
UCRL 16240 

cy 2 

University of California 

Ernest 0. 
Radiation 

Lawrence 
Laboratory 

A GENERAL METHOD OF CONSTRUCTION BELICITY AMPI.J:TUDES FREE FROM KINEMATIC 
SINGULARITIES AND ZEROS. 

TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy. call 
Tech. Info. Diuision, Ext. 5545 

Berkeley, California 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



.. :.)j"'. ~ .. , ·· .... 
... 

y -~ 

.. 

Submitted for publication in the 
Physical Review 

UNIVERSITY OF CALIFORNIA 

Lawrence Radiation 'Laboratory 
Berkeley, California 

AEC Contract No .• W -7405 -eng -48 

UCRL-16240 

A GENERAL METHOD OF CONSTRUCTING HELICITY AMPLITUDES 
FREE FROM KINEMATIC SINGULARITIES AND ZEROS 

Ling -Lie Chau Wang 

June 9,. 1965 

., . 



-iii- UCRL-16240 

A GENERAL METHOD OF CONSTRUCTING HELICITY Al'PLITUDES 

FREE FRO!~ KINEMATIC SINGULAFITIES AND ZEROS : 

··;;. 

Ling-Lie Chau Wang 

Lawrence Radiation Laboratory 
University of California 
Ber}~eley 9 California 

June 9, 1965 

ABSTRACT 

A simple and straightforward method to identify and remove the 

kinematic singularities of helicity amplitudes is constructed from the 

Trueman-Wick crossing relations. A set of amplitudes free of all 

kinematic singularities and zeros is. obtained for two-particle _,; two-

particle reactions of any spins and masses, except that for boson-fermion 

. t .t. • f 1 ' . . th . t. 11 k. . t. l/2 
~n eracv~ons o genera mass ass~gTh~ents ere ~s s ~ a ~nema ~c s 

··singularity left in the amplitude. 
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I. INTRODUCTION 

In dynamical calculations of scattering amplitudes, it is 

necessary to use kinematic-singul~rity-free ampli~udes, which have only 

singularities of dynamical origin and satisfy the r.1andelstam representation. 

D. N. Hillia.."l'ls1 has succeeded in constructing a complete set of inVariant 

scalar amplitudes free of kinematic singularities and suitable for dynamical 

calculations. However, his amplitudes are not suitable for Reggeization. 

To Reggeize, first we have to remove all the kinematic singularities 

from the so-called parity-conserving helicity amplitudes and then analytically 

I 
continue their partial-wave helicity amplitudes with definite parity in 

2 the total angular momentum plane. Therefore kinematic-singularity-free 

helicity .amplitudes are not o'nly suitable for dynamical calculation but 

also suitable for Regg€dzation. This is our motivation for investigating 

the kinematic singularities of helicity amplitudes. 

Recently Y. Hara has proposed a method to remove the kinematic 

singularities of helicity amplitudes by using perturbation field theory, 

with emphasis on threshold behavior of partial-wave amplitudes and 

. 1 .... . 3 cross1ng re a~1ons. In this paper "'e develop a more straightforward 

method using only the Trueman-Hick crossing relations for helicity 

. amplitudes. Perturbation field theory is not needed. A complete set 

of amplitudes, which can be sho"rn to be free of all kinematic singularities 

and zeros, is con~tructed f6r_interactions of two particles of any 

spins and masses, except that for boson-fermion interactions of general 

. t th . t'll k' t' l/2 . ul 't 1 ft . th mass ass1gnmen s ere 1S s 1 a 1nema 1c s s1ng ar1 y e 1n e 

amplitude. Our results are consistent with the usually assumed threshold 

. behavior of partial-"•ave helicity a.>nplitudes with definite parity. 
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II. THE KINEHATIC SINGULARITIES IN THE GROSSED-

CHA.l"'iNEL ENERGY VARIABLE 

The partial-vrave expansion· of a general helici ty amplitude for 

a reaction a+ b ~ c + d ,with s being the energy squared and t 

being the square· of the energy in on·e of the tvro crossed channels ( s·ay, 
:; 

a + b ~ c + i) . is4 

f~ A • X A ( s 't ) 
c d' a b 

= I / (II:l) 

j 

where 

; .. 

e is the scattering angle in the s channel, which is taken to be the 
s 

angle between particles a and c 
. J 

and dXu is the d function of 

the rotation matrix element. In the s-channel c.ni. system, 

[2st 2 I 2 2 2 2 2 c:PJ '/ cos e = + s ~ s m. + (rna - ~ )(me . ~ md )]/ ab~ cd ' s l. 

i 
(II':2) 

where 

J 2 ? 
+ ~)2j 4s p2 - [s - (m ·- ~)~J[s - (m = / 

'j ab .a. a ab , 
(II:2) 

0 2 [6 (m 2 (m 2 4s p2 - ·- - md) ][ s - + md) ] = / ,< cd cd t C' c c 

t· 
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where. Pab , Pcd are the initial and final momenta in the s-channel 

c .m. system. He see that cos e is an analytic function of ~ • 
s 

In 

general, the d function is related to the Jacobi polynomial by5 

'lvhere 

A 
m 

A 
n 

so that 

·('(J +A )!(J- ).m)! .. ) 1/2 

. = + (;+>.:)!(J->.)! n . 

