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ABSTRACT ·, :. 

The I = O, 1t1t scattering length _is evaluated with-~·fomrd-

direction elastic-scattering dispersion relation. :The high-energy 

contribution to the dispersion integral is obtained on the assumption 

that the high-energy behavior of the forwa~d.scattering amplitude is 

dominated by a few leading crossed-channel Regge poles, while any 

available experimental information on total 1t1t cross sections is 

used to compute the low-energy contribution. The scattering length 
·. . . +1.3 

is found to be negative, with a calculated value of -1 .• 1. -0.5 (in · 

pion Compton wave lengths). Evaluation of the I.= 1 amplitude at 

threshold yie~ the value -0.4, which is found to be consistent with 

zerp; this indicates that the method ~sed in the evaluation of the 

scattering length is not unreasonable. 
.. 
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I. .· INTRODUCTION 
I. 

ExPeriment suggests a large phase shift far the I = 0 

l' 
(I . denotes the isotopic spin), s..;~ve · i1t amplitude at low energies; · 

the .presence or absence of a resonance,. however, remains obscure. In 
. . 

this connection it is evidently of importance to know the value of .. the· 

scattering·length. In this paper we attempt a~ evaluation, using a 

forward-direction elastic-scattering dispersion rel.B.tion. Assuming 

that the high-energy behavior of the amplitude is adequately.represented 

· by a few leading Regge poles, we reach the definite conclusion that 

the scattering length is negative. 

In Section 2 we write the scattering length as .a sUm. of .two .· 

terms, where the first one represents the low-energr contribution to 

the forward dispersion relation and can, in principle, be evaluated 

once the total 1!1! cross sections at low energi~s are known. It is 

· t this term which introduces most of the uncertainties into our calcula-
; 

tion. The second term represents the ·high-energy contribution to the 

dispersion integral, and is express~d·en~irely in terms of the parameters 

for the P, P', and p Hegge trajectories at zero total center-of-mass 

energy. The residues are calculated in the Appendix to this paper 

on the basis of results obtained by Phillips and Rarita on pion-nucleon 

and nucleon-nucleon scattering. In addition to .~he scattering length, 

we evaluate the I = l amplitude at threshold; from Bose statistics 

we know that it should vanish there since it contains odd partial 

waves only. Thus the deviation of its value frotp. zero gives us an 

·, ,' .· 
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indication of .the reliability of the approximations made in the. 
i . 

evaluation. of 'the scattering·length. 

In Section 3 we obtain the nUmerical results for the scattering 

·length and the I= 1 amplitude at thr~shold; their·values are found 

to be -1.7 and -0.4 respectively. 

Finally, in Section 4 we estimate the errors involved in the 

calculati~n:, and conclude on the basis of these. estimates that the 

scattering length is'definitelynegative, and that th~ value -0.4 

·of the I= 1 amp~ude at threshold is consistent with zero • 

. . . 

.... < 

• 
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I!. FORMULA. FOR THE . SCATrERING LENGTH 

.I. . ... 
Let A (s, t, u) be the amplitud~ of definite isotopic spin, I, ·. 

for the s reaction where s, t, and .u · are the usual Ma.ridelstam 

variables,; . they are given in terms of the· center-of-mass ·scattering 

.. angle es, and the magnitUde of the center-of-mass momentum qs 

as follows (the subscript "s" is to remind us that these variables 

are defined with respect to the s reaction): 

4(q 2 2 s = + ll ) ., 
s 

2 
t -. -2q (1-cose ) ., 

s s 

u = -2q 
2 

(l+cose ) 
' s . s 

with 
. :. 2 

s +· t + u . =. 41J. 

2 Here ll is the pion mass. We normalize the. p:~.rtial-wave ~m:,plit·ude,: 

A£I(s) defined by 

so that it is related to the phase shift 8 I according to 
£ 

·1 . 
·1 s·2··· 

= 2q 
s 

\' 

(2:1) 

(2 :2a) 

. . ' 
(2 :2b) 

.. , 

.. ·' 
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The I = 0 scattering length, ' is then defined ~s ,... ., 

: . 1 

A. = lim 2A
0 
° ( s ) / s2 

s-+4. ... 

If the absorptive part of AI(s,t,u) vanished for·large s, then it 

wauld satisfy the one-dimensional dispersion relation 

I 
A (s,o) 1 Jco ds·.' = 1{ . 

