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A:BSTRACT 

Calculations based on a. covariant version of the Fermi 

statistical model have been made in an attempt to fit the known gross 

features of elementary particle reactions at e~ergies presently accessible· 
. . . 

to accelerators. Our aim was to provide ·an extrap~lation of these data 

to the higher energies of future accelerators. The n-fold phase space 

integration required for the model was reduced to a single contour 

integral which was approximated by a saddle. point technique. Resonance 

states were included as final state particles. ~e initial predictions 

of this model were not in agreement ~~th exper~ents and although 

modifications of the model were found to improve the situation we show· .. :· 

that none of these modifications yield a reliable method of extrapolation 

to higher energy. 

;. 
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I. INTRODUCTION 

Multiple production processes in elementary particle physics are 

notoriously intractable within any known theoretical framework. Fermi 

has proposed a model for high energy interactions based on the idea that 

the statistical weight of a given final state should provide a first 

approximation to the relative probability of this state. 1 Calculations 

based on a relativistic version of this model were undertaken with the 

hope that they might provide a simple background for discussion of 

elementary particle interactions at the energies now accessible to 

accelerators and a means for making estimates for the next generation 

of accelerators. Unfortunately the results of this investigation 

have been predominately negative. The straight forward predictions 

of this model at currently available energies are not in agreement with 

experience although there are numerous ways to improve the model there 

is no uni~ue way in which this may be done. Thus this model cannot 

provide a simple background for more refined calculations. The value 

of the model for extrapolation in energy.is destroyed by its asymptotic 

behavior which does not agree with cosmic ray data and is also hampered 
. . 

by the non-uni~ueness of the fit to accelerator data~ Thus with this 

model we can approximate known results but·are unable to predict new 

The phase space model on which our calculations are based is 

-
discussed in Section II. In Section III it will be shown that the 

phase space integrations can be reduced to a single integral, and in 



Section IV we will indicate how this integral is approximated and 

consider the accuracy of the approximation. The description of the 

calculation is completed in Section V where the method by which 

isotopic spin coupling coefficients are computed is discussed. We 

present the method by which predictions of particle spectra are 

determined in Section VI and compare the predictions of the model to 

experimental data in Section VII. Section VIII contains our conclusions. 

v 

·~ 



\,I 

-3-

II. THE PHASE SPACE MODEL 

The phase space or·ttstatistical" model bas been njustified" 

in many ways since Fermi's original, appealingly intuitive, approach. 

The follow-ing argument is made from a view point close to tbat of · 

2 
Hagedorn. 

If we characterize the final states by the linear momenta and 

masses of the particles they contain then the cross section from a 

given initial state is proportional to: 3 

X (2m.) 
J. 

(1) 

where F f is the invariant amplitude, P is the total 4-momenta of 

the initial state and the index i runs .over final state particles. 

The conservation laws of strong interactions enable us to 

determine (or approximate) the dependence·· of Ff. on some of the final 

state variables •. The additive conservat.ion laws of baryon number and 

strangeness are imposed by allowing only final states consistent with 

the conservation of these quantities. 

Isotopic spin can be conserved by considering initial states 

of their constituents and using the projection operator upon the final 

state defined by 

PT !t. , e.) 
J. J. 

= r T 
t.e. 

J. J. 

IT, z e.) 
i J. 

(2) 
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where T is total isotopic spinJ t 1 and ei are total and third­

component of isospin for the final state particles. The calculation 

of the numerical factors r T will be discussed in Section v .. 
tiei 

The conservation of angular momentum couldJ in principleJ be 

t t . . "1 4 aken into account by using projec ~on operators in a s~m~ ar mannerJ 

however this is ~uite impractical for extensive calculations. 5 Thus 

we shall take into account the spin multiplicity of final states by 

inserting a factor 

II (2 s 4 + 1) (3) 
i .... 

and neglect conservation of total angular momentum. This has been 

shown to introduce an error of about 10% •4 

If we now recognize the essential e~uivalence of part of our 

problem with the traditional counting of states problemJ we can 

approximate two other dependences of the ~mplitude. · The influence of'.' 

statistics may be approximated by eliminating double counting of 

e~uivalent states in the integration over momenta. This gives a factor 

IT 
j 

1 
n.! 

J 

where n. is the number of identical particles of the jth type. 
J 

Furthermore) if we calculate the density of states in a box we get a 

( 4) 

._.n-1 
factor of v where v is the volume of the box and n is the number 
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of particles. Removal of this factor leaves an amplitude whose 

dimensions no longer depend upon the number of final state particies. 

We now remove the amplitude from the integral using the mean-

value theorem yielding 

(J """ 
f 

where. 

S (P,m.) = n ~ 

w. = 
~ 

J o( 4)(P 

JI n. 
j J 

- L p.) . ~ 
.~ 

2 v~2 pi + m. 
~ 

.II 
i 

T 2 
(rt.e. ) 

~ ~ 

d3p. 
~ 

S (P, m.) 
n ~ 

m. 
~ 

(2rc )3 w. 
~ 

(5) 

(6) 

As Hagedorn emphasizes, everything:.to this point is rigorous (all 

knowledge lies in Ff) and the phase space model predicts only average 

values. It is not in conflict with anisotropic angular distributions. 

However now we must cover up our lack of knowledge by making 

drastic approximations to 1Ffl 2 • First, we can approximately account 

for one of the predominate features of high energy physics, the 

- occurance of resonances. We do this, by a method due to Belenki and 

Nikishov 
6 

and justified by Belenky, 7 wh~ch simply includes the 

resonances as final state particles which decay after leaving the primary 

reaction. Second, if we consider the inverse process of the final 

state particles in a box coming together to form the initial state, then 
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the interchange of. the summing over final states and the averaging over 

initial states indicates that this cross section is proportional to .·· 

ThisJ for purely geometrical reasonsJ contains a factor of 

where n is the volume in which the particles interact.
8 

We now insert this); which amounts to replacing V by n . Since we 

interpret n as an interaction volume and yet wish to allow for 

different ranges of interaction we make the replacement 

n-1 
n -- rr 

i 
v. 
~ 

where the v. are individual interaction volumes (these v. are the 
~ ~ 

parameters of the model). Now we have inserted an extra dimensioned 

g_uantity (a volume) so we no longer have a cross sectionJ b.ut since 

we shall give up hope of an absolute normalization we shall interpret 

this g_uantity as the unnormalized relative probability of the final 

state f • 

The factors v. are expected to be of the order of magnitude 
·~ 

(f) 

of a sp4ere of radius eg_ual to the range of interaction. We shall take 

4 1 
v. = 
~ 

- 1! --
3 !J..3 

~ 

where !J.i is the pion mass for non-strange particles and the mass of 

the K.- meson for strange particles. The ~i are the parameters 

actually used in the calculations. 