- maximum of <IAI,l~l) ' 
I . ! 

- minimum of <1>-1,1~1) , 

Eq. (II:l) becomes 

[cos (e /2)JIA+lll . 
s 

' 
(II:4) 

(II:5) 

We have put other constant factors into F~ A .• ). A ( s) • vlhen tJ:lere is 
c d' a b 

no spin, Eo~· (II: 5) simply reduces to the familiar Legendre exl?ansion 

of the ~~plitude, 

.. 



f~O;OO(s,t) = L (2J + l)F~O;OOPJ(cos 6s) 

J 

.. 

We see that the presence of spins has introduced into the helicity 

(II:6) 

amplitudes a definite set or(~ 

factors [cos (6 /2)]1A+ul and 
s 

zeros and singularities· through the 

these rt) zeros 
. \../ 

[sin (6 /2)]JA-~j .• 
s 

We argue that 

and singularities are the only kinematic ones. The 

~ remaining t -singularities are associated idth the failure of the Jacobi 

. ~ expansion to converge, a dynamical effect unrelated to particle spins. 

From the expression of sin ( 6 t /2) and cos ( 6 t /2) in {V and G) in 

Appendix A, we easily see that the kinemati<:})-singulari ties of fs 
Ad;>. >.b A 

~ c . a 
all on the boundary of the physical region • 

.__. _________ ------..___,___~ . .----=--· 

Thus the ne-...r a.'npli tudes defined by 

= L 
J 

(2J + l)FJ · (s)P(!>--lJI,!A+lJI)(cos 6) 
A Ad·,A Ab (J-A ) . s c · a m 

<rrn) 

t . 1 d . . l~t\ . 1 "t" 6 B th t" f . 1 con a~n on y yna.'n~ca c/s1ngu ar1 1es. y e assurnp ~on o max1ma 
~ .. ..-.., 

~· 

. ::... 

are 

anal:rtici ty in S-matrix theory, f~ A . A A satisfies a fixed-s dispersion "' 
c d' a b 

relation in t • In the next section ve shall discuss the kinematic 

singtilarities in s:. After we remove the kinematic s -singularities, the 

amplitudes -...rill satisfy the l-1andelstam representation. 
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III •.. THE KINEVJATIC SINGULA.~ITIES IN THE DIRECT-

· ... ,. 

f~ A .A A (s,t) = 
c d' a b 

where 

CHA..l'fliEL ENERGY VARIABLE 

I 

' 
(III:l) 

[ ( 2 2)( . 2 2) 2( 2 2 2 .2)]/J 7 ··Cos x = - s + ma . - m. t + m - m -2m m - rn · + m. - m a o a c a c a o · d · · . a b ac ' 

2 . 2 . 2 
=[(s+m., -m )(t+m. 

o a o 
2) 2. 2 ( 2 · 2 + 2 2) J I 0 o-t 

- rnd - ~ me - ma ~ - md -dab/ bd 

cos X . c = [ ( s + 

(III:2) 

From Ea. (III:2) we can easily obtain the however, it 

is more illuminating to vrite them in the 

functions 8 ; 
form 
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sin X · = 2m [~(s t)]1/ 2; Q 7 
a a . ' cJ ab ac !! 

= 2m [¢(s t)] 1/ 2; D ~ 
c ' 61 cd o<ac 

where 

~(s,t) 

' 1/2 
= 2~[~(s,t)] lc/ab ~bd 

''•;. 

m.
2

- s- t\ 
' ~ 1 

' 

2 2 2 ' 2 
- s(~ - m )(m - m ) o d. a c 

I 
I, 

(III; 3) 

~(s,t) = Ogiving the boundary of the physical region. From Eq. (III~l). 

and the definition of f(s,t) we obtain the crossing relations for the ,. 

[ 

. es l-IA-~1 [ es l -IX+~! 
f~ A . A A ( s, t) = s~n 2 cos. 2 c d' a b J . 

\ J Jb ·J J 
x ~ {d,~, (x )d,,, (xb)d,~, (xc)d,~, (xd) 

A' '-' A' Ai A-Aa a AbAb A A A Ad 
-' b' c' - a c c d 
a d 

' t 

i!'-

[ 

. et 1 1A'..-.~' I [ · et·]IA'+ll'l_t. ( +)} 
x . s1n 2 I cos 2 fA, A,·. A, A, s, "• 

. J . c a' d b 

i·rhere 

A' 

-t 
(s,t) fA'A'·A'A' 

c _, - b' 
a d . 

ll' A 
c Aa 

(III:l~) 

t. . I 
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the elements of the crossing matrix ?/1 being defined by this e~uation. 

