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ABSTRACT

Calculations based on a coveriant version of the Fermi

statistical moael have been made in an attempt to it the known gross

features of elementary particle reactions at energies presently aceessible

to accelerators. Our aim was to provide‘an extrapolation of these data

to the higher energies of future accelerators. The n-fold phase space

: integration required for the.model was reduced to a single coantour

integral which was approximated by z saddle'point‘techniqne. Resonance

states were included as final state particles.' The initial predictions

- of this model were not in agreement with experiments and although
| modifications of the model were found to improve the situation we show"/

that none of these modifications yieldla reliable method of extrapolation

to higher energy.
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I. INTRODUCTION

Multiple production processes in elementary.particle physics are
notoriously intractable within any known fheorefical framework. Fermi
has proposed a model fér high energy interactions bésed on the ldea that
the statistical weight of a giveh final state should provide a first
épproximation to the relative probability of this'State.l' Calculations
based on a relativisﬁic version of this model were undertaken With'the
hope that they might.proviae a simple baékground for discussion of
elementary particle inﬁera;tions at the energies now accessible to
accelerators and a means for making estimates for the next genéraéion
of accelerators. Uhfortunately the results of this investigation
have been predominafély‘negati§é. The straight forward predictions
of this model at currenfly available energles are not in agreement wifh
experience although there are numerous wayslto improve the model there
is no unigque way in which this ﬁay be done. Thus this model cannot
provide a simple backéround for more refined calculafions, The value
of the modelvfor extrapolation in energy.ié,destroyed by its asymptotic
behavior which does not égree with éosmié’ray data and is also hampered.
by the non-uniiueness of the fit to accelerator data;l Thus with . this
modél we can approximaté known results but ‘are unable to_predict.néw
ones.

The phase 5pace model on which bur_célculations are bésed is
discussed in Section II. In Section ITT it will be shown that the

phase space integrations can be reduced to a single integral, and in
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_ Section IV we will indicate hbw this integfél is approximated and
consider fhe accuracy of the approximation. The descriptioh of the
calculation is completed in Section V where'thg method by which
isotopic spin coupling coefficients are computed. is discussed._ We
present the method by which predictions of pérticle spectra are | . .
' determined in Section VI and compare‘the predictions of the model to

experimental data in Section VII. Section VIII contains our conclusions.
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- II. THE PHASE SPACE MODEL

The phase space or "statistical" model has been "justified"
in many ways since Ferml's original, appealingly intuitive, approach.

The following argument is made from a view point close to that of

'Hagedorn.g

If we characterize the final states by the linear momenta and
masses of the particieS'they cOntain_then the cross section from a

given initial state 1s proportional to:5

2 () o 2 2
0f~f]Ff| 5 /(P - f p,) I:E o(p, ") 8 (py - m") _‘
| , | @
' a Pi i :
-')(.(2mi) 3
| (2x)
 where Fe is the invariant amplitude, P is the total L-momenta of

the initial state .and the index i runs over final state particles.

The conservation laws of strong interactions enable us to

 determine (ot approximate) the dependence-of F ‘on some of the final

il

state variables. The additive conservation laws of baryoﬁ number and
strangeness are imposed by allowing only final states consistent with
the conservation of‘ﬁhese quantities. |

TIsotopic spin can be conserved by considering initial states
of pure isotopic spin, charaeterizing final states bylthe isotepie spin

of thelr constituents and using the projection operator upon the final

state defined by

P |t,,8.) =T T, = 6,)
| i%1 i
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where T is total isotopic spin, tl and ei are total and third-
component of isospin for the final state particles. The caiculation
of the numerical factors PtieiT will be discussed in Section V.’
The conservation of angular momentum could, in princiﬁle, be
taken into account.by using projection operators in a similar manner, : .

5

however this is quite impractical for extensive calculations. Thus

4 , : v
we shall take into account the spin multiplicity of final states by

inserting a factor

I (2's, +1) | - (3)

i

and neglect conservation of total angulér momentum. This has been
shoﬁn to introduce an error of about ZLO%'.LL

If we now recognize the.essgntial equivalenée of part of our
prdblém with the traditional counting of states problem, ﬁe can
approximate two other dependences of'thevgmplitude. " The influence.of”

statistics may be approximated by'eliminating double counting bf

‘equivalent states in the integration over momenta. This gives a factor
1 . .
Togr ™

where nj is the number of identical particles of the Jjth. type.
Furthermore, if we calculate the density of states in a2 box we geﬁ a .%. v

factor ofn'Vn-l where 7V is the volume of the box and n isvthe number



drastic approximatipﬁs to lf

5=

of particles. Removal of this factor leaves an amplitude whose
dimensions no longer depend upon the number of final state particles.
We now remove the amplitude from the integrdl using the mean-

value theorem yilelding

where.

