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Synopsis

Th¢ existence of the familiar produc£ gM.J that occurs in an analysls of the
Zeeman effect can be regarded as ah'example of the Wigner-ECkart theorem

for the rotation.grqup RB. Correspondence is madé with the treatment.of
intra-atomic interactions by means 6f higher gréups, such as R5 for 4 elec-
trons. The spin-spin and spin-other-orbit interactions are examined in detail,
and an oupline is made of the deéomposition of the scalar threé-particle oper-

ators that are required to partially represent the effect on the configuration
1

J ) +
(nl)h of excited configurations of the type (nz)N . (n'2")
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1. Introduction. When an atom is placed in a unit magnetic field, the energies

of the components of a level J are given in units of the Béhr magneton by gMJ,
where g 1s the Landé factor and MJ the quan@um number of the projection JZ

of 4. That gMJ should be a simple product is a consequence of the Wigner-Eckart
theorem, applied to.the_\group"R5 of rqtations in'ordinaryvthree-dimensional
spa;e. Since intra-atomic interactions are ailvscalars in R5, a similar appli-
cation of the Wigner-Eckart theorem to these cases does not give useful results.
However, if our eigenfunctions are déscfibed by the representatibns of higher

groups, such as R5 for d electrons or R and'G2 for f electrons, the Wigner-.

7
Eckart theorem can again be applied when the interactions have been broken down
into parts having well-defined symmetry properﬁies with respect'toAthese groups.
For the Coulomb interaction betwéeh eqﬁivalent f electrons, for example,
Racahl).iqtroduged the operators eo, e, €5 and é3; eachvcorrespoﬁding to a
pair of répresentatiqns WU of R7 and G- .His-tab}es of (UIX(L)]U') and
(U|¢(L)|U’3 now appear as the analogues of M., and the téblgé of Q(W,UU’) and
y(fn, ?SU; vSU') correspond.to the Landé g factofs.. The fact that opérators
and eigenfunctions occurring in nature are mixtures of representations usually
obscures the striking‘carrespondénce with the Zeeman effecﬁ, though a few
special cases illustrate the mathematical substratum in a spectacular‘way.

I L 3

. " B
For example, the separation of the terms D, G, JS,_ F, and I of f7 are

A s I
proportional to those of the terms 5»D, 5G_, ?S, 5F, and 51 of £ ; and the

ratios of the separationsvare independent of the Blater integrals er

- It is the pufpose of this note to point out. that this approach can
be extended to other terms in the'Hamiltonién. The general method is illus-
trated in detail for spin-spin and spin-other-orbit interactions. -For sim=:1. ;f-

plicity, we restrict our attention to éonfigurations‘of:equiﬁalent electrons,

particularly those of the type dN.
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2. Single-particle operators. It is convenient to represent the interactions

of interest in terms of thesingle-particle tensors ;K(K‘) for which

(el ) = 112 M/

(kk

where [y] = 2y + 1. The,tensbrs X ) fdr K Tfixed and k odd
form the components of a generalized tensor corresponding to the representation

; those for k . fixed and k even (and non-zero) form the

W = (110<..o) of Ry yy

' 1
components of a tensor corresponding to W = (20...0) 7). A further generaliza-

(kk)

tion:is useful: The tensors ¥ for k + k odd form the components of a ten-

\

sor corresponding to the representation (o) = (20...0).0f the symplectic group

5p), p; those for which kK + k is even correspond to (o) = (110...0) 2). These

statements remain valid if the tensors ¥ ;

are replaced by W
(kk)K

i

where thelsum runs over'the electrons. The notation Y indicates that «

v
and k are coupled to a resultant, K.
A detailed group-theoretical classification of the states of all EN for

3.

£ <k is already available from the work of Racahl) and Jahn The Wigner-

 Eckart theorem can thus‘be immediately applied in the calculation of the matrix‘
‘elements of thetﬂ(Kk).. (A sﬁate of seniority v corresponds to (o) = (11...20:..0),
in whiéh v ones and 2f + l-v zeros éppeaf.?).] Suppose that the bra, the
operator, and the ket.for a given matrix_element'correspond.vto the irreducible
representatidns R.s Ry» aﬁd R, of a group G. Then c(RaRbRc), the number of

times that the identity.represéntation occurs in the triple Kronecker product -

'Ra X Rb X RC, plays a crucial fole in the application of the Wigner-Eckart

theorem. If C(RaRbRc) = X, then at most x linearly independent sets of matrii

elements associated with the labels Ra’/Rb’ and RC can exist; and if x = O,
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2all matrix elements are zero ). For the group Rj’ we find c¢(D.D ) <1,

Jk J’

so all non-zero matrix elements are proportional to just one basic set—
which can be convoniently taken to be the oollection of 3-J symbols with
(JkJ‘) for théirupper row, multiplied by certain phase factors.