Now by the result of Section II,· fs(s,t) is free of kinematic 

t singularities, and similarly ft(s,t) is free of kinematic s singularities. 

Therefore all the kinematic s singularities of fs(s~t) are in the crossing-
~~-.... ._,. ....... - .... ""1 • .--"', ....... "" .. -----·r.,. ... :-t'~~--·..,.,_ .....,. . ..,.,.,. .......... ~,.,,~,... - ....... -__ .. ,,:"...., J'IO'fot!O~----~ 

matrix elements in.~q. (III:4) and thus in the functions that are 

explicitly knovm. From the kinematics in Appendix A, we see that in 

addition to the pure~singularities and@_singularities at Jab = 0 , 

,..(~ =O,_s=o,:J -o o-;-
·-Y cd -· ac - 9 '=" bd - 0 , and ·~ = 0 , in the "?!( 's there are 

also mixed s and t singularities on the bounda~J of the physical 

region, i.e., at 
I 

¢ ( s, t) = 0 • , In Appendix B we sho;.; that such apparent · 
---..._ ............... .............-

mixed S-t SingularitieS Of ?rc_ Cancel and all the m IS haVe Only pure 

@ signularities and pure@singulari~ies. 'rhis is '1-rhat one would expect 

from Eq. (III:4), since f 5 (s,t.) is free of t.;.kinematic singularities 

and 

nor 

all 

of 

and 

ft ( s, t) is free .of s-kinematic singularities, and neither r5 
( s, t) 

ft(s,t) has dynamical singularities on the physical boundary. Then 

the pure s singularities of ?'n_' s are the kinematic s singularities 

f 5 (s,t) . If the :pure s singularities of each trz_ are factorizable 

all rprz IS in E~. (III:4) have the same type of pure.s sing-...lJ.t.:::-i ties, 

one can easily make fs free of kinematic s singularities by multiplying 

it by a factor which makes all ?ft's in Eq. (III:4) free of s singularities. 

If this is not the case, one has to seek linear combinations of -s 
f such 

that the combinations are still free of kinematic t singularities and 

also suitable for the factorization of the kinematic s singularities. 

Ih the following we. shall discuss the factorizability for all cases, 

with any mas~ assignments~ 
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:En proving the factorizability, we assume that parity is 

conserved in the interactions. 
4 

Unde_r parity symmetry,_ 

t . . 
f>.'>.'·).').'(s,t) 

c _, - b ' 
(III:5) 

a d 

· .. , .. 

where 

J +J -J -J I f 
(-) c a d c(-)). -u 

' 
/ 

and ~ is the intrinsic parity of the ith particle. Combining the 

-t, 
f. s , which are related by parity symmetry, on the left hand- side of 

Eq_. (III:4), we obtain the. cro-ssing-matrix elements: 

). >.d;>. >.b c· a 
np ~ ->.',->.';->.' ,->.'(s,t) 

t c - - b a d 

= [ 
. e5 J-1>--ul r 

2
es J -1>-+ul [ . et ]1>.'-:-u' I r·- et ll>.'+u' I 

s~n - ·lcos s~n - - cos -2 . 2 . 2 

- (J ~>. )+(Jb->.b)~(J ->. )+(Jd->.d) 
+ (-) a a . c c np . - -

t 

J 
x d a 

>.'). 
- a a 

(III:6) 

i.-
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Equation (III: 4) can then be i-rri tten as · .., 

f~ >. • >. >. ( s 't ) 
c d' a b 

= 
A I A I A I A I >0 
-' b' c' -a d 

>. l.d;>. >.b 
" c · a 
J·\ , A ' • A I A I 

c -' - b a d 

-t 
(s,t) fl.'!.'·>.'>. 

. c -' - b a d 

In obtaining Eq. (III:6) from Eq. (ni~lt) we'have used the relation. 

d~J.I(1T 

From Eq. (III'. 6) , we see that in proving factoriz~bili ty of 

kinematic s singularities, mainly i-le shall play with the d functions. 

The follOi·ring relation is use~ul; 

"W 

I>.+ I [ e ]v (J- 2 ) e] J.l cos 2 (P . . (cos e) = -,cos 

where 

. v: = 1 ;.rhen J is half integer 
' 

= 0 vhen J is integer 

'. v 

(III~8) 

/JJ- 2) ( u cos e) [ 
e ](2>.ffi-v)P(.l>.-J.II,I>-+!JI)(. e) 

cos 2 (J-1. ) cos (III~9) 
m 

fP(J- :!..2) .. 
The U (cos e)' is a 

v 
polynomial of cos 8 of the order of J - 2 ; 

In the follm.,ring •,re shall study the locations of the kinematic 

s singula.ri ties of f 3 
( s, t) for the general mass case (i.e., 

and ~ = md) and find 
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suitable factors for removing the kinematic s singularities. For 

special mass assignments, where pairs of masses are equal, the same 

method applies, .. but care must be excercised in taking the limits of 

the above formula. The results for all mass assignments are listed in 

Section IV. To avoid intro.ducing kinematic zeros, we have obtained the 

kinematic factors for special mass assignments fr.cim studying each case 

individually. 

