,

q replaces kn and’
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- g%(q - p cos 912 G/ Mw)

dPe - (M/ﬁ) 2 o : P=al®
‘ Py} MT

' 2
V._.w»\
|is—| o o o
(25)
is the differential cross section. Actually, this formula is valid
only when q =~ p cos & is not too large (this will become clear
“later on) so -in the sloﬁly varying terms it.is within the iimits

of accuracy to replace q by p cos 8. This gives the somewhat

- simpler formula for the current

1e Lo wA? fuiie

21 5/2

2 ., 2 _
- ctn” 8(q = p cos @) ¢h 2 c
e ) nv oo cos i ‘VEZE‘ fﬁp/ﬁ)(cosze/sinve) dq

/ . - (26)
and a cofrésponding simple expression for the differentialséross"
‘section. | |

?o géin'some‘idea of the validity of equation (24) we will now
solve the samévproblém using the known oscillator functions.and then‘\

compare the results. Consider a traﬂsitiop to a fihal state of
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energy (n-+ é)huo and with the scattered particle moving awa& with

momentum "G (3 is comnected with bn L by theﬂggergy»consérviiioé law
22 22, \
A /M = ‘g /2M+n’ﬁu.))

The wave functions of the oscillator are products of Hermite .
v functlons, but if we choose the zl axis ‘along P = q the only
‘one of the Hermite functions that changes its quantum number during

the‘scattering is that having 2. as argument. The others integrate

1l
out immediately to give unity. Therefore, the matrix element, M,

‘is given by
-5 1FaT
‘ Muy % : "o -
e (M) V1 r(§re " o Vir-r,) &) &F
(nt 2%)
(27)

where g'z ’%59 2y (‘Iégg is the size of the ground state

wave function for the harmonic oscillator). By making the change

of variables r -T 27 and using the generating function for

1l
-Hermite polynomials the matrix element is easily evaluated. Its

square, which determines the transition probability, is
s | x 9 “ml“l 2
N n
‘Ml = 1 TR |p=a] %) e \V )
B Ly AN : p=q
nt 2

(28)
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For what follows we are interested in the case h <K “ﬁ'
which means that' n ; in the above matrix element, can be looked
upon as a continuous variable although, actually, it is discrete,

Using this idea the current of scattered particles is found to be

o,
-4 s
ﬁﬁa%ﬁ’ 2

|V5:a\ fﬁq/M)q dq

oe | Eae)emE)? (R [R5 e
R s

(29)

where n 1is everywhere to be replaced by |

2, 2 2 : 2 2 2
n = % (p°=g°) = p- with k- =
2 %503 12 °

o

o

Since n  was assumed to be fairly large Stirling's formula is now

applicable, giving for J

N TR ;

2Th 2
(p =q?)%
—p 2 i 2 2
expd|p=q_ \log ig:gi = Ig=g! - p.=q logip=-qg -1
K> R K K K
fo) o - .0 (o]

(30)



Thié rather forbidding formula can be understoéd'somewhat bstter
by expanding the term in the exponential'intd é:pOWer series in
qQ-p cos»e If we keep only terms up to and including (q - p cos 9)2
it is easy to verify that J is transformed into the following

considerably simpler expression°

5
- ctn6(q- o
J - ) J—_— ctn9(a-p eos 8 M“’ V__ll ?tha/M)q dq
(2'"')5 e (P~ A)E
_(31)

In a similar way the formula for the differential cross section

simplifies;vnamely

- ctn e(qu cos 6)
Mf‘
I __.I > dq

o - wA2)?

(32)

' lhese formulas are the ones to be compared with equations (24) and

(25)° Actually, the two pairs of.formulas'are quite similar. In
»p;rticﬁlar; if we make-the approximation q = p cos 6 ‘in the

sl?wly varyiggfparts of}equation (31) it réduces eiactly to equation
(26) (which is the approximate form of (24)). A-betpertest;'which

vgiveé some idea of the errors involved in equation (24), is to

check the dlfference in position of the maximum of the differential c;oaﬁ

section in the two cases, This difference turns out to be
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26,

ki/ﬁ p cos & which means a percentage error_dflfgi/h p2 c9§
For the case of scattering from carbon (as wili be seen in the

next, section) kz'/p2 is about one-tenth, so that we shduld expect
errors of around five'percent in our calculations of cross.éections
for nuclear scattering. This.five percent error in equation (24)
arises, of course; because higher terms in the series (eéo (6))‘
were neglected. Indeed, by examining the convergence of this seriés

we can see that this is .just the sort of accuracy to be expected.

