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ABSTRACT 

UCRL-16112 

The new form of the strip approximation, devised by Chew, is applied 

to' the problem of "bootstrapping" a p trajectory in t?e
1 

tr-1T system. 

Even in the absence of other trajectories it is possible to obtain self-

consistent p trajectory and residue fun~tions, a(t) and y(t) , for 

2 t < 0 , with strip widths in the range 150 to 300 m1T • A particular 

example is given in detail. The absence of the force from other trajectoires, 

and the peculiar behavior of a(t) and y(t) for t .>/0 , mean that our 

results can not represent the real p trajectory, but at least they 

confirm the viability of the methods used • 

f'j•,s: 
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I •. INTRODUCTION 

This ~aper is one of ·a~ series devoted to applying the new form of 

the strip approximation1 to th~ calculation of the ·.1T-'IT scattering 
J. 

amplitude. The amplitude is represented by its dominant Regge poles, with 

singularities which satisfy the Mandelstam representation, and should be 

correct in the resonance region~ and in the region of Regge asymptotic 

behavior. If the principles of maximal analyticity of the first and 

second kinds are valid, it is hoped that with the physical Regge trajectories, 

such an amplitude will be self-consistent in the sense that the "potential" 

due to the crossed-channel singularities will generate the direct-channel 

singularities. Chew and Jones2 have devised a set of equations which .are 

suitable for investigating this possibility. 

The problem has two parts, the calculation of the "potential," 

and the solution of the N/D equations in the presence ··of the logarithmic 

singularity which this potential exhibits. The singularity occurs at the 

point where the resonance_region is matched to the Regge asymptotic region, 

the boundary of the strip. Some preliminary results of solving N/D equations 

with such a boundary condition have already been reported, 3 but only for 

a potential corresponding.to the exchange of a fixed-spin particle. In 

this paper we report an attempt to "bootstrap" a complete trajectory. The 

full 1T-1T amplitude has several trajectories, P, P', ~, and probably 

others, and a search for -self-consistency with·so many parameters presents 

a formidable problem. Also the "potential~' resulting from the exchange 
~ . [.~ 

of even-signat~re trajectories has some curious features which are currently 

under investigEI.tion, but the p trajectory generates a potential which 

.... 



' is very similar to the form obtained from a fixed spin particle• and seems 

quite straightforward. The approximation of supposing that the p resonance 

alon~ dominates the 1T-1T amplitude has often been, made with :fairly 

satisfactory results 9 and so, as a preliminary to a ·.more ambitious 

calculation, we have tried to find an.:.amplitude in1 which the force from 
I 

the p trajectory in the crossed channels generat'es an identical 

trajectory in the direct channel. This is not a true bootstrap situation, 

of course, because the potential also gives rise to an I = 0 trajectory 

which has not been included in the. input, but the fact that we have been 
\ 

sucess:f'ul in this more limited enterprise is somewhat encouraging. 

In Section II we discuss the-calculation of the potential following' 

the prescription of Chew and Jones, and in succeeding sections we write 

down the N/D equations, and consider the parameterization of the residue 

and trajectory functions. The results presented in Section.V show that 

it is indeed.possible to obtain_self-consistent p trajectories, .:a(t), 

and residues, y(t) -; or at least they are self-consistent :for t < 0 • 

The. output trajectories do not continue to Rea= 1 ., however, so the 

physical p ~an not be observed directly, though there is a peak in the 
I 

cross section. Also the input 
1 

P, width is more than twice the experimental 
I 

value, These facts, however, m~y only be an indication of the difficulty of 

continuing a(t)· and r.(t} into the region above threshold where they 

become complex. 

Finally we compare the.results of this calculation with a formula 
4 -

used by Chew apd Teplitz in relating the 1T-1T total erOS$ section to 
. t\ 

the slope of 'tRe Pomeranc~uk trajectory and the width of the p • 
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II. THE POTENTIAL FUNCTION 

In·the nev form of the strip approximation the scattering amplitude 

is represented by a sum of.six items from different regions of the double 

. spectral functions, 5 

.A(s,t) 
i 

+.I 
j 

. (1) 

I where the summation is over the various leading trajectories and ~ i,j ,k 

is the signature factor (=!l) of the trajectory in question, 

dt' (2) . 