(8) 
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Now the third and most presumptous approximation is that the 

remainder of IF 1
2 is a constant and hence may be ignored, since 

f 

it will cancel upon normalization. This approximation, although 

necessary to yield a model upon which simple calculations can be 

based, has many more or less obvious short comings. The physical 

picture of this model, as embodied in our consideration of the inverse 

·process, is that of two particles colliding and forming a "hot spot" 

which reaches a thermal e~uilibrium and from which all final states 

are e~ually accessible on an ~ priori basis 

In view of recent information on the peripheral nature of-

these reactions it is clear that this is far too simple a picture 

and probably not even a good approximation.to average properties of 

the collisions. 

Another short coming is in the treatment of spin. A correct 

treatment of spin wollid introduce energy dependent factors in the 

integrand (e.g. this is why the non-covariant form of the phase space 

is appropriate in studying the end point of t3 - decay spectra, a 

relativistic process). A more appropriate approach would probably 

be to apply the above type argument to the Stapp M-functions9 which 

have simple analyticity properties and hence are better approximated 

by slowly varying functi,ons in the ;physical region. This would separate 

explicitly the energy dependent factors due to spin~0 but one is left 

with various spin.cr indices to be contracted in an unknown manner • 

This destroys the value of such an approach. 
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III. REDUCTION OF THE INTEGRAL 

We are faced with the problem of computing 

(9) 

This is a Lorentz invariant ~uantity and we will show that in the center 

of mass frame it may be reduced to a single (contour) integral that may 

be well approximated by the saddle-point techni~ue.' 

If we insert a Fourier representation of the 5-function we 

may write 

S (E,m.) n J. 
= 

l 

(2Jr) 4 Joo-.iE J J 3 dex eicxE d3A. ~ d Pi 
• 1 CD. -OJ -J.€ .1= J_ 

i (~· p
1
.- ex ·~. ) 

' J_ 
e 

where we have given the variable ex a small imaginary part to make the 

. ' 11 
integration over momenta well defined. 

Now consider 

~~ 

(10) 

J(~,ex;m) = J d~p i(A.•p - ex co) 
e (11) 
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Then 

J 
2,; Jco pdp i(A.p - a ru) 

= e i/1. Cl) 
-CD 

~' I: 211: d dp i (A.p - a ru) (12) 
= --~ e d/1. Cl) 

2,; d I (A._, a_, m) = -y::- d/1. 
~ 

where /1. = 1~1 and p = jpj. If we now let 

p = m sinh e 

ru = m cosh e 

(13) 

cosh 'ljr 

,02--:2 
A. =va-l\. sinh 'ljr 

then 

Jco . l/2 2 . - -im a - X 
I (A._, a_, m) = d9 e 

-co 

cosh (e - 'ljr) 

\; 

-1m \/Ji .. . A-2 rro 
- = dcp e (14) 

J_co 
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The last eq_uality follows from an integral representation for the 

Hankel function of the second kind. 12 The negative imaginary part of 

a defines the sq_uare root with the convention that the sq_uare root 

becomes real and positive as a becomes real and greater than A • 

Differentiating with respect to A , we find 

where 

J(~,a, m) = 
2 

2 . :n: J.m 

The angular integrations for S are trivial and we have 
n 

S (E,m.) 
n J. 

h 100 -i€ 100 = .· .:n: 
4 

da 
0 

dA A2 EiO'.E 
(2:n:) -ro -iE 

n 
II· 

k=l 

- 2 

l 2:n: i ~ 

~f-22_ 
Va- X 

IS. (2) 

'(15) 

(16) 

Two comments upon this eq_uation are in order. First, the sole 

role of E is to define the continuation of the sq_uare root, since 

except for this the expression is independent of E • Second, if we 

examine this form before the angular integrations are done, ·and using 

an arbitrary Lorentz frame, we notice that it is just a Fourier 

transformation in a space with a time-like dimension. Thus, the follow:ing 

steps seem to be a generalization of a theorem of Bochner's on Fourier 

transformations of radial functions. 13 



·-

-11-

In order to perform an additional quadrature, we shall replace 

the a integration by an integration over This will 

necessitate,a separate consideration of different domains of integration. 

We shall write 

= 
4:rr ( rR ( rro r ) 2 

4 ~ 11 dA.j da+ dA._,da~A. 
(2:rr) {· o c1 .JR c 2 J 

where the contours c1 and c2 are those defined in Figures 1 and 2 

respectively. For convenience, the parts of the contours indicated as 

circular arcs will actually be taken to be those shapes leading to 

circular arcs in the variable p • We shall denote the contributions 

to s from the various labeled portions of the a contours simply 
n 

by those labels. Consider, as an example, the calculation of s
1 

, 

make the change of variable defined by 

p = -r;r>O 

= 

then, 

-iE~- r 2 

-/.:2·-2 
- IX+ r 

e f(p) 

(19) 

(20) 

(21) 

(18) 
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MU-36509 
Fig. 1. Integration contour in a - plane for 1~1 < R • 

II 

' . 



-llb-

!,) 

-A. 

MU.36510 

·-· 
Fig. 2. Integration contour in a- plane for 1~1 >R. 
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where the phase of p is -'Jt' . The order of integration can now be 

reversed. For 1:I we make the same change of variable. This yields 

r-R rR . 2 -iE~t..2+ r
2 

p' f.. 
)L dp/ d/1. e f(p) (22) .I . l E-·1-m --" o 2 

- r 

which can now be combined with SI to give 

e .. (23) 

The change of variable 

+ 1 . (24) 

Then yields. 

