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ABSTRACT 

A theoretical study is made of the MacDowell symmetry and 

the properties of Fermion Regge poles. Subsequent to this, a set 
I 

of Reggeized bootstrap equations for. ~N scattering is derived and 
I 

I 

analyzed. A careful discuss~on of kinematics is given, the inhomoge-

neous terms in the integral equation ~re constructed in detail, and the 

integral equation is transformed to one of standard Fredholm type. 

d •• y, 
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INTRODUCTION 

Recent years have seen a tremendous proliferation in the 

number and variety of known strongly interacting particles. The 

progress that has been made in understanding this complex of states 

has been mainly the result of two complementary general approaches. 

One of these is the study from the dynamical point of view of certain 

systems chosen for their simplicity. The attempts to understand the 

~~ and ~N · systems dynamically are perhaps the best examples of this. 

The other approach has been the observation of regularities in the whole 
I 

spectrum of particles and their interactions and the as~ociation of 
' 

these regularities with symmetries and approximate symmetries. The 

discovery of the conservation of isotopic spin and·the broken eight 

fold way are results of this approach. In atomic physics the attempts 

to merge the dynamical model of the hydrogen atom with the regularities 

observed in all atomic spectra eventually led to the discovery of 

quantum mechanics and a complete theory of atomic phenomena. So here 

too it is hoped that advances in there_two general directions as well 

as attempts to merge them together will bring about a more complete 

understanding of strong interactions. The present investigation is 

devoted to an attempt to improve the theory of ~N scattering. 

Histo~ically, ·the attempts that have been made to understand 

the ~N system in a dynamical way have played a large role in the 

development of the'theory of strong interactions, and have led to a 

theoretical,;, understanding of ~N phenomena at low energies which is . 

satisfying ih many ways. Among the first of these attempts was the 
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· · -'·work of Ch~w and Low. They studied a_ simple static model- of the ·· 
'; .. 

1rN interaction, . which .contained some features which are- still_ -· ' .. ·~· .. 
. : .. 

-basic ingredients-of dynamical calculations. Namely, that the partial 
... 

· .. r 

'' 

- . . 
wave amplitude is' an analytic function in. the energy ·variable whose 

singularities are of two tY.Pes; a· right hand cut whose origin is the 

requirement of uni tari ty in the direct channel, and a left bani cut 

- which; represents the "force" artd whose origin is the scatter'ing in the 

. cross channeL An important result of their analys·is was a -. 
dynamical model for the N3y· resonance, as due to the large· attractive 

force· from exchange of the nucleon. FUrther progress arre,ited the 

development of a relativistic framework for dynamical calculations. 
. - - ·:2 

This came with the discovery of the Mandelstam representation and the 

1-:··· 

--. - -subsequent derivation of relativistic partial wave dispersion relations. 3' 4 . -

. _ Frautschi and- Walecka5 used the framework t~us provided to study the -

* Chew Low model of the N
33 

resonance in a relativistic context. Their 

··work qualitatively confirme~ the Chew Low model in that a 3/2, 3/2 . ·~ .. 

resonance was found, but at an ene:rgy rather lower than experimentally -' 
-- 6 

_observed. Subsequent to this, Chew made an important observation, 

_.again using the static mOdel. - * This _was that the ·N
33 

resonance in 

the crossed channel resulted in a strong attraction in the 1/2 1/2 

.state in the direct channel, in-which-the nucleon appears.· The .·· 
~ . : 

· suggestion was then made that one could generate the nucleon as ·a . · .. 
0 * ·bound sta..te, with . N

33 
exchange as the dominant force. The solution 

-of· the relativistic dispersion relations .now requiTed a high energy .. ·' 

I * cutoff due ~o the high spin of the N
33 

resonance. Calculations 
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by Abers and. Zemach, 7 and by Ball and Wong B confirmed for an appropriate 

choice of cutoff that the nucleon could indeed be generated,as a bound 

state with approximately correct mass and coupling constant. Ball and 

Wong's work also showed that almost all the low angular momentum waves 

could be understood at low energies in terms of the same forces that 

* produce the nucleon and. the N
33 

• Thus on the basis of the above 

calculat-ions and. ~Y others, 9 it is fair to say that a dynamical 

understanding of all low energy ~N phenomena including the lowest 

bound state and resonance has been achieved in a way that is reasonably 

.self consistent and in reasonable agreement with experifent. · On the 

other hand the above calculations all contain cutoffs of one form or 

another to which the solutions of the bootstrap equations are quite 

sensitive. Nor has there been any concerted effort to understand 
I 
I . . 

the higher resonances in a qUantitative way, particularly those at 

900 and 1350 Mev which are thought to be Regge recurrences of the 

nucleon and 

It is the purpose of the present investigation to develop 

a theory which while incorporating in a broad way the ideas of the 

calculations mentioned above, is fully Reggeized •. A parameter in 

some ways analogous to the cutoffs of previous calculations remains 
. 

in the theory, but it now has a physical significance and the theory 

depends on it in a much less sensitive way. Furthermore, the set of 

bootstrap equations studied here will make it possible to explore o .., . 

. * the conjecture that the nucleon and N
33 

lie on Regge trajectories, 

and to inve~tigate the possibility that the two resonances mentioned 
;:; 

above also l'ie on these trajectories. The work is laid out as follows: 
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'In Section :i:, /thti- basiC: :notions of ·the strip ·approximB.tion .·on which .thi~ 
. 

work is based, are reviewed and discussed for the 1tN case~ Section II 
. . . . 

::'-. 

' ' 

is a digression. on a symmetry important in · 1!N scattering, first noted . c 

._:by. Mac Dowell.3 A general discussion is given, which establishes it 
. ~ ' .·. .-: ', 

· for the general spin case and also establishes clearly the origin of 
. . 

. ,· the symmetry. Section III considers the 1rN partial wave amplitude · 

in the complex angular momentum plane and establishes some· simple 

analytic properties of Fermion Regge poles. Section IV contains a 

derivation and discussion of the basic dynamical equation as well as 

some further results on the behavi·or of Fermion poles. 1 In Secti~n V, 

the terms which play the role of forces in the dynamical equatiOn 

are constructed and their· qualitative behavior discussed. Section VI 

treats the singular behavior of the basic integral equation, leaving. 

an integral equation of standard type. Section VII contains a brief 

discussion of the asymptotic behavior-of the Regge parameters and 

some. concluding remarks. 

' · .. ': ' --~ 

. ' 

'.!· 

. '. 

·' 

,. 
I 

.i . 

• • 

. . I 
·. . 
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SECTION I. THE STRIP APffiOXIMATION 

In this section, we'review and discuss briefly for the ~N 

case ·the ba!sic ideas of the $trip approximation developed by Chew10 

\ 11 and applied by Chew and co-w<;>rkers to 1t"1t" scattering. 

The basis of this approximation is an attempt to build into 

a single theory the general features of two body reactions of strongly 

interacting particles which are thought to be controlled by two body 

dynamics. These features fall into two ranges of energies. The 

first of these is the low energy region. Here scattering is concentrated 
! 

in a few angular momentum states. In the most interesting cases, 

prominent resonances occur. While channels involving three or more 

particles may be open in this region, most of the scattering into 

such channels can be understood in terms of production of quasi-two 

body final states. The second energy region is very high energies. 

1; Here the scattering is almost all forward and is mainly absorptive. 

·Essentially an infinite number of angular momentum states are involved 

and the variation of the amplitudes with angular momentum is extremely 

slow. This behavior suggests attempting to understand the situation 

in terms of the nearest singularities in momentum transfer. These 

singularities are controlled by two body dynamics in the cross 

channel. The intervening region of energies consists of a. ·grad'ual 

transition between these two r.egimes and cannot be simply approx-
., 

imated by two body dynamics 1n either the direct or cross channels. 
·~i;i 

The strip ap~roximation attempts to join the low energy region directly 
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. onto ~he high energy region •. ·The intermediate energy region will '' . " .· 

\. 
'I 

of course be mutilated to some extent by this abrupt transition, 
' .. ·.-. 

but ~t is hoped. that this will stil~ allow a good approximation in 

the interior of the high and low energy regions. 

Early attempts at a theory of this type foundered because 

of apparent inconsistencies between res'onant behavior in one channel 
I 

and reasonable high energy behavior in the cross channel. 12 The 
' • I 

·.brilliant work of Regge13 co~firmed that this inconsistency was only 

an apparent one however, and reopened the possibility of a consistent 

strip approximation. In the Reggeized version of the strip approx
! 

imation, the'conjecture that particles and resonance~ are poles lying 

· ?n trajectories of reasonable shape in the angular momentum plane is 

built in from the start. !articles and resonances are then mani-

festations of such poles moving through or near physical value·s of .. 

angular momentum in the direct channel· and the high energy behavior 

I; 
• of two body amplitudes is controlled by poles in cross channels. As 

10 has been emphasized by Chew, the point at which the low energy 

region is joined onto the high energy ~on in the strip approximation 

also receives a rather natural interpretation in terms of Regge poles. 

For example the rightmost Regge pole in the s channel will dominate 

the t and u discontinuities as well as the st and su double 

spectral functions for t,u ~ oo as long as the pole is in the. 
s fixed 

r;ight half angular momentum plane. This range of energies corresponds 

to the low energy resonance region mentioned previously and in this 
~ . 
-:'1 • ·.f". 

range of ep~tgies the behavior of the amplitude is controlled by the 
~ ~~ ._,.' 

large t ~nh u regions of the st and su double spectral functions.· 

,. 

. ,·u. 

• 1 

·:·.o:' 
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Beyond the resonance region the pole curves back into the left half 

plane and the large t and u parts of the double spectral functions 

begin to fareaway and nearby singularities which are controlled by 

cross channel poles begin to take over. This provides a natural place 

to join the low energy region onto the high energy region. This 

gives a significance to the strip width s1 , as well as a way of 

roughly estimating it from experiment. As in the rrrr case treated 

' 
by Chew, in the rrN case studied here the above: ideas will be applied 

.I 

in the following way: A dynamical equation bas~<i on partial wave disper-

sion relations will be used to generate the amplitude in the low 

energy region s € [ (M + J.1. )
2

, s :~ The contributions of double 

spectral functions lying outside this strip will be parameterized in 

terms of Regge poles in the crossed u and t channels. These 

terms will give the dominant contributions to the double spectral 

functions in the low u and low t strip regions •. The deep interior 

regions of the double spectral functions which depend in an essential 

way on many body dynamics ·will be ignored. Given the t channel 

rrrr ~ NN pole parameters, a bootstrap situation then exists in which 

-
the output s channel rrN poles are required to be consistent with 

the poles in the crossed ~N channel • 
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II. PARTIAL WAVE AMPLITUDES AND TEE MAC. DOWELL SYMMETRY 

1CN p:~.rtialwave dispersion relations differ from those · 

·for the simpler 1C1C case in essentially two respects. The first·. 

of ··these is the presence of unequal masses, which complicates the 1 

singularity structure. This will be discussed in more detail in 

·later sections. The second is the necessity of working in the W 

·, ,. 

plane rather than the s plane. This is the consequence of a symmetry. 

first noted .in :!!N scattering by Ma.'c Dowell) In this section we 

give this symmetry a more fundamental treatment than it has received 
I 

in the p:~.st. While this will not result in any practical simpli-

fication of our treatment of :!!N p:~.rtial wave dispersion relations 

relative to p9.st treatments, it will clearly shoW the origin of the 

symmetry and allow an extension to the arbitrary spin case with no 

extra effort. We consider only physical J in this section. Let 

'it us take first the :!!N case. The covariant helicity amplitude 

can be written: 

II.l 

This form is a consequence of parity conserVation and Lorentz invariance. 

From this the partial wave amplitude is easily derived: 

_ _,--. 

. . 
-.:. 

,.,, . 

. " 
•. 
1.' • 
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= + 

+ 
. 2 2 
(w-M) - ll 

32rcW 

+1 

where At(s) = J ~z A(s,-2q
2

(1-·z))Pt(z) ; etc. for Bt(s) . 
. -1 . 