(3) 

where this int~gral exists. For a > 0 we use the analytic continuat.ion 
. 11. 



I; 

:.-· -4-

tl . 1 
R1 (s,t} = 2 

. i 

{4} 
. t' - t 

Here 

·• (5} 

'-. . ~ ., 

We define the reduced partial-'wave a.mpli tude for complex R. by · 

0 (. [ ' ' 
. (1 . J ~ { ~] + .. = -~ . /. 2 R.+2 )) .Im Qt 1 /

2 
2 A-.(s,t)~. 

· _oo qs qs 

(6) 

a form first given by Wong. It has the advantage of only requiring a. 

knowleqge of A(s,t) for t < d where a(t) and. y(t} are real, · The 

+ correspond to even and odd signatures respectively. 

The left-hand cut function for a given partial wave in the s 

channel is then, combining (V,4) and (V.5) of reference 2, 

:I .. I 
t ··._. 
' 
/ 

• 

A, 

I( 

\-

! _ _.! 

~ 
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X {~I ds' 
[ I>jls' ,t) =-I Rk ( s' ~t)] . 

s"' - s 
sl j k 

... 

+ ~ J du' .I t [Rj(u:t) -.Rj(u',t')] 
u' - u j ' ' 

ul ·j 

du' I 
k u' - u 

CD .., 

tjRj(t•,u•)} + ~ J dt' I tkRk(t' ,u') ! ~ J dt' I t' - t t' - t 
tl . k . ul j 

+1. 
1T 

dt(l ~ t
1

)R
1
(t,s) pt(-l ~ 

4( 2)!+1 
- -q ' s 

( 7) 

In the 1T-1T problem we have the complication of isotopic spin, but also 

symmetry in t and u • It is convenient to define 

(8) 
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I 
-! 

where 8
8
t.(I·;I' ). is some element of the usual crossing matri':'- from:,the 

t to s channels: 

B = st 

1/3 

1/3 

.1 5/3 

1/2. -5/6 (9) 

1/6 

· Bsu differs by (-i)I, so that only .BtP+ exists for even I and only 
P- I J . 

Bt for I = 1 •. Combining (4) and {7), we obtain, after some 

manipulation,· 

du' 
U

1
· - S '-l- 4) l 2.~ . 

+ rii'(t)E; 
sl 

J · du' 
u' - u 

( .. t \ 

. P a { t) [ -1 :... 2~ 2 ) 
-4~ 2. 

~ 

E;J II' . { -l---%-) ·du' ... r (t')Pa(t') 
l.:l' - u 

sl 
. 2.~, 

~r 
... 

+ II' r-1- +J du' 
. " 

r · (t' )Pa(t') 
.. 2~, u' - t 

' sl 

(Continued) 

J 
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II' [ ( s · l + r ( t )! 'ITP a ( t) \ -1- 2~~ 
cot ·'lfa~t) ;~ g=+1 

t na ( t) •. e=_1 - an 2 '· .. s. 

' .. 4-t . 1 

- { 1 ± f;) ~ J ds ', 
_m· 

. t 

r { s' ) J 1. dt' 
' 2 i+1 . (s -s)(-q ,) · 4 , 

s -s 

- 2Q.a{t) 

if ( -1- 2-- ) > 1 ;o . 

2~2. 

(10) 

We obtain such a contribution from each trajectory. We have made use of 

the fact that 

p {-z} = e+i'lfap {z) -~sin 'ITa Q (z) 
a a n a ' 

and note that 

for -1 < z,< + 1 

for 

~:'1) 
A FORTRAN. program has been devised to calculate the function 

(11) 

(12) 

Bp 
R. 

for any input y and a • To calculate both B
1

P+(s) and B
1
P-(s) from 
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the exchange of a ·Single trajectory, at a sufficient number of values of 

s to be able to solve the N/D equations [~20] , 'a~d with a sufficient 
-1 . . . 

number of values of R. to be able to examine the /output trajectories 

[!\:lolO J , req.uires about 6 minutes on an IBM 7094, if all the terms of 

Eq. (10) are included. It is found that the third and fourth terms ·or 

the right-hand side of Eq. (lO),which involve r(t) for t > s
1 

, and 

the final term of Eq. (10), which is the contribut,ion of direct channel 

poles to the left-hand cut, are all very.small for p exchange, and the 

results are not appreciably altered by neglecting them. In the results 

quoted in this paper these terms were neglectedp but had they been included 

the CUIVes of Figures 1 to 4 would have been ,almost completely unchanged. 

