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ABSTRACT 

The technique used by Faddeev to obtain connecte~ equations 

for the nonrelativistic three-body T. matrix is·generalized for 

four particles. It is shown that the four-body equations are complete-
. . I 

ly determined by the solutions of all the possible two~body subsystems, 
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as is the case in the three-body problem. This approach can be extended 

to more complicated multiparticle systems. 
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I. INTRODUCTION 

The study of nonrelativist.ic scattering processes .that involve. 

. 1-4 
more than two particles has recently received considerable attention. 

When the particles interact only by pairs, and there are no multiparticle 

forces, the problem cannot be approached by means of the Lippmann

Schwinger equation.5 The main reason for this is that the Lippmann-

-1 
Vij(E- H0 ) Schwinger kernel ~ 

i<j 
parts in each of which 

is the sum of :;· .. ·. disconnected 

(N..;2) 

momentum space, this yields 

particles are not interrcting. In 

(N-2) delta functions in addition to 

the overall delta function representing conservation of momentum. 

Consequently, the kernel is unbounded and the equation is strongly 

singular. This difficulty cannot be removed by iterating the equations; 

· any iterated kernel will still contain disconnecte~ parts. The only 

possibility of obtaining equations .that may be solvable by one of the 

standard methods is to apply one of the usual tricks for handling singu-

lar integral equations. It consists of solving in some way the singular 

part of the kernel in a closed form, in such a way that the remaining 

equation is nonsingular. In the case we are considering, it.amounts 

to recasting the Lippmann-Schwinger equation into a connected form, by 

previously solving some pieces of the kernel in an explicit way. 

This problem was solved for the general ~-body problem by 

·Weinberg.3 We refer to his paJ?er for a very lucid discussion of. 

; ~ 
the difficUlties associated with the multiparticle scattering problem. 

6 
Huntziker has given a general proof of the compactness of the 
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Weinberg kernel, providing certain assumptions are made about the 

·p~tentials.· In the four-body problem, for example, the Weinberg 

equations require a knowledge of the solutions of all_the possible 

two- and three-body problems involved, as well as of the potentials 

In the three-body problem, another possible solution was · 

. 2 
proposed previously by F.addeev. In place of having only one 

·equation· for the three-body T matrix, he proposed a set of three • 

coupled integral equations •. But the counterpart of this slight 
I 

complication is that the F.addeev equations do not depend upon-the . '~ \ . ' •: 

original potentials. The inhomogeneous term and the kernel of the 

F.addeev equations are completely determined by the off-the-:-energy-shel~. 

two-body amplitudes. This property.of the Faddeev equations has been 

. 2 ' 
· used by Lovelace to propose a practical theory fo~ three-particle 

processes, in which experimental information about the two-particle 

subsystems is used to determine partially the off-shell two-body 

amplitudes. 

The purpose of this paper is to generalize the Faddeev 

approach to the four-body problem; that is, to get ·connected equations · 

. 1 in which the two-body potentials do not appear explicitly. It is 

possible to go on and get similar equations for more than four 

particles, but we will not do so explicitly in this paper because 

the four-body problem is sufficiently complicated to illustrate the 

general technique. In Section II'we review briefly the derivation 

of the t~~e-body Fadeev equations. In Section III the four-body 
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problem is formulated and some preliminary resUlts are derived. In 

Section III, the four-body equations are derived; and finally their 

properties and possible importance- are discussed in Section V. 
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. I!. THE THREE-BODY PROBLEM 

Consider the Hamiltonian 

H::;:H +V, 
0 . 

·where 
'i . 3 ~ 2 

H0 = L· .. :!i. ··.:··and 
i=l 

.. ~ -·- _..... ·-~-·- ~ ... ' 

' .. l -· ; j 

·' 
W:hen the resolvent operators of H

0
, and · H ; 

.. · .. 

G (z) = (z - H )-1.; · 
. . -1' 

G(z) = (z - H) , 
0 . . 0 

; 

are introduced, the three-body T matrix is defined by 

G(z) = · G (z)+ G·(z) ~(z) G (z) 
0 0 0 

Using the resolvent identi~Y. 

G(z) = G0(z)+G0(z)VG(z)·~ 
' . . 6 

one obtain,s the Lippmann-Schwinger equation, 

. . 
T(z) = V + V G(z)V = V ~ V G (z) T(z) 

. . 0 . 