From this we easily see that 

= i!_J+l(-w) . 
-2 

II.2 

II.3 

which is the Mac Dowell symmetry. The fact that amplitudes of opposite 

parity are coupled to each other in this way forces one to treat them 

• together and to work in the W :plane. The original paper of Mac Dowell 

stated that the symmetry was a consequence of PT invariance. We 

shall see that it depends only on Lorentz invariance and a simple 

:property of rotations through angle . rc in cases where J is a half 

integer versus cases.where J is'an integer. Let us generalize our 

discussion to any two body reaction: 

1+2-+ 3+4 

where partidle i has spin Si • We consider the covariant helicity 
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amplitude T~~;·:·; -~X'---. (p3p~·_.-;< 'p
1

p
2

) · Lorentz inva.rianc-e :requires: 
• ') .4 ' ' 2 ' -

. .• .·/· .· 

T~A4 ; ~~ '(p3p4 ; plp2). = 
II.4 

where A is some real proper Lorentz transformation. Ri is the 

Wigner rotation given by: 

where· 

and 

.... · 

-, 

' •. - '· 

. '.; t 
,. -·. 

. · .. 
·. :. ~ ~ 

' • ~ 1 

_, 

-~-

- _;, ~ ·; ... :_'j_~iJ~ .· -~ieiJ2 -~i~3 
~i ·=· e ·. e . . e 

' ·< 

cosh 

~ ; . 
Bpi ·_takes particle i from re~t to momentum 

. I 

·'' 

.. I .. r 

p · .-~ , Given-· i. ',, 

T'-3:\.
4 

j ~~(p}p4 ; P1P2 ) ; we .can c:struct a ,s:lmpler q~ntity. 

We introduce the spinor functions JA (p), which are 28+1 dimensional 

column . vectors which transform according. to the (OS) representation 

of the homogeneous Lorentz group. 

+t 

. ~L. 
·:· ;:; 

::l· 

. '·.· 
.• 

· .. 

·, ._:·. · . . ·' . ·,. ~- -< .. ' 

.. 

' 
. I 

·•-

. . . I 
-~, •' . _ _,. 

-• \<o' j 
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·II~5 

We define T(K) as follows: 

where K denotes the set of momenta (pi} T(K) is a generalized 
I 

matrix with appropriate row.and column indices to match onto the 

'It's 

the 

• Relativistic invarian~e of T~,._4 ; "'J. ~ (P3P4 ; 

simple~ transformation for T(K) : 
! 

\ 
I . 

OS OS OS OS 
T(K) = D 3(A)+ D 4(A)+ T(AK) D 1(A) D ~(A) 

The function T(K) is essentially the same as the M . function . 

introduced by Stapp.14 The unitarity condition for T(K) is free 

of extraneous non-analytic factors and thus it is .this function which 

has only those singularities determined by unitarity itself in any 

theory which uses unitarity to determine singularity str~cture. 

Now let us extend (II.?) to the complex Lorentz group. 

The transformation A in equation (II. 7) can be parameterized 

as follows: 

, -ie·Y -iA.·K 
n = e e II.8 

II.7 
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'.'..J. 
. ' 
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. ', :, 

.. :, 

", :· 

.:• .· .. ; 
< ' ... 

. ~. . . . . 
. ~ . 

· ... 

The . J i ·· an~ . Ki 'are the usUa.l .· 4X 4 matrices· and th~refore ·• A: is · ·. 
. OS . · .. -· .. · ·. · 

Similarly the D (A) . are . · · .. · a holomorphic function :of:. ei· and ~1 · 

holomorphic in ei and ~i The right hand side of the equation is 

independent of the ei and ~i and is therefore trivially holomorphic 

in ei and ~i • Therefore this equation provides an extension of 

T(K) as a function of ei and . ~i :;over the full complex planes of 

these variables. Thus the validity of_ (II.?) for real Lorentz ,. 

transformations implies its validity for complex :Lorentz transforma-
1 

tions. This extended Lorentz 'invariance allows ~he calculation of 

· T(K' ) at any point K' related to K by a real or colnplex Lorentz 

transformation, if only T(K) is known. Furthermore it is easy to 

show that if T(K) is holomorphic in the momenta in some original 

domain, it is also holomorphic in the extended domain generated by 
. 15 

the action of the complex Lorentz group. Our approac~ to the 

Mac Dowell symmetry will be to use this extended Lorentz invariance 

to relate the partial wave helicity amplitude at values of W which 

are negatives of each other. For this consider the set of complex 

Lorentz transformations A(t): 

A(t) II.9 

. 
where "' is real. If t = ~ , maps any four vector into 

its nega~ve, i.e. · 

A(1t) k = -k 

~-. . .~ ... 

·,,,. ·. 
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Furthermore, 

II.lO 

This equation follows because· JS is the same matrix as i J
3 

in 

the OS representation. Now let us introduce partial wave helicity 

amplitudes: 

rr{_A. .• "-A. (W) = 
4
"2fd(R) D~ _ A. 

5 4 , . l 2 161( . . ]. 2 ; 

where 

frame, 

where 

T~A.4 ; A.l A.
2 

(p
3

J?4 ; p1 p2 ) .is taken in the center of mass 

p
3 

= R.i)
1 1 and W = El + E2 = E

3 
+ E4 • Similarly; 

II.ll 

II.l3 

. +S +S : · S S 
TX,xlj) ~x2 ( -p, -p4; -pl-p2) = w,._,' ( -p,) w}-..4 4( -p4:> : T( -K) 'It~ ( -pl) t~ ( -p2) 

. i 

I 
To get a relation between these two quantities, ~e use equation 

II. 7 for A = A(1r) and II.lO • ·From these it is easy to see that 

.II.l4 
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. .· .... ·. ·. · ...... ' '.: ' 

·.'4 .. · .. :· . ·.-': 
(. 

.. ·, .· 

. . . . . . . ; ' 

II.l5 

. Now _the combinations 
. ·.·· .. · 

. . 

' .. 

. TL~_. A. __ ' (w)+ = ! r'{).._ .. A_~ (w) +_ri_.A, . ·-A._~·-" cW>l • 
. 5"'4'. -"l "'2 . - l -5 4' . ~"'2 . A.3 4' : l .. "2 J ' 

! [\;>..4; -"l~~(w) +~"3- ;>.4; "1~ (w~ ,· . .· ..•.•. 

. .I · .. 

and . T~,J~ • "--. A. (W) + = ~ [··\_A. . A-_A. (W) -~-_ ~ ·· •. -~"----. -A. __ : (w)~- . 
"'4' "l .2 - .- 4' -l .2 .4' 'l . "2 .. . . . . . 

I . ' ' ., , . . 

. ! [\;>..4; ->y ·~ (w)- \- "4;• "1~ (w~ 
represent transitions between states of definite parity. Using relation 

II.l5 above, we see that. 

and therefore 

II.l7 

. ,., I 
. i 

I 

&rl f~~ 
-:~~ ~ 
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... for boson fermion sea ttering and 

II.l8 

for boson boson or fermion fermion scattering. The same relations 

J 
hold for the amplitudes ~A.4j "-J."-2 (W):!;" The first case above is 

the Mac Dowell symmetry generalized to arbitrary spins and parity non-

.. conserving transitions, if they occur. The difference in the two 

cases follows from the fact that 

- 1 for the boson-fermion case 

+ 1 
for the boson-boson and 

'fermion - fermion case. 

This factor arose of course from the rotation in A(rr) 

So we have seen that the Mac Dowell symmetry is quite fundamental 

and follows from extended Lorentz invariance which is itself a 

consequence of ordinary Lorentz invariance. No use need be made of 

P or T invariance. 

J 
Let us consider the meaning of our definition o~ T"-3A.

4
j "-1~ (-W) 

in more detail• In the usual treatment T(K) is expanded as 

II.l9 
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The Ai are scalar amplitudes analogous to the . A · and B . in the 

1rN ·case. . The Yi (K) are spinor basis functions which are . 

polynomials in momentum components. Upon making the projection II.ll , 

.one has an expression which is a sum of terms of the form: 

+1 

g(W) At(s), where At(s): = J dz A(s,t(z))P.r,(z) 

-1 

g(W) may in general have kinematic singularities at the points 

' ' 
0 

One can always choose the cuts caused by these singular~ties to lie 

on straight ~ines connecting these points. Now considering the set 

of transformations A(w) acting on the set of momenta K and 

defining W = E1 + E2 - E
3 
+ E4 , . ~,._4; ,._

1 
~( -w) is gotten by 

allowing" w to reach 1t starting from 0 • In ·a term of the form 

above, this means of course s is.constant all along this path 

while W m~ves from a point to the right of the kinematic .singularities 

to a point to the left of·them on a path which does not cross any of 

the kinematic cuts as defined above. At the beginning and end of the 

path ~ = s is satisfied. This specifies the sheet in W on which 
2 

the Mac Dowell symmetry holds. Note that one cannot set s = W 

at the outset and continue directly to the Mac Dowell symmetric point 

-W , sine~ one in general always meets a cut of :At (s) on the way. 

Any two P ... oints related by the Mac Dowell symmetry .are always on the 
·: 

physical sheet of the scalar amplitudes At (s) .~/ 
I 

' ... ~~ 
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III. CONTJNUATION IN TOTAL J .AND FERMION POLES ·· 

In this section we continue the rrN amplitude in total 

angular momentum and establish some simple properties of the Fermion 

Regge poles, assuming the amplitude is meromorphic in the region 

considered. Continuation in total angular momentum for rrN 

16 scattering has previously been considered by Singh. Our 

discussion of the properties of the Fermion poles is based on the 
17 . 

method of Barut and Zwanziger who considered spinless particles. 

written: 

From equation II.2 , .the partial wave amplitude can be 
l 

+ 

We assume that as t(u) -+ oo at fixed s that A .and B are 

bounded by some finite power of t(u} ·Therefore for Re t 

. large enough: 

1 
-2 

rrq 
III.l 



!\ ,, 
I 

. ( 

and likewise for Bt (s) • We seek a continuation of III .• l away 

from integer values of t that allows the Sommerf.eld-Watsori 

transformation to be made. Such a continuation has the desired 

property that its singularities in t are directly related to the 

asymptotic b.ehavior of the amplitude in t and u • For q2> 6 , 

the first term of 
. i<J,.t. 

if t = It! e 

III.l is holomorphic in for Re t > N and 

' it is nonincreasing as for 

-r/2. ~ q, t ~ ~ • The second term is holomorphic for Re t > N , 

but is badly behaved as ti ~ co and will not allow the Sommerfeld-

Watson transformation to be made. I 
The standard cure for this diffi-

culty is to define continuations from·even integer t and odd 

integer ·t separately. So we define: 

e 0 . 
At (s) III.2 

± 

e 
and similarly for Bt0 (s) • For 

·are well behaved and allow the Sommerfeld-Watson transformation to 

be made. . The re : 
. ' 

quantities specify the continuation of ~J-~(W) 
+2 

away from physical values of J. 

.... .. -
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(W+M)2- 'rJ-2/Aet\(s) + (W-M) Beol(s)l 
32~W LJ-2 J-2 J 

Je 
TJ f(w) = 

-2 

~2 t~:~(s) + (W+M) B;~(s)] , 
is given by = 

The e amplitude ·agrees with the. physical amplitude at values of 

J given by J = 4~+l , n an integer, the o amplitude at 

4n-l 
J=~ 

III.) 

III.4 

So far our discussion has been restricted to high values of 

J • The only assumption made so far is the Mandelstam representation 

with at most a finite number of subtractions necessary. At this 

point we make some further hypotheses. First, we as.sume that the 

amplitude can be a~alytically continued in J to the left to some 

point below all physical values of J and that the continued amplitude 

agrees with the physical amplitude at all physical values of· J • 

Second, we assume that the only singularities in J to the right of 

this point are simple poles. These assumptions re~uire .some 

comment. 