We also need to know. Im BR.p{s
1

) 
1 

and from the first two terms of 

Eq. (10) we find 

)( 11' II' f~ 
r (t)La(tl +;:l} 

(13) 

• 

~) 

.. 
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III. THE N/D EQUATIONS 

1 By representing the partial-wave amplitudes as 

2R. + + 
q N -(s)/D -(s) 

s R. R. ' 
(14) 

has the left-hand, .and 
. + . 

the right-hand cuts of AR.-(s), 

we obtain the integral equation· 

B-t p { s' ) - B R. p ( s) 

s' - s 
(15) 

with 

s 

i __ Jl --. 7T . 
, 

s' - s 
(16)-

so 

where 

• (17) 

However, Eq. (15) is not of ~he Fredholm type, because 
p 

B1 (s) is 

logarithmically divergent as s + s1 due to the first term of Eq. (10). 
6 In fact, 

(18) 

and 
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(19) 

where o t · is the phase--shift. 

A method of coping with this singularity by introducing_a 
6 . 

resolvant kernel has been discussed by Chew. He shows that the solution· 

of Eq. (15) can be written 

(20} 

. 0 
ds 'K R.' ( s , s ' ) N 11. ( s ' ) • (21) 

Expressions have been given7 for OJI.(s,s'}. and K1 '(s,s'} in 

. terms of BJI.P(s) , sin2 o
1
(s

1
), and s

1 
• 

Apart from this complication, the determination of N1 (s) and 

DR. ( s) from Eqs. ( 15} and ( 16) is straightfonrard. Details of a. FORTRAn 

program for solving the equations are available, 8 

A pole in the amplitude is represented by a zero of the D function, 

and the trajectory of such poles is the function a(s) such that 

(22) 

; '~ 
1 r~. 

) ·~. 

Above thresh01a both D and a have imaginary part-s, but if these· are 
~.; 

small it remains approximately t'rue for all s that 
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Re [DRe [a ( s)] ( s)] = 0 • 

For a R~gge pole of the form 

r(s)Pa(s) 
A(s, t) = ) 

the t discontinuity is 

since 

Im [P (z)] = .;.p · (-z) sin Tra_ for z > 1 
a a 

Thus the partial-wave projection of Eq. (24) is 

... 
B1 (s) • -r(s) ~ P u(s) ( -1 - 2:.2 ) Q1 ( 1 + 2:.2 J 2(qs ~~t+1 ' 

and combining Eq~ (11) with9 

CIO 

J 
1 

and 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 



' I' ., 

-12'!'<" 

00 

J (29) 

l 

we find that if a(sR) = t~ 

(3d) 

which, from Eq. ( 5 ), 

{31) 

Thus the residue of a pole of B~(s) is 

(32) 

With this expression we can obtain' y(s) from the solution of the N/D 

equations.· 

• ;.,#' 
( . 

•· 

.-. 
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rl. REGGE POLE PARAMETERS 

Unfortunately there is very little experimental knowledge of the 

Regge parameters to guide us in our choice of trial functions. Within 
. . 

the framework of this calculation we know -that a :and 7 are real 

1 analytic functions cut from threshold to oo, and so we can write 

p (t') . 
dt ' a ./ 
· /( t I - t)' 

+f
ro 

7(t) = 7 0 

0 

( 33) 

( 34) 

Very little is known about the forms of pa· and pr except that they 

must be small in the region where resonances occur. The strip approximation 

' also requires that Pa,
7
(t) be negligible for t >.t

1
p so the main weight 

of the · p's must lie in the region between the highest resonances and 
' I• 

': the strip boundary. Since we only require a and r for t < 0, it is 

possible to make simple approximations to the integrals (33) and (34). 