1 Faddeev defipes the following operators 

Clearly, the three-body T matrix is give!l by the sum 
• ~ j 

.·: .. ,..... -- ~· -·~ . 

.. -~ . . . 

' ..... 

·" 
-.. .. 

(2 .1) . 

(2 .2) 

(2 .·3) 

(2.4) 

_(2.5) 

.. (2.6) 

:·· , 
s.· 

(2. 7} 
·. 

,. 
' . 

) . . 
(2.8) 

' 

.. 

~ .~-
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The Faddeev equations are coupled integral equations for the 

In order to obtain them, let us consider the resolvent of the Hamiltonian 

(2.9) 

The two-body T matrix for particles i and j in the three-

body Hilbert space--i.e., with particle· k as a spectator particle--

is defined by 

(2.10) 

and satisfies the Lippmann-Schwinger equation; 

(2.11) 

It is trivially related to the solutions of: ·the two-body problem,. 

tij(z) , by 

~2 

( ..... ~ ~ , I < ) I ..... , ..... , ..... , > . ~ ~, ~ ..... I." Pk I ~ ........ > 
pipjpk;. tij z pipjpk = e(pk- pk)(pipj . tij(z - 2~ ) pipj · • 

(2 .12) 

The identity 

I 

G(z) '= Gij(z)+ Gij(z) [vik + y,jk;JG(z) ;. it j t k ·. (2.13) 

. ~ ~ ··-' 

can easily be shown,and by inserting (2.13) into (2.7) we- get 
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. ' 

= vij + vij Gij(z)vij + vijGij(z)[vij + vjk] + vijGij(z)[vij+Vjk]G(z)v: 

By using (2.11), and also the Lippmann-Schwinger equation for tij(z) in 

the form Gij(z)Vij = G
0
(z)tij(z) , one obtains 

Finally, using ·the definitions . (2. 7), this equation bepomes 

T1j(z):;:: tij(z) + t 1 j(z) G
0

(z)[Tik(z) + Tjk(z)) 
. . 

for 

and 

i, j, k = 1, 2, 3 

i ~ j ~ k • 

' I 

These are the Fa.ddeev equations. Because of the fact that 

.· ... 

. (2.14) 

Tij(z). is not coupled to itself, the first iterated kernel is connected. 

Assumi~ that the potential satisfies 

!v1 j (q - q. l I = c [ 1 + (q - q' l r·-•;, ; 
. ·'' 

. (2.15) 

Fa.ddeev proved that the firs1;i iterated kernel is com:rect, e-':'cept when 

z is on the rea], positive axis. 1 It is· also possible to . prove 7 that 

the fifth iternated kernel is compact for any value of z· •. 

.. ' 
'l •. 

·1 . 

. :-~ -- ~- -·' J ___ .. 

' . 

' .. ' 
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III. THE FOUR-BODY PROBLEM 

In this section, we consider a Hamiltonian of the form 

H = H + V , where 
0 

4. ~ 2 

Ho = 'L: Pi 
i=l 2mi 

v = L: 
i<j 

Here again we define 

' 
(3.1) 

(3 .2) 

. G (z) = (z-H )sl , G(z) = (z-H)-l • (3 .• 3) 
0 . 0 

. 0\ 
'!'he four-body amplitude 0 (z) is defined by the relations 

G(z) = G (z) + G (z) 'j (z) G (z) 
0 0 < 0 

(3. 4) 

or 

'S(z)- V+VG(z) V.,. (3 .5) 

We introduce next six operators, in analogy with (2.7), 

The four-b~y Jl(z) operator is then given by the sum: 

J.(z) = . L Jij (z) . 
. i<j • 

(3. 7) 
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Our aim is to get a set of coupled integral equations for 

·the ~ij(z); such that they are connected, and do not contain the 

potentials. This will be done in .. the next section~ Here, for 

the sake of clarity, we want to make a few comments about the 

notation we will use in the rest of the paper. If we use the 

indices i;j,k,t it will be understood that their range of values 

is from 1 to 4 • When we use the subindices ij, ijk, or ijkt 

in an operator, it will also-be understood that i<j.; i<j<k, and 

~ i<j<k<t respectively. The two=body amplitudes of particles i 

and j in the four-body Hilbert space will be denoted by 'tij(z); 

the three-body amplitude of particles ijk in·the four-body Hilbert 

space will be denoted by T(t)(z), where the upper index indicates 

the spectator particle. We will use T(z) for the four-body 

amplitudes. r:·' 

The matrix elements·of tij (z.) and T(t)(~) can be 

written in terms of the matrix elements of the operators defined in· 

the previous section, in the following way1· 

{pipjpkpt IT( t) (z) IPj_PjPkPl_)· = 8(pt -Pl)~:pipjpk IT(z.(J) t) IPj_~jPk)·, 

where 

•· . ~ 

~2 
i 

2m
1 

(3. 9) 

. , .. 
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I 

.. 