Even in theories which allow a continuation to a point 

below all physical values of J , the assumption that only poles 

appear will not hold in general. 18 For example, Mandelstam has 

considered ~ case in which if poles occur, so do cuts if account is 
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·taken of certain complicated processes involving three and four particle 

intermediate states. More complicated singularities may also occur 

in higher order processes. The motivation for attempting to ignore 

these singularities is based mainly on a desire to see if a sensible 

approximation scheme can be built in the order of processes. That is, 

one attempts to handle explicitly reactions involving say at most 

N particles and to ignore the complications of N + 1 and higher 

particle systems. The strip approximation, with which we are dealing, 

represents-the lowest order approximation in such a scheme: in that 

only two particle systems are involved. If the scheme makes sense 1 

then meaningful results can be obtained ignoring such intrinsically 

three particle effects as cuts. Two particle systems with reasonable 

forces generally give rise to amplitudes meromorphic.in J in the 

right half plane. Since there are no nonsense states in elastic 

nN scattering and we do not introduce CDD poles, the continued 

amplitude will be the same as the physical amplitude in this theory. 

Now under these assumptions, let us establish some simple 

properties of the Fermion poles. For definiteness, let us consider 

rrg~l(w) • 
; .2 

e 
W~ can break the quantities AJ~(s) , the amplitude 

into two parts. For example: 

-.~ 

•. 

• 



... 

(I) 

... + 1 dt' 

tl 
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The finite integrals are holomorphic in the entire J plane except 

for fixed poles ·at j = - 1/2, - 3/2 , etc. This allows us to break 

~~~(W) into two terms, one coming from the finite int~grals and the 

· · other from the infinite integrals. 

III.5 

The Regge poles that exist must all be· contained in the second term, 

• Let us consider, the analytic properties of b2 (J,W) 
. . 

First of all there are winding point singularities at W = ± (M±~) • 

Let us divide them out and consider the function b2 (J,W) : 

b2(J,W) = 1 
(E+M) III.6 

This function is real analytic and has v;arious cuts from the A and 

B amplitudes and the Q functions on the :!:" real and :t imaginary 
4 I . 

axes. (we choose t 1> 4r/ ·so the usual circulaf:cut does not appear 

in b2.(J, W) • ) The function "b2 (J, W) is not t~e only real analytic 

function obtainable from b2 (J, W) • One could ima.gire replacing 



1 
2 J-2 

(q ) by 
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... ' ·. i . 

. r . 
r· 

or [• - .(M + ~)2 ] J --2 in the above definition. However· for the 

. success of the argument which follows it is q~ite important that 

the function' b2 (J,W) as we have defined it be used. The cuts 

of b~(J,W) are as follows: 

(a) W - ~ [ M + J.1 , oo] 

(b) w = ·~ [i oo, i [tl+ 1J.~tl)- 2(i"+ ~2 >]-2] 
I 

where u(t1 )-+ (M + 1-1)2 1 as t -+ 00 
1 

( '2 
where t ~) - 4Jl as ~ -+ co 

. ' . ~ . 

(d) w = :!; [a~[tl- 2(i"+ ~2)- [<tl- 2i"- 2~2)2- 4(i"- ~2)2] -liJ-2 J. 

(e) W = :: [~ 00* [tl- 2(i"+ ~2 ) + [<t1- 2i"- 2'"2r 4(if- ~2 )2 ] tJ t] 
(f) w ·= + [a,~/] . -

... 

(g) w = 
·;~·ico, ( i ["l_- 2(i" + ~2)] -2 J 

..... 



... 
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Cuts (a) 1 (b) and (c) arise from the . A and B amplitudes. 

The rest are from the Q :functions. Now the Regge poles are 

contained in b2(J,W) regardless of the values of ~~ t
1 

. These 

can be chosen to be arbitrarily large. If this is done, then cuts 

(d) an~ (f) shrink to zero, while cuts .(b), (c), (e) and (g) 

move infinitely far away. Therefore the position and reduced 

residue of any pole which remains in the domain of meromorphy connected 

with high J for all energies are both analytic functions of W 
. 

with only cut (a), as long as the pole does not interse~other 

poles. We expect that these conditions will be met for1 the leading 

trajectory. Of course the same results carry over for the poles and 

residues of the o amplitude. 

If a factor having a J dependence other than 

1 
2 J-2 

(q ) 

is used in defining b2(J,W) , a function having cuts in addition 

to (a) - (g) is obtained. These cuts do not shrink to zero or 

recede as ~' t
1 

-+ oo and thus· the reduced residue· of the function 

so defined has cuts in addition to cut (a) • Th_is result is quite 

important for choosing the kinematic factor in the N/D equation 

which will be done in Section IV. 

Let us now investigate the properties of the poles and residues 

near w = ± (M + ~) We first consider the point W = ·(M + ~). 

We define 

... 
b(J,W) = 

~-t(w) ... 
III.7 



/,... 

.. · ·~. 

·This function is real.analytic ~ear W = (M+~). and has no zero at 

W = (M+~) • The·generalized ~itarity relation is : 

b(J,W+i€) - b(J,W-i€) 
2i 

Therefore we can write b(J,W) as follows: 

"' ( · sin 1(J 
b J,W) = J--

Y(J, W) ~ i q(q2) 2 E~M e 

i 

i 
·I . 
I 

-i1((J-t) 

III.8 . 

III.9 

where Y(J,W) is real analytic and has no branchpoint at W = (M+~) • 

The Regge poles are solutions of 

Y(J;;W) 

From this.it is easily seen that if Re a(M+~) > 0· then 

Im a(M+~) = 0 • Consequently, 

where 

III.lO 

III.ll 

.. 



,. 

-. 
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This shows the nature of the branchpoint in ·a(W) near this point • 
.... 

The residue of the pole in b(J,W) is 

sin 1! a(M+~) 

and a glance at III.ll shows that this has the same sign as 

Im a(W+i€) near W = M+~ • Quite analo~ously the point 

W = - (M+~) can be treated. This point refers to the (J,J+~) 

amplitude. We will establish the convention of associating the right 

hand physical cut with the (J,J-~) amplitude and the left hand 

physical cut with the (J,J+~) amplitude. The physical amplitude 

is reached by approaching the cut from positive imaginary values 

on the right and from negative imaginary values on the left. To 

summarize, the pole position a(W) is real analytic in the W 

p~ne with only cut (a) •. If it passes through or near a physical 

value of J for W ;>:·o , it corresponds to a bound state or 

resonance in the (J,J-~) state. If it does so for W < 0 , it 

corresponds to a bound state or resonance in the (J,J+~) state. If 

Re a(M+~) > 0 , then 

a(W+i€) - a(W-i€) 2 a(M+~) E+M 
2i --(~+(q) w 

W ~ M+~) 



·.. .~ _· . . ,: . '._. . ·- •. '. ) ~. ' ' . ~ 
...... _' 
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and .if Re a( -M-JJ.) > ·-1 , · 

,. 
; -;.. 

( ) ( ) . 2 a( -_M-JJ.) 
a W-i€ ·- a W+i€ ( ) E+M 

2i W _. _ (M+JJ.)- q · . · W 

·~· 

Theresidue t3(W) = [J-o:(w)J b(J,W)/J=o:(W) isalsorealanalytic· 

in the cut W plane with ~nly the cut (a) and has the same sign as 

Im a(W+i€) near W = M+JJ. and Im o:(+W-i€) near W = - (M+JJ.) 

., . 

' 

I 

..... · 
,· 

; . 
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·' 
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SECTION IV. THE N/D EQUATION 

In this section we c~nsider the basic N/D equation. The 

amplitude which we will eventually use for this is b (J,W)·, 

defined in section III • Howe~r, before we proceed to the treatment 

of the ·N/D equation, the behavior of the amplitude at 

W = ± (M-~) needs some attention. Let us rewri~e the amplitude 
Je 

TJ' 
0 

J..(W) 
-2 

+ 
2 2 (W-M) -~ 

321! w 

i 

(W-M) 
1
B: ~~ J 

The source of the complications at W ~ ± (M-~) is the integral 

over the u discontinuity in the amplitudes 

example, the contribution of this integral to A~e is 

where 

1 
2 
7tq 

co 

J du' A (s u') . . u ' 
(M+~)2 

For 

-s- u') 



-! 

If the integral started at a lower limit u > (M+I-L~2 , the above 
0 

t 
amplitude would cc (q2) near s = (M-!-L)2 This follows from 

the 1/z ~;:1"1 ~ : behavior of Qt (z) at large z • However in our 

integral i:h::! ngtcn.rear u' = (M+!-L)2 can cause the quantity 2 (M2+ I-L2 )-s-u' 

to vanish near s = (M-!-L)2 and this fact causes the behavior near 

s = (M-!-L)2 to be somewhat more complicated. To investigate this 

in more detail let us split the integral into two parts, one.from 

· (M+!-L)2 to ~ and the other from u
2 

to CD 1 where u
2 

is 

slightly above 2 
(M+!-L) • Now the function A (s,u') 

u 

[(M+~)2, oo] and 

where t (u) > 4~2 
0 

is analytic 

Consequently 

in the cut s plane w1 th cuts 

[ - ro, 2 (~ + I-L2 ) - u - t 
0 

( u)] 
for u near (M+!-L)

2
, Au(s,u) is analytic in s near (M-u)

2 

and can be expanded about this point. This amounts to a rearrangement 

'of the Legendre expansion of A {s,u') in the rcN u channel. 
u 

This expansion for A (s,u') can be expressed directly in terms of u 

the rcN partial wave amplitudes in the u channel. The appropriate 

formula for this is given in section V • Near u = (M+!-L)2 , the 

imaginary parts of the' partiai wave amplitudes are analytic in 

[ u-(M+!l)2l~ 
power series: 

A (s, u 1 ) = u 

and consequently we ~an expand A (s,u') 
u 

90 CD 
.z !: 

n=l m=O 

A n,m 
u 

n! m! 

in a double 

IV.2 
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where for example A 10 = · 21r GM+~) \ ~ 
u ~M+~VM 

where a is the 1rN S wave scattering length. Let us introduce 

y = and denote the argument of the Q function by z. 

Then a term from the expansion of A (s,u') contributes the following 
u 

2 term to the integral from (M+~) to u
2 

: 

2 
~-(M+~) 

-1+ ..L_ + 
2q2 2q2 IV.3 

2 
A n,m 

J ym [ 2q
2 (z+l) -y] ~ u dz Qt (z) +- n! m! - 1t 

where 

2 [ lM~-Y· . ] 
q =-t 2 

. (M-~) + y 

For small y the lower limit is always near the point _,_(M~-:.....t.~ )'-2 -1- ----:: 
2M~ ' 

and the upper limit is near the point 

. 't 
Now let Us divide by (n

2
) , k i > 0 f th t Th ':1. eep ng y or e momen • en 

we have : 



.' 
' ·~ . . 

•· ' " . . ~ 
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2 . 

.. -l +~ + ~- ~M+J.l) IV.4 
2q 2q 

Anm I - y J 
n 

Qt ( -z) 
- 2 u· m 

[2q
2 

(z+l) 
2 

+- n!m! dz y t 1! 

-l+ ..][_ 
' 2q2 

[ ;r( 4M~-;r) J 
4(M-J.l)2+ y. . 

Now we. can see the nature of the branchpoint at y = 0 by taking 

.the discontinuity of this expression as the negative y axis is 

approached from above and below. This gives: 

-l 

J a.z(l +.2M)! 2 
2 (M-J.l) 

-1-_.,(M,;....-~J.l )_· . 
· 2M!l 

· where we have kept the lowest· power of y • · The dominant behavior 

IV.5 

near y = 0 will come from the-term A~° Consequently, to lowest 

order in y ; the discontinuity is controlled by the S wave scattering 

length and it Va.ries as ( -y) ~-t. The terms which vanish more 

rapidly near y = 0 will involve the scattering lengths of higher 

waves as well and can be calculated in a straightforward way. 
e 

Similarly fo~ the Bt0 (s) amplitude, the discontinuity varies as 