-Examples have been given elsewherez) of the application of the Wigner-

Eckart theorem to the calculation of the matrix elenents of the spin-orbit

(11)o0

interaction [proportional to ¥ ], the hyperfine interaction [involving

(Ol)l (12)1 1, and the interaction of an atom with a crystalllne elec-

<k>].

and W
tric field L1nvolv1ng W Our present interest lies in more complex
cases, where the 1nteractlon cannot bo immediately assigned representations

W and‘(o). The problem of decomposlng an interaction lnto parts having well- '
defined gfoup—theoretical propérties arises typically in the study of two;
particle operators like the Coulomb interaction; The generalization of Racah's

approach is probably best described by analyzing special cases. We turn first -

to the magnétic interaction between the spins of the eélectrons of an atom.

3. Spin-spin interaction. For a configuration ZN, the contribution to the

Hamiltonian arising from magnetic spin-spin interaction can be taken to be

H,=-2 2 2 [(k+l)(k+2)(2k+5)]l/2 Mk (zuc(k)nz)
| . iA) k
x (tlic 1t:+2)”jZ Ml(lk).xjgl k+2), {22)0 ) , (1)
K N N N
where M is the radial 1ntegral defined by Marvin”). - Values of Mk for a

number of paramagnetlc ions have recently been calculated by Watson and Blume

(x) .

from Hartree-Fock e1genfunct10ns6). The tensors c are related to the



' . S 5 o : " UCRL-16273

spherical harmonics qu by the equation Cq(k) = [bgr/(2k+1)] / qu. The’

reduced matrix elements of g‘k) vanish unless k 1iIs even. Hence the curly

I

bracket of Egqg. (l) represents a coupled product of quantities that transform .
like (o)W =:(20...0)(20...0). For 4 electrons, (o)W = (20000)(20). In this

‘ 2
case, we find by the usual techniques ) that

(20000) x (20000) = (00000) + (11000) + (20000) + (22000) + (31000) + (L000O)
and »

(20) x (20) = (oo) +.(11) + (20) + (22) +.(31) + (Lo).

Since' Hss is symmetriéal-with respect to‘the electrons'uco-ordinates,‘not all
the representations contained in the Kronecker products‘are_useful; in fact,
wé can restrict our attention to (ooéoo), (11000}, (22600) and (L0000) of 5P,
which comp?ise the symmetrical representgtion [2] of the unitary group U55
~ spanned by‘the 55 éomponenté of‘K<Kk) with k+k odd.‘ The bfanching rules for
the reduction SplO —aSUz X R5, which separates the spin and orbital spaces,
are given in Table I. They can be obtained by.a chaiﬁ calculation in the
usual way.

The transformation'properﬁies oflthe_Spin gnd orbital parts of Hs

are identical to those of the state 5DO. With the aid of Table I and the

5

S

table of branching rﬁles'for- R —>R5 given by Jahn5); we see that “D arises

5
in the decomposition of'(22000)5(20), (22000)5(22), and also the representa-:::..
tions belonging to (L000C). The last can be discarded, since all states

arising in & transform like representations (1...10...0) of 8p,,, for which

c((l...lO...O)(thOO)(lr;;lO...O)):= 0.
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Our conclusion is that for d electrons, Hsé can be expressed as the sum of

two operators h and h2, whose transformation properties are determined by the

1

sequences of representations (22000)(20) Do (for h,) and (22000)<22)5DO (for h

) ).

a;) Since HSS is a two-particle'operator, hl and h2 are adequately defined

for the 4 sheli when their matrix elements for d2 are givenl By omitting an
explicit construction of these operators, welcircumvent the awkward problen
of finding coupiing coefficients in which renresentations of SplO and SU2 X R5
appear. To begin, we follow Trees7) and separate onththe J dependence by
writing |
. ] i = : ;.S'
(ysLa|E  ly's'LT) = (-1)5'”“”{‘

1 J o
» } VSLHT(QQ ly'szr).
582 _

The symbois Y and vy' are included to completely define the states. Values

(e2)

are given in Table II for d2. They
0.