SI +52~ .I = 1-R roo. r-·- -iE r. u 
- dp f(p) p3J du Vu

2
-l e 

-oo 1 

We must now face the problem, which we ignored above, that the u 

(25) 

integration is divergent. However it is a limiting case of a convergent 

integral, namely when r has a negative imaginary part. This means 

we are dealing with generalized functions and we shall define this integral 

and others to follow as the limit as parameters approach their value 

through values which make the integral convergent. These statements 

although applied here to the u integration actually refer to the 

method of interpretation of the original a integrations. With this 
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interpretation we now have14 . 

== -1· R dp f(p) P3 f _i_:rr 
-oo · · 1 

2:Er 
l 

1 llJ. (2) (Er) t' 
j 

An exactly analogous calculation) this time using 

yields 

..., r;:;- 2 
== Vp'-+ A. 

== r r · > .0 

reo 3 f · (1) } 
== j dp f ( p ) p ) ~ · FL ( :Er ) 

R . . l2:Er ~ ) 

We shall now consider s
11 

: 

Upon using the change of variables defined by 

(26) 

(27) 

(28) 

~ (30) 

a = -v p2+-/1.2 = _\f;_2_ r2 
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we obtain 

(-if.. 
df..j_iR dp p f(p) 

(-ico fro 2 
= ,. dp f(p) p ' dA.. _;._;_f.. __ 

,.;_iR ..,,-2-2 
r - Vt... - r 

The further change of variable 

-, rf.. 2 
u = \t .Cr) - 1 

. gives 

e 

. El\2--2-
-~ lt...c:..- r 

-iEru 
e 

The analogous calculation for SIII is made by setting 

p = -vel- t...
2 

= -i r ; r > 0 

/ 2 2 -.12. 2 a: ="\p+f... = Vf...-r 

(31) 

(32) 

(33) 

(34) 

and yields ~ 

I -iR 3 reo \T21- iEru 
- . dp f(p) p J; du ~ u + e 

-~ro o 
(35) 



'·· 

'..' 

-ly 

Now, in a manner-consistent with our interpretation of the u integrals, 

1.:re can deform the u contours through the convergent quadrant to the 

imaginary axis: avoiding the branch points at ± i in the appropriate 

manner. Then introducing the variable v = i u the u integration in 

SII becomes 

Upon setting 

-10) 
1 

-..F2 
1 dv vv -

v = - i u ' the 

roo 
dv l)l_·~ - I e 

Jl 

u 

-Erv 
e 

integration 

-:,j··-2 
dv Vl - v -Erv e 

in 8III. gives. 

11 2 -Erv + i dv.Vl - -Erv v e 
0 

(36) 

(37) 

The integral between finite limits will cancel in the sum of 

SIII , and thus we may take
1

5 

S ·. and 
II 

8II 8III 
-1-ioo dp f(p) p3100 dv-..Jv2-1 -Erv (38) = = e 

-iR 1 

1-ioo 
dp f(p) p3 { - KJ_(Er) } = 

-iR 
Er 

The results at this point 'may be . db 16 
summar~ze y 



SI + Jli 

s:cr = 

r-R dp f(p) 
( 

~(2) (Ep 
\ 

2 ' i:rr ei:rr) J = p <-I 2E 
l -~-co 

8III = 
r-ico ( ) ·2J -i:rr 

. 1 
r dp H)_ (2) (Ep) ? 
JiR f p p ·l 2E .,_ 

J 
( 

dp ( ) 2 j -i:rr 
f p p l 2E 

I 
H)_ (1) (Ep) I 

/ 

To evaluate the loop integrals (Figures 1 and 2) we let 

in both L1 and "fi : then take e. as the new variable. For both 

L
1 

and J:
1 

the range of e is 

- :rr < e < .:.:. :rr . 2 

. We now add -r,
1 

and L
1 

• This leads to the result that A. ranges 

from zero to infinity: and if we let i8 p = R e we have 

(39) 

(41) 

The phase of the square root is such that it becomes a negative real 

quantity as p becomes real and negative. Thus the function represented 

bythe A.• integration is the analytic continuation of the corresponding 

function in s
1 

+.~1 as p follows.the circular arc from -R to -iR. 

\.; 

•' 

\1 
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The corresponding calculation for ·[.'II + LII yields :.the corresponding 

continuation of SIV +Jiii , with the net result that the R limits 

on the remaining p integration in SI ~){I·. and SIV + .2!I can be 

replaced by -iR ·Upon adding the contribution of the loop integrals. 

Consider the integrals for SII or SIII • These contours 

may be deformed, by Jordan's lemma, to go to infinity along the real 

axis, and therefore may be combined with the other integrals. This 

gives 

f 
. ) 

2 f( ) i:rr f FL (2 )(E i:rr) H (2 )(E )] l 
P . P .· 2E l -"l P e ' + 1 P J 

t . ., ( 43) 

\) 0 1 OJ 2 f -i:rr [ ( 1 ) ( 2 ) ] \ 8rrr + 8IV +~I -~-"II +'-II~ -iR dp p ~(p) l 2E IS_ (Ep)+ IS_ (Ep) J . 

Now the sum of the Hankel functions yields -2J1 (Ep) in the first case17 

and 2J1 (Ep) in the second, so the two pieces may be added to yield a 

single contour integral. This gives 

s (E, m.) -i J dp 
2 f(p) J 1 (Ep) = 2 p n ~ (2:rr) E 

(44) 

where 

r 2,2i "\ ("\ p)] n 
(2) f(p) = II ~ k=l p 

L 

( 45) 



1, 

The p contour runs f'rom minus infinity to infinity belm.r the origin. 

If th . t . h t b t . d -i:rr * ls con our lS c osen o e symme rlc un er ·p- e p then it 

can be shown that the contribution from the left half of the contour 

is the negative complex conjugate of the contribution from the right 

half. Thus, because of the factor · i multiplying the integral, the 

above expression for s 
n 

is real, as is required. 

_21 (H __ (1) + H_ (2)) ~n We note that if we write J1 = ~'l -'J. ..... 

· then the integral involving ~ (2 ) vanishes and we may write 

s.(E,m.) n l 
= 

Eq·,.·.·.(44) 

This form will be convenient for consideration of the non-relativistic 

limit. 