.· ....... 

~ ... 
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1 t 2 ( -y) 2 - and is proportional to a • Now for t > 3/2 or J ~ 1 
1 

the behavior (-y)2-t is not integrable. What this means is that 

if dispersion relations dealing directly with the discontinuity near 

~ = 0 (or W = ! (M-~) are being used, the contributions from 

integrals on small circular contours around the points W = ~ (M-~) 

must be retained. It is easily established by continuation from the 

region t < 3/2 that this does not introduce any arbitrary parameters 

into the problem. The same information that determined the discontinuity 

near y = 0 for t < 3/2 , i.e. a2 to lowest order in y , also 
! 

is all that is needed to evaluate the small circular integrals for 
t 

A (n2) ·t ~3t2 • Therefore, although the amplitude does not vary as ~ 

near y = 0 ·as has often been claimed in the literature, ~ 5 · the 

operation of dividing by this factor causes no difficulty beyond the 

computational one of evaluating the small circular integrals. In 

our subsequent discussion we will avoid this computational difficulty 

by only dealing directly with the physical cuts. These points 

established, let us turn directly to the consideration~ the 

appropriate amplitude for use in 

Let us start from the amplitude 

setting up an N/D equation~ 
_.]' eo 
TJ-~ (w) . In order for the 

residues of the Regge poles to have the desired analyticity properties 
.. 

guaranteed, th~ discussion of section III requires that the kinematic 
J-~ 

factor which we use must contain (q2) Then the requirement that 

correct threshold behavior at W = ± (M+~) be guaranteed and that 

the possibl~ kinematic pole at W = 0 be removed specifies the 
J~ 
·' 

remaining f'a,ctor to be (E + M) The amplitude we propose to deal 
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·.It should . be ·emphasized at · this point that has . the . same . 

• ·value at the MacDowell symmetric points W, -w or ·in· other words 

· is to be regarded as a function . of s • This follows from the 

d_iscussion at the end of section II and the fact that the behavior 

we are dividing out originates in the amplitudes 

. , . . ~ 

. ; -~ . 

'• . 

··, .. 

, .. 
·: ~ .... .· ~ . . .• 

"• .: A ' ...... _. , .... 
. . '~-··~ -':.' ·-

. .. 

To establish the N/D . equation, we will start from· high 

real values of J • The resulting integral equation will then be 

continued to the left in the J · plane. We assume the "function 

e 
F 0 (J,W) = 

{" 
·, 

. . e 
Imb 0 (J,W') 

W'- W 

::. 
i' ( 

.. / I 

! 
·.··,· 

is .known and we seek to generate the amplitude using two body unitarity 

'.in the st>-ip regions W <. ! [ Wl!, M+Jl] where w1 . = s;~ .• For J 

large enough the amplitude ~s no poles in the phydcal sheet. In 

that case tfi:e existence of an N/D decomposition is guaranteed by. 
' t ~ 

the Omnes representation for D(J,W) 

.. ~ . :. -~·· ---~ · .. 

-··" 

-~·-· 
.---. 

··: ... 
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0
(J,W) = 

I .. 

. '·:· 

•••• ." ~ • •; __ ~ h ~:-v.. . ......... ' 

' .· .·"". 
·'· 

I. 

eo ... 
8 .!.(W' )dW' J-g . 

W'- W 

e 

/ 
/ 
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e 
8 °1(-W') dW' J+g . 

(w•- w) 

The reqUirement that D 
0 (J, W) have no pQI.es or zeroes at threshold 

IV.8 

~ ~ : ~· . 
implies the choice 8J i(M+~) = 8J .!.(M+~) = 0 • D (J,W) carries 

. •g +g 

the phase of the amplitude in the two strip regions, or 1n other words, 

rm [ b00
(J,w) D

00
(J,W)] = o , w e :!; ( M+J.t, w1 J. Thrref'ore in 

the term in brackets is 

-(M+~) . . 
1 J · . dW' 

·- i W•- w 
-wl 

.. JW1 [ . ] . e .. ! dW' o 
- 1t W 1 _ W Im D · ( J, W' ) 

M+~ . . . 

e e 

IV.lO 

where the definition of ·F 0 (J, W') and the fact that D '0 (J, W) ) 1 
w ... co 

e 
have been used. Unitarity for b 0 (J, w) gives 

.. 
" 
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'. IV.ll 
e e 

D 0 (J, W+i·E) - D 0 (J, W-i€) = 
2i 

. eo . eo 
.D (J,W+i€) - D (J,W~i€) = 

2i 

where as mentioned previously, l is a functid~i of s Therefore 
I 

e 
D 0 (J, w) = 1 - ! [JWl + --J-(M+!J.) dW' 

tr · - W'- W 
. M+!J. -W1 

p:J, w•) N e0 (J, w•)] 

i] 2 J E+M 
where the combination. (q )_ -w- has been denoted by p(J,W) 

e 
and the fact that D 0 (J,W) is normalized to 1 at infinite W: 

e 
has been used. Substituting the above expression for D 0 (J,W) into 

IV.9 for N gives: 

_ e e 
N °(J,W) = F 

0 (J,W) 

e e 

IV.l2 

IV.l3 

F o(J,W')- F O(J,W) p(J,W') Neo(J,H') 
W'~ W 

IV.l4 

e , e 
F o(J,W')- F o(J,W) p(J,W') Neo(J,W') 

H'- H 
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,• 

e 
. which .is. the basic integral equation. The construction of F 0 (J,W) 

will be considered in section V and the difficulties associated with 

the logarithmic behavior near W = :!: w
1 

will be considered 1n section VI • 

The analysis in section VI shows that the equation is one of essentially · 

Fredholm character. That is, 'either the equation as written has a 

unique solution or the homogeneous equation has a solution. The 
eo 

result of section V will be to provide a function F (J, W) holomorphic 

in J to the right of some point below all physical values of J 

Thus except for certain isolated values of J where Fredholm poles 
eo ' I . 

exist1 the function N (J,W) is holomorphic 1n J to the right of 

this point. We assume there are no Fredholm poles to the right of 
I 

some J 
0 

< i . If this is so then the amplitud!e is meromorphic 1n 

. eo 
.J. The Regge poles that exist are solutions of .D (J,W) = 0 

This will mean 1n practice that the po~e position 

. the cuts t [ M+~, w1] instead of the full physical 

applies far the reduced residue given by: 

e a o(w) has only 

cut. The same 

[ 

-(M+J.L) wl 1 [ .l - ~ J + ~ J .dW' [w'- w]- Im De0 (ete0
, W') Fe

0
(ae0

, W')j 

-W1 M+J.L 

e 
D 0 (a, W) 

C/, IV.l5 

Since the strip width is supposed to be chosen at a value of w1 

sufficiert"tly large· that the poles have turned back to the left half 

plane, the absence of the high energy cuts :!" [ w1, ro] may not 
seriously affect the values of the positon and residue in the low 

, !l 

/ 
energy region. 
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Before turning to the construction of.· F (J, W) , ·. let us 

make some remarks about the qualitatiye shape expected for trajectories 

in the ~N system. We ·shall see in section V that the _forces due 

.to exchanges of Regge poles will bear a qualitative similarity to the 

forces treated 1n the usual un-Reggeized way. If so then in cases 

where the force is strongly attractive in one-of the states (J, J + ~), 

then it is either weakly attractive or repulsive' in the MacDowell 

symmetric partner of this state. This behavior arises mainly because· 

the dominant forces 1n the problem arise from the exchange of the 

particles in the u channel. · The terms 1n such exchanges chfl,nge 

sign in going from t to t ± l and when they add to give attraction 

in one case, will add up t«? a much weaker attraction or a repulsion 

1n the opposite parity case. It is easy to see from the definition 

of the continued amplitude, that this behavior holds for unphysical 

as well as physical values of J. Consequently if-conditions are 

favorable to a trajectory which passes near physical values of J in 

the (J, J - ~) state for example, then we don't expect to see this 

trajectory near any physical values of J in the (J, J + ~) state. 

In this exam.ple we would have a trajectory function cx(W) with the 

following behavior: For W > 0 and increasing, , the pole in the J 

plane will mov~ to the right staying .in the real axis until W = (M+i-L) , 
- . 

when it moves into_the upper half plane continuing to move to the 

right fo~ a time and then curving back to the le~ half plane. For 
/ ; 

W < 0 and ~ecreasing, the pole would in the simplest case move to 
. ¥~~~. j 

the left ufitil W = - (M+~) at which point it could move either up ' ,. 

........ 

. ··--. ··.·• 

,,, 
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-. 

I, ,, 
1 

or ·down from the :r:eal J · axis ·and continue its motion until the 

endpoint of the trajectory. When the pole is in the right half plane, 

the sign of Im a(W+i€) is determined by the requirement that 

resonances correspond to poles on unphysical sheets and the centrifugal 

barrier argument that puts a resonance with higher mass at a higher 

value-of J Neither of these requirements is operative in the case 

discussed above at negative W and therefore Im a(W+iq · can have 

either sign. Similarly if a physically interesting trajectory occurs 

in the (J,J+~) state, it will be in.the right half plane for 

W < 0 and will move to the right as W decreases. 
I 

In· this case 

Im a(W+i€) is negative for W < - (M+~) ·For W > 0 and 

increasing the pole would move to the left. We will see in section V 

that if this qualitative behavior holds true the construction of 

force terms is simplified considerably. 

., . 
. f. 
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CONSTRUCTION OF F 0 (J,W) 
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In: this· section .we consider ·the term F 0 (J, w) which m.ust: 

be 
. _··. . . . . .·. . . . .· . eo . . ·. ·. 
supplied as an ·illput to the integral equation for N (J, w) • . · 

e 
The contributions to F 0 (J,W) are of' two type~. The first is 

from all double spectral functions which are non-zero in regions 

outside the interval 6 e [(M+~)2, s1] These of course are never 

known exactly. As stated in section I the basic approximation 

scheme of' this work is to parameterize these contributions in terms 

of' Regge poles in the cross channels. The second contr~butions to 

F e 0 (J, w) are from the regions . s. € ( (M+J..L)2, s
1

] themselves. The 

double spectral functions for s € ( (M+J..L )2, sJ contribute to the 
e 

t and u discontinuities and thus to the force cuts of' F 0 (J, W) • 

. These contributions are of' course also unknown and there i.s no 

method available at present. for reliably estimating·them. They are 

ignored here. Their influence is predominately on the far away parts-

of' the force cuts and thus may not have an appreciable effect on 

the low energy scattering. This dif'f'iculty is of' course one which 

is always present when the N/D method is used. Let us turn then 
eo ·. 

to the construction of' F (J, W) in terms of' cross channel Regge 

poles, taking the crossed 1tN channel f'irst. For this we need some 

·16 of' the standard f'ormulas for partial wave projections in 1tN scattering: 

·. 

.. 

,; .-

. -
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or 

where 

fl = !{E w J 

f2 = !{E w J 

fl = 

f2 = 

I 
I 
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E~ r .· 
81tW A(u,s) + 