'of the reduced matrix elements of T
can be obtained from Eq. (l),-and agree nith‘the resuits in the literature
It is convenient to introduce reducedbmatrix_elements (sziuw') for each h, by
writing | | | |

(22)

WD) = oy Gle o) + ey Wledy) - (@)

The dependence on Mk of each of the two terms on the rignt hand side of this

" Jp ana °F of &

eduation is contained in the parameters ai Now the terms
belong to the representat10n(]l§ of R5, for which c((ll)(QO)(ll)) = 1; hence

for the trlplets of d ‘Wwe can write

(e Pulzyla® 2u) = a (& (%N 2y
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: : o 02
where A is independent of L and L'. Reduced matrix elements of ﬂ( ) are

(2)

proportional to those of the unit tensor [ 7, which have been tabulated by
‘Nielson and-Koster8). Since we have yet to calculate the ai, the normaliza-
tion of the matrix elements“(wnzinw') is at our disposal. A convenient choice

is made and the results entered in Table II.

For Zp» we use the relation
2 25 (11), &
(® 2ufa la® %p) - B (@*(21)’nw{ Mo (22) )

to give two of the three mdtrix elements of 253 the third is obtained by using
the orthogonality of functions transforming like (20) and (22). Interpreted in

' -2
terms of matrix elements for d this is

L,L'

> Culle P el = o

The parameters al and >a2 are now determined by insisting that Eq. (2) be

satisfied. We find

12(30 - 8M?) ey =”—120M2{

o
il

where

"

MO- ;MO/7 and M, = M_/ug.

Trees' chain cdlculation for findiﬁg ﬁhe métrix elements of T(Ee)

'and'zz separately. The work can

for other states of dN can be ;epéated fdr‘zl

1 2
~to (o)W values of (22000)(20) and (22000)(22) respectively. When c(Wi'(22)) = O,

be simplified by taking advantage of the fact that t and t correspond

for example, the matrix elements of Z, taken between states corresponding to
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W and W" is zero. Since Trees has given a complete_tabulatioh for dN; this
" analysis is little more than an exercise; but itﬂpoints the way to a treat-

ment of fN, for which only the diagonal matrix elements of HSS for terms ef

9).

For fN, four operators hibare required:

. : . . : kS
they all belong to (2200000) of Splh’ and their WUQK'lk designations are

maximum multiplicity are known

(200)(20)5D, (220)(20)5D,:(220)(21)5D, and (2éo)(22)5D.

The dependence on N of matrix elements involving S£ates of given
seniorities 1is ﬁost easily found by introducing the concept of quasi-spin.
A method has been described for assigning quasi-spin quantum numbers VK to
the representatiens (o) lo);-for a electrons it involves finding ihe decompo-
sitions of representations of thevtype (l...lO...O) of R20 into representations
of SU X:Splo. Sufficient decompositions for the study of two-particle opera-

2
tors are given in Table III. The quasi-spin multiplicity [K] appears as a
prefix to (o). Since (22000) occurs only once in this table and with a quasi-
spin of zefo, we may. immediately deduce that matrix elements of HSS are diagonal

with respect to seniority and, for a given seniority, ihdependent—of N. De-

. 1
tails of this technique are given else_'wherel ).

k. Spin-other-orbit interaction. The magnetic'interaction Hsoo between the

spin of one electron and the orbital motion of another is more complex to treat
than spin-spin interaction. ‘However, the general apprbachiis similar, and it
seems necessary only to summarize the results. For configurations of equivalent

electrons -we can write

foo s 33 Loen)(erde){erx))/?
500 i#j K S o
g, (O Ky (1) (3200 b (ol )2 4 g (009 )2y

B R R T o TIPS
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As in the precéding sec£ioﬂ, we speciaiize to d éiecffons."A difference with