For a we take a three-parameter form::. 

a(t) ao +;;_ 
al /,.. 

( 35) = . .. 
--t/tB ' 

however7 1f we also require a(28) = 1, corresponding to the p mesons, 

we can reduce the·parameters to tvo. 

We take· 

a(~} = 
atB· tB· t'" 

1 -/28_/_ a(l - /2_g/)/(l -/~), 

where is the intercept of the trajectorY with t = 0 • It was 
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found that a similar pole approximation was not suitable for the residue 

function, since the output would· not reproduce such a behavior. Instead 
. 4 

it was found convenient to make use of a formula· given by Chew and Teplitz, . • 

' . p 
(t - t)Bo:( t)(t) • ( 37) 

The _difference between our function Bt(t) and the. function obtained 

from the exchange of an "elementary" (fixed spin) p is not great>and 

·we can approximate 

const (38) 
) 

and obtain 

'Y( t) = c a:'( t)[t - (39) 

where c is some constant. This parameterization has the ·advantage of 

relating the parameters of r to those of a:, leaving only two further 

variables, c and. t .. · -~Also_;· t: is a .. '· slowly varying function of 

both t and t • Our program thus consists of varying the four parameters 

a, ~~ c) and t until self-consistency is achieved. From (31) the 

width of the p will be 

. . 'Y(r~ 
1.134/a' 2 ) .. ( 40) 

I . 
However_, this, involves ·the use o-r ;the functions above t = 0, where we can. 

'· ' 1 

no longer reiy on them. 

r. v 
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V. ·RESULTS 

A search was made for a self-consistent set of parameters for 

the p with the various choices of s1 • We use 1311 = ~' s = -1_, and 

solve the Njb equations for A- It was found that a flat input 

trajectory gave a steep output trajectory and vice··versa, so it was 

fairly easy to make a search, varying a and ·tB until both input and 

output trajectories had the same shape. _The slope of the output trajectory 

is certainly not independent of the form of the input residue function, 

but with our parameterization the main t dependence of (39) is in a, . . 
so that in choosing a we have approximately fixed 1 1except for the 

overall constant c • Other forms of residue function gave much-less 

good results. 

By adjusting c one can alter the height of the output trajectory 

until it coincides with the input. F~ally t can be varied to t~ ·to·. 

make the input and output residues as similar as possible, though this 

requires a compensating adjustment of c • 

There is no unique self-consistent solution. It is possible to 

obtain near self-consistency with various combinations of s1 in the 

2 range 150 to 300m~ , a from 0.2 to 0.35 (i.e.,~ntercept of 0.8 to 0.65), 
1 .. 3 

and t from 4 s1 to 4 s1 , taking c to be the dependent variable. 

In view of the. large amount of computer time involved, and the lack of 

correspondence to the real world through the neglect of the force from 

other trajectories, we did not carry out an exhaustive search, and quote 

here just 9he of our better result~without claiming that more perfect 
l 

self-consi~tency, or a closer approximation to the physical p , can not 
?>~~; 

be obtainea.t 
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. 2 
·· With s1 = 200 m~ , it was found that there is good self-consistency 

if a = 0.25, tB = 75, c = 107, and t = 60~ 

Thus 

a(t) = 

and 

?'( t) . = 

0.330 + 0.420/(~ t/75) (41) 

2696 %(t~(2) 
(60 - :t)

2 (l4)a(t)+l 
(42). 

and compare it with a t(t). It will be seen ou 

that they agree very well for t·< 0 • But above t = 0 they begin to 

diverge,and in fact Re[Da(s)] ceases to have zeroes for a > 0.85. In 
I 

Fig. 2_ we. show ( r/a' )in and compare it·with Nc/Re Da' output. Again 

very good agreement is found except near t = 0, where the output diverges 

considerably from our. smooth input curve- Figure 3 givES the values of 
.. 