(46) 
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IV. EVALUATION OF THE INTEG-RAL 

The integrand of the expression for S (Eq_. 44) is, 
n 

from constant, real factors 

g(p) = 
n 

-ip
2 

J
1

(Ep) II 
k=l 

r (2) • 
I Hl (~p) J 
L -ip 

.apart 

This function has a single saddle point on the negative imaginary 

axis because there it takes the form16 

[~ 
I 

2 n Kl(~y) 

J g ( -iy) = y Il(Ey) II 
k=l 

y 

The function g(p) also has many saddle points in the neighborhood 
18 . 

of the real axis. These define paths of constant phase between the 

(47) 

(48) 

zeroes of J 
1 

. Since · g(p) alternates in sign in different sections, 

large canceTiations are expected to occur. We thus expect that the 

dominant contribution to the integral, taken along a path of constant 

phase, comes from the neighborhood of the saddle point on the negative 

imaginary axis. If we denote this point by 

saddle point approximation yields 

[ 2 :n: 
s ~ g(po) n 2 . d·. 

log 
dp2 

This approximation then allows us to compute 

g(p6) 

s 
n 

then the standard 

l~ 
j 

In the following 

we shall investigate the accuracy of this approximation in the non-

(49) 
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relativistic and nultra-relativistic 11 limits. 

To examine the non-relativistic limit let us turn to the 

second form for s·. ) Eq_. 46 ~ and insert asymptotic expansions for 
n 

the Hankel functions. 1 9 After some rearrangement this yields 

l
r n 

.TI 
k=l 

£ ( -1) (1, £) 

(2E)£ 

Q) 

L: 
j =0 
1 

co 

L: 
j =0 
n 

. I 
iTp 

.e 
2 (n-1)-£-L:j I 

p 2 k ? 

J 
We have used the abbreviation TI for the product of the masses and 

(50) 

will use L: for their sum. If the contour is now deformed to go to 

i co at both ends and the change of variable t = -ipT is made the 

t . b b 20 erm ~n races ecomes 

ln 5 
+ L:jk - - + .e 

T2 2 

r(l n 3 . (51) 
- 2 +.£ + L: jk) 2 "k 

Now if the inverse powers of E are exp:mded_ and terms are collected 

we have obtained an asymptotic expansion of 

The first term of this expansion is 

S N.R. 
n = 

S in powers of T • · 
n 

(52) 
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This agrees with-the phase space computed by more elementary methods 

(See Appendix III). 

In this limit we can examine the saddle point approximation • 

The saddle point is located at 

- i 

Application of the saddle point method to the integral yields the 

above result with the r function replaced by the first term of 

Stirling 1 s approxir:nation to it. For n = 2 this approximation is 

already very good (about 6% accuracy )7 for n = 3 it is accurate 

to better than 3% and it improves with increasing n •. We note 

that this estimate applies.only when Ep is large7 that is 
0 

~ T >>1 

otherwise the saddle point of the original integral would not occur 

in the asymptotic region of the Hankel functions. 

The other case for which we can estimate the accuracy of the 

saddle point method is that one in which it is a good approximation 
I 

to replace H
1 

(l)(Ep) by its asymptotic value and H1 (2 )(~p) by 

its value for small argument. This will .be seen to be very close to 

the ultra-relativistic limit. If this is done we find 

(53) 

(54) 
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f(p) 

Steps similar to those used in the non-relativistic case lead to 

S U.R. 
n = 

E2n - 4 

r(2n - ~) 

and again the saddle point method is e~uivalent to replacing the r 

function by the first term of Stirling's approximation. For n = 2 

(55) 

(56) 

this approximation is accurate to 3% and improves with increasing n . 

The saddle point now occurs at 

p = - i 

3 2n-­. ~ .. 2-

E 

and thus this estimate applies if 
/ 

2n - L >> l 
2 

(2n - L) 
2 

(57) 

The true ultra-relativistic limit may be obtained by identifying ~ 

it with the limit of zero mass, thus 

S (E, 0) 
n = 2 ( )(-4:rr )n dp p -Jl Ep p2 (59) 
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This integration may be performed by taking the co~tour to be the real 

axis excluding -1 to l and the lower half of the unit circle. The 

integrals along the real axis can~ since J1 is an odd function) 

while the integral along the unit circle may be easily performed if we 

Jl
(21) . insert the power series expansion for 

(n-1)! (n-2)! 

2n-4 
E 

The result is 

.. 

The ratio of this to S 
U.R. 

n 
approaches 1 with reasonable rapidity 

·as n increases. This is to be expected_, for as n increases the 

saddle point of this integral moves into the asymptotic region of 

J 1 where the saddle point method was applied to find 

··""' 

S U.R. 
n 

(60) 
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V. ISOTOPIC SPIN COEFFICIENTS 

In order to complete the calculation based on the :phase space 

model, we must now determine the isotopic. spin coefficients, rt 8 TJ ~ 
.. 2 

i i I 
If we consider a state defined by the isotopic spin of its constituents, 

ti , and their third components, ei , then these coefficients are 

defined in terms of a :projection operator, PT , onto states of well 

defined total isotopic spin, T , by 

T 2 
(rt.e. ) 

~ ~ 

= 
2 

IPT lt1e1, • • ·,tnen ) I = (t.e.l PT lt.e.) 
~ ~ ~ ~ 

22 We now use a standard form for the :projection operator in terms of 

the Hurwitz integral over the rotation group, which in an Euler angle 

:parameterization is 

y(T) ( ) In this expression /~ a,~,r is the character of the rotation 

(61) 

(62) 

defined by (a,~,r) in the representation of dimension 2T+l, and 

R(a,~,r) is a rotation operator for those angles. The re~uir€d matrix 

element of.this rotation operator is then 9im:ply 

(63) 

where the D functions are the usual representations of the rotation 
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group. Now we note that by definition 

. 23 
We also have 

T 
L: 

m=-T 

(
T + m)\ (T - m \ (1 - cos f3) v 

v \~ v ) \ 1. + cos f3 / 

= eim(a+r) d T (cos f3) 
mm 

Upon combining these expressions and substituting the resulting 

character into th~ integral we find that 

(64) 