In this expansion (eq. (6)) we wrote

- 2M .
_kn - \!pz “.%2’ (En = Eo)

and expanded into powers of 2M(Eg - EO) . Iﬁstead, we could also

have written

(5, - B)

gv¥=

kn = fpzw.f% (E“Eo)" n .
| (33)
(where 35; is the average energy of excitation) and then expanded_
into powers of AE% (En -B) . Actually, this last is the ?atural
eXpapsion parameter; our énly reason for using the former ﬁethod
waé»that it is much less cumbersome and gives the same answer as
the second (at least for the terms'wé'kept invthe expansion).
Using this new parameter it is easy to estimate the size‘;é t;E:§v
"o "0

error by examining the fourth term in the expansion of e n

(the expaﬂsion of kn itself converges well). If we choose rb-ré



of the order of nuclear forces and use for En - E the experimentally
observed hé.lf-width of tﬁe spectrum, the fourth term turns out to be
a few percent of the first thfee, thus giving an error of the same
size as that estimated by comp’afing the two solutions of the harmonic |
oscillator problem. |

7 Earliér we meﬁtioned that the connection between p, q, and
,,L (__ecio (20)) is just.th'at obtained from the classical consérvat‘lon
) laws of enei'gy and niomentum by eliminating the recoil. One might
think to imﬁrove this approximation by using somewhat different laws,
namely ?-\--DA. = 7;-(':-‘ and p2 = q2+ r2+ °L2 where ova
takes account of some departure from the classical equations. _Sucﬁ
an approach‘ is suggested, in the c¢ase of scattering from carbon, by
the Born approximation where the two outgoing pé.rt.icles are trea_ted
as pla.n_e waves ahd closure is used to Veliminét-e ﬁhe final states of
~the residual nucleﬁso ‘Unfortunately, this procedure ‘seems ‘tq give.., ,
no better results (at least for the osciilator problem) thénv'v-th‘e other
method. For instance, the. position of the maximum of ;the différéntial

¢ross section is given in this case by

2 2 .2
ol 3k081n6

2 2 2
p cos” O L4p coshe

q. = pcos 8 1 -

which cannot ; by any choice of 0L2, be brought into agreement with

with the maximm obtained from equation (32) which is at



, : 2 . 2 2
q = pcos® [ 1, _ ,ko — ko sin™ &

2 2 2 L
Lp cos € 2p cos 6

The inference to be drawn from,this fact is that equation (25)
represents the best obtainable approximatibn to_the differential
cross section which does.hot'involve the excited states of the
bombarded system in an essential way. This conclusion is.
reinforced by considering the éxpansion (_eq° (6)) in whiéh the first
three térms were easily calculable, and differed markedlj in form
from the fourth ﬁhieh could not Sé evaluated at all.

It is interesting to note that formula (25) is just the one
that would be obtained from the impulse approximationo Thus,nthé"
method we have used to derive this equation is useful mainly
because it gives some idea of the errors involved and at the same
time indicates that the impulse approximation probably cannot be
improved, |

This completes the discussion of the harmonic oscillator
problem. Having illustrated the methéd, we will now apply it to
the more intereéting problem of the scattering of protons from

carbon.
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- IX. SCATTERING FROM CARBON

For scattering from carbon the analogue of equation (1) is

S p— R -
' 2 ) n~r°*o
J = ( M ) ’\‘f: e ; V(_r*omri)'\\/.n ar x
. | _

2'11"}‘12 i=1

P, ;ﬁ'
. ' : k
,\V;’; e . E V(rowrj_).'\vo v ("ME)

J=1

(34)

where now V 1is the nucleon-nucleon interaction which depends

upoﬁ the coordinates, spins, and isotopié spins of the nucleons
involved and the F*’;Vs are wave functions f§r-the twelve particles
which originally formed the carbon mucleus. Actually, equation (34)
* is not the complete expression for the current in this case for we
have neglected terms that arise froﬁ 9éxchange collisions® in
which the bombarding particle is stopped and another pérticle ,
driven out of the nucleus. However, these terms canvbe handled in
exaétly the same way as the one ‘appearing in equation (34) so in |
order to. save writing we will omit them_until we get to the final
formulas and treat équation (34) as if it.repfesented the whole |

current., Furthermqre, if we consider scattering at fairly large



angles (say © v;} 20°) the iﬁterferencé‘terms'(i # J) which
appear in J only contribute appreci#bly for‘finai gtates in