~~~ [-A ( u, s ) + 

(W-M) B(u, s )] 

(W-IM) B(u, s)] 

B(u, s) = {fl ~E+M + 
f } . 
E:M 

·A(u, s) = 4'1! E+M· 
rl (W-IM) t 2 (W-M)} 

E-M 

~-i(W) Pj<i(zu) - ~<i(W) Pj.~(zu)} 
~ t(W) Pj t(z ) - ~ .t(W) Pj .t(z ~ +2 ~ u -2 -2 u 

All energies in these formulas are understood to apply to the u 

channel. Our procedure is as follows. We first perform a 

V.l 

V.2 

v.; 

Somerfeld-Watsan transformation on V.3 , and obtain formulas for 

f 1 and f2 in terms of u channel Regge poles. From these A 
e 

and B are gotten and the term F 0 (J,W ) is calculated using 
s 

III.3 • Now let us write f 1 and f 2 as integrals in the J plane: 

'·; 
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~~ = ~leo~~ {~-~(W) [Pj+~(-~u) + Pj4(•u>l. 

:·...-·;·.-! _J_ ,( l 
..... :._. 

+ ~~(W) [ Pj4(-z) - Pj4(zu)] . + ~~(W) [Pj.~(-zu) - Pj_~(zu)] .· 

+ ~.:t(w) [ Pj_~(-zu) + Pj_~(zu>J} 
f2 = - ~ [ co~nJ {~~(W) [p~ 1(-z ) + P~ l(z >] 

~+2 u ~+2 u 

v.4 

Here C denotes the usual contour encircling all physical values of 

J • The contour may now be opened up to give the usual integral 

over a vertical line in the J plane plus contributions from Regge 

poles. The validity of this representation depends on the vanishing 

of the integra~d at infinite values of J This is insured by the 

factor 1/cos ~J and the exponential decrease of the QJ~(z) 

function in the J plane for z real and positive. Thus the first 

term in f 1 s~y, will be represented by the following expression: 

. . : ~ 

. 
·\·,_. 

- .... 

.. 

... _ ... _. 
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1( 
+-
2~ e cos 1tO: [

P' ( -z ) + P' (z )J e 1 u ,e 1 u 
a+2 u.+2 

where we have assumed only one Regge pole for simplicity. We assume 

that J lies to the left of any trajectory which emergies into the r . 

right half plane to make a bound state or a resonance. The Regge pole 

will dominate the expression for values of W such that ae (w ) is u u 

near J :::;: 1/2 , 5/2 , etc~ or for large values of z 
u 

So far we 

have tacitly assumed that Wu is real and above threshold. If 

this is so, then the integral term above converges for all zu 

However if one attempts to continue the expression to values of W 
u 

2 below threshold where .~ is negative, the domain in zu for which 

the integral converges shrinks to zero. This follows from the fact 

that 

Qt(z) --·4) 0( ..L 
t-+ oo. '0t' 

where z =cosh 5 ,and the fact that Pl(z) increases exponentially 

as t -+ i oo+ t 
r 

In an integral such ·as 
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2 . . 
if q < 0 ' s = sr ± in • This ·will cause 

. _.r e .(W·) .-~ ~ :0:~· :l.nJ0. ·. . 
T:.J 1 u· . . . e 

-2 . ' ' 

along the imaginary J axis and thus the integral will diverge_. 

This might l.ead one to suspect that the Regge pole term no longer 

· gives the dominant behavior at large zu or near cl = 1/2 , 5/2 , 

.etc. However one can easily establish that these results continue 

to hold by using a slightly modified continuation from physical 

values of J , which essentially amounts to replacing 

t' )'· + . c : t' ) QJ~.!. .+ 2 by - QJ,..!. -1 .-. ~ l 
2 2~ -r-2 :' ;2~ . 

' :' ·; . 
I 

·I . 
which is a true' equation at physical values of rr . This gi v.es a 

convergent background integral and_ a slightly-modified Regge pole 

term which agrees with th.e pole term above near the places where the 

. pole dominates. Thus the failure of the background· integral to 

conv~rge for ~ < 0 does not cause the usual features ascribed to 

the pole terms to lose their validity. Now our approximation will 

of course involve dropping the integral term entirely and keeping 

only the pole term. We also modify the pole term somewhat to remove 

some unwanted cuts. For this we need the following formula: 

00 
P' .!.(z') 1 

.. ~. . ,' . 
., 

,·; 
.. , " ·: :. . .. ;._ . ~-

P~~(z) 
cos 1CCt 1 = dz' CX+g 

+ .. v.6 
... 

I,, 
'~~-~ 

·. ~:"t 

n 

I 

1 z '+ z z + 1 

\ . 
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where the right hand side is defined by continuation when the integral 

fails to converge. In the Regge pole term in V.5 , we make the 

following replacements: 

= P' 
ae+~ 

2 2 
~ 

- t 

e cos JfQ; 

1! 

0- 2~)-
. e 

cos JfQ; 

1! 

P'e 1 ~· + t 2')dt' 
C:X+-2 2 

~· 

t ,_ t 

]1 P' ~+ ...!:_ dt' 
. ~e:+i. .... 2 2 

t'- t 
0 

where the equality holds for! ,~ real and positive. Similarly 

1 
+ 

2 + 

e cos JfQ; 

1! 

s-u 

e cos JfQ; 

1! 

ds' 
s 1

- s 

where again the equality holds for 
2 . 
~ real and positive. What 

·we have dohe here is remove the cuts of the pi 1 •·•hich intrude CX+2 " . 

v.8 
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·! 
channel strip regions ·.and·· defined the remaining 

f • 

'cuts to be along the positive s '·and t axes as required by the 

Mandelstam representation. Note that the modified expressions reduce 
' e : 

to the original ones near a . = 1/2, 5/2, etc. ?r at large zu , 

so that the modified term is accurate in any region where Regge poles 
I 

dominate. Our reason for removing these cuts is1 that in our dynamical· · ,~ 

scheme the s and t discontinuities in their respective strip 

regions are generated by two body unitarity in these channels. Removal 

of the cuts :f'rom the u channel pole terms requires that the u 

channel scattering provides a real potential in these two strip·regions. 

Let us return to our expression for the u channel pole term. 

It now reads: 

. . P' . ~+ t' ) . 
m . ae +i 2 2 oo 

e·( ·)[1. . . .. . ... ~- f f3 Wu dt' t'- t + ds' 

P' 
ae~ 

where the subscript 

tl sl 

s
1
,e 

+ R (w , s) 
+ u 

I ; , ·. 

+ denotes that P' 1 is involved. 
a+2 

If we 

carry out a similar analysis on theremaining pole terms-in r1 

and f 2, the following expressions are obtained: 

,, .. 
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f'l = I: 
all :poles 

[ 

tll 
+ R 

+ 

0 . . s11 0 
(w 1 t) - R (w 1 

u + u 

' [· tll 0 
+ R (-w 1t) 

- u 

, s11 e 
(w I t) + R cw, u + u 

V.lO 

[ R~~' e s 1 

(-W 1 t) - R l 
u 

V.ll 

where we have made use of' the Mac Dowell symmetry in writing the terms 

ll evaluated at -w • We. keep here the convention established in. 
u 

section III of' associating the physical cut in the right half' Wu 

plane with the (J1 J-~) amplitude and the physical cut in. the left 

half W plane with the (J1 J+t) amplitude •. The sense of' approach u 

to the physical cuts in the Wu· plane is as before from positive 

imaginary values in the right. half' plane and from negative imaginary 

values in the left half' plane. Using V.lO and V.ll in V.2 gives 

the following f'orniulas for A and B : 

I 

·------------------------------------------··-·-··· - -~ 
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1 
. ·-E-M 
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[ 
t 1, 

0 s1, 0 J 
R (w ,t) + R (w.,s) 

- u - u 

.. ;.'._ 

-·-.·- .. . , 

s1, e ·~ 
- R ( -W , s) 

- u 

s .,o ~ + R l (;_W , s) 
- u 

-. V.l2 

P ·. (W+M [t,e s,e J. 
A (u,s) • = 41! !: · Eu+M R+1 (wu,t) +R+1 (wu,s) 

all poles u · · · · 

W -M [ t 1, e · s1, e , J W -tM [ t 1, o s1, o J 
+ Eu M R+ (-w ,t) + R (-w ,s) +-Eu.u R. (w ,t)- R (w ,s) . - u + u -n.•1 + · ·u + u 

u . u . 

Wu-M [ t 1, o s1,o · J W -tM [ t 1,e· s1,e J 
+ -E -M R+ ( -Wu' t) • R ( -W , s ) + _u_ R ( -W , t) - R ( -W , s) 

+ u E-tM - u - u u . u 

W -M [ t 1, o , t 1; o ] 
+ Eu -M .R . (W , t) + R (W , s) 

u - . u - u 
_ V.13 

\- ' 
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These formulas represent the contribution of the u channel poles 

to the s channel potential •. The way 1n which we propose.to use 

them is as ·follows: 

. e 
F 0 (J,W) = u 

1 
(13 su) -~J -~2!'"-'"-

(q2) (E+M) 

. p 0 e .J 
(W-M)BJ-~ (s) 

V~l4 

Here (13 su) is a symbolic notation for multiplying by 
1
the t spin 

crossing matrix. 

.(A· ) I'I = · ~-"su 

4/3 

... ·2/3 1/3 

p p 
the A and B being understood to refer to a definite I spin 

e 
in the u channel. Fu0 (J,W) represents the part. of the potential 

coming from the u channel Regge poles. The quantities 
P eo Peo · · 

AJ-.1. , BJ-.1. are given by 
+2 +2 . 

V.l5 

. ---·-·--·--···------



~ I 

'! 

. .;. ' :: -~{ .~. _·: .~: . . .~, . 
: .• 

.~· 

.• .. · 

-48-
' . L .· 

Peo · i 
and sin).ilarly for .. B t ( s) · ~ . ·In addition to the integral from 

2 ·. peo · 
(M+JJ.) to co , . Bt (s) .. contains a term · 

. V.l6 

for (I = i) , which comes from the nucleon trajectory which contri-. u 

butes the usual pole term at , u = Jl It will be noted that we have 

not included any contribution to the t discontinuity of the u 

channel Regge poles. There are two reasons for this. fFirst, the 

. maximum value of u which may appear in such contributions is 

(M-JJ.)
2

- t
1 

, and since t
1 

will normally be several times (M-JJ.)2 , . 

this will be a fairly large negative value of u • Thus any Regge 

pole 
. 1 

in the u channel will be well to the left of J = 2 • Second, 

for s e ( (M+JJ.)2, s1 J , zu is € [ -1, .1] for such contributions. 

Consequently, none of the criteria for dominance of a Regge pole are 

satisfied. Keeping terms which are of the same order as terms already 

ignored seems a dubious procedure, so we take the simpler course of 

dropping these as well. These terms influence predominantly the 
e 

far away part ·of the force cut of F 0 (J,W) and just as the previously 

ignored s channel strip terms, should not appreciably affect low 

energy s · channel scattering. 

)Get us examine some qualitative features of the force due to 

the u channel poles. First of all the expressions V.l2 and 
.. f, . 

V.13 _will Jimplify considerably_ in practice. Let us take w =+-y,;'.t u 

•·. 
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* Then suppose we are talking about'the exchange of the N33 trajectory. 

If the fermion poles behave as expected on the basis of the discussion 

of section IV the terms evaluated at -W will correspond to a pole u 

to the left of any physical value of · J 1 and wi;tl be small comp:~.red 

to the +W terms and can be ignored. u . 
p 

Thus A and 

contain only half as many terms as explicitly given in V.l2 and 

v.13 • A stmiliar result applies for exchange of the nucleon 

trajectory. * We only keep the nucleon and N33 trajectories in the 

u channel since these are the only ones we can /expect to generate 
I 

in a one channel approximation. The other resonances such as the 
I 

600 MeV resonance probably require a multi channel treatment for 

even a qualitative understanding and therefore are not included in 

·the·one channel case we are considering here. 

The qualitative features of the force can be understood if 
. p 

we notice that the Legendre exp:~.nsions of A and 

channel ·converge if s < s1 • At low values of s 1 .· these 

exp:~.nsions will converge rapidly and will be dominated by the u 

u 

channel bound state and resonance terms. Thus at low values of s 

the exchange of a Regge pole will look like the exchange of the 

particles and resonances that lie on the trajecto~1 treated as 

fixed poles. At high values. of s 1 . the usual Regge bel:J,avior will 

take over. : Tl'{e high and low! s behaviors are not sensitive to the 
I 

value of .. s1 as wa;s noted if the discussion following V. 7 and 

v.8 •· Except for the weak logarithmic singularity near s = s1 , 
*I ' 

the transit~bn between these two ~egimes is smooth· and therefore 
., 
f.· 

•i: 

&-
.. \~. 
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we expect a force which is relatively insensitive to s1 • The fact 
. . 

that a reasonable high energy behavior of. the force is assured no 

matter what s
1 

is, is one of the major differences between the 

forcess as treated here and in prev:!.rus·;U};;.Rewized treatments. This 

will allow the theory to depend on s
1 

in a much less sensitive way 

than the cutoffs of these previous un Reggeized treatments. 

Before turning to the ~iscussion of the force due to the 

t channel poles, let us comment on an alternate procedure which 

is useful in the 1!1! case. ,That is to make use of the dispersion 

relation satisfied by the Qt (z) function. 