From the kinematics in Appendix A, it is clear that the sines 

and cosines of the angles and the half-angles of xa' xb' ·and xs have 
~·~·., 2 I 

rnb)2. __ ints Jt Jab = 0 9. i•·e.ll at s = (m + m.o) and s = (~ a ----·-· _... ~- •" 

To investisate the analytic properties of these functions, which are 

originally defined in the physical region 9 _we first analytically 

.. continue them at fixed t outside the physical region of the skhannel. 

2 Then we vary s around s = (m + ~ ) or 2 
s = (m. -- m.. ) a . b 

in a 
_ / ---------·····-"B a o 

~ounterclockwise sense.; 'i-le find that the following functions are 
-~~----~~--·..__.- - .. - . .. ·' 

2 2 
analytic at both s = (ma + ~) 9 s = (m - ~) : 
~-------- . a 

r e'c 

~;e. 
0 e, 
\ 

, .. 

1_, 
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· 
0 

sin Xa ·· 0 ab ' 
0 sin X 6a'o b ' 

') 

r. Xa Xb ' Xa· Xb J 2 1/2 
L cos .2 cos 2 - sin 2 sin 2 x [ s - (ma + ~) ] . 

l~ es Xa Sl·n es .. xa]· 0 
.· cos 2 cos 2 + 2 s1n 2 x clab · , . 

e x e x s a . s . a 
cos 2 cos 2 - s1n 2 s1n 2 

and 

.. (III :10) 

Similarly :f'or Xc ~- Xd ~ and 

analytic at J b ~. 0 : 

e 9 ive find the following functions are ' s 

. a 



and 

are 

cos 

siri 
II 

,..12-

2 cd sin Xc 
. 0. 

' (5 cd cos Xc () sin xd c) cd Jed cos xd -' 

"I' 

~C~S ~C COS ~d - sin ~C _shJ. ~d J X [s - (me - md)
2

) 
'-

' 

(cos 

( 6 s . XC 
Ieos 2 s~n 2 + 

\ 

e 'X . s . ' c 
s~n 2 s~n ;.2 

. I 
i 
I 

e · 'x \ 
, S , : C 1 

s~n 2-s~n 2) X 0 
·0 cd 

e 
s sin -cos 

2· ' 
xcJ' 0 · 2 x cfcd 

' ' 

' 

6 X . 8 Xc 
cos -;]-·sin 

2 
c - sin-/- cos 

2 
(III:lO') 

analytic at Jed = 0 • 

e are analytic at Jab s 

e 12 t 
arid cos e /2 

t 
are 

The functions Jab_j)cd 

= 0 and :J = 0 cd . 
analytic at 2 -0 v ab -

Sin e S and gabJCd X 

The functions 

and Jed = 0 .From 

/lk these results 1.;e can easilY show that the crossing -matrix 

I <. 4) 2 g · 
I En. III·. 1 has singulari ti_ es at · ab = 0 and - 0 a,.,d these · .., · ' cd-:- ' .. 
j 

singularities are not factorizableo 

in·· 

Let.1 s look.no1-r at the a.:nplitudes 

-s -s 
fA A .A A .::, f(-Ac)(-Ad) ;AaAb .. 

c d' a b 

' 
,.. 

'·' 
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The crossing-matrix e1ement·between fs(±), 
A/'d;\af.b 

and 
-t 
f~'~';~').' 

c ·- -b. ·a d 

( 
A Ad;!. Ab n c a 

!'\tAl •)..1). I 

'l c -' - b \ a- d 

-A -A ;A ).. 
'ff c d a b 
1'1A I A I • ).. I A I 

c -' - b a d 

. ( 6) ( ) p± Using E~ III~ and III: 8 , ;.re obtain 1v1 up to a .constant:~ 

I . et \ I A'-~' I 
\s~n 2) . 

·e )I A'+~ I I 
( 

. t 
cos 2 . 

\ 
I Ab -Ab ,. 

- cos xb ' /0(J -v /2) 
sin . ) u- a a (6os xa) 

xb . 

is 

( 

1 + cos X 
+ a 
~ 11

ab -sin xa 

- (J -v /2) 
(? a __ a (-cos xa) 

\) (J -v /2) 1 0 , v 
X (.J b b (-cos xb)(l- cos ~ 5 )m \sin 

2
s l 

+ lll -cos X a ·) 

1>-~- >-al 
a { 1 - cos 

1>-b-Abl . . 
(J -v /2) 

tD a a 
sin x a . ·. \ sin xb \) (cos 

(III :11 ·:ontinued) 
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2(:\ +:\d) 
+ n b (-)- c 
- a 

1>-:- >-al 

( 
1 + cos x \ a 

- a I 
-sin X I a 

~~(J-v/2). 
. a a. -( -cos 

with 

and 

· ••here 

' 

2m + v I>- - ~1 - lA + ~1 ' 

n_nc J.+J.+A +:\l 
a ( _) c a. c _ a. 

nbn- -
d 

v. = l_ when the ith particle is a fermion 
1 

= 0 ... when the .!_th particle is e .. boson 
' 

v 
{ sin Xa \ a 
\ 2 I 

(III:ll concluded) 

v = 0 for BB ~ BB 
' 

FF ~ FF 
' 

YF ~ BB interactions 

(B stands for boson and F stands for fermion) , 

v = 1 

vb = v 0 d = 

for BF~ BF, interaction with the convention v = v = 1, a c 

' V. 