4 s'- s 

A I(O,u') 
u 

'u'- (4-s) 

where AI(s,t) - AI(s,t,4-s-t), and where Asi(s·,o) :;:1 

' 

(2:3) 

(2: 4) 

(l/2i)disc AI(s,o,4-s), and A I(o,u) = (l/2i)disc AI(4-u,O,u); here . s u . u . . 

( 

' . . ' . 

"disc" stands for "discontinuity in x ." Assum.ing_that the· 
X 

. ' .. 

asymptotic behavior of the amplitude is determined by the leading Regge 

poles in the crossed channel, 3 we see that the above dispersi.on integral : 
. ' 

is undefined as it stands, since for 
. I 

s -. oo, A ( s, 0) -::;;;: s, s which 

follows from the dominance of the Pomeranchuk pole. We therefore 

write (2:4) as· a sum of two terms, where the first one represents the 
!r . . 

low-energy ~ontribution, LEC, to A
1 

(s,O), and where the second term 
l . 

is obtait;ted by approximating the integrand of (2: 4) above a certain 

energy ~l ·(which is chosen well beyond the.resonance region where 

Regge behavior presumably sets in). _in terms of the leading crossed­

channel Regge poles; the latter inte.gral may then be explicitly 

' . 4 . 
evaluated by analytic continuation. From· crossing symmetry it follows 

that the ·u-channel amplitude of·definite isotopic spin is the same 

function of s, t, and u as the s-channel amplitude is of u, t, and s 

(in that order). Using this fact, we may cast (2:4) in the form 

} 

·' 

'(l 

,• 

:-~ 
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+I. 
I' 

(X) 

a:II' ~ 1 ds' R/' (O,s') [ ' i 
. ~1 s - s 

+ ~( -l)I I l 
s'- ( 4-s) ' 

(2:5) . 

' .'. 

where an, . I+I' 
and ~I' (-1) are the t-channei and u-channel crossing 

' . . 

matrixes respectively with 

1/3 1 
: '' 

. a:II' = I 1/3 1/2 -5/6: 
' 

1/3 :..1/2 
i' :: .. 

and where Rsi(o, s) = (l/2i)discsRI(o, s); RI(t, s). is _the contribution 

·; to the t-channel amplitude of isotopic spin- I coming from the leading 
- : . . I. . .. 

Eegge poles. There exist a variety of forms for- R. (t; s) in the 

literature, all of which presumably are good approximations to the £rue 

t-channel amplitude at large s and small t • ' We have chosen the 

Chew~ones form5 (a sum is understood if there are several poles of 

(2 :6) 

isospin I) 

I R (t,s) = s . 
I 2 a:(t )' -· · · 2 

~ r (t) (-~ ) Pa:(t)(-1-s/2~ )_ , (2 :7) 

where ~ 2 = t/4_ -1 , and where a:(t) is a p:~.rticular Regge trajectory 

in the t-channel; ri(t) is related to the full residue ~I(t) 

associated with the above Regge pole as follows: 
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Throughout this paper it is understoe<i that . a(t) is a trajectory 9f 

definite isotopic spin. 
. . 

Setting t = 0 in (2:7) and substituting the result into 

(2:5), we arrive at the following.expression for the high-energy 

contribution ~(v): 

If!(v) = ( -1 )I I l , 
t 

v 1 + -v 

(2 :8) 

(2 :9) 

where v = -1 + s/2 with corresponding definitions for v 1 and v · in 
1 

terms of s' and s1 , and where a= a(O). Notice that for v = 1, 

the exchange of the p Regge pole in the t channel contributes very . 

little · to the integral, since for the p ·, I 1 = 1 • We shall take. . .. · 

advantage of this fact in Section 3. For ·Re a(o) ~ o, the integral.· 
. . '' 

(2 :9) is undefined; however, we may use the well-known dispersion : · 
' . . ~ 

relation for the Legendre function of the first kind to rewrite (2:9) as 

' (2:10) 
.. 

P (v') ( 1. 
a v'- v 

+ (-l)I') l 
v'.+ v 

For our purpose this expression is still in~on,;enient,· since we: are· 

interested 1i1 ·.the value of If! ( v) at . ·.v = 1; where Pa:( -v.) bas a 

•. 