5, (Pymy ) =j5(h)(1°->_3‘p.) s _i !
| o (6)

&

I
3
+
B

As Hagedorn emphasizes, everythinghfd this point is rigorous (all
knowledge lies in E%) and. the phase space model predicts onl& average -
values. It is not in conflict with anisotropic angular distributions.
However now we must cover up'our iack Qf‘knowledge by making
flg . First, we can a?prqximately account

for oné‘of the predominate features of high energy physics, the

“occurance of resonances. We do this by a method due to Belenki and

: 6 . :
Nikishov =~ and justified 'by_Belenky,7 which simply includes the

resonances as final state particles which decay after leaving the primary

reaction. Second, if we consider the inverse process of the final

state particles in a box coming together to form the initial stéte,‘then
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the interchange of. the summing over final stateé and the averaging over

initial states indicates that this cross section is proportiocnal to .

!Flg . This, for purely geometrical reasons, contains a factor of

[aw-1 8
\v/ . ‘where 8 1is the volume in which the particles interact.
\ .

<7

We now insert this,. which amounts to replacing Vﬂvby 2 ., BSince we
interpret £ as an interaction volume and yet wish to allow for

different ranges of interaction we make the replacement .
N | ()

where tﬁe vy are individual interaction volumes (these A are the
paraméters of the model). Now we have inserted an extfa.dimensioned‘
quantity (a volume) so we no longer have a cross section, but since
we shall give up hope-of an absolute normalization we shéll interpref
this quantity as the unnormalized relative probability of the final
state T .

The factors vy are expected to bg of the order of magnitude

of a sphere of radius equal to the range of interaction. We shall take
h'-l |

L N . 8
3 - )

where By is the pion mass for non-strange particles and the mass of
the KX - meson for strange particles. The gi are the parameters

actuvally used in the calculations.
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Now the third and most pfesumptous appfoximation is that the

remainder of ’]Ff]2 is a constant and hence may be ignored, since

it will cancel upon normalization. This approximation, although

necessary to yield a model upon which simple calculations can be
based, has many more or less obvious short cémings. 'The physical

picture of this model, as embodied in our consideration of the inverse

‘process, is that of two particles colliding and forming a '"hot spot"
which reaches a thermal equilibrium and from which all final states

. ~z . o -
“are equally accessible on an a priori basis

In view of recent information on the peripheral nature. of-

these reactions it is clear that this is far too simple a plcture

'and probably not even a good apprqximation'to average properties of

the collisions.

Another short coming is in the treatment of spin. A correct
treatment of spin would introduce energy dependent factors in the
integrand (e.g. this is why the non-covariant form of the phase space
is appropriate in studying the en@ point of B ~ decay spectra, a
relativistic brocess). A moreﬂappfopriate approéch would probably
be to apply the abo&e type argument to the Stapp M-functions9 which
have simple analyticity prppefties and hence.are better approkimaﬁed
by slowly varying functions in the physicai region. This would separate
explicitly the energy dependent factors due to spin}o but one is left
with various spin.a indices %o 5e contracted in an wnknown manner .

This destroys the value of such an approach.
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IITI. REDUCTION OF THE INTEGRAL

~We are faced with the problem of computing

(h) n n d5pi
s (Bm) = | &7 (P~ 2 p) T — - (9) .
T i=1 i=1 i .
This is a Lorentz invariant quantity and we will show that in the center v

of mass frame it may be reduced to a single (contour) integral that may
be well approximated by the saddle-point technique.
If we insert a Fourier representation of the &-function we

may write

Sn(E,mi) = — do e AT e (10)
(o) ~co -i€ i=1 i .