= 

-1 

J 
Qt ( -z') dz' 

z - z 
-oo 

Using this in an expression like 

'leads to 

1 
2 
1!q 

00 

J du' 
2 (M+J.l) 

+1 

+1 

+~I 
. -1 

P (z' )dz' 
t 

Z - Z I 

J dz P.r, (~) A' ~~· 2 (~·+ J.l2 ) -s +. 2q2 (z+l)) 

-1 

•CD 

V.l7 

. . ~ ., . 

. -
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V.l8 is usually known as the Wong formula. Here A' (s, u) is 

given by: 

A'(s,u) 
= !Joo du' Au(s,u') 

~ 2 (u'- u) 
(M+!l) 

If.the u channel were a Boson channel, the residues and positions of 

the Regge poles in this channel would be real for u < (M+!l)
2 

and 

v.18 is quite useful in this case since the integrals only involve 

2 2 2 
:'- < (M -!l ) /s and one can deal with real quantities in evaluating 

the potential. In our case the u channel is a Fermion channel 

and for u < 0 1 W = ± i u IVu'l and o;(W ), o;( -W ), u u ~(W ) , and 
u 

~ ( -W ) are all complex. u So from this point of view the Wong form 

is no easier. Furthermore, in :practice this would mean carrying 

out the bootstrap on the part of the trajectories f·or which 

if.= u < (if-IJ.2 )
2
/s Nothing is known experimentally about the 

trajectories in ~N scattering for this range of energies. They 

have so far not manifested themselves in high energy backward 

scattering which is the only means of observing this range of 

energies. Finally, the presence of unequal masses makes it difficult 

to construct forms for u channel Regge pole terms which have 

correct analyticity properties for u < (M2-IJ.2 )2 
s 

Thus in the 

~ case--using the Froissort-Gribov form as we have done seems to 

be the best procedure • 
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Now let us turn to ihe construction· of' the part of the 

potential that comes fran the Regge poles in the t channel, 

eo 
F t (J, W) • The relevant poles in this case are the p and 

Pomeranchuk. The positions and residues of these poles are of 

course not determined by the solution to the ~N problem and thus 

there is no bootstrap for these parameters wi~hin the ~N problem. 

alone. The positions of these poles are determined by the solution 

of the ~~ bootstrap equations and we will imagine that we have 

such a solution at hand. Given the solution to the ~~ problem, 

the residues of the poles as they couple to the ~N 
I 

system can be 

calculated. We shall show below how to do this. It might also be 

noted that a good deal is known about these parameters experimentally 

and in a less ambitious program, this information could be employed. 

To proceed with the construction of 
eo 

Ft (J, W) we have to make use 

11 of some of the standard formulas for partial wave projections and 

I spin analysis in the ~~ ~ NN system. 19 First we note that the 

I spin decomposition of A and B .can be written as follows: 

· and similarly for B 1 where ~ refers to the final ~ in the 

+ 
s .channel and a to the initial. The relations of the A- to 

V.19 

definite I spin amplitude in the s and u channels are given by: 
. - . 
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s .Al/2 = A++ 2A-

. A3/2 = A+ -A-

Al/2 
V.20 

= A+ - 2A. u 

A3/2 = A++ A. 

and similarly for B± • In the t channel, A\ ; B + couple only to 
I 
I 

I = 0 · systems while B-, · A- couple only to II = 1 systems. Bose 
I 

statistics requires that 

V.21 

where cos e is defined as the· angle between the final N and rca • 

If we define the total helicity with respect to the momentum of the 

N , then the helicity amplitudes are given by 

± 1 [~Ji [ + -:1; e] fo = 4rcw -A-p + mq B cos 

V.22 

+ 1 (k ]i B±qE 
., 

f:l = 4n:w sin e 
q . 
! .., : 
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where ~ = If 12 
. , · p is the three-momentum ~gnftude in the 

· NN system and q .. is the three-momentum magnitude in the 1t1t system. 

Partial wave decompositions are given by 

·where 

and 

where 

Now 

t . 
A (t, s) 

V.23 

V.24 

V.25 

-$m · [J(~+l)r~ ~;~1 (t)- B;+l (t~ V.26 

I 
. ! 

l
oo d~' A-t(t, s') . 

1 
joo du' A±(t,u') 

= ! s + _ ---:::::--:::-u;;;.._ __ _ 
1( 22. 1( ·22 

+J.L)2 · s'+p +q -2pq cos e (M+J.L)2 u'+p +q +2pq cos e 

V.27 

·. 
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where :from V.211 

holds for B± , 
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+ + 
A;(t,s') = t ~(tis') • A similar formula 

where B±(t, s') = + B±(t, s') • Therefore 
s u 

v.28 
co 

"+ J AJ-(t) = _g_ ds' 
+ 2 2 

As-(t,s')QT( p +q +s' ) = ± _g_f du' 
+ 2 2 

Au-(t,u')QT( p +q +u' ) 
1tpq 2 

(M+!l) 
u ,2pq 1tpq 2 

(M+!l) 
u 2pq 

This d.efines the continuation of A~(t). away from the~~~ integers, 

which allows the Sommerfeld-Watson transformation to be made for 

t > 2 
•. 4.J.1.. Similarly, 

±-
_g_ l d.s' 

+ 2 2 
BJ(t) = B;(t, s') QJ( p :!::9. +s' ) 

1tpq 2 2pq 
M+!l) 

V.29 

co 2 2 2 + 
( E :!::9. +u' ) = +;:cpq L d.u' B-(t,u') QJ 

+IJ.)2 
u 2pq 

d.efines the correct continuation of B;(t) away from ~~n) integers. 

It should be emphasized at this point that the continued amplitude 

may not equal the physical amplitude at J = 0 • This is due to the 

presence of the nonsense state J = 0 , total helicity equals 1 • 

A glance at V.26 for T:i (t) shows that in the continued amplitude 

this unphysical state is coupled in through the pole of QJ _1 at 
-- . 1 

J = 0 which more than c~ncels the [JJ
2 

factor, whereas in the 
';~ 

physical partial wave coupling to this unphysical state should not ,,, 

be includea. The general problem of coupling to nonsense states 
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. ' ' ' . 20 
has been considered by Mandelstam who show~d that the continued 

amplitude and the physical amplitude differ in general by being 

different CDD solutions to the same dispersion relations. So 

unless the coupling to the nonsense state happens to vanish in the · 

continued amplitude, one may·expect in general that it will not be 

equal to the physical amplitude at J = 0 • While this difficulty 

. must be dealt with in any attempt to treat full 1!1! - NN problem, 

it may not cause trouble in constructing the force for 1rN scattering. 

The reason for this is that recent calculations21 indicate that 

the endpoints of both the p and Pomeranchuk trajectories lie to the 

right of J = 0 • If so then the above difficulty will cause no 

trouble in constructing F:0 (J, W) • We shall assume that this is the 

case and not consider the J = ·o behavior further~ 

Let us introduce two modified partial wave amplitudes 

f~(t) 4o<W [ .!l. ]i 1,_ T=~ (t) 1 
=· E p 2 

J 1 r r q (pq) - J(J+l) 2 

f:(t) .. ~wr~r 2 .±J 
= 

p 
T .(t) 

' (pq)J+l 0 

These amplitudes have no zeroes at t = 4M2 or t = 4~2 and are 

;eal analytic functions of t whose cuts for t .>4~2 originate 
' . 

± ± 
directly in the t cuts of A and B • Using formulas v.22, 

V.23 and V.2;, we have 

. 'i 

. . : . • .. ' ~ i" . \. , ... ~ ~ - .. · . 
;. .. · .-

t"'· 
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I 

B:t = E (2J+l) Pj(cos e) (pq)J-lf:f (t) 

J = (~~~ 
V.32 

+ e-"'" A- _ mq cos B• 
p 

Let us write these quantities as integrals over the usual contour in 

the J · plane. 

. ±( 1 J 1t dJ [ ] I J 1 +J B s,t) = 41ti sin 1tJ (2J+l) Pj(cos e)+ Pj(-cos e) (-pq)- f:1 (t) 

c 

1 r 1( dJ 2J +1 [ < < 1 < J 'i-J = 47tiJsin 1rJ 7 PJ cos e) ± PJ -cos e)J -pq) f 0 (t) 

V.35 

Now in the case of the contributions of the t channel poles to the 

. potential, it is much simpler to use the Wong formula rather than the 

Froissart-Gribov formula. The positions and reduced residues of the 

t channel poles are real throughout the negative t region and the 

presence of unequal masses causes no difficulty in this case. So we 

desire exprJssions for t channel Regge poles valid in the negative 

.t region. This has been anticip:tted in writing V.34 and v.35 which are 



j, 

appropriate for use in the negative t region where pq < 0 • 

Opening up the contour and keeping only the Regge pole terms leads · · 

to the following results: 

where 

. cos e 
2 2 

= p +q +s = 
2pq 

2 2 
p+q +u 

2pq 

From now on we understand the + ampl~tude to represent the contri-

bution of the Pomeranchuk, while the - amplitude represents the 

contribution of the p • Since we desire a real potential from the 

t channel poles we modify the above .terms in a way quite analogous 

to the already discussed u channel terms. We make the following 

replacements: 

--~>-
2 2 

p (- p +g +s' ) ds' 
rl . 2pq s'-s 

• "!~ ...... -~ • .~.--.--.z.<!,{ ~-

/"' .. 

. -

~ ;~'D·' \ 
' ,.., ..... ~_...;-~, . 
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2 2 
(- p +q +u' 

2pq 

' 

·/· 
1. 

du' ] 
) u'- u 

ds' 
s'- s 

where as usual the integrals are defined by continuation from regions 

where they converge. We denote the modified expressions obtained 
+ + 

for A- and B- as follows: 

or 

+ 
A-(s,t·) - :!: + ± . s ( s' t) - s ( u, t) 

0 0. 

+ ( 2 2 ) + = s-(s,t) + m p +q +s s:l(s,t) 
0 2p2 

+ ( ) m(p +q +s) · - ( ) 
[ 

t 2 2 + ] 
- s 0 u, t - ~ . s -1 u, t 

'2p 

v.4o 

v.41 

Using V.20 to convert to amplitudes of definite ·r spin in the s 

channel, the contribution of the channel poles to the t channel 

potential 1$ given by: 



t 

'I 

.... ·. . ·v ·~.. . , 
·,.· .. · 

. .; .. 

. -60-. 
,' . ; 

i 

'1 

2 J-2 
(q ) (E+M) 

v.42 
.. 

where the I spin label is suppressed. 
pt . 

At (s) is given by 

·'· -1 p 
_. 2s~1rt J dz 'Q,.f, ( -z 1 )A t (s, 2q2 (1-z 1 )) 

-co 

. p 
t a.nd similarly for BJ+~ •. We have not attempted to include any· 

contribu~_ions to the u. discontinuity from the t channel Regge 

poles. The reasons for this are quite analogous to those given 

v.43 

previously for dropping the contributi9ns of the u channel poles 

to the t discontinuity. Before going on to calculate the residues 
± +· . 

13 _1 (t) and 13 ~ (t) we take note ci''a subtlety associated with the 

22 exchange of the Pomeranchuk. In the case of· the u channel 

contributions to the potential we argued that they could be well 

. represented by the modified Regge pole terms. The reasoning was 

that these gave a good description of the u discontinuity in the 

low s region.where the u channel bound states and resonances 

dominate and they match onto the correct Regge high energy behavior 

at larg~ "' s • A1 though the same type of argument will. apply for the 
ij: 

case of thE!·.··· p , it does not for the Pomeranchuk.. The Pomeranchuk 

.; ·-

. -



\i 
I 

• 

spends mo·st of its time near J = 1 and consequently does not 

dominate the low t discontinuity in the I = 0 state in the 

low s region, until the region where the f 
0 

occurs is reached. 