"j ,. 

j 
l 
i 
1 
I 

i 
1 
j 

l 
. I 

\ 
~ 

'\! 

Let us define the operator~ · ::·· .·:·.;:,:.::-: · 

Hij = H o + vij ' • (3 .lOa) 

_:Hijk = Ho + Vij + vik + vjk' (3.11a) 

Hij,kt = H o + vij + vkt ., (3 .12a) 

and their resolvents; 

Gij (z) = (z-Hij)-1 ' (3 .lOb) 

Gijk(z) = (z-Hijk)-1 ' (3 .llb) 

Gij, kt (z) = (z-Hij, kt fl (3.12b) 

We will need tp use several properties of theoo·-· and three-: 

body amplitudes. The two-body amplitudes are given by 

. (3.13) 

and ~he Lippmann-Schwinger equations read: . 

··~'· . 
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The three-body amplitudes T(t)(z) ar.e defined by <.·•;; 

and the Faddeev operators (2. 7) in the four-body Hilbert space read 

T (t)(z) = 
ij 

Their matrix elements are trivially related td the matrix 

"" elements of the operators Tij(z) studied in the pr~eding section; 

the relation is given by Eq.(3.9) by writing Tij (t)(z) and 

"" t "" Tij (z..ro ,t) in :place of T (z) and T(z-rot ), res:pecti vely. 

The Faddeev equations for ·T~j (t)(z) are: 

Before going on to derive the four-body equations, it is 

convenient to consider in some detail the Green's function, 

Gij~kt(z) • To calculate it is to solve a four-body :problem in 

which the dnly .·.nonvanishing :potentials are Vij and Vkt • We 

shall show that this :problem can be solved in a closed form, in 

terms of the two-body amplitudes ti.(z) and tkt(z) only. 
. J 

Le: us call (tij, kt (z) the four-body amplitude associated 

with the !r.amil ton ian Hij, kt • Ob.vi ously, we have : 

-._, 

(3~7) 

,-



·• 
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(3 .18) 

• 
Again following Faddeev' s idea, we introduce the operators ·. ;>~.:· .. ·· .. _.:: . : 

(3.19) 

(3 .20) 

O.,ij,kt(z) = (Lij(z) +O ... kt(z) ' I I (3 .21) 

Using the identity: 

(3 .22) 

Oile."can very.: .. ·simply: obtaiil:!fbr ·O..iJ (z}> and .. (\.t, (z) the e~~tions 

; :t 
.. \ 

• :1 • • .'. 
J . 

Although these equations will help us in simplifying the 

algebra inithe next section· it is not necessary to solve them to 

calculate~<";tLij (z ), for example. Remember that the Hamiltonian 

Hij' kt i~s .·, 
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H V v. = h (ij) .1. v h (kt) 'v. ~~ h. . h_ 
Hij,kt = o+ ij+ kt o ' ij+ o + kt = ij+ -""kt ' 

where 

h (ij) 
0 

~2 

(I)= 1?... 
2m 

(3.25) 

h (kt) = 
0 

Therefore, Gij,kt(z) is the resolvent of the sum of t~e 

two-body Hamiltonians hij and ~t • These two operators commute, 

because they act·upon different spaces. Thereforej we know that 

if gij(z) = .(z-hijrl, and gkt(z) = (z~~t)-1 , the resolvent 
. 8 

of hij + ~t is given by3~ 

Gij,kt(z) = 2;1 fgij(z•) ~t(z-z') dz' ' 
c 

where the contour of integration encircles the spectrum of 

gij(z') in a counterclockwise way (or the spectrum of gk(z-z') 

in a clockwise way). The reader should bear in mind ~hat gij (z) 

and gkt(z) are the two-body Green s functions in different 

two-body Hilbert· spaces. Therefore, the matrix element of the 

right-hand side is trivial, 

= 

'~:~ 

= 2~l f <PiPj lg1j <• • > !P1 ·P; > <PJt lgkt <•-• • > !Pk:"P;.> a.z • • 
c 

(3 ~27) 

·~. 
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Using Eq. (3 .26) for· . Gij, kt (z) one.:. cap .~obtain forz·the1 ::~ 

·op' erator,.f"'• ·1··:.· (z·). the formUla :·· .. : '.:. :c· (. \ . 
. '-V J i,; \ . : . 