“where we have given the variable <« a small imaginary part to make the
integration over momenta well‘definéd.ll

Now consider

- 3 i _>.—> -. | l
IR, oum) = fd—wB ‘elo‘p o o) . (11)
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Then

then

o J
IM and
I\, o,m) -

i

it

- ,
j pdp il - @)
w

2x
in
=C0
GD ' .
C 2n 4 dp  i(ap - aw) (12)
R > © |
~Q0 )
2n 4 o
- 'x" d.}\. I()\,Cl,m)

. :
!p]. If we now let

p = msinh ©

w = m cosh ©
(13)

e =’\/'042- >\.2 cosh V¥

A= oe2- 7\.2_ sinh ¥ -

© . _in Vo2~ 32 cosh (e - ¥)

ae e :

-0 ‘ ,

o ~-im vaa- _%.2 eesh‘cp

[ do e ' - (1)
“-0 . ' . o
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The last equality follows from an integral representation for the
Hankel function Qf the second kind.12 The negativé'imaginary part of
« defines the square root with the convention that the square root

. becomes real and positive as « becomes.real and greater than A\ .

Differentiating with respect to A , we find

2 N
T(R,om) = M (2) <m"/oz2-_ x2> . (15)

The angular integrations for Sn are trivial and we have

' | B @ ~ie fo o) . -
Sn(E’mj_) =_i*£_5f_ doc[o an >\2 groF f(V 042—- 7\2) (16)

(2m) ® -ie

»

where

, ~ - , _
f< oF- x2> .1 2———————i X Hl(gy (mkm> .(27)
k=l | /2. 52 _ |
Two comments upon this equation are in'oraer; First;'the sole
role of € is to define the continuation of the sqﬁare roat, since
except for this the éxpreésion is independent of € . Second, if we
examine this form before the angular integrations are done, and using
an arbitrary Lorentz framé, we notice that.it is Just a Fourier ,.
‘transformation in a space With a time-like dimension. Thus, the following
steps seeﬁ to be & generalization.éf a theorem of Bochner's on Fourier

13

transformations of radial fﬁnctions.
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In order to perform an additional quadrature, we shall réplace
the « integration by an integration over p = W/a?- xg . This will
necessitate a separate consideration of different domains of integration.

We shall write

5, (E,mi) =

)

P o ww ()

_Lﬂfﬂjji('d J doz-:-}r d%._,[daf%.g elaEfG/ag- 7\.2\'3 (18)
1 2 :

(@) [ o C JR T /

where the contours Cl and 02 are those defined in Figures'l and 2

respectively. For convenience, the parts of the contours indicated as
circular arcs will actually be taken to be those shapes leading to
circular arcs in the variable p . We shall denote the contributions

to Sn from the various labeled portions of the « contours simply

by those labels. Consider, as an example, the calculation of SI s

@ Vo 7 2 ‘ian Vo2 2 '
5S¢ =[ an Cdo N e £iVo = A : (19)
R -~ , o '

makevthe change of variable defined by

©
i
&
N
1
>)f\)

= -T3r> o
(20)
o VFR - ESE
then,
© ,.'ir-R L o A2 -iE'\/;\E:- 2 |
5y =f an dp ——— e r(p)  (21)

R J-co CAhe, 2
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Fig. 1. Integration contour in ¢ - plane for |?~.’ <R .

MU-36509

~
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MU.36510

Fig. 2. Integration contour in o - plané for l?x.l_> R.

-
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where the phase of p is ~-mx . The order of integration can now be
reversed. For ;& we make the same change of wvariable. This yields

I
-R (R 0 A% SEVAPE 22
,{ dol AN —

e £(e) (22)

;LI ) e J o) 2 2
~YN+ T

which can now be combined with SI to give

]'-R © A2 '-'i’E“‘A2+ e
8 +9"1 = dp p f(p)[ AN —F—— e , . (23)
.J- o} -\/\2 2 » :
~YN+7

(e¢]

The change of wvariable

.2 '
A 4 : ,
u —’\<‘r—') + 1 . (24)
Then yields.