HS; at once appears: the rank k éan now be odd as well as even. The additional
decomposifionsl(lIOOO) X (11000)'; (00000) + (1iooo) + (20000) + (11110) +
(21100) + (22000) end (11) % (11) = (00) + (11) + (20) + (10) + (21) + (22)

are feQuired. The transformétion préperties of the spin and orbital parts of

H are identical £o those of the étate 5P . Of the available (o)W, the fol-

S00 0

lowing contain 5P and‘are symmetrical with réspect t0 the interchange of two
electrons: (11000)(11), (11110)(21), (22000)(11), (22000)(2;), and (22000)(51).
From Table III, the quasi-spins associated with (22000)‘and (llllO) are seen to
"be O and 2 respeétively; but‘(llOOO) is a mixture of KX = 0, 1, and 2. A further
qoﬁplication is that (11000) ‘occurs in the reduction of (110...0) of'Rgo as well
as (11110...0), and this implies fhat operators of good quasi-spin for (g) =
(11000) ma.y contéin siﬂgle-particle as well as two-particle componentslo). The
single-pérficle part correspohds to (liOOO)(ll)5PO and possésses K = 1; physically
it is absofbed by the ordiﬁary spin-orbit interaction. This separation of an

' effective spin-orbit part from Hsoo is nbt‘equivalent to Horie's separation,

since his éffective spin-orbit‘coﬁpling parameter ' depends on N ; ).

Qur results ére-conveniéntly summarized by the equations

S'L'J

(vsmvllﬂs;ovl_v"s'L_'J). - ()8 {L . l}(vSLHT(l.l)Ilv'S'L')"’,
where, for d2,‘
| | @Yu&mm z }(ibuzinwi) ,
iﬁ.whidh thelgﬁﬁ runs‘dver.? =.3’.4’ ;7;;-9f'vTh§ §arameters a; agd the group;

theoretical description of the z; are given'in Table IV; the reduced matrix
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. 2 . - ’ " ° .' -
elements of the t, for & are listed in Table V. For convenience, values of
(wHT(ll)Hw') for 4~ are included in this table. In using Table V to calculate
matrix elements for N > 2, it is to be noted that ZB’VZM’ 25, and 2¢ behave
- and t
7 9

@article and two-particle operatofs (whose cohtributions are listed in sequence

like two—particlg operators; t are essentially mixtures of single-

iﬁ Table V); and t8'behaves as a sum of single-particle opéraﬁors. JOnce'the

matrix .elements have been calculated for states of given seniority, the depend-

ence on N can be.rapidly found from the quasi-spin rank l). In this way we may

: . Lo '
verify Horie's matrix elements of HSOO for states of & corresponding to v = 2

~and O.

Returﬂing ﬁo.our central theme, the matrix elements of the N are the

analogues of the number-Mj occurring in the Zeeman'effect; and the ai‘are ﬁhe

analogues‘of the Landé g factors. For example, since c((11)(31)(21)) = 1,

we have

(Y(11)Bl2ly* (20)0): (v(11 )81 25 ly (20)): ({215l 2y (20)0)

::5<1u)l/2;3‘:-5(5>1/2-‘ .

This 1s to be compared to the matrix elements of-Jz fof, say, a J =1 state,

which run as 1:0:-1 for MJ ='l, 0, -1. As far as the actual contribution to

H o 80es; the effect of =z

<o is controlled by 85 (given in Table IV), just as

5
the Zeeman splitting of a level is determined by g; . ) N
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5. Three-particle operators. The techniques described in the previous sec-
tions can be éxtended to deal with effective operators. One of the most in-
teresting of these arises in the study of the perturbing effect of the config-
' i NE)1 L N . X

uration (nf) (n'£') “on.(nf) . To second order in perturbation theory, we
‘can exactly reproduce the displacements of the terms of (n!)N by including in

the Hamiltonian a number of three-particle operators of the type

R, Cofe xR
V(xk'k") - I 3 S (ox)

T . ol .- v
hALAS a,9,a" \a q' g

(08 ({0

0q' “i‘ 0q" 3

2

1 Oq )h

- as well as .the usual scalar two-particle operators characteristic of the linear

| , 'l . A . ’
theory of configuration interaction 5). It turns out that k, k', and k" must

all be even, non-zero, at moét 21, and consistent with the triangular condition.