• 
fl ( ) (. ) 1 J"' ( f) (kt) ( · t ) "' ( 1 ) (kt) ( t) dz I \..Nij z = tij z + 21ti tij z g0 z-z tkt z-z g 0 z-z· 

. c 

1 J"' (iJ•) (kt). A + ~ t (z') g (z') g. (z-z') t (z-z 1
) 

21!~ ij 0 0 kt dz '. (3 .28) 
. . 

c 

A proof of this formula is given in the Appendix. 

elements of CLij (z) are given by: 

The matrix 

(3.29) 

1 J ... .Jo + - dz 1 
( p p 21ti i j 

c 

+ ..L fdz~ ( ~-+ 
A 

"'l>l~ I) 1 1 
21ti pipj tij (z I) pipj z 1 -(mj_+ mj )· (z-z 1 )-(~+ mt) 

c 

~ ... I "' ~ ,·~ I ( pkpt . tkt(z-z') pk pt ) , 

and in the case in which sample pole approximations are used for 

the two-body amplitudes, the integrals can easily be evaluated. 
'"< 

A similar:,: ~ormula can be written for ~t (z) 



IV. THE FOUR-BODY EQUATIONS 

In the previous section we have intrOduced the operators 

J ij (z); , ··' our intention here is to derive the system of coupled 

integral equations satisfied by them. Let us consider, for example,· 

. the operator '5"
12 

(z ), defined by · 

"' When we derived the Faddeev equations for Tij we used.in 

the definition (2. 7) . of this operator an identity between G(z) 

and Gij(z) • We could use in (4.1) a similar resolvent identity 

connecting G(z) with G12 (z), but the resulti~~ equations would 

not be connected~ If we are to obtain connected equations, we 

must use in (4.1) an identity connecting G(z) with G12 (z) and 

all the other Green's functions. containing the ,subindices 12, 

namely: G123 (z), G124(z) and G12,
34

(z). 

The following identities can be easily ,shown: 

( 4.1) . 

G(z) = G'12{z) + a
12

(z) {v
13 

+ v14 + v
23 

+ v
34 

+ .v
34

] G{z), (4.2) 

G{z) = Gl23(z) + Gl23(z) [ vl4 + v24"+ v34] G{z) ' (4.3) 

:-tr.: 

G{z) i; a12, 34(z) + a12, 34(z) [v13 + v14 + v23 + v34] G{z) (4.5) 

,.,. . 
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Next we rewrite (4.2) as 

(4.6) 

and insert the identities (4.3), (4.4), and (4.5) in place of the 

G(z) which are multipled (irl the operator sense) by [ v13 + V23 ] , 

[ V14 + V24] , and v34 , respectively. In this way, we obtain 

This is the resolvent identity which we next insert in 

(4.1), to get an eq_uation for""' 12 (z). Using (3.14), (3.16), 

(3.17), (3.18), and (3.6), we find 

(4.7) 



I 

I• 
'i 
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~12 (z) = t 12 (z) + [T12 (
4)(z)- t12 (~)] + 

+ [Tl? (3 )(z) - ti2(z)] + ~12 (z) - t 12 (z)] 

+ t 12 (z) G
0 

(z) [v13 + v
23

] G
123 

(z) [514 (z) + ~4 (z) + '}34 (z )]+ (4,8) 

+ tl2(z) Go(z) [vl4 + V24] Gl24(z)[C\13(z) +~23(z) +'3"34(z)]+. 

The potentials can be completely eliminated from the equations 

by using the following relations; .which may be obtained with the help 

of (3.16-19) : 

[
V + V ] G ( ) = [T ( t) ( ) ... I · ( t) ( )] ( ) 
ik jk ijk z ik , z + ~jk' z Go z ' (4.9) 

(4.10) 

Therefore, using again the Faddeev equations (3.17), as 

well as (3.23)::one has 

" 

t 12 (z) G
0

(z) [ v
13

+ v
23

] G
123

(z) = [T12 (
4)(z)-t12 (z)]G

0
(z)= T12 (

4)c(z)G
0

(z) ,. 