(65) 

T 2 
(rt.e. ) 

l 

(!-L) ei(M-!-L)(a+r) I . J ~ ~ 

n_ t. 
IT d .~ (!-L) 

. 1 e.e. 
~= ~ ~ 

n 
where M ~ ~ e1 and 1-L ~ cos ~ • But since 

i=l 

j ·2:rr dad/ ei(M-m)(a+?') = 

0 ' 

(66) 

(67) 
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(which simply expresses conservation of T
3

). we have 

T 2 
(rt.e. ) 

~ ~ 

rl u t. 
= 2T+l J d D T( ) TI d J:( ) 

2 1·· iJ. MM iJ. e.e. iJ. 
-l i=l ~ ~ 

(68) 

An important simplification can be made if we restrict ourselves 

to isotopic spins ~ or less. The following properties then facilitate 

T the computation of all the relevant d functions 

(69) 
2. 

l 2 (IJ.) 31J.-l = ; dl l = 2 
2 2 

We now introduce the following counting scheme. Let 
e 

nt be the 

number of particles of isospin· t and third component e, and 

include the initial state in this number. Then we define 

2. 
2 t e 

i = .L: .L: lei nt 
t=O 8=-t 

j 
0 (70) = nl 

l l 

k 
2 ·- 2 

= n.2. + n.2. 
2 2 



Now the integral can be written as 

T 2 
(r t. e. ) 

J. J. 

= 
2T+l 

2i+k+l 
(71) 

We note that, for any state which conserves total isotopic spin, i is 

an integer. Using this form we can easily obtain the following 

recursion relations. 

P.T 
OJO 

= 2T+l 8 , 
j +:1 j,2n n any integer 

T 1 T T 
P. 1 . k = -2 (P. "k + P. "+1 k ) J.+ ,J, J.J J.,.J ' 

p-. T 
i~ j, k+l 

1 ( · T . T) 
= 2 3 Pi,j+l,k - pijk 

Thus the isotopic spin coefficients are easily calculated with a 

high-speed computer (or even pencil and paper). 

(72) 



VI. CALCULATION OF SPECTRA 

We can also reasonably expect the phase space model to predict 

energy distributions of final state particles averaged over all angles 

of emission. To obtain this prediction we simply do not integrate over 

the momenta of the particle in ~uestion. Let this particle be labeled 

particle 1} then 

3 d p. 
J. 

ro. 
J. 

(73) 

We now use the Lorentz invariance of S 1 to evaluate it in the center 
n-

of mass system for P - p1 • It is then clearly independent of the 

-+ 
direction of p

1 
J so 

Thus if we denote the unnormalized probability of obtaining the final 

state f containing the particle 1 with energy ro and having a·, 

total energy E by Pf(E} ro) we have 

= 

n 
JI v. (2 s. + 1) 

i=l J. J. 

IT n. 
j J 

S 
\
(l{-2_2 . 2 r Ero __ +m.. } n-1 .l 

(74) 

(75) 
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This calculation is straight forward} however due to our 

inclusion of resonances as final state particles it yields the spectrum 

of these resonances} not the observed final state particles• To obtain 

· the observed spectra we must determine the spectra of decay products 

of resonances} given the spectra of the resonances and their decay 

24 
modes •. 

Let us denote quantities refering to the resonance. by capital 

letters} and to a decay product by small letters. Let starred quantities 

* refer to the C .M. frame of the resonance J 2: J and un-starred quanti ties 

to any other frame 2: (which will later be taken to be the C.M .. frame 

of the entire reaction). Then the momentum and enErgy of the resonant 

state in 2: determine the Lorentz transformation parameters between' 

2: and 2:* · • Thus we have 

e = y(e*+ ~ p*c~s e*) 

where 

= 
p 
E 

E = M 

and e is the angle between p* and p . Now let n be ·the number 

of decays} then 

dn dn d(cos e*) 
de = dn 1 

d(cos e*) * ~p 

(76) 

(77) 

(78) 
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If the decay spectrum is independent of cos 8 (which is certainly 

true if the resonances are not.polarized) as we shall assumeJ then 

the spectrum of particles of a given energy in L:* will be constant 

in ~ . If e+ and e are the maximum and minimum possible energies 

in ~ J the normalized spectrum is simply 
. 1 

(e+- e_r . Explicitly we 

have 

+ p p* 
M 

.. 

If we now have a spectrum) W(E)J of resonances and a decay spectra) 

w*(e*)J we can obtain the decay spectra in ~ by 

where 

= 

defines the actual domain: of integration_in terms of the usual step 

functions 8 . This can be written as 

w(e) ~ rd * w*(e*) 
2 J e * p 

= 

where 

l
·E 

E 

+ dE W(E) 
~ 

(79) 

(80) 

. (81) 

(82) 
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M 
E+ = m 
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e e* ± ;p ;p* 
m· 

The * .e integration runs over the allowed decay energies. For th~s 

calculation we are interested only in two and three body decay modes. · 

The two body spectra w-x-(e*) is sim;ply a 8-function. For the three 

' *( *) body modes we shall assume w e is given by ;phase s;pace (since 

this is itself a spectrum the three body modes re~uire only knowledge 

of the two ·body ;phase s;pace) • 
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VII. RESULTS 

Since·the results of this investigation are predominately 

negative with respect to its primary aim~J I shall not give a detailed 

description of the various calculations but merely try to indicate typical 

results and their inade~uacies. 

Due to the rapid rate of discovery of new resonances) this 

calculation must be incomplete. A list of the particle 'states included 

will be found in Table IJ however most of the calculations have neglected 

the strange particles) which is an ade~uateapproximation within the 

expected accuracy of the model. 

A. p - p Interactions 

One of the early problems attacked with the Fermi model was 

the pion multiplicity in antiproton annihilations at rest. 25 It was 

found that the interaction volumes had to be increased about tenfold 

to agree with experimental results. 