. which two of the particles phét were in the carbon are moving very
fast (compared to nuclear velocities). _Howeﬁer; the probability
of transferring large amounts of momentum to two particiés in a -
single colliSion‘is small so in the following we cah heglect the
interference terms. With this simplification, equation (BA) can

be rewritten as

i K -f -por 2 .
) -;_ V(ro--ri)’\-\:1 dr (Jf_l_(_r_l,)
21rﬁ M

(35)

Incidentaily; i£ Should not be inferred from whét was said above
that thé>interference terms are alwéys unimportant for they give
the exclusion effects which modify thé forward scattering. For
example, using the Fermi médgl'of the nucleus it is easy to
verkfy that they'cut the sea£tering cross section to zefo in the
forward direction. .

. Thg Hamiltonian, Ho’ of the carbon‘pucleus_is the sum of
two terms, To and Vo, which_re?fesent the kinetic and potential
energy respectively. In the preVious calculation for scattering
from a harmonically bound particle the commutator (v, Ho); which
entered equations (7), (8), (9), and (11), was:equal‘to v, T,)

and this fact was used to obtain equation (12).: However, in the



presenﬁ case (V, V') is no longer zero beéause the potentials'
contain spin and isotopic spin portions° Therefore, Before‘ﬁe can
apply the equatlons of the preceding section, the contribution of
these extra commutator terms must be shown to be small, A typical

one of them is.

E ( ((c:ri T, (c:ri R_)) PR - i) vSp”‘(ru- )

i;ﬁﬁl
% (2T °(36 x JL) VSpin(r -r; ) VsPln(rinr )
00
1.7éJL 4 | .

(36)

which, if we use the shell model to describe the carbon ﬁuéleus;
is eésily seen to be zero. Simiiarly, the other ﬁypes of |
commtators (arising from tensor of isotopic spin dependent
potentials) are also zero in this approximationO‘ Thus, within the
validity of this model it is justifiable to drop the commutator
'terms and use all the formulas that were derived in connection
with the harmonic oscillator problem. This, admittedly, is a
rather.uncertain procedure but the agreement of the final results
with experimént'justiries it to some extent and, in addition, it
would not be possible in Ouf present state of knoﬁledge to

evaluate these terms even if we should decide to keep them.
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Hav1ng dropped terms arising from the commutator (V v ),»'
| the analysis proceeds just as it did in the previous section and
we may use equation (23) to get the follow1ng expression for the

differential cross section

' do":( E X X = 5_1' -N&deg_&dl
'd€Ldq _21\- '""5 Sy =
(37
' -
where .~iJLJF; ,
N;. - n*ro e .d?; (a function of eleven variables),

FV%:a is the fourier transform of V(r°=ri),’the K's are
spinors, and the 47 integration is over all the variables that
‘appear in Q;Q -thice that we have'included the 'exchange terms'
Whichlwere omitted from the equation for the current at the
beginning of this section, Fﬁrther&ore, if the Born approximation
is valid (and we will assume that it is) the term above °
1nvolv1ng the potentials can be replaced by the nucleon—nucleon

cross sectiono_ This gives

12

R | ‘Nl\ O'i qdaler
3c1dg R p—
- =) =4

(38)

~In making this substitution we are extrapolating somewhat since

q 1is not equal to p cos & as it should be for the potential
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terms to be proportional to the cross section, However; provided
q 1is fairly ¢lose to p cos © (as_ it will be) the error involved
is small We héﬁé also dropped the superscript i from Ny in
the above formula since s aside from small coulomb effects, we
expect the mome__nt.nm distribution for all particles in the carbon
nucleus to be the same. Finally, by multiplying (38) by g% we
can get a formula for the cross secﬁion for scattering into the

energy interval dE. It is
I 2
5 - -
R \p =4 4
(39)