These resérictions éllow four V(kk'k”).for & and nine forAfN;

Tt has already been seen thét the part zg of the spinfothér-orbit inter-
action éan;bé absbrbed by the-Qrdinary spin—orbit interaction. Whenbthe Vikk'k") .
are decomposed intovparts having well-defined group-theoretical pfoperties, the |
possibilities for absorption are much greater, since ﬁhe Haﬁiltonian already
contains several scalar'operaﬁorsf; ForA T eleétrons,.thevV(kk'k") éah be
expreésed in terms-of the niﬁe.operaﬁors tl, tQ’ e t9vfor which WU2K+lk.E
(000)(00)'s, (220)(22)%s, (222)(00)%s, (222)(k0)’s, (L0o)(40)lS, (420)(22)%s,
(MQO)(ﬁO)lS, (hEO)(ME)lS,‘and (600)(60)18, respectively. The matrix elements
oflthe lasf (t9) are élways zero, since:c(WW‘(600)) = 0 for all.w énd W"oc-
currigg in TN..lThe fifth (t5) corresponds to the same WU as ee; moreover its
matrix elemepts vanish for all W of fB'except W éb(ElO), for which

provided the assocs. :

c((210)(400)(210)) = 1. Hence % o

can be taken up into e

5

2 L - ' -
iated parameter E 1is regarded as freely variable. Similarly, the total scalar
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'il can be absorbed into eO and el. Hence, for f-eleétrons, at most six new

parameters are required to represent the effect of the V(kk'k"). This appears
n

to be the explanation for Rajnak's observationl ) that more than five three-

5

particle parameters for PriII L’ effect little improvement in the fit between
experiment and theory——particularly when it is noticed that a sixth pérameter
would in all probability be required to fit the as yet unobserved upper 2F
multiplet. The matrix glementg of the ti and their properties with respect

tq symplectic symmetry and quasi-spin are described elsewherelos. Fof d elec-
trons, only t&o additional parémeters are required for the three—particie

15y,

operators
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Table I

Branching rules for the reduction Splo —)SU2 X R5

(o) : o esay
(00000) ~ 1(00)
(11000) Y(20) 2(11) _
(20000) ' l-(.11) 5(Oo)(eo)
(11110) ey 3(21) 2(10)
(22000)  H00)(10)(20)(22)(40) 2(a1)(20)(z1)(51) (00} (20)(22)

(40000) - H(00)(20)(22) ?(11)(20)(31) 7(00)(20)(%0)
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Table IT

Decomposition of»matrix elements of spin-spin interacﬁions for d2

v BBy Wz o) el
5 -8l (11 +1210) R "

S5 | 2&(1&)1/2(MQ-15M2) S opaMe (11)/2
5 .

P 22010 B, -30,) (1) 5(1) M2
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Table III -

Branching rules for the reducthn 320 7>SU2 X SPlO

(w)

(0...0) | 1 (00000) |
(110...0) - \ R l(2oooo) 5(ooooo)(nooo)
(11110...0) ~ 1(00000)(11000)(22000)

- 2(12000)(20000)(21100)

5(00000)(11000)(11110)
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* Table IV

Operators and parameters for spin'-_other-orbit interaction

2, - ) e e
i - _ 1
2 © Ye2000)(31)7p ‘5(&‘-3M )
3 - . Vo e
) °(11110)(21)°8 ML)/
1 3 -

Zs | (§2000)<21) P T(My+31M,)/3
2 Y(22000)(11)7p o -(10me-ken,)/6
. 1 5
Zg - 7(11000)(11)°P . | 35(MO-2M2)/6
zg ‘ 5(11000)(11)59 o -21(7Mo-6M2)

_ o - 5 .
zg . - “(11000)(11)"P : 28(2MO-M2)/5




Table V

Decomposition of matrix elements of spin-other-orbit interaction for d?

66(3)1/2<M “21,) -5<5>1/2

AN O el 72D S P I DU PN DN 1% DS 13 DR P DI (P )
op '-252(MO+12M2)-_ 0 1k 28 7 | (6-1) 1 '»2(5-1)
% Jp 8amY2(om ) o (11;)1/2 é(lu)l/2 P (wM3e) e 21/
% a@Ywga) o o o, o (@Y @Y7 s@)Y3ea)
5, 1 s 2mre) 32 anY? LR sy ()R en) (r72)M? P
1 5F | 90(M M) ES . 1 | 10 261) 2 O (3-1),
L 5(3)7® SV s (Y26 (52 2(3)1/2

(3-1)
(5._-1) |

(521) -

—8‘[-
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