·~ 
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' . . ' : . ;: .. , 
logarithmic branch point (this branch point is, of course, absent from · 

the fUll expression). We get around this difficulty by. shifting the 

· argument . of the· Legendre function, using a subtracted dispersion . 

relation for Pa(v): 

. 00 

sin1ta · 1 
" vl 

dv' 
Pa(v') 

v'(v'-v) 
. . 

- ,·. 

.· ... 

. ·: . 

(2 :11) 

Substituting (2:11) into the first.·term on the right-l;land side of (2:10) ( 

and combining the various integrals, we obtain 

~(v) I' . I'[1t = - L aii, r · ( o) g + . 2 
I' 

.Pa(o). 1 ·jvl Pa'(v')]· 
+- dv' sinn:a · 2 . v' .. . . t'. . . .. 

. . .. '· '·:. . ' (2::.12 ) : 

dv'·Pa(v') ~ 
2

.[v'gi'+vgi'],.(. · 

where 

+ L aii' 
I' 

g I = 1 + ( -1 )I. 
+ 

v' (v' - v ) - · + · 

:' : 

Since v1 .>.> 1, and since we will be interested in.the .value of 

( 2 : 12 ) for v = 1 , we rray neglect v. · com pared with v ' in the 

denominator of the second .integral, and repla·ce .t,he Legendre function 

by its asymptotic form, 

. ·. . 

.. (2 :13) 

. ' (2:14a) 



. ' 

-8-

where· 

c(a) 2a r(a+~) 
= -r .; 

1r2 r(a+l) 
(2 :14b) 

the integral may then be performed explicitly. Our final expression 

for the forward scattering amplitude is· (recall that v = -l+s/2) 
I 

s A I(s',O) 
. · s I' . . . 

I . l'J 1 +2:: a ·(-l)I+I' 1 J 1 
A • (s',O) ·~ s s +.· (v), A (s, 0) = - ds' - ds' 

1{ . 

s'- s I' II' 1{ . 

s'-(4-s) · 
4 4 

·:· 

where (2 :15) 

· 1\. I' = ~ 2 ~ orr' r (O) 
. I.' . 

-! L aii' ri' (o)c(a) {a[ s_r' 
2 r: ·-1 . a -1 

(2 :16) 

Here . a = ai' (0). For s = 4, and s
1 

= 200, say, the contribution 

to. ~(v = 1) coming from the second summation in (2:16) . is small 

compared with that coming from the first; we, therefore, will ignore it 

in the subseq_uent calculations. Fo.r a = 1 (i.e. the Pomeranchuk 

trajectory), we may. of course evaluate (2:10) directly; we find 

. . . . (!. rV 

-J rp(~) [ :
1

·· ~ 1 - ~ .en(l-4/s1 )] 

The factor .· 1/3 . comes from the crossing-matrix element. Notice that 

for /'p(O) j O, the ;E'omeranchuk contribution is n~gative. Superficially· 

. . . ' . 

.. 
·~ . 

.... ; 
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it might appear that our result for the .scattering·length will depend on 

the choice of : s1 • We emphasize that,:· as long as is-chosen 

sufficiently large so that the amplitude is well approximated in terms 

of the leading Regge poles for s > s1 , our result will be essentially 

independent of s1 • 

Next, we give the values of the.residues ri(O) as obtained 
. . . . 6 . 

from data furnished by Phillips and R~rita. These authors have fitted. 

the high-energy ~1 pion-nucleon and nucleon-nucleon cross sections, 

assuming that the forward scattering amplitude is dominated by the 

leading crossed-channel Regge poles. The ~-~ residueslare then 

obtained via the factorization theorem. 7 We find 

where the dimensionless quantity 71 :is·related to · · 
0 .• 

. the residue defined by (2:.·7), r (o), according to 

··-
~ 

where "i" stands for-the P or the P'. Regge poles (I= 0). 
I 

Here 

s = a.m0 , where M is the nucleon mass, and E
0 

is a reference 

energy which Phillips and Rarita chose to be 1 GeV. The factor 3 

comes from the crossing matrix element. · The reader may consult the 

. ... 