?'i · and ?' t.corresponding to Figs. 1 and.2. Since the potential depends n . oo . . 

on r(t) and a(t) only for t < 0 ; we regard thi~ as a self-consistent 

solution, but it is clear that our results can not be ~ontinued into the 

physical region. 

From (40) the input width of the 

the generally accepted experimental width. 

p is 1.95 m , or about 2.5 times 
~ . 

It is not really surprising 

that we require a larger width, because we have not included the forces 

from. other trajectories, but the magnitude of the discrepancy is a little 

disturbing. In Fig. 4 we plot the partial-wave cross section for t = 1. 

Despite the absence of a zero of Re[D1(s)] there is a peak at 
1 i 

s'2' = 5:8'\m~ (mp = 5.4 m1t), but its full width at half maximum is 

Our inter¢~~t a(O) = 0.75 is rather higher than experiment indicates 
lCL~:: 

c~ 0.6), i·:i'i~ut we have not been able to produce self-consistent 
I 

\1 
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trajector1es with sufficient slope to pass from 0.6 at t = 0 to 1.0 at 

t·= 28. This is possible with more rapidly varying residue functions, 

·• but such residues· are not reproduced. 

r 

( 

t; 

.• 

( 

~' 
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VI. ! THE I = 0 CHANNEL 
i 

Thoughwe·have not included the Pomeranchon force, we do of course 

obtain a trajectory in the I= 0 channel (A+) , the.principal difference 

from ."I= 1 being· that crossing matrix element II' 
B is now 1 instead 

of 1/2 • In fact, with the neglect of ·the terms mentioned as being small 

at the end of Section II,. this is the only difference. Figures·l-3 also 

include the results for this I = 0 output. It will be seen that a(O) 

is slightly greater than 1 , the unitarity limit1, but this is not surprising 

in view of the large p width ,.,e have used. There is no sign of a 
I 

secondary, P' , trajectory. · · 

The P ·trajectory is almost exactly parallel to.the p 

z a (t) + 0.320 
p 

.. 
• 

(43) 

'i Using this expression for ap , we have compared, in Figs. 2 and 3, the 

' output values of y/a' and with the prediction of {39). Remembering 

the crossing matrix element, we have 

= 
Qa (t.) (1 +,/- 56 /.) 

2 c a• (t)(t - t) p · t - J.f / 

P Jrr 4· v 1a (t )+1 
itt - II 'I ~ 

· ! I 4 'i 
t.. .; " 

.. (44) 

It will be seen that the prediction is vell satisfied except for ·t ~0. 

Re a(t) has its maximum at t ~ 20 m 2 , though we have not 
1T 

traced the f~ll of Re a{t) in Fig. 1, since it is not correct to identify 
~l'fS. 

the second z~ro of Re D with the returing trajectory. From (33) we can 
~.:.=-.-.? 
~~- ~- ),( 

see that if p (t) has its main weight in the upper part of the strip 
a ·' . 

one would not expec·t this maximum to occur. for t < s
1
;2. Our present 

. . :: : .... ~ .. ~: :~ ... 

• '~ 

v::-· 
·, '1l ' 'i 
. ~· ... 

.• 
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calculation appears to emphasize the region of the double spectral function 

just above threshold, so that our results cease to be correct as we enter 

the resonance region. 

· We conclude that it may be possible, to "boots.trap" 

trajectories with some hope of obtaining the "correct" paramet:ers·; for 
. j 

I 
t < 0 , when all the trajectories are included, but there is no sign that 

we shall be able to obtain the correct particle masses and widths. It· 

·is likely that the presence of competing channels is important for higher 

11 angular momenta, and this possibility is being examined. 

I 
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FIGURE CAPTIONS 

Fig. 1. The input and output trajectories 

(; 

a . = 0.330 + ·o.420/(l - t/75) • 
Pin 

Fig. 2. r/a' for the p and P trajectories. The prediction for P 

is based on Eqs. ( 43) and ( 44). 

Fig. 3. The residue function, r , for the p and P trajectories. 

Fig. 4. The I = 1, P-wave cross section in millibarns. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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