. ,\fY\A%- :, "‘l\ﬁi\z

if, in this formula, we use ,f.‘or

. Xl the gaussian'
momentum distribution given by Huddlestone and Henley~ the 2
integration can be done immediately (the limits are the same as

before) to give the following formula for the differential cross

section
- g2§§~p cos egz‘ 12
o oo g e HIFEIT LN o ) ()
i dE ~ oLTs : i A

1=l |
(40)
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(here oL is a constant such that hot /2M = 16 Mev). Another

v R ‘ | : 5
possible momentum distribution, given by Chew and Goldberger , is

I'Tllz = L g : l. o _(th 2/2M = 18 Mev.)
———— - o o 18V
2 (B +4) |

which leads to the formula

12

4|

(- M
[ p2+ o*(a - p cese)2> | (‘F?)
Iﬁ_:_al £ : o

(1)

forvthe differential cross section° In order to see whether either
of these energy spectra is in agreement with experlment we have
plotted, for 0 = hl.5 and a bombardlng energy of 340 Mev,
equations'(AO)RVQAI),'and_the,experlmental spectrum*, ‘From the
high.energy portion of this graph where‘multipleheffects are least
importent it is clear-thet.the Chew-Goldberger’distribution is‘
incdrrect,beeause it contains too many high.momentum components°

On the other hand the gau551an distribution gives a fair

fit 80 we will do all further calculatlons with it However,

‘Mr. John Cladis has kindly given me permission to use his data
on the energy distribution of 340'Mev protons scattered from
carbon., His curves6 which are ‘still prelimlnary, are for angles
of scattering of 22° and A4l. 5°,
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before we c@n use squation (hi)'tb make a quantitative compafison
with ﬁhe experimental data, a cofrection must be made for muitiple
scattérings of the bombarding proton wifhin the éarbon nﬁcleus° Aﬁ’
22° this correction is small (it'is the low energy tail of the A
experiﬁehtal curve in figure 5), but at larger angles it'becomes
increésingly'important, affecting both the shape of the spectrum
and the-posiﬁion of the maximum, (see, for example, fig. 6)0 To-
get some idea éf this effect we will calculate the:energy spectrum
of doubly scattered protons and then assume thatiscéﬁtéfings in
which a greater number of collisions occur give similar distfibutionso
Actuélly, this approximation will not be bad since the energy
distributions'of’multiply scattered protons are all quite smooth
'and, méreover, the processes‘of higher multiplicity probably will
not contribute very highly. What error there ié will consis£ of
underestimating the low energy portion of ﬁhe spectrum and over-
estimating the higher part for, as the number:of‘collisions.goes up,
the energy of the outgoing particles tends to be lower, o

Thé simplest way to estimate the double collision spectrum
is to neglectjthe effects of the momentum distribution of‘the
scattering nucleons and consider the energy as uniquely determinéd
by the angle of scattering_thrcugh the formula q = p cos 8. This

assumption leads to the follewing integral for the energy distribution‘

| 2é; 2 %; 2 5 -
16 |G O(E -E, cos 8;)¢ (EeEl cos 8,) sin 8 cos 6, sin 8, cos 6,

) - dE) de; de, ad,



where we integrate over values of _Eig €15 62, and ¢2 consiéient with

cos 69 = cos &) cos 83+ sin ©) sin &, cos ¥, ( Ea is the angle

of scattering.) (In obtaining ﬁhis‘expression the differential
eross sections for nucleonaﬁucleon scattering were taken to be
~constant in the center of mass system~-the factors 16, cos 8y, and
cos Op appeafing when'the_elément of solid angle is transformed
from center of mass to 1aborator& system,) - A short calculation

gives for the spectrum

2
= | lég- du

dE dO. '
E, [(1 .=)g_2,)9u2 - éﬁ% ) =~'jJ2 (cos® - E%V)z]

3

where the integration is carried out 6ver values of P that make
the square yoot in the denominator real, This is a standard
elliptic integral which can be evaluated with a table of eiliptic

° and

functions. The distribution, which is plotted'fo: € =22
hlo in figure 2, has two imporfanf features that do not changé
when‘the.effect of the nuclear momenta is included. These are the
general smoothnéss'of the.cross section and the rise toward 1owér
energy. On the other.haﬁd,-the sharp cut off at the high enefgy :
end of the spectrum is compietely'wipéd outuby a treatment that takes
“into account the momentum'distribution of particles within the