(2 :18) 

.·.· ., 

; . r.s: 
.':{ 
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Appendix for a detailed discussion. We have not giv~n here the i.ralue 

It I :: of the residue associated with the p trajectory, since, as ~s shown 
i 

.1. in the AppendiX, it is very uncertain. Fortunately, as has already 

been emphasized, p exchange in the t channel contributes only very 

little to ~(1), so that we shall ignore i~s contribution here. We 

shall come back to this point in the following .section• 

'. 

··:'. 

.. ..-; 

·~· 
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. \ 
III. EVALUATION OF THE SCATTERING LENGTH 

Substituting the values from (2 :18) into .expressiozi (2:1$), 

we obtain the following results for the P ·and· P' contrib~tions 

to If(l): 

[It(l)J - ·-1.35 ± 0.026 
p 

., .. 

. (3 :1) 

[ If(l)] 
P' 

... 
= -1.67 ± o.o72 .· ;. 

I· .. 

where the errors in (3: 1) are those due to the uncertainties in the 
. . 

residues (2:17); the c~rrections to (3:1) 'cmirl.ng from the sec~nd . 

summation in formula (2:16) 
. · ., . .· •.. · -4 . . . . 

are only of the.order of 10 • To the 

extent that we are ignoring the contribution of the p trajectory, 

the value of ~(1) = [Ifi(l)] + [Ifi(l)] · . will be the same for 
p . P' 

I = 0, 1, and 2_, that is, ~(1)= -3.0 • · . 

The next step consists in eval~ting the first two integrals 

in (2 :15 ), using whatever experimental :information is available. For 

this purpose it is convenient to put them into the form (s = 4) 

s . . . . . 
1 1 1 

ds' \ [ · I+I']. I' 
= ;!". 4 sr ~' 8II' + ~I,(-1)·. , . As (s', 0) 

ds' 

s'(s'-4) 
A I(s', 0) 

s 

:.· .. 

(3 :2 ). 

r?;-
:lL. 
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The contribution coming from the second integral is small compared with 

that from the first; considering the uncertainties involved in what 

follows, we shall ignore it. We are interested in the value of 

AI(4,o) for I= 0,1; A
0

(4,o) gives us the magnitude of the scattering ·• 

.length, while w:e expect that A 1 
( 4, 0) ~ 0 , if our approximations . are 

reasonable. We therefore consider expression (3 :2) for I ::::: 0 · and: 

1 . Substituting the crossing-matrix elements into the integrand of. 

(3:2), and neglecting the second integral, we ob~ain 

where 

= ![~A 0-A 1 + LA~J:_,. 
. s 3 s . s . 3. s 

and . ';,. 

K..(s )_ = ! [2. A 1_ ! A..o + 5 A 2] .. 
-"l s 2 s:· . 3 s · . b' s . . 

(3 :3a) . 

(3 :3b) 

(3 :3c) 

Here Asi stands ·for Asi(s,O). For ,s ~ oo, KI(s) approaches· twice the· 

contribution coming from the P and P' exchange in the crossed channel, 

(3 :4) 
;'"'. 

. :>~' .. 

. . : . . 
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.. 
where 

o· 
R (o, s) 

s is given by (2:7). We n~ approximate the amplitude 

of given I spin in the resonance region by· a: Breit-Wigner formula · 

that satisfies elastic unitarity, and has the correct threshold 

behavior: 

AI(s,O) 
s 

where we have chosen for r(s) 

(sR-s)
2
+ ~~(s) ' 

8 
the form 

(3 :5a) 

(3 :5b) 

For both the p and the f 0 we have adjusted the parameters of (3:5a) 

to give a width of 100 MeV; the positions of the resonances were 

chosen as 750 MeV and 1250 MeV respectively. Figures 1 and 2 

show a plot of K0 (s) and Kl(s). We have used roughly the following 

criteria in plotting the curves: (a) near the f
0 

and .the. p ; · · 
0 1 ' . ' . 

A (s,O) and A (s,O) have been approximated by a Breit-Wigner form; 
s s ' ' . 

(b) for s ~ 200 , we assume that A I(s,O) :is adequately represented 
s 

by ·the exchange of the P, P] and p in the crossed channel, that is,. 

we choose s
1 

= 200, and use this point as a.. matching point for the 

integrand; we have 

KI(s = 200)-;:::: 3.46 x 10-2 
IJ.-

2 .,; 

.. 
' .. 

.. 

·.:' 

(3:6) 

· .... 

' ... 