P(? 
,. /(..1 



'>"· 

.. 

~~~\. 

The expression given by Eq~ (III:ll) is convenient for observing the 

analytic structure at;0 ab =·o • To observe the analytic structure 

of n± at J = 0 'lve "rrite 
cd ' 

-+ H- in the folloving form: 

?<- ~[\ 1 -.cos_ Xc -~~A~-_Ac_l 11_l_-__ c_o_s_x2,\ lA'- Ad! (J -v /2) 

I
, -d (P ~_c· c (cos Xc) 

S1n XC \ sin xd 

+ 

X 

. -( 1 + cos X-- c 
ned -sin x . c 

l
' . 95 \ v 
_s1n 2J 

I A~ -A c I I ·.1 

\ 

+ cos 
xd \ 

lA' - A I 
d d 

-sin X . / 
d ' 

c c (A;_- Aa)+(Ab'- A.)· ~{l- cosX 
+ 1'] (-) a D . X f C 

·ab L \ sin X ) 
I A'->. I 

c 

t 1 - cos xd 
x1 

\ 
I >. ~ - >.d I !)) (J -v /2 ) . . ( J d-v d /2 ) 

v c c (cos x ) (p . (cos xd) c . 

(III: 11' c.ontinued) 
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-·-·- xc· \ I "c' "c I . 2(>. + >. ·. ) t' 1. + cos 
( -) c d .:!:. ned \ ....;,_--.----} 

. (J -v /2) 
rD c .c ( 

X V- · -COS 

where 

- s~n x c 

Jb 
( 1T ,;.. X ) d, I\ 

a 1\b/\b 

.. . 

. . J +Jd+>.. +>.d 
(-) c. c 

(III:ll) conclud~d) 
! . 

Ysing the result in Eqs. (III:lO) and (III:lO'), and after some work, we 

find the s'ingulari ties of M± at 

-+ [ ( · )2]-l/2(al)[ 
M- o: s - ma + ~ · . s 

where 

Cll = Cl2 = Cl ( +) t (\ = g-

al a2 -· a ( +) 131 = 6 ( +) 
g- ' g- ' 

a = a ( +) , a
2 

= a· ( +) 
1 g- g .. 

and 

( ·)2J-l/2(a2 ) m - m. . a · b · 

(III:12) 

62 = 6 ( +) 
g-

for BB -+ BB 

S· = 13 (+) •. for BB -+ FF (c,d being 
2 g .. ' 

~ . ) . J.erm:tons 

= s (+) 
g 

for FF -+ FF 



~ 
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a ( +) = -1~ ;_ lll g-:-

+ {max (:~:.11 ab) [J 1 
+ ; (! A ·~ lll-1 A +Ill)]} of + Jb - 2 (va ~ vb) a 

1 ( . . ) +- v + v' 2 a,,. b p 

8 ( +) -lA - Ill {max (::_ned) [J 1 = + of + J - - (v + v ·) 
g- c d 2 a · b 

' 

where "max n of n " means the greatest ~. nu.rnber that is equal t"o ------------------
or smaller than n when~is _ ~~' or the greatest od~ number when 

For FB -+- FB. inte'ractions ~t i.e., v = 1 . . . 

-and vb = ird =. 0 , we have 

where· 

·ar(+) = -1>. 
g --

. . 

. . Q -a I ( + ) J -(3 I ( ± ) 
(.~ ' ) g - ( ) g 

ao cd . ' 

He see that the singularities of 
-~(+) 
f ! - at J 

ab = 0 

out. In addition ~o the singulariti\'es at Jb = 0 . a 

v =v =1', 
a c 

· (III:l2 1 ) 

can be factored· 

JP . = 0 9 there is ca. 

a singularity at s = 0 • In thi::; case of ma :f. ~ , me :f. md the entire 

112 · · 1 ; t · · t d d b th f t · ( e /2) F t · s s1ngu ar1 y 1s 1n ro uce y e ac or s1n · or reac 1ons 
s 

of the type · BB -+- BB , FF + FF , . FF ->- BB , the difference of · I A + Ill and 

. 1/2 (+) I A - JJ! is even, so •re can remove the s singularity from f 5 
- simply 

by multiplying it by (s) 1 / 2 [max(l>.-t.:,IA+lll)] • For reactions of the type 
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BF -+- BF , the difference of lll 
not 

of 

t , l/2 . ul . t f remove ne s · s1ng ar1 y rom 

( ) l/2[max{i>--IJIIA+lll)] .. 
s . , ve can 

and I A + lll · is odd, so ;.re can 

fs(±) Hultiplying by afactpr 

remove its possible pole only at 

s = 0 • It still has a branch point at .s = 0 • -s(+) However, f - is 

'closely related to the partial;_·..;ave helici ty amplitude of definite 

parity, and· by the··~·1cDowell reciprocity ~elation3 · the partial-wave 

helicity amplitude of definite parity has a simple reflection property 