- nucleus, Unfortunately, such a treatment leads to an urmanageable

‘multiple integral, so we have used the Monte-Carlo method to
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evaluate it and gain-some ideanbf how the high energy portions of thé:
curves in figure 2 are modified. Since this methoed has been discussed
~ in considerable detéil in the literatur035_ﬁe wili present here ohly |
Ithe results of ﬁhe calculationo.ifigures 3 and 4 give histogréms of
the energy distribytions obtained for BAO:Mev prétons doubly scattered
-from carbon'at'angies of 20o and AOQD jin.de:iving these, equation N
ﬁ(hQ) was used for the energy distribution after a singie scatterihg o
and, to éave time in doing the tedious numerical wofk,‘only angles

of scattering (for a single scattering).of less than 60° were
considered, which is the reason there are_no points on the histogramé
for very low energies. rlncidenfally, each block in thesé rep}esents
aﬁout twenty five particles that were féllowed; from whigh it is
clear that the statistical errors are of ﬁhe magnitude'to'bé expected;
: Thé curves; which have been draﬁn<in a smooth way thrbﬁgh the histo-
grams, preserve the two features that were méntioned e;'n_'lier.r.-'I'he:.,r.iE
will be used, along with equatioﬁ (40) to obtain curves of the

energy spectra. | | _ ‘:.

-The final step in getting these energy distributiéné is to
.-obtainAan estimate of the ratio.of double to_single collisi;ans° To
do this accurately is a formidable problem_but,ffortunately,.all 1 .
we need is a fairly fough answer.since the high‘energy‘end of the
spectrum; which i3 the best place to tes£ the assumed_momentﬁm
distribu}ions is nof'affected much by thé admixture of double

collisiOng;.-This ratio is derived by assuming the incident proton

goes in a straight line thfough‘the nuclen5'(neglecting the change
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in éathvleﬁgth caused by scattering) and then calculating the _
probability of making a single collision;=¢From this the multiple-
collision probability is easily obtained by a subtraction. The
average distaﬁce thé incoming proton travels in the nuclear.mattgr
, is '%'R where iR' is'the radius.of the carbon nucleus. Usipg
this relation thg'probability of making a siﬁgle scattering ié
| = LR/3)\
LR/3N e
f(X is the mean free path in nuclear matter); and the multiple. 

collision probability is, by subtraction

- IR/3N kamé
1-e '/ = AR/BX; e /4X

The ratio of these two probabilities is calculated using the.
values 'R and A given by:Fernbachl"o 'Knowing it, the mixture
of double and Single collision cgrﬁes is determined by the faét
that the ratio of their areas must be given by the ratios of the
probabilities é.boveo

-The fin§1 cross sections, which turn out to be about a one-
to-éne mixture of sigg}e and double collisions, afé pldtted in
figures 5 and 6 (for ééc and 41,5°) along with the experimentai_
spectrélfér these'angl'es° The area under the experimental and
theoretical curves is.the same in each case., At hl°5° the peak 6f,

the graph is affected conéiderably by the>admixture of double



.collisions wﬁereaé at the smaller angle this is not true. - Therefore
the best place to test the momentum.distribution will be"at 22°,
However, the Al 5 data does have a value because it serves to check
| the theory and gives us confidence in the deductions made - from
spectra at smaller angles., ‘The reason the theoretical curve lies
above the experiméntal in ﬁhis case is that we have treated.dll_
multiple collisions'as being double, Scatterings of high multiplitity
shoﬁld'contribute less at high energies and therefore:the theoretical_
curve should actually be somewhat lower there. |
A% 220, unfortunately, the experimental data is';ather poor h
. and very little oan be said about the momentum distrioution beyond
the fact that the one we have used is adequate. What is reaily_
needed; of course, is a series of fairly accurate experimental
spectra at various angles. With these one could dotermine the
momentum distribution from the data at one angle and‘ﬁhen check it,
and the whole theory as well, by examining the fit at other angles.
Hoﬁever, until such data is available it is ihﬁeresting-to see that
the.spectra at two angles can be understood in tefms of a simple
model and that this fit, cfude though it may be, already fixes the

momentum distribution to a considerable extent .
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' FIGURE CAPTIONS
Single-collision spectra for various momentum distributions.

Double collision spéctra neglecting momentum distribution of

target nucleons.

Double collision spectrum at 22°, -

~ Double collision spectrum at 41.5°.

Total spectrum at 22°?.

Total spectrum at A1,5°.
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