. ; ~ ', 
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. . . 

. (c) we assume that -the various absorptive pu-ts of the amplitudes 

approach their asymptotic limit lfsmoothly" from 9-bove_;. (d~ we have·_· 

seen that p exchange makes no contribution to KI(s); it does, 

of course, make substantial contributions to the individual absorptive· 

parts that make up -KI(s). In view of the fact·that the p ·residue 

is poorly known, we are led to make the additio~al assumption that an 

approximate curve for J<I ( s) · may be obtained "?Y .consistently ignoring.· .· 

the effect of p · exchange on the individual absorptive ·parts that 

make up KI(s); this assumption does not _seem unreasonable. Figures 

1 and 2 show what we think is a reasonabl7 ~ur~e :for Kb(s) and 

IS_ (s). InLboth cases the, functions have been matched at s
1 

= 200 · · 

to their full asymptotic value (3: '6). The reader may wonder what 
. ' . 

happended to the f
0 

resonance in Fig. 2. The reason for its absence 
•" _· . 0 . 

is the following: Let us assume, for'simplicity, that As (s,O) and 
. 1 

i As (s, 0) are given near the f
0 

and the p by their unitarity bounds, 
I . . . .1. 

A (s,O) =~ (2£+1) ·.(s2/2q); it then follo~s that s 

(3/2 )As 1 /~ 2 . 

(1/3 )As o/mo2 
'6·_ ?::: -· ,: 

where -~ and m0 are the masses of the p and the f 0 . respectively. 

A m.ore detailed analysis shows that, as a first approximation, we may 
; ,~.·. 

omit the '~bump" ·in the curve for IS_ (s) arising from the f
0 

resonance, since the uncertainties involved in the plot are already 

substantial. ·• We obtained for the two LEC' s the values 

~ .. 



. ,.. 

. '. 

200 .. 
1 J ·, ;; ds .K0'(s) ~ 1.3 , 

4 

200 

~ J ds K]_ ( s) ~. 2. 6 • 
4 

Combining these results with the. hi~h energy contripution, I(=(.l)~ -3.0, 

we arrive at the values for A0 (4,o) and A1 (4,o) of 

0 
A ( 4, 0) ~ -1. 7 , 

1 A ( 4, 0) ~ -0. 4 

'·. : 

... : 
' . 

(3 :7a) 

(3:7b) 

... 
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IV. ·CONCLUSION 

The main source of error in the value of the scattering length} 

~ , comes from the. low-energy contribution; ~he deViation. of A l (4, 0) .. 

from zero gives us an indication of the reliability of the approximations 

made in the evaluation of ~ since we have used the same criteria for 
. . 0 . . 1 . 

obtaining A (4,0) and A (4,0)., We .shall presently give an estimate 

of the error involved; in view of·· .the lack of information on total · 
: . ·. ·. ' 

~~· cross sections, it is clear that this is only a rough estimate. 

In our discussion so far we have ignored the possibility that 
. . . . • I . 

. 0 . 2 . ' 
the absorptive parts As (s,O) and As (s,O~ migl:J.t make substantial 

contributions . to the integrals in· (2: 15) at energies roughly below . . . . 

the f 0 region (because of the threshold behavior of .the I = 1 

'· amplitude, we do not expect · A/(s, 0) . to make an i~portant contribu- · 

tion below the p mass). Without these low~energy contributions we 
: . -1 -1 

have estimated the error in ~ · to lie between· .-0.5 J..l. and +0.3 J..l. 

[this estimate was made essentially on intuit~~ groundsi we have however 

considered the effects.arising from the uncertainties iri the residues· 

(2:17)] •. As we have mentioned at the beginning of.the paper, however, 

there seems to exist a strong I = 0, S-waye ~1! interaction at l·ow 

energies. To estimate its effect on ~ we have assumed a constant 

S-wave phase shift of 45 deg over an energy range extending from 

s = 5 to s = 40 (this phase shift is. suggested by the value of the 

scattering length given by ABC in Reference 1). We find that the 

~ ~ additional cohtribution to ~ is roughly +0.9 J..1. . ; we have included in 

this error th~ contribution coming from the second integral in (3:2) which 

is no longer negligible if there exists·a strong low-energy enhancement in 

the I = 0 amplitude. If this enhancement can be associated with a new 

~ 

· ... 