in ( s )1 / 2 • Thus i·re can conveniently vork ;.lith the s1/ 2 plane; in fact 

in the calculation of the partial-wave amplitude of BF + BF interaction, 

He are forced to '\YOrk in this plane. Tnperefore for . BB +! BB, FF -+- FF, 

and FF + BB interactions, the functions 

X (s)l/2[max of <1>--IJI ,1>-+f.!l )] (III:l3) 

are analytic in s and t For FB-+- FB interactions, the functions 

(III: 13' ) .. 

are analytic .i'n (s) 1
/
2 and t and finite at s = 0 • 

.~ 

J'' 
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·In the following we list ~ii th--e-amplitudes that are free_ of 

kinematic singuiari ties. 9 vle can easily show that these results are 

consistent with the usually assumed threshold· behavior of partial-wave 

'helicity amplitude~·vith definite parity:2 ' 3 

The definition of fs. by 

f~ A 'A A (s,t) = 
· c d' a b 

lA ~1 J-11+~1 s (sin e /2]- - (cos Bs/2 . ~A A 'A A (s,t) 
s c d' a b 

I. 
'· 

is always used. For · FB ~ FB. interactions we take the convention 

that particles a· and c are.fe~ions. 

Equal masses, - m 

where 

with 

The desired amplitude here is 

2 l/2(a ) -l/2(B ) 
(s - 4m ) e (s) e f~ A 'A A (s,t) 

c d' a b 

A - A. - >. 
a b ~ - A c 

·' (IV:l) 

' 

' 
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v. = 1 if J. is half-integer t 
~ ~ 

= 0 if J. is integer 
~ 

n n 2(J +Jb) - c 
n'~ 

a (-) a - ' nbn 
d 

."The max n 
. I 

of · n" means the greatest even nl.imber ·smaller than or 

equal to n ,.,hen n is +1 or the greatest odd number with n is -1. 

Using this result~ '1-Te: can easily find the 'kinematic ?1.ngularity-

free helicity amplitudes for the nucleon-nucleon scattering NN -+ NN • 

In this case 

vle find that 

va·- vb = vc 

n = +1 
N 

n = +1 
.e 

= v = 1 d 

n · = -1 
N ' 

,• 

'"'' 
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e 
( . s )-2 s 
sin 2 f+ 

. e · · e · 
(. )-112( . . s s)-1 s 

-;- +~ and s ·. sln 2 cos ·~ f++;+ 

are free of all kinematic singularities. These results are in agreement 

10 with those obtained by H. L. Goldberger et al. 

B. m = m ml 
.. ,. 

~ = m m2 - p -a c . d 

The follo•-Ting amplitudes are free of kinematic 

for BB -+ BBP FF -+BB 
.~ 

FF -+ FF interactions: 

() Cl 112(139.) . 
( d ) e ( s) f~ A • A A. ( s 't) ~ 

· c d' a b 

where a is the same as· tha); of Eq. (IV :1) , 
e 

-

s and t4.ingulari tie.s 

For FF -+ BB interactions, one can easily find the kinematic singularity-

free o.raplitudes by the method =~';r ·~he general ·mass case. 

Applying this general result to the 7TN -+ 7TN interaction, we find 

that ( ( I )·]-1 s 112[ . ( I )-1 s cos 85 2 f+O;+O and s s1n Os 2 f+O~-d .. are free of 

kinematic singularities. These results agree with those obtained first 

by G. Chew et ~· 
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c. 

The following functions are analytic in~ and(Y for_ BB -+ BB, 

FF -+ BB , FF -+ FF interactions: 

2 
1/2[ a (+)] 

(s - 4m )·· g -
1 

X ( S 
2 1/2 [ s (~) l -1/2 ( ) 

4m
2

) . g · (s) Y 

..,;here 

·ex (+) - -1>- - ~~ g-

·~.~--··-... 

(IV,3) 

+{max (+nab) of[~ ~-9- ~ (va +vb)+; (!>.-..; JJ(..; !>.. +ll!)]} 

. 1 . 
+ - (v + v ) 

2 a b 
i i 

s (+) ~ -1>- ~, .. 
g-

. . 1 

+ max 
/ /' 1 ' 1 

(+l1 .d) of [J /+ J /.;.- (v + vd) + -
2 

(!>.. - c ~ d. 2 c 

1 . 
+- (v + v ) 

2 c d 

/ 

0 