The inclusion of resonances in the present calculation has 

achieved good agreement with measured multiplicities without modification 

of the volume factors (that is all s. = 1). 
~ 

These results are presented 

in Table II. The calculated spectrum of charged pions (Fig. 3) is 

however in poor agreement with experimental data.
26 

It was found that 

a ~ factor of 0.1 for the rho meson would improve the spectra without 

disturbing the multiplicities excessively (see Fig. 3 and Table III). 

HoweverJ this limited agreement seems to be fortuitous in the light of 

' 25 
more recent experiments which demonstrate that multiple resonance 
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TABLE I 

"!articles" included in·the calculation. 

Non-Strange Strange· 

:rr K 
I, 

nucleon A 

deuteron :E 

p -

N*(1238) . yl * (1385,) 

ro 
/ 

y
0
* (1405) · · 

I 

· y
0
* (152o) 11 

·N*(l512) .. 'y *(1815) ,.·., 
0 .. 

N* (1688 )' . K*(885) 

N*(1920) . I(* (730) 

y
1

*(166o) 

\ 



TABLE II'. 

-Pion and charged prong multiplicities in p-p annihilations at rest 

with v = 1 and_assuming pure 
p . 

T = 1. 

nch 'fo Theo. fo Exp. n 1o Thee. 
1! 

afoExp. 

0 . l.9 3.0 0 0.93 

2 45.0 42.0 1 0.46 

4 53.0 5l.O 2 3.71 

6 l.O 4.0 3 5.10 
avg. 3.03 3.12 ! 0.11 4 27.48 

I ' 
5 47.68 

6 8.78 

7 5.72· 

8 0.14 

avg •. 4.65 4.78: 0.17 

n+ % Theo 
1!-

0 2.40 

2 44.48 ,. 
' 

4 53.01 

6 0.10 \ 

avg. ).02 
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Fig.;. Pion spectra'~om p- p annihilation at rest. Smooth 

curves are theoretical predictions normalized to the total 

number of experimenta~ tracks. 
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TABLE III 

Pion and charged prong multiplicitie? in p-p annihilations at rest 

vrith v = 0.1 and assuming equal T = 0 and T = 1 contributions. p 

n % Theo. n ± % Theo. ch 1t 

0 6.5 0 8.2 

2 39·9 2 38.2 

lj. 53.4 4 53.4 

6 0.2 6 0.2 

avg. 2.95 avg. 2.91 

Average number of pions 5.01 
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production.is qu.ite rare (e.g. a branching ratio of 0.006 t 0.003 for 

the ro p final state) while these states dominate the calculation 

(e.g. a calculated branching ratio of 0.30 for the ro p final state 

assuming pure I-spin 1.); Table IV lists the dominant contributions 

to the calculation. 

A ·cursory examination of the frequency of :KX pairs indicates 

that the volume factors of the K-~ resonances should be increased by 

a factor of· 6 or 7 to achi~ve agreement with experiments.27 

B. p - p Interactions 

In our analysis of the p - p interaction we attempted to fit 

the energy dependence of gross features of the reaction and the shap,e 

of the spectra of emitted particles. 

1. Gross FeatUres 

Our primary concern was to fit the variation of the average 

number of charged particles emitted, denoted ( nch ) , and the relative 

probability of a given number, denoted nch • The "straight-forward" 

prediction of the model (all ~i = 1.0) overestimates ( nch ) 

badly (Fig. 4) . 29 
and the disagreement increases with the energy. If 

' I 

we attempt to improve this situation by decreasing all the si 

uniformly, the high energy behavior can be· improved but the overall fit 

is not. If the si corresponding only to the resonant states, denoted 

si* , are reduced to 0.05 we obtain the second curve in Fig. 4. The 

justification for this procedure is basically empirical, however this 

step was initially taken.: to crudely account for the very short 
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TABLE IV-~ 

T = 1 T :::: 0 

State Branching Ratio State Branching Ratio 

- + 0.013 + - 0 0.002 p 1( 1( 1( 1( 

- 0 + 0.018 - + 0.013 p 1( 1( p 1( 

0 0 0 
0.013 - 0 + 0.012 p 1( 1( p 1( 1( 

0 +- 0.018 - 0 0 + 0.002 p 1( 1( P7!7!7! 

+ - 0.013 - + + - 0.002 p 1( p 1(, 1( 1( 

+ - 0 0.018 
0 0 

0.013 p 1( 1( p 1( 

- 0 + 0.021 0 - + 0.012 p p -1( p 1( 1( 

0 0 0 0.016 0 + - 0 0.003 p p 1( p7!1(1( 

... + 
0.149 

+- ' 
0.013 p p p 1( .. 

- + 0 0.021 + - 0 0.012 p p 1( p 1( 1( 

0 +-
0.021 + - 0 0 0.002 p p 1( p1(1(1( 

0 
0.026 + - - + 0.002 ())1( P7!7!7! 

+ - 0.021 - 0 + 0.014 ())1(1( p p 1( 

- + 0.021 0 0 
0.079 mp rc p p 

0 
o'.298 - + 

0.157 mp p p 

+ - 0.021 - + 0 0.014 mp 1! p p 1( 

0 
0.017 . 0 + - 0.014 .. o.xJ.)T( p p 1( 

+ - 0.009 
0 0 0.011 T)TC 1( ())1(1( 

0 
0.007 - + 0.022 T)TC ())1(1( 

- + 0.026 - 0 + 0.004 T) P rc \ ' 

())1( 1( 1( 

0 o.o88 - + 0.023 T)P mp 1( 

+ 
0.026 

0 0 
0.023 T) p 1( mp 1( 

roT) reO 0.049 WP+rc'" 0'.023 

0 0.015 aiD 0.235 T)T)1t 



TABlE . IV (Cont. ) 

T 0 

State Branching Ratio 

0 0 0.004 T)1'C 1'( 

+ - 0.009 T)1'C 1'( 

+ - 0 0.003 T)1'C 1'( 1'( 

- + o:o28 T)P rc 

0 0 0.028 T) P. rc 

+ - 0.028 T) p 1'( 

/ .fiT) 0.140 

T)T) 0.019 

T)T)T) 0.005 
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Fig. 4. The variation of (nch) with ~nergy for p - p collisions. 



lifetime of these particles and the corresponding likelihood they would 

not escape from the "hot spot." In view of the nature of the data and 

the expected accuracy of the model one might be tempted to claim this 

is a reasonable fit. However any attempt to extrapolate using this 

model is likely to be very incorrect, since apparently above 15 GeV. 

t'he curve is resuming the very rapid increase that was the failure of 

the "straight forward" calculation. The cause of the leveling of this 

curve in the region 7 to 13 GeV. is unclear since the computer is 

considering a large number of final states (<.1000) and ( nch ) depends 

on a rather delicate and intricate relationship among them. 