. ..... 
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particle:. lying on a vacuU.m trajectory, then the exchange of such a 
·I 
\ 

traj,ectory in. the crossed channel would give rise to additional 

· contributions •. ·From the analysis of. total pion-nucleon cross sections . \ 

at high energies,· we expect the residue associated with this Regge pole 

to be small, so that its effect on the scatte~ing length will probably 

not be significant. Concerning the I= 2 amplitude, experiment· 

seems to indicate that the total 1r-1r- cros.s section is of the order 

,_of 3 . mb. over an energy range extending roughly from 400 to 

1200 Mev.9 We estimated_its effect on the scattering length to be less 

than +0.1 • Our conclusion that the scattering length is negative 

does not come as a complete surprise;10 we know thB.t at the symmetry. 

point--that is, s = t = u = 4/3 -- A
0
/A

2 
= 5/2;11 

furthermore one· . : 

expects that the .I= 0 and I =.2 amplitudes are dominated.at that 

point by their respective 
. ' 0 

S-wave ~ompo!lents, so that A0 ( 4/3) ~ 

(5/2)A0
2(4/3) .. Analysis of the angular distribution in charged p 

decay. however indicates that the ·I = 2 amplitud~ is negative in .the 

p region; now, we do not expect the above mentioned ratio to change 

sign between s = 4/3 and s = 4, nor do we expect.a change in sign 

of the I = 2 amplitude between the · p region and threshold; such 

' 12 
reasoning leads to the. conclusion that the scattering length.is negative • 

. 1 .. 
The corrections to the value o~ A (4, 0) introduced by the low-

energy I = 0 enhancement, and the iow-energy · ·t = 2 cross section, 

have been estimated. in a similar manner. and were:.found ·to be about. 1/6 

· and 1/2 · o~ those for the I = 0 amplitude • 
·i~v~ 

P.inahy we wish to point out that in our· calculation we have 

taken r O (s~e Definition 3 :5a, b) to be. 100 MeV. An increase in 

.; .:, 

' ., 
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the width of the p would increase the value of A1 (4,o) wh~ie 

decreasing the ·value of the scattering length; the modifications that 

' 1 
need to be made in Fig. 2 to insure the vanishing of A (4, 0) 

. ' ' 

are rather modest, and certainly within the limits of·uncertainty 

. of our plot. In conclusion, then, ·we find that the 1(1( scattering 

1 th '1 ti ith 1 ul t' d 1 f '\ = -1 .• 7 +1.3. -l .. ' d eng • s nega ve, w . a ca c a :e va. ue o r. . -0.
5 

J..l :- ::;· an 

1 thlit the va.lue of A (4,0) = -0.4 is consistent with zero. 
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APPENDIX 

We obtain the values of the residues for the· P and ·P' 

trajectories, ·using the data of Phillips and Rarita. 6: The.se 'autho;·~ 
have fitted the tot~l pion-nucleon and nucleon-nucleon cross sections, 

assuming that the forward scattering amplitude is dominated. at.high 

energies by a few leading crossed-channel Regge poles. They normalize 

the spin averaged forward elastic scattering amplitude so that the 

optical, theorem reads 
! 

"' ( ) tot ( · ) Im Aab s,O = crab s , 

where the subscripts ,.a and b denote the particles involved in the' 

"' elastic reaction, and w:dte the contribution to Aab(s,O). coming from 

the ith crossed~channel Regge pole (for large s) as 

' 

where the + and signs correspond to the even and odd-signature 

trajectories respectively, and where Bi(ab) is a coefficient with 

dimensions of millibarns; E0 is a scale factor which they chose as 

. (A:l) 

(A:2) 

1. GeV, and E is the energy of the. bombarding particle in the laboratory · 

system. As usual we have written ai = .. ai(O) • For large s, E ~ s/2M, 

wh~re M is ~he mass of the ~rticle at rest (the nucleon in our case). 

"' The relation between Aab(s,O) and our amplitude Aab(s,o), normalized 
'. ' .. 

.: .. ,. 

. ~ .. 
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.according to Eq. (2 :28.~ b ):·.is 

-----) s Aab(s,O) 
s-+00 Ib;C. 

. ' 

" A (s,O) 
ab · 

Using (A:3) and (4-:2), with a-b taken as the pion-nucleon, and 

nucleon-antinucleon respectively, we have 

'. 
i 

(A:3) 

. . _. 