This could require a more elaborate treatment to be given to the 

low t region. We do not attempt to do so here, since as mentioned 

earlier we expect the cross channel Fermion poles to dominate the 

force and thus this inaccuracy may not be serious. Now let us consider 
+ + 

the residue functions (3·-
1 

and t3-
- 0 

We shall calculate these 

using the strip approximation in the t channel. This consists of 
+ + 

assuming that the amplitudes f:f (t) and f~J (t) carey the phase of 

1r1r scattering over the entire interval [ 41-!2, t 1 ] • This is exact 

of course for t € [41-!2, 161-12] and probably represents a good 

approximation over the wider interval. As mentioned earlier we 

imagine that we have the solution of the 1r1r problem. In :r;e.rticular 

we need the 1r1r D function, which we denote by D!(J,t) for 
. + 2 

I = (£) • We assume that n- (J, t) has a cut from 41-l to t 1 and 

is normalized to 1 at infinite t'. The phase condition implies: 

v.44 

i"J 
We ass~ that a±±· the pe±es ef f=~~©<t} te the ~ight ef J = 9 

± are also zeroes of D (J,t). Writing 
. :-';· 

.;;_ ....... ···-
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·_ .. :..62-.. , - . 

' . · v.45 

and introducing . 

t 

c±.r (t)- f±J (t) - ! r rm· ftJ . (t') .. dt' 
·-1, 0 . : · -1, 0 1( J2 -1, 0 . t I - t 

- !j:~ 

v.46 

we have 

+ +J 
D~(J,t) c:1, 0 (t) v.47 · 

+ . i"J . 
Im D~(J,t) c_

1 0 (t) 
t'- t dt'- v.48 

--tJ 
If we knew C _

11 0 (t) . ,, we would have the answer for the .residues 
+ 

f3 : 1, 0 ( t) • For 

. -

·--- ·------------------ .. -- --·--· . 



. t . . . -

1:1.. . [ +r. + ) ~(t) J ]-1.:. 
- ~ Jw.~t' Im D-1('-(t),t' ( 1, 0 (t•·) [t•, t . 

v.49 

·where 

±.r The problem is then, to calculate c_1, 0 (t) If we ignore the 

contributions of the double spectral regions t € (4~2, t 1 ] ~o the 

' i"J :!:J . 
left cuts of c_1, 0 (t) , we can calculate c_1, 0 (t) in terms of the 

Regge poles in the crossed 1tN channel. We hav.e made this approxi-

mation in dealing with the 1tN system and we us.e: it here as well. 

Using V.l2 , v.13 and V.24, V.26, V.30 and V.31, this leads 
I. 

to the following results: 

and 

.. 

V.50 

c!"(t) = ! (~)J r~ pAt + ~J+l [(J+l) B~=llf. J B~:J] V.51 
Where using V.20 and V.28, 

·~--.--· .. 
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,_. ... ' 

t3tu 

.• 

:': '·_,: .. -64-
. :_·,· .. ' 

; '.! 

..~ ' 

= (~) (1/3 
(...;,) 1/3 

2/3 )' 
-1/3 

', 

e . " p 
the A . taken as before to refer to definite I spin in the u 

I 

channel. Similarly 

(+) c-1/3. -2/3). 
(-) -1/3 1./3 

1/2 3/2 

V.52 

V.53. 

This completes the discussion of the potential. 
e 

F 0 (J,W) is given 

by : 

e . e e 
F 0 (J,W) - Ft0 (J,W) + Fu0 (J,W) 

:·.! 

Given the kJ~ution of the ~~ problem, 
e 

F 0 (J,W) ·is given entirely 
~ 
r,• ·; 

.in terms. of quantities which are outputs of the ~N problem and thus 

a bootstrap situation exists. 

.. · 
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SECTION VI: SOLUTION OF TEE INTIDRAL EQUATION 

In this section we consider the solution of equation IV.l4 • 

The integral equation as written is a singular equation. The kernel 

is not square summable and standard techniques such as matrix inver-

sion cannot be directly applied. The purpose of this section is to 

split off the singular :r;:art of the kernel and treat it explicit.J.y, . 

leaving a non-singular Fredholm equation. The technique we use is a 

slight generalization of the Wiener-Hopf method as applied by Chew23 

in the 1f1C case. First, let us consider the singularity of the 
! 

kernel of the equation for .N(J,W) 

N(J,W) 
wl 

= F(J,W) + ~J d~' 
. M+J..L 

F(J, W' )- F(J, W) 
W'- W 

p(J, W') N(J, W') 

lJM+J..L) 
+- . dW 1 

1( 

F(J, W' )-F(J, W) 
. W'- W p(J, W') N(J, W') 

-Wl 

(W~ drop the signature superscript in this section. All equations 

ar~ understood to be for a definite signature.) The singular behavior 

of this equation is caused by logarithmic branchpoints in F(J,W) 

+ . near W:;: - w
1 

F(J,W)~ 
, ,,., W-+Wl 
i:. 1· 

VI.l 
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·• '... · : :F ( ~w +i e) 
F(J,w)~ Im J rc1 

1n [w1+ w] 
w--w, 

" · VI.2 . 

If the generalized Fredholm theory·were to apply, the following 

. integrals would have to be finite: 

'·. 

. W .. (M+ .. ·) . · · · 
). I r- [ • 

. (2) 1 dW' 1 dW IKJ(W,W'\)1
2

. 
M+JJ. -w . 1 ·: .. 

1 . 1 .' 

.. 

:.l-· 

·:·.J! 

(4) 

The behavior.ot' F(J,W) near W= :tw1 .. causes integrals (1) and (4) 

to diver~~~ while .(2) and (3) are f.inite. ·The fact that (2) and (3) 

remain finite is crucial to the success of the method we use.here to 
~ it 

,.:rr. . . 
treat the i~~hgular behavior. Before we attack the problem of treating J 

;I 

._, 
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the singular behavior of IV.i4 1 we need to relate the behaviors 

of N(J1 W)1 D(J1 W) arid F(J1 w) ·near W = ± w
1 

to physical require

.ments. The physical amplitude b(J1 W) can have no singular behavior 

near W = ± w
1 

• This requires that Im b(J1 W) . be continuous near 

W = ± w1 • Using elastic unitarity1 this implies that 

and 

VI.4 

where 

Using equation IV.8 for D(J1 W) . 1 . we also mve· : 

VI.5 
. . -8 1(W )/~ i8 1(W ) 

· · ·.·._. .. ··.: · D(J W+ie)·~· (w· +:.w) · J-;1-2 -1 , ·-e J:f-2 . 1 · .... 
-··· ... _. 1 -~+· 1·· .. · .. ·' ....... -· 

W-+-W 
. - . 1 
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I. 

' · · Unitarity ·demands N(J,W)/D(J, W) · be bounded. Therefore · 
.,· 

•. 

VI.6 

Now, let us turn directly to the treatment of equation 

IV.l4 • As it is written, it is an integral equation fop 

we:(M+JJ.,w1 ] = 1:J. and We: -[w1,M+JJ.]:: r2 , and .a definitibn otherwise~ 
In the following we will be concerned only with . We: I1 or I2 • We 

consider th~ following modif~ed quantities: 
' ' 

. · N(J, w) We: Il 
N1 (w) ·=. 

0 otherwise 

N(J,W) We: I 2 
N2 (w) = 

0 otherwise 

= rJ~W,W') W'e: I 1 
.IS. (w, W' ~ 

otherwise 

VI.7 

.... 
= rJ:w,w•) W'e: I 2 

!<2(W,W') 

otherwise 

. ~~-~ 

~.;,(. 

' . 

. ·, . 

; 

) . 
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The last two definitions are understood to apply for WEI
1 

or 

r2 ~ With these definitions, the integral equation for N(J,W) 

becomes equivalent to the following two equations: 

. wl . 
N1 (W) = F(J, W) +j dW' IS_ (W~ W') N1 (W' ~ 

M+J.!. . . 

-(M+J.l.) 

. + J dW' ~(W,W') N2 (W') 

-wl 

. I 

: !' 

w · · I 

J
l · I 

N2 (W) . = F(J, W) + dW' IS_ (W, W') N1 (W') 

M+J.l. . . 

-(M+J.!.) 

+ J dW' ~(W,W') N2 (W') 

-Wl 

Let us consider equation VI.8 first. The singular term is 
w . 

11 
dW' IS_ (w, W') N

1 
(w~). • Let us split off the singular :r;art of 

M+J.!.. . 

IS. (w, W') 

VI.8 

VI.9 
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' 

+ IS_ (w, w' ) · 

where 

and we defin.e . · 

Our equation for ~1 (w) now reads: 

. ~(M+JJ.) . 

N1 (w) = F(J, w) + j dW'. 1<2 (w, W') N
2 

(wv) 

-W . 1 

4, 

I !. 
1'. .. , 

- { j 

·I 
./ 

. •. 
VL10 

VI.11 

VI.12 ·· 

VI.13 
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Now let us write this as two coupled equations: · 

-(M+~) . 

N~ (W) = F(J, W) + J dW' 1<2 (w, W') N2 (W') 

-wl 

wl 
+ J aw' iS_ (w, W') N1 (w') 

M+~ 

OUr first objective is to solve VI.l5 for N1 in. terms of N1° . 
For this let 

then 

·---·-·- - """"· . --,--

X.= 

.. 0( ) ·IJ_ X 

VI.l4 

VI.l5 

VI.l7. 

v~·__.J 
i 'iJ 0 ~ ... ;. ..... 

·---·f'--~ 

[ 

I 
·I 
I 
I 



.· .. 

'· ·. 

As written this equation is just a trans:t'ormation of equation VI.l3 . 
and therefore is restricted to . We: r1 or xe: (o, oo] We can solve . 
this equation by the Wiener-Hopf'technique if we extend it to 

x~ ( -oo, o] .. 
We introduce n

1
- (x) = 0 for xe: [o, oo) and '. 

~ 
co 

1 
n

1
- (x) = .r--g 

2 J dx' 
x'-x +( ') n1 x :vr.18 

1( 
0 (ex'= x-1) 

for xe: ( -ro , o] 

Therefore our equation now reads: . l 

J dx' 
x'- x 

0 
x'- x e -1 

Now referring back to equation VI•6 , we see that 

+ 8J_J,(W1 ) x/1r 
n1 (x}~ e 2 

. 

X-l>OO 

1( 
In the case of physical interest, 0 < 8J-~ < 2 

increase at oo no faster than ex/2 • Referring back t<?, equation 

" 0 
we see that n1 (x) can grow 

at most linearly in x at oo. Finally equation VI .18 above 

VI.l9 

can· 

shows that .n1"'(x)~ ex 
x-+-oo 

Thus we have an equation of' exactly the 

... 

~ 
\~~~. ____ .. ..., ..... ::-.. _,, 
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same form as that considered by- Chew and we can use his solution of 

it directly. Defining mJ .!. = . 8J .!.(w
1 

)/rr. , we may take the Fourier 
-2 -2 

transform of VI.l9 anywhere in the strip 1 > Im k > mJ -t . 
Doing this, we get 

g1 + (k) is holomorphic in Im k > p)J _l. 
. 2 

g1-(k) .is holomorphic in Im k < 1 

' 

' 

0 g
1 

(k) is holomorphic in Im k > 0 · , 

VI.20 

and all vanish as k,.. oo along 

any ray in their respective domains of holomorphy. Now let us 

consider the term 

AJ-t 
1- -"""!:""--

sin2(;r1k) 

This has zeroes at 

= sin
2

(;rik)- sin
2

(eJ-!(w1 )) 

sin2 (;rik) 

k = ~ = i. ~ .. * 
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il 

\ 
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The crucial step in the solution of VI.20 consists in writing 

= VI.21 

·· . where ~2 (k) is holomorphic and free of zeroes in I~ k < 1 - roJ~! 1 

- and ~2 (k) is holomorphic and free of zeroes in Im k > roJ -! • As 

shown by Chew, this is accomplished by 

~2 (k) = 

and 
r( -ik+eoJ-!) r-( -ik-roJ -!) 

r2
(-ik) 

~l (k) and ~2 (k) approach constants at oo Using thi~ 

factorization and dividing by ~2 (k) 1 we have· 

.. 

VI.22 

VI.23 

.; . 
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+oo+i€ 

1 'J dk' = 2,rl k':k VI.24 . 