1 

lll I A .+- )J I ) ]) . . 

. f 



•, 

\ 
'.$f 

y 

n s 

:: the max (ns) of [I(!Jd-

-

n n 
- c a 

nbn..;. 
d 

n n . 
- -C· a 

~bn-
. d. 

2(J +J ) . 
(-) a b (-)A~~ 

.,. 

J +J +Ad+A 
(-) d c c 

. . . 
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Ji I 
b 
I 
! 

• I 

' 

.i 

IJ -JI)I+lJ 
c. a 

Jd+J +Ad+A . 
(-) c . c .. 

For BF-+ BF interactions, the result for the general maps case applies 

except that the s112 singularit~ needs to be reevalu~ted. 

n 
.s 

= + 1 / 

cl + .b ~::.:;;. e+& 
)J w.~-:> 11-til 

t;- t\:oo Jv-=-o. 

+- A-=- 1 fv';: o 

and taking only the "+" sign of Eq~ (IV: 3), ive easily obtain the kinematic 

singularity-free amplitudes: 

( 4 2)1/2-"'s s - m ... 
n 00~++ 

~· ( ~ t) \,Ct·) : I ~jCf-) -:.0 

~~"' I }\-::. 0 

olf/t) ""- 0 ~j(+-) .; -I ~(+-) 
and 

~~-=t·l} o~ , 

.. 

.{ 
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D. General mass case (ma f: ~~ me :f md and nbt both ma =me' ~ = md) 

For BB ~ BB , FF ~ BB , FF ~ FF interactions, the following f' 

amplitudes are free from kinematic : s and t sing~arities: 

[-s -s ] f + f .. ,. . 
). ).d;). ).b - -A -Ad;). ).b c ,a c a . 

' 
(IV: 4) 

where a
1 

, a
2 

, s
1 

, and 13
2 

.are the same as those of Eq. (III: 12) and 

y g . - max of ( I A - lll , I A + lll ) · • 

For BF ~ BF interactions, the amplitudes 

[-s -s . 
f + f ·· '·.. ·• X 

). ).d;). ).b- (~). )(-Ad);A ).b] c a . c a 

0 B' (+) l/2(y ) 
x (~dd) g ~ (s) . g 

with 

a' ( +) - -lA - lll + .{max(+nab) of' [J + .:rb +l (lA - ]..II - j). + l.l!)]} ' . g- a . 2 

-lA ... 1Ji 
, 

lll lA + lll )]} 13' (+) - + {max(+r, d) of [J + .• + .-=.. (I A - -g- . -c c c)d . 2 
, 

·r ·•. '1/2 are free of kinematic singularities except for the s singularity •. 
' . ' 
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Appendix A: THE KIHElv!.ATICS 

The boundary of the physical region
12 

is 

¢(s,t) = . 0 

.. ,. 

st( L 2 
m. - s 

); 

2 2 2 2 
- t) - s(~ - md )(m - m ) 

b a· c 
i 

2 2 2 2 2 2 2 2 2 2 2 2 
· -t(m - ~ ) (m - m )-(m m -m ~ )(m +m -m -~ ) 

a b c d a d c. b .· a d . c o 

(A:l) 

'·c·~., ~~~~ p ;;··! D 
'~. -~ Q 

we define; 
\ 

e 1as the scattering angle in the s channel (i.e., a+ b ~c.+ d), 
s ;' 

"'-..._,_ ~__..,../ 

which is taken to be the angle·. between narticles a and c • In the 

· s - c.m. system, 

cos e = [2st + s 2 
s 

where 

Q 2 
_,j . 

~./ ab [s - (m 
a 

. I 2 s m. 
' ); 

i 

2 
- m ) ][s 

b 

. ~ 

2 2 2 2 0 0 
+ (ma - ~o )(me - md )]/ efabOcd 

2 4sp . ·. ab 

C) . . 2 2 
[ s - (me - m d) [ s - ( m c + m d) ] 

2 
4sn d ..o cd 

sin G 
s 

~-

= ~ c 

o < e ~ i1' 
' s 

' 

(.A:2) 

t 

. ~)is the scatteri-ng angle between particles d ~"'ld .. c in the t channel 

(i.e., d + b -:~ c + a). In the t - c.m. system~ 
-· . + --r ~- p ... , n :1 ,, . 



"': 

sin 

where 

.r-1 2 
J ac 

2 
[2st + t - t 

.,.27-

L 2 
m. + 

l 

i 

et = 2[t¢(s t)] 112;.n "'-1 , ' ./ ac _,~ be. 

L 
'I• 

2 ·2 2 2 () () 
(m, - m.. )(m - m )]/-:9 -<5·bd u b c a . ac . 

(A:3) 

. 2 . 2 
[ t -(m + m ) ][ t - (m - m ) ] 

a c a c 
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APPENDIX B 

Vle want to show that the elements of the crossing matrix 

-s 
f and -t 

f in Eq. (III:4) do not· have mixed s and t 

singularity. As we see from the kinematics, all the mixed s and 