(A:4a) .. 

(A:4b) .. 

where we have used the asymptotic form for s, s ~·2M~ and have Written 
I 
I 

s == 2ME
0 

(~98.5). Phillips and Rarita provide us with the .coefficients .. 

Bi (1rN) and Bi (NN) for the case where N is. the proton, and 1t is the. • 
. . .. : . . 6 

negatively charged pion. They obtain tne following values: 

Bp(!tN) = -19.9:!: ·o.l mb, Bp, (1rN) = -18.1 :t 0.2 mb, BP(!tN) .= 2.4 '!' 0.4 mb, 

Bp(NN) = .-:J6.2 :: 0.2 mb, BP' (NN) = -33.8 ~ 0.6 mb, and B~ (NN) = 1.0 :!: 1. 2. mb, 

(the signof' ~p and BP' has been misprinted in reference 6). Notice 

that the value of' B (NN) is consistent with zero. In a similar way to. p . 
, , I 

·(A: lJa., b), we write the contribution of the ith crossed channel Regge 
. -

. ~ 

' pole to the 1t1t amplitude, at large s, as 

[A .. (s1 0 )] 
. 1t1t . i 

s . Q·. ± exp(-.11tai0 .. (s)ai 
= . - .Bi ( 1t1t) • 1ta . -

16rr · s~n i · s (A:5 j 

· .. ~· 

..., .. 
. ; ., 

: ~· 

: . . . 
: t'7 . . ,.rz 
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. . 

The coefficient :8~(1!1!) is given by the factorizati~n·:theorem for 

residues: 7 

(A:6) 

Since the value of BP(NN) is consistent wit!'). zero,. and. since it appears 

in the denominator of formula (A:6), we shall limit ourselves to the 

evaluation of the P and P' residues; fortunately, as we have 

pointed out before, a knowledge of the p residue is not critical 

for our problem, since the p contrib~tion to ~(1.) i~ small 

(see Eq. 2:16). Substituting the values for the c6efficients Bi(1rN) 

and Bi(Nff) into (A:6), we obtain 

., 
/ ) ,. 

+/o.02 rp = lt_:05 
' 

il -\ 
'-

.. ·· 

and (A:7) 

-rp, = 0.93 ~ 0.04 
' 

where (i = P, P' ) 

, ri = - ~: ~i c1r1r )/161! CA:·e) 

We have taken the value ap,(0) = 0.5 from reference 6 (ap(O) = 1, of co'lirse). 

To get the relation between.th~ residue :r(O) defined in (2~7) 

and the qua~t~ties yi , we notice that the P and P' contributions 

to Im A 1!1! ( ~; 0) are also given by 

,J; 
I• , . \I l 
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[. Im A ( s, 0)] . 
1(1( . i 

(A:9) 

where R 0 (o, s) is given by (2:7). ·Approximating the. right ·band side s . 

of (A:9) by its leading term for · s .:..... ro,. and comparing the resUltant 

expression with the imaginary part of (A:5), we optain 

(A:lO) 

,. 
where C(a) is defined by (2:14b), and where we haye written. ri(o) 

rather than 
I . . 

'Y (0) for notational consistency; the subscript "i" · 

stands for the P and P' Regge poles·. 

.•, . 

. . . 

. ,' 

·i...· ' 
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. FIGURE CAITIONS · · 

Fig. 1. Plot of K0(s). in units of ·1o-2 ~-2 ~s. the square of the 

center of mass energy, 
'2 

s, in units of ~ • The function 

has been matched at s = 200 to the value as obtained from 

pure P, P', and p Regge pole exchange in the crossed 

( ) 
l.C -2 -2 channel: x0 200 ~ ) •. "10 x 10 ~ 

Fig. 2. Plot of. Kl(s) in units of· 10-2 ~-2 vs the square of the 

center of mass energy, s , in units of ~2 • The matching 
. . 

point and the value of Kl (s) at that point arr identical 'l?o 

that given in Fig. 1. 
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report, or that the use of any information, appa­
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or for damages resulting from the use of any infor­

mation, apparatus, method, or process disclosed 1n 

~his report. 

As used in the above, "person acting on behalf of the 
Commission'' includes any employee or contractor of the Com-. 
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 