The problem with the high energy behavior may be made clearer 

by consideration of some numbers. If we fit the form 

n(E) = (84) 

to ( nch ), then a very rough fit to the upper end of these curves 

yields 

case. 

x = .62 for the 

In the high energy 

Si = 1, case and X = :46 for the st = .05 

28 
limit for the phase space model we have 

x = 2/3 (this limit is approached very slowly) and yet cosmic ray data 

indicates we need x ~ 1/4, although accelerator data only may be fit 

with x ~ 1/2 •29 

The percentages of final states with n charged prongs in the 

final state are plotted in Figures 5 and 6. The theoretical curves 

are for si* = .05.30 This data forms a more sensitive test but by 

its nature is subject to much larger experimental errors. These curves 
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Fig. 5. The variation of the percentage of two and four prong final 

states with energy in p- p collisions. ·Triangles are two 

prong data points and circles are four prong data. 
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Fig. 6. The variation of the percentage of six and eight prong final 

states with energy in p - p collisions. The triangles are 

six prong data and the circles are eight prong data. 
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demonstrate that.the nature of the failure to adequately fit the. 

( nch) data is an :overemphasis of states near the mean rather than 

inclusion of too many states of very high multiplicity. A narrow 

dispersion about ( nch ) is expected (at least asymptotically) from 

a statistical model without resonances. 31 

2. Spectra 

The pion and proton spectra were studied from primary proton 

beam energies of 2. 75, 4.2, 6.2, 9, 12, 19.8 GeV. We will discuss 

the results at 6.2 GeV only since similar problems ih fitting the 

data for all energies were encountered. 

' 32 Both the experimental . and theoretical33 pion spectra are 

presented in Fig. 7 as histograms with the same normalization. As 

can readily be seen, the peak of the theoretical spectrum is about 

200 MeV/C higher than that of the experimental spectrum. Apparently, 

the location of this maximum is an approximate invariant of the phase 

space model. It, like the experimental data, shifts only slightly with 

changes in the incident energy. The location of the peak is also very 

insensitive to changes in the si factors, although the shape of the 

entire curve can be radically changed by modification of the si • 

Hence the model predicts far too many high energy pions, and drastic 

changes of the ~i would be required to alter this situation. We 

believe that the limited agreement· with the crude features of the 

interaction (multiplicities, etc,) could not be maintained were such 

changes made. 

~.' ; 
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Fig. 7. Pion momentum spectra from 6.2 GeV p - p collisions. Solid 

histogram is theoretical prediction normalized to the total 

number of experimental tracks. 
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The proton momentum spectra is presented in Fig. 8 . It has 

the same properties with respect to changes in the parameters as the 

pion spectra. However in this case the theoretical maximum is below 

the experimental maximum and much sharper. The shape of this curve 

could probably be improved by variation of the si individually, but 

the location of the maximum is very insensitive to these changes. 

Again this behavior persists at all energies for which data are available. 

C. ~ - p Interactions 

The analysis of the ~-- p interactions followed·.:the pattern of 

the p - p analysis. Here we also concentrated upon the energy dependence 

of the gross features of this reaction and the spectra of emitted 

particles. The problems encountered were similar to those of the 

p - p analysis • 

1. Gross Features 

As in the p - p case the modelwith all si = 1 predicts 

too many charged products of the reaction.(Fig. 9). If we reduce the 

s - factors of the resonant states, * si ' to 0.2 we obtain the second 

curve of Figure 9, which fits the data reasonably well. However any 

extrapolation in energy for this reacti.on is subject to the same criticism 

as for the p - p case. Figures 10 and 11 contain the nch data 

and the phase space model predictions for s ·* = 0.2 •. In general the 
i 

fit to the data is somewhat better in this case than in the p - p 

case, however the data are not as extensive. 

.> 
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Fig. 8. Proton momentum spectra from 6.2 GeV p - p collisions. 

Solid histogram is the theoretical prediction normalized 

to the total number of experimental tracks. 
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states with energy in .1!-.:.p collisions. The circles are 

zero prong data and the triangles are two prong data. 
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2. Spectra 

. We analyzed the spectra produced at 5, 6.8, and 16 GeV incident 

pion beam energy. We select for discussion the comparison of the.results 
34 ' . 

at . 6.8 .· GeV to experiment. The results ~t other energies were similar 

·.to these. Histograms of the experimental data and theoretical predictions 

for the pion and proton spectra are in Figures 12 and 13 respectively. 

Here also the fits are somewhat better than in the p __ - p case, although 

the fit to the proton spectra is not good. The major failings of the 

fit to the pion spectra are the peaking at a slightly lower momenta 

by the theoretical spectrum and a failure to fit the high energy . 

tail of the spectrum. Considering the nature of the model these are 

not serious difficulties. 
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Fig. 12. Pion momentum spectra from 6.8 GeV/c ~--p collisions. 

Solid histogram is theoretical prediction normalized to 

the total number of experimental tracks. 
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VIII. CONCLUSIONS 

The phase space model has been used in an attempt to fit the 

energy dependence of various features o~ elementary particle reactions. 

The agreement with experiment for p - p reactions is limited and 

cannot be expected to persist for higher energies unless an.energy 

dependence is introduced into the volume factors. The fit to the 

spectra of created particles i:s poor and. we feel that it cannot be 

improved in a reasonable manner. The situation is better for ~-- p 

reactions, however data are not available for the higher energies 

where difficulty is expected. 