(4.11~ -

... -.. 
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· t 12 (z) G
0

(z)(vr4+.v24) G
124

(z) =[T
12 

(3)(z) - ~12 (z)] G
0
(z) = T

12 
(3)c(z)G

0
(z), 

( 4.12) 

The final four-body equations are obtained by inserting 

( 4.11-13) . into ( 4. 8). · In general, they read: 

~j(z) = ti}z) + Tij (k)c(z) + Tij (t)c(z) +a,i/(z)' + 

+ ~i/k) (zj Go(z) [!ik(z) + 5jk(~) + ~tk(z)J . + 

+ Tij ( t )(c) (z) Go(z {j it (z) + jjt (z) + :J;_k(z )l + 

+ (l.ijc(z) Go(z) [Jik(z) +Jjk(z) +"S"it(z)+~jt(z)] 

( 4.14) 

, . ··. :, . , (k)c( )··. · . · [ (k)( )'~. \t·' ( )] 
. ~e opera :tor . Tij : . z is defined to_ be_ . Tij . z - .. ij' z 

The operator Qijc(z}isaJro-d~f~~ed to be (aij(z)- tij(z)] • Giv~n 
the two-body scattering amplitudes .. tij (z) 1 one_·can,·calculate .these 

operators~ by· solving the three-body F.addeev equations. and 

computing the integrals involved. in our formulas (3.29). 

Recalling that the four-body c::_r (z) operator is the sum 

of all the :rij(z) operators; one can check very easily that the 
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sum of the inhomogeneous terms of the six eq~tions yields correctly· 

all the disconnected parts:. of the four-body amplitude. The first 

iterated kernel is connected because in (h.l4) c:f1j(z) is.not 

coupled to itself. 

I 
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V. CONCLUSIONS 

This approach can in principle be generalized to the 

~ · N(N-1) / 
N-body problem. The basic idea is to introduce 12 ; amplitudes 

.. CS ij (z ). , in analogy with Eq. (3. 6). In order to get an equation 

for ~ij(z) one has to insert in its definition the resolvent 

identity between t~e full N-body Green's function G(z) and all 

the possible disconnected N-body Green's functions that. contain 

the potential Vij• These are known from the solutions for systems 

with a smaller number of particles; and· from generali~ations of 
' 

Eq. (3.26). By following this approach, we are guaranteed that the 

potentials Vij will not appear in _the final equations. 

·we come then to the conclusion -t;hat, in the absence of 

multiparticle forces, the multiparticle T(z). operators are 

· completely determined by the t~o-body . tij (z) operators; with no 

reference to the original potentials whatsoever. However, one 

must bear in mind that in order to solve.the Faddeev equations for 

the three-body preble~ or the equations we proposed for the four-

body problem, it is necessary to know the matrix elements of 

off the energy··· shell. The experimental data deterrirl.ne .·them 
''! 

only on the energy·· shell, so that all we can: measure is 

~2 ~ 2 
p = p' = z. The only way of 

obtaining the off-shell extension is tprough the Lippmann-Schwinger 

equation, which requires a knowledge of the potential. Nevertheless, 

the Faddee~ approach still has its advantages in some cases. For 
,! -~ 

example, if one is dealing with singular potentials, the mathematical 
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<. 

difficulties associated with them need to be solved only at the 

two-body level, since· they are not.directly relevant to 

multipa.rticle calculations~ If the two-body scattering amplitudes · 

app~ar to be dominated by poles near the physical region-:--·-i.e ., bound 

state or:: resonance poles• . ..tthe problem of' their off-shell extension 

can be overcome by using phenomenological form factors. If one 

considers an off-shell partial-wave amplitude tt(p,p';z) the poles , 

will be poles in z. It is possible to prove that in the neighborhood 

of a pole z the off-shell amplitude is factorizable in its 
·£ 

dependence upon the variables p and 

write: 

2 
p' . Thereforie, one can 

((5 .1) 

A simple form for 
. -. l •.. 

t t(z) . is just a pole term, I~, . 

·in the case of a bound state. However, more complicated expressions 

for resonance poles can be used if one wants to satisfy two-body 

unitarity. The functions gt(p) are the so-called form factors; 

:in' the ;·.'.': case of bound-state poles they are. given in terms of 

the bound-state wave function by 
I . 