-oo+i€ 

or 

+oo+ie · g
1
o(k') 

1 J . dk' 
- ~ k'-k -~ (k') 

-oo+i€ · 2 

VI.25 

The left· hand side of' the equation is holomorphic f'or Ir:n. k > c.oJ -~ , 

the right hand side is holomorphic f'or Im k <. 1 - c.oJ -~ , they 

agree f'or 1 - c.oJ 1. > Im k > c.oJ 1. , . and both sides approach zero 
-2 -2 

at oo and their half' planes of holomorphy. Thus we have an entire 

function which vanishes at oo and therefore it must be identically 

zero. This gives 

' . i 
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J
·. (Xj +1€ dk I 

k'- k 
.-oo+1e 

VI.26 

Consequently, 

= 
1 

2 (21i) ·. 

where 

·· We define 
ll 

Then 

1 
+oo+1k

1 
· ro +ie 11 -1kxt J dk' 1 . dk e 'Pt (k) k' -k 

-oo+ik -oo +ie 
1 . . 

1 
'oo 

VI.27 

+oo+1k
1 

+oo+ik' 
1 

1 J . -ikx 1 . J dk' 1 dk e 'Pl(k) k'-k 
-ro +ik

1 
·. -oo+ik' 

1 

1 . J dx' n o(x' )eik'x' . 
~2 (k' ) . 0 . 1 . 

.. 
+ro +ik · · · oo+ik' . 

1 1 J 1 
;,.1kx J 1 

dk' = · 2 . I· ·. ·. dk e . ~1 (k) kt:k 
(21!) 

-c:o+ik1 -c:o+1k' 1 

co· J e1 (x1 X 1 
) n1 Q (X 1 

) dx 1 . 

0 

.ik' •X 1 

e 

~ (k') 2 

VI.28 

VI.29 

-~ 

.. . 
. .. 

·r..:~··· : 
t 'il' ~-

~ .... -;·' 
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Using the analyticity properties of' ~l (k) and ~2 (k) , in 

particular the .f'act that ~l (k) has a simple pole ·at 

k = iroJ.:.~ and l/~2 (k) has a ~imple pole at k = i(l-UJ--~ ), 

we have 

. Defining 

we· have 

(ro 1 )x 
e (x X 1 ) ~ e J •2 1 ' -~ . . 

X -+co 

x' fixed 

-(1-roJ_.!.)x': 
el(x,x')~ e 2 

x'-+oo 
x fixed 

e1 (x(W), x' (W' >) 
W1 - W' ' 

w . . 

N1 (w) = Jl OJ-~(W,W:') N1°(w') dW' 

M+~ 

VI.30 

VI.31 

VI.32 

VI.33 : 

From equation VI.30 . above N1 (W) clearly has the correct behavior 

near W = w1 Substituting our solution for N
1

(w) into equation 

VI.l4, we have: 

.. 

·' 

·. i 
I 



.·where 

,· .' 

"<:. 

i\ (w, w• ) = l- i.J.<w, W") o J -it (w", w• ) dW'' 

Mt~ 

•.'. -

.. VI.35 

Now we must treat equation . VI. 9 • The analysis of ·this equation is 

quite analogous to that just completed of vr.8 ·' and therefore we' 

merely sketch the details. The first step is to split off the 

singular part of 1<2 (w, W') 

1<2 (w, W') 
W'- W .., 

+. ~(W,W') 

where 

Setting ... 
.;. 

W'- W 
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·and 

. N
2 

°(w) = F(J, w) + ]
1 

dW' IS. (w, w•) !j1
1
(w•) 

M+!-1 I 

we have. 

Letting 

and 

we have : . 

0 = N2 (w) + 

-(M+!-1) 

.+ 1 . dW' KJW,W') N2 (W 1 ) 

-W 1 

. 1 ....:1;;:...___ . [w -!4-1-1] 
Y = n ' 

(.l) 1 
' J+2 

. W1+ W 

VI.37 



I 
ii 
' 

0 = ~· (y) 

·. - .... -' 
.·;..Bo- ·· 

A. l'Joo .· ;r+g 
+ 2 

:n: 

dy I (y I -y) n (y I ) 
2 

0 

which is of exactly the same form as II.l7 • Thus 

00 

n2(y) = je2(y,y')n2o(y')dy' 

0 

VI.39 

vr.4o 

where e2 (y, y' ) is gotten fr em .. e
1 

(y, y' ) by replaci!lg roJ -~ by 
. l 

roJ~ in ~l (k) and ~2 (k) ·• 

Defining_ 

' . 
OJ+~(W,"W') = 

we have 

··,•, 

e2 (y(W), y(W' V 
. ·(~+W') 

-(M+IJ.) 

= J ··dw' 
-w . 

1 

·. -· ~ .·· . ' 

;. 

I 
I 

It is easily seen that N2·(w) .· has the correct behavior near 

W = .. w1 _ • · Now let us summarize the results obtained so far; 

. l 

VI.41 

VI.42 

'. 

. .J. 

'j 
·l 

! 

'j 

'' 
' I 

I 

'· 

!-

l· 

!. 

,.: 



" 

• + 

-(M+~J,) 

N2 (w) = J dW' OJ+~(W,W 1 ) N2°(W') dW' 1 

-Wl 

-(M+~J,) . 

N1°(w) = F(J,W)+j dW'~(W,W')N2°(W') 
··Wl 

' w 
+ Jl dW' Mi_ (W, W') N

1 
°(W') 

. M+~J. 

WJ.. . 

= F(J, W) + 1 dW' 1\·(w, W') N
1 
°(W') 

M+~J, . 

-(M+~J.) . . 

+j dW' ~ (w, w·,) N
2 

°(w') 

-wl 

where as before N
1 

(w) · and N
1 
° (W). vanish except when WE: I.

1 
, 

.·.and . N2(W) and N
2 

°(w)' vanish except when W€ r2 , and where 

VI.43 

VI.44 

VI.45 

VI.46 
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' i .· 

I • 

M_t(W, W' ) = ? d~" IS_ (W, W") Q,y -i (w;• W') i ' ' ·. 

M+~ . . 

w . 

. i\ (w, w• ) , t dW" ~ (w, w") oJ -t<w;• w• ) "" 
M+~ . - -

-(M+~) 

=·J- · dW 11 K.(WW") 0 (W"W') ~(W,W') _"2 1 J~ ~ 1 

-wl 

and ~(W,W') 

~(M+~) - l 

= . ·J . dW'' ~ (W, W11
) 0 _1 (w;' W') 

- . J+2 
-Wl 

' 
Now for the generalized Fredholm theory to be applicable to the 

I· coupled equations VI.45, VI.46 , we must have: 
·I 

r+!') .. wl 

-W .•. ,,dW r+~W' 
l"'·- ~. ~ 

w1 . -(M+~) J d.w J dW' I ~(W,W') 1
2 

-.'~ M+~ .w;
1 

;. 

/ 

-(M+~) -(M+~) . 

J dW f dW' I ~(W,W') 1
2 

... wl -wl 



0 

. . 

all finite. Noting the behavior of OJ+~(W,W') as given in equations 

VI.30, VI.31, and recalling the behaviors of KJ.., 2 (W,W' ), iS_, 2 (W,W') we see 

that the integrals are indeed all finite. Thus the equations VI.45, 

VI.46 can be solved by an7 of the usual techniques. The solution of 

the original equation IV.l4 for N(J,W) is accomplished as follows: 

Given F(J,w), one constructs the kernels KJ.., 2 (w, W' ), iS_, 2 (w, W') 

and from them and the transfprmations OJ~(W,W') , the kernels 

l\, 2 (W,W' ),M;_, 2 (W,W') are calculated. The coupled equations for 

0 
Nl 2(W) ' . 

are solved and N1, 2 (w) are computed using VI.43 and 

VI.44. 
I 

This gives N(J,W) in I 1, I 2 and therefore the D(J,W) 

function for ~11 energies can be calculated. Finally to get 

N(J,W) for values of W outside I 1, r2 , the original equation 

for N(J,W) is used along with the known values of N(J,W) in 

r1, r2 • That such a series of steps _is actually feasible numerically 
. 11 

has been shownpy Teplitz and Teplitz for the 1rrc case. The labor 

here would be roughly quadrupled, but the procedure should still be 

feasible. 

The kernels l\ 2 (W,W') and ~ 2 (W, W' ) are holomorphic 
' . ' 

in J in the same domain as F(J, W) as long as 0 < ~J.:r-~ < 1 , and 

0 thus N1, 2 (W) and N1, 2 (W) are holomorphic in the same domain 

except fbr fixed (Fredholm) poles. These Fredholm poles will serve 

as the high. energy limits of Regge poles which are the zeroes of 

D(J, w) ... 
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VII • ASYMITOTIC BEEIA VIOR AND CONCLUSIONS 

... 
At the end of section VI it was stated that.the fixed poles 

of N(J,W) serve as the high energy limits of Regge poles. This is 

easily seen as follows: Suppose N(J,W) has a simple pole at J 0• 

Consider a small circle around J 0, encircling no other singularities 

or zeroes of N(J,W). For lwf large enough, ln(J,W)-11 can be made 

as small as desired on the circle. If we make the radius of the 

·. circie small enough, ID(J,WJ-J-1 can be made strictly increasing as 

one moves to the center of the circle and since the phase of 
! 

D(J,W)-1 goes through 21r in encircling J 0 , it follows that 

D(J,W) has one zero for some J inside the circle at any fixed W1 

for which lwl is large enough. Thus the point J 0 will be the 

high energy limit of a Regge pole. The amplitude of course, has no 

pole at J 0 • In the theory we are considering here, the poles of 

i; N(J, W) are determined by the. solution ·of the integral equation and 

thus their precise location cannot be determined a priori. However, 

. 1 
it is quite likely that they will lie near the point J = -2 

·This is because the kernel of the integral equation has poles at. 

J = -! and is holomorphic to the right of J = -! . . (We consider 

here the case where the residues and positions of the Re~~e poles 

in the u chahnel have finite cuts.) The residues of the poles 

near J = -! are not of finite rank and thus we expect an infinite ... 
number of eigenvalues of the kernel near this ~oint, or in other 

words• N(J,W) will have an infinite number of poles near this point. 

, . . .. 

i. 

. • I 

·v:~' 
1~'\Jo<; ' I ' . 
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The rightmost one of these will be the high energy limit of the leading 

trajectory. It is of course quite desirable that this limit lie as 

far to the left as possible, since this will tend to depress the 

interior regions of the double spectral functions, which have been 

.ignored here. The limit must lie to the right of 1 J = -2, . but 

the theory should still allow all Regge poles to retreat to the 

1 eft of J = 0 at high energies. 

Now let us make some brief remarks about the practical 

implications of the theory presented here. Although the actual 
. I 

ca~ng out of the full solution of the set of bootstrap equations 

· presented in sections IV, V, and VI is technically feasible, one 

could imagine attacking the equations in a somewhat less ambitious 

manner in a first attempt. Clearly the most essential new-feature of 

the scheme presented here is the Regg~ized treatment of the forces 

from the crossed ~N channel. Keeping this feature, one could · 

ignore completely the t channel poles and set .BJ;~(w1 ) = 0 

in a first approximation. This would eliminate the need for the 

Wiener-Hopf transformation as well as simplify the calculation of 

F(J,W) • Only slightly more difficult would be retention of 

un -Reggeized · p exchange, which has turned out to be a good 

. approximation in the ~~ case. The fully Reggeized theory with 

= 0 would represent the next level of approximation 

and fina!ly the complete set of equations with 5J_l(w1 ) 4o could 
+2 

jr, 

be attackedi The carrying out of any one of these approximations 
))~ 

f:): ~-t:. 

would repr~i~ent ·a substantial improvement over the simple un-Reggeized 
. r 

. :; 

i. 
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bootstrap calculations done so far. The masses· of the recurrences 

* of the nucleon and N
33 

might·be given in a semiquantitative way 

. in the present one channel approximation although their widths 

certainly would not be. Going beyond the one c~annel theory 

presented here is not possible even in principle 
1 
at present until 

I 
further insight is gained into the formulation 1of bootstrap equations 

for particles with high spin and the closely related question.of 

the role of complex angular momentum in the three body problem. 

., ·';, 

L~ ;~ 
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