t singularity of the sines and cosines of the angles es , et , and 

angles Xi .are on the boU.'ldary of the physical region ¢ ( s, t) = 0 • Iri 

some special mass cases 9 ¢(s,t) = 0 gives s = 0 and t = 0 
' 

but that is not our concern here. He consider only the part of 

¢(s,t) = 0 due to the vanishing of its factor of mixed s and ... 
"' • 

I 
Then at ¢(s,t). = 0 

' 
the cosin~s of all the angles are either +1 or· 

-1 and are analytic there. The sines of all and X '" . "' l. 

have (¢)1 / 2 singularity. ifnet.her the sine or cosine of the half 

.angle has (¢)1/ 2 singularity >rill depend upon whether the cosine of · 

the angle is +1 or -1 at ¢ • 0 • One can show. that at ¢(s,t) = 0 , 

except at s = 0, t= 0 given by ¢(s,t) =0 ~ 

cos X a cos Xc = cos xd cos xb = cos e = +1 (B:1) s ' 

cos X a cos xb = cos Xc cos xd = cos et -· +1 (B:2) 

Eq. (B:1) implies that at ¢(s,t) = 0 ' if 

e 
r:}/2 sin s 

·i.e.,. e +1 .·::::; ,; cos = ,... t c. s 



or 

xb 
rv r;;1/2 and 

xd 
.I'V ¢1/2 i.e., -1 cos cos cos xb :: cos X == 

.. 
2 ~ 2 ,.....-

' d ' 

if 

e 1/2 s 
i.,e('!J e -1 cos "-- ¢ cos "" 2 ,.-._J ::; ' 

either 

X a ¢1/2 and 
xb ¢1/2 .i.e. , +1 sin- .-../ cos ~ cos X a = -cos xb = 2 .-....J 2 0-' 

or 

X a 1/2. 
and 

xb ¢1/2 -1 cos ("'-./ ¢ . .sin 2 ~ i.e.,, cos X a = -cos xb = 2 /'-' ' 
(B:3) 

etc., and a similar argument for cos et . 

P(? 
Ll /t:;\J 
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. . 
From Eq. (III~4), the crossing-matrix element is 

. -I A-~ I 
. A Ad;>.: Ab 

"Y-1 c a · 
Ff1.A'A''A'AI -

c -' - b 
[ 

e l . 

. s I. ·. ·· 
s~n -;;---1 · 

L J 
a d 

•; .. 

Up to a constant P we have 

vlhen cos G = ± 1 ·' the Jacobi palynomial is a constant) 

(B.5) 

Therfore at 0(s,t) = 0 

' 
n-- A. ),d~/.. A. til c ' a o 

l>..:AI;AIAI 0:: 

c - - b a d 

r e ] -I A-~ I 
I . s 

s1.n 2 . 
L 

. . . . . IA 1 - A I 
I esl_.-IA+~lr. ·xa] a a 
j cos 2 \ . I Sl.n 2 . 
L · J l · 

IA'+A I 
- a r X "i a ' a 1 

lcos 2J .. 

. I A I -A I I A I +A I . . I A I A I I A +>. I 

[ 

. X l b b [ _ X. l b b f X 1 . c- c ,. . X . l . • I c 
.. b 0. , CJ I c, C 

.X · Sl.n - COS -J Sl.n - i COS - I 
· 2 · 2 t 2 1 2 1 - ·" 

. . · L . L . -

(B~6) 
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cos xd 

where 

e = s 

= +1· 

+ 'AI 
d 
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+1 and, cos et = +1 then 
' 

or -1 • Using Eq. (B~ 3) and 

A ).d;A Ab c · a 

A I A I 'A 'A I c _, ~ b 
a a 

+ A' I 
Cl 

u::· (¢)1/2(n) 

cos X = a· cos xb = cos 

Eq. (B~6) ve 
> 

find 

' 

The top signs are for cos x. - +1 and the bottom signs are for 
. l. 

Xc = 

(B~ 1) 

(B_:8) 

.. cos X· = -1. It is easy to see that n is even integer, To shov 
l. 

that n is always; positive, we us.e theinequality 

where a , b ·are any number'·s ~ 

~ I+ (A ' - A ) . + (A I A ) + (A I - A ) + (A ! - A ) I . 
- - a -:- b - b - c. c - · - · d a d 

= j(.>.. -A ) 
a b 

(.>.. 
c 

= 1(.>..- f.l)- (.>..'- f.l')l? lA - lll- 1.>..'- ll'l 

. ' 
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•• n > 0 for cos x. = +l , similarly for cos x. = -1 • \·le can do 
. 1 1 

the same thing for other cases of cos e = +l , cos et = -1; s 

and cos 6
5 

= -1 , cos' _et = -1 

none of the ~s has mixed s and t singularities~ 

••• j ~ 

Therefore 
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