E being the 
p ' 

binding en~rgy. In the case of a resonance, they are not so well 

defined, but in any case we know their·behavior at the origin 

( ~t) : (-p~t-2) ... p and "at infinity · -- for superpositions of Yukawa 

·. potentials~9 They also contain the left-ha.rid cuts of the partial-
' I. 

·. : 

wave ampli~udes, 9 and merely express the fact that the bound state 

' ..... 

.o!. 
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· and resonance poles by which one is approxima~ing the two-body 

amplitudes are not elementary systems but composite ones with 

internal structure. All these re~uirements can be used to construct 

phenomonological expressions for the form--factors. The Fa.ddeev· 

approach is very useful in performing semiphenomonological calcula-

tions to investigate the effect of two-body resonances an<l bound· 

states in multiparticle.systems. 

After this paper was written, we received a paper by 

10 L. Rosenberg, which includes most of the conclusions presented here. 
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APPENDIX 

In order to prove Eq. (3~29)J we have to use Eq. (3.26) 

for GijJkt(z) in the definition (3.19) of the-operator (Lij(z). 

In so doingJ "Yre obtain: 

Qij (z) = Vij+ Vij 2;i J gij (z? gkt (z-z')diT\j~j+Vij 2;i Jgi/z')gkt (z-z')dz ~vkt • 
c c 

(A.l) 

Using the Lippmann-Schwinger equations , 

' Vij giJ" (z I) = t (z I) g (ij) (z I) 
ij .· 0 . . J 

and. 

we obtain: 

c (A.2) 

+ .l:_ jt . (z 1 ) g (:ij) (z! )·. g· \ (~t_),(z~z'' ") t. 1 (z-z 1 ) dz 1 
• 

27!i iJ 0 0 .:··;;. ' . . kt . 
c 

1 . 

\. 
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Using next the Q.efinitions of tkt (z·) ·"; 

r g. (z-z 1 ) = g (kt) (z-z 1 ) + g (kt) (z-z 1 ) t (z-z 1 ) g (kt) (~-z 1) 
kt 0 0 .. kt . 0 ' 

E"quation· (A.2) · .- .-' becomes: 

' (Lij (z) = vij [1 -~ Jg . (z-z') dz I]+ ~ Jt (z') g (kt) (z-z'). dz I + 
21t~ kt . 21t~ ij 0 . 

c . c 

1 f"' (kt) .... ' . (-kt) +- t (z 1 )g (z-z')t :(.z-z')g (z-z 1 )dz' 21ti ij . 0 'kt . 0 .. 

c 

1 "J"' (ij) (kt) .... + - t (z') g (z') g (z-z 1 ) t (z-z 1 ) dz' 21ti ij 0 0 kt 
·c 

Byi:aklr:g the contour c of integration as e~closing t:qe 

singularities of gkt (z-z') and g
0 
(~t) (z-z') ·in a clockwise 

way, the first two terms of the right-hand side can be simplified. 

Recalling that. 

(kt) (kt) ' 
g (z+i€) - g (z-i€) 

0 0 ' 

one gets 

(A.3) 

.l:....Jt (z') g (kt)(z-z 1 ) dz 1 

21ti ij ' 0 ' 
= tij (z) .'_. (A~6) 

c 
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The bracket multiplying the potential ~Vij ip Eq. (A.3) 

can be shown to vanish· because of the completeness relation for 
. . (kt) 

the eigenstates of.the Hamiltonia~ ~i·= h
0 

+ Vkt • We know 

that the Green's function gkt(z) can be represented as: 

lw(E)) (t(E)j 

z - E 
(A.5) 

0 

where lwn) are the discrete eige~states of hkt with binding 

energy ( -E ) ' n 
and lt(E)) are these belonging to the continuum. 

Therefore 

1 J . 1 J 2rl' gkt (z-z' ) dz' = - 21(:[ ., gkt (ro) dill = ~ 
c · c n 

00 

1~-> <'+' I +J ~lw(E)) <w(E) I ,. n n 
1 

0 

where the contour c' encloses the spectrum of gkt(ro) in a clockwise· 

i\. way. Therefore, the completeness of .the eigenstates of ~t (z) 

guarantees that 

1 -_!1\:t(z-z' l dz' = 
c 

0 • (A.6) 

Using (A.4) and (A.6), one ~an:i,educe:.Eq.·(A~.3}:to~the(Eq_~·~_'('3.28) of 

the text. <' 
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