Finally, multiple resonance production is the predominant 

feature of this model in all reactions, yet this is in contradiction 

to experiments in p - p annihilation. Perhaps experimental evidence 

on multiple resonance formation in other processes could clarify this 

situation. 
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APPENDIX. A. DETAILS OF THE CALCULATION 

Two computer programs were used:in this calculation. The 

first did the basic phase space calculati,on, producing as output various 

gross features of the reaction such as the average number of various 

particles produced, the average number and distribution of charged 

particles, etc. This program also produced the spectra of particles 

and resonances which: the second program used as input.- The second 

program calculated the resultant spectra of long-lived particles and 

prepared various displays of these spectra (CRT plots, histograms, 

etc.) 

The three basic tasks performed by the first program were 

the generation of all final states having the appropriate quantum 

numbers, the calculation of the phase space of these states, and the 

bookkeeping necessary to prepare the output. The third task presented 

no problems and was programmed in a straight-forward manner. 

In programming the first task we were confronted with the 

problem that the number of final states allowed by energy conservation 

increases very rapidly with energy. Care was taken to develop a good 

criterion for selection of only ~he important states which would take 

a minimum of time. The method selected was as follows. Let ni be 

the number of particles of the ith type treating all charge states 

of the particle as a single particle (the sum over various charge 
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combinations was_done at a later point) and not including nucleons, 

K mesons, or pions in this enumerati_on. Nucleons were added to a 

state defined by (ni} to conserve baryon number, K mesons to 

conserve strangeness, and ·pions to enable charge to be conserved. 

The phase space, etc., for this state was then computed and pions 

were added until theJhase space had passed its maximum and fallen 

below a cutoff percentage (typically -4 ) 10 of the maximum phase 

space computed previously. If contributing states were found then 

pairs. of K - mesons were added until no such states were found. 

Then pairs of nucleons were added and the process repeated until c 

no contributing states were found. Then n0 was increased by one 

and the process repeated. When no contributing states were found 

for a given (ni} the ni were scanned in order of increasing i • 

The first non-zero ni found was set to zero unless increasing it 

would reduce the number of nucleons and K mesons needed to conserve 

baryon number and strangeness •. In the latter case was increased 

and the new (ni} was used in the above processj in the farmer case 

one was added to ni+l and this (ni} was used. 

The phase space was ewluated in -a straight-forward manner, 

using Newtonian iteration to locate .the saddle point. The nece·ssary 

Bessel functions were evaluated by a tabular interpolation scheme which 

emplpyed a variable increment tabulation to retain sufficient accuracy 

and minimize table sizes. This procedure reduced the running time 

of the program considerably relatively to that required by an "exact" 

calculation of the Bessel functions. 



The decay spectrum calculation by the second· program was 

conceptually straight forward} however the large number of particles 

and decay modes re~uired a rather elaborate treatment. The program 

was structured to utilize data on the dec'ay modes of resonances in 

tabular.form. It was therefore relatively easy to expand or modify • 

. The necessary integrations were performed by the trapezodial rule 

since this yielded sufficient accuracy. 
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APPEN.OIX B. THE NON -COVARIANT PHASE SPACE INTEGRAL 

The non-covariant form of the phase space is 

s = J.o (E - ~ w. ) o (3) ( ~ p. ) · ~ d3p 
n i=l· l. i=l l. i=l · i 

(B:l) 

This multiple integral may be reduced to a single integral by a method 

similar to that applied to the covariant form. The resulting integrand 

is, however, quite complicated and the integral is not as readily 

approximated. 

We start ·.from the expression35 
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The only essential difference between this and the corresponding , 

expression for the covariant phase space is the presence of the factor 

n a Since these .integrals define generalized functions we may replace 

this factor by n-fold differentia~ion with respect to the energy. 

Thus 

(B:2) 

s 
n = (B:3) 

where 

f(p) (B:4) 

.... 
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Now we use the results of the covariant calculation to obtain 

s~' == n 
(B:5) 

If we let x == Ep, the n-fold.derivative may be reduced to polynomials 

in x-1 times J
0

(x) and J
1

(x). The integral then may, in principle, 

be approximated by the saddle point technique. 

The non-relativistic and ultra-relativistic limits of this form 

may·be investigated by a method analogous to that used for the 

covariant form. This yields, essentially, the results of Ref .. 34. 
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. APPENDIX C. TEE NON-RELATIVISTIC PHASE SPACE 

The exact form of the phase space using the non-relat;i.vistic 

expression for the energy is well known. However since I have been 

unable to find a derivation in print, I shall record one here. 

where 

The quantity to be calculated is 

D is defined by 

n 

s = n 

-+ 
I: p, = 0 

. 1 ~ 
~= 

n 
I: 

i=l 

IJ?i12 
~ E. 2mi 

This domain is an ellipsoid in a 3 n ~ 3 dimensional space and the 

integral may be evaluated exactly. If we solve the first relation for 
-+ 
p and insert this into the second, we obtain n . . 

n-1 n ... l 
I: I: 

i'=l j=l 
2m 

n E 

= (1 + 8ij mn / mi) is a real, symmetric matrix, 

therefore the domain is an ellipsoid. we·transform to the principal 

axis system of the ellipsoid by the orthogonal transformation which 

diagonalizes B. · Let the eigenvalues of B be Ai and denote the 

principle axis coordinates by then·· 

L· 

(C:l) 
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D is now defined.by 

n-1 _, 2 
}: ~i l.si I ~ 2 m E 

i=l n 
(C:5) 

If we now let -;.; = ,r;:: 
..... .i 

we have 

c~l -~) n-1 d 
f....···-·.·2 1 d3 Tj . s = _, II . n dE, 

: i=l .~ ... D' i=l i 
(C:6) 

D'' is the interior of a 3n-3 dimensional sphere of radius -\{i;;__E. 
n 

In ann-dimensional space the volume of a: sphere of radius r is 

Thus 

s 
n 

v 
n 

n 

3n-5. 
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The :product of the ~i is the determinant of B which can be 

shown to be 

(C:7) 

(c:8) 
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and 

l~ 2E.:L 
n 
II mi 

s (211:) 2 i=l (C:ll) = 
r(5n-3) 

J 
• n n 

2 l:·m 
i=l i 

To compare this result to the non-relativistic limit o~ the covariant 

phase space we must recall the covariant phase space.has extra factors 

-1 
of roi 

limit. 

iri its definition, which become -1 mi in the non-relativisitic 

"' 
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