-iE r u

' (R oo A .
S. +8. = -J{ dp f(p) p?j du 1{;2_1 e . (25)
-0 1 ' '

We must now face the problem, which we ignored above, that the u
integration is divergent. However it is a limiting case of a convergent
integral, ﬁamely when r has a negative imaginary part. This means

we are dealing with generalized functions énd we shallvdefine this integral
and others to follow as the limit as parameters app;oach their value
throvgh velues which make the intégral convergent. These statements
although applied here to the u integration actually réfer to the

method of inﬁerpretation of the original o« integrations. With this -

[
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interpretation we now ]:1za,w/'e:L

>

'l
@® L

-

VS +X, = - - de £(p) p5!~—i-£ @) éEr)
I I -4 , 2Er Hi .
An exactly analogous calculation, this time using

= ’\Jag- )\2 = r ; r >0

2

O -
I

Q
i

— —
\ p2+ ?\.2 = —\/7\.2+ :c‘2

yields

SIS - =jioo'dp-f'(p)v p5{ g—%—g Ia(l)'(Er)}

)

We shall now consider SII :

g J\2_ g2

. Upon using the change of variables defined by

AT
o = a?_ XQ

0
]
P
¥
W
B
\Y
o

!
]
N
1
no

Q
]

- VR 2

\

!

(26)

(27)

(28)

, "D 0 ‘ | . ;
S = { ar f daaZ et OE f(\/qg- 7\2) . (29)
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we obtain

o F=in G -1 BV r
811 =f dxj de o flp) ———— e
R iR -WJKQ— r
-io @ 22 1 E“‘%:é"' ¥
= | do £(p) pf an ——= e
<-4iR r _HV);\‘E.. 2

The further change of wvariable

-2
u = \fl_(%)-l

. gilves

-ico @® s .
S = f dp £(p) p3f du —\u2+ 1 e iEm
Yo . :

II iR

The analogous calculation for SI 1s made by setting

1T

o= WPaZ - i x>0
and yiellds
St11 = -jr-lR dp £(p) éBFO au Vs 1 eiErﬁ |
-1 . o

(51)

(32)

(33)

(34)

(35)
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Now, in a manner-consistent with our interpretation of the wu integrals,
we can deform the wu contours through the convergent gquadrant to the
imaginary axis, avoiding the branch points at * i in the appropriate

manner. Then introducing the variable v =1 u the 1 integration in

SII beqomes
W R rl N '
’j. dv _\/ve-l eErv-ij av ’%’[l—ve eErv' (36)
1 ‘ o . :

Upon setting v = -1 u, the u integration in SIIfﬁ‘gives»

e T — 1 J—
i - ~ ] _ .
-Jl Ay VP 1 T EV ij av' Vi - +© & EV (37)
1 : . o . ‘

TT and. -

The.integral between finite limits will cancel in the sum of &

. 15
SIII , and thus Wg may take

‘ -ico @ | : '
S = Sppp = -;[ dpo £(p) p5jr dv Vvl 1 BV (38)
, - 1

II iR

=100 (Er)
inR do () 0 { - A

The results at this point may be summarized byl
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o -R {, e
s.+9. = { dp £(p) p2 ﬂ i Hl(g)(Ep elﬁ)f
L | '

Eg10 0]

no

(—ioo"

R D PR pgi—_;% 'H:L(E)(Ep)i’) (59)
e>) | ( . ' \
Hpp t Sy s Ji 30 £(p) 92{% 5% (s) f

To evaluate the loop integrals (Figures 1 and 2) we let

o = *\/7&2+ R2 G218 | (o)

. ' -l
in both LI and. j;l 3

L; and éiI the range of 6 is

then take ef as the new variable. ‘For both |

<

-x <6< J,,g L o (k1)

. We now add iiI and I_ . This leads to the result that A ranges

I

from zero to infinity, and if we let p =R ele we have

152y 2
e

" -iR 2
by = [ o) e (2

J-R )

‘\/%.2+ p2
The phase of the square root is such that it becomes a negative real
'quantity as p becomes real and negative. Thus the function represented

by the A\: integration is the analytic continuation of the corresponding

function in SI‘+§LI as p follows.the circular arc from -R to -iR.
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The corresponding calculation for &?I LII yields%the'corresponding

+
I
continuation of Si.. +’QII , with the net result that the R 1limits

on thg remaining o dintegration in SI ff%lv and SIV +’QII cgn be
replaced by -iR -upon adding the contribution of the loop integrals.

- Consider the integrals for SII or SIII . These contours

may be deformed, by Jordan's lemma, to go to infinity along the real
axis, aﬁd therefore may be combined with the other integrals. vThis

gives

8. + S

IT I

T A I

N e

13)

: -iR - ) :
+ L+ +E =[ ip o f(p)!%% {H_L(E)(Ep elﬂ)\+'~Hl(2>(Ep)]
-- - [
0 _[“ 2 f-isr (1) o (2) "
S + 8oy * Ipp +,&II ﬁiH = do p f(p)l-—-— [}L_L (Ep)+ E (Ep)]f .

1T T IV in o8

ot

Now the sum of the Hankel functions yields -2J1(Ep) in the first casel '

and 2J1(Ep) in the second; so the two pileces may be added to yield a

single contour integral. This gives

_Sn‘<E;mi) = Z;i§§;_.J[ dp p2 £(p) Jl(Ep) : (4l

where

n 2nf1
f(p) = @ {—-——?m-l“— }5(2) (mkp)] - ()

k=1 e
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The p contour runs from minus infinity to infinity below the origin,
If this contour is chosen to be symmetric under 'p — e-iﬁp* then it
can be shown that the contribution from the left half of the contour
is the negativg‘complexAconjugate of the éontribuﬁion from the right
half. Thus, because of the factor :i multiplying the integral, the
above expression for- Sn is real, as is reéuired. |

We note that if we write 'jl = % (Hl(l) + H1(2>) in BEquw..(44)

(2)

"then the integral involving Hl vanishes and we may write

s.mm) = 2 [l e . e

2(2n)2E

This form will be convenient for consideration of the non—relati#istic

limit.
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IV. EVALUATION OF THE INTEGRAL

The integrand of the expression for Sn (Eq. L4%) is, .apart

from constant, real factors

. @) 3 -
, n 5@ ) |
glp) = -ip” J,(Bp) T | = (47)
k=1 -ip
This function has a single saddle point on the negativé imaginary
axis because there it takes the forml
K () |
n ¥ N
o 2 2 1\
g(-iy) = y I; (&) T | = ——-—J : (48)
_ kel LY

¥

Thé function .g(p)_ also has many saddle points in the neighborhood

of the real axis.18 These.defiﬁe paths of constant vhase between the
zeroes of Jl . Since g(p) alternatgs in sign in different sections,
large cancelbtions are expected to occur. We thus éxpect that the
dominant contribution to the integral, taken.alohg a péth of.constant
phase, comes from the neighborhood of the saddle point on the negative
imagihary axis. If we denote this point‘by Py then.the standard

saddle point approximation yields

eI

)| —o 1 | ()
Sn ~ & po 2 ‘ . 9
- L 1 g(pg) b |
dp

This approximation then allows us to compute Sn . In the following

we shall investigate the accuracy of this approximation in the non-
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relativistic and "ultra-relativistic" limits.
To examine the non-relativistic_limit let us turn to the

second form for Sh , Eg. 46, and insert asymptotic expansions for

19

the Hankel functions. After some rearrangement this yields

3 (1) 2 -2 o (12
5~ (e (n-1) 258§ (-1)°(1,2) ;2 "',3?
. n=

2=0 (EE)z Jiéo =0
5 . \ (50)
- D (ot Vg . . .
no(1,3,) 1|2 AT imo - 5 (m-1)--Z3 |
i 5 dp e e , P
k=1 ki 2 [
(o) *2 )
We have used the abbreviation II for the product of the masses and
will use I for their sum. If the contour is now deformed to go to
i c at both ends and the change of variable t = ~ipT is made the
term in braces becomes?o
2 2 ;
T2 n-3 + £ + ng .
P(E n - 5 +. 2 + § Jk) .

Now if the inverse powers of E are exranded:and terms are collected
wé have obtained an asymptotic expansion of Sn. in powers of T .

The first term of this expansion is

Fop

3 a1y X
g WeRe o _ op)? (n-2) 5
n _ (

-2
¢ (52)

(SRS VTN

SN
=
1
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This agrees with the phase space computed by more elementary methods
(See Appendix ITI).
In this limit we can examine the saddle point approximation.

The saddle point is located at
o, = -1 . | (53)

Application of thé saddle point method to the integral yields the
above result with the T fﬁnction repléced by the first term of
Stirling's approximation to it. For n =2 .this approximation is
‘already very good (about 6% accuracy ), for n =3 it is accurate
to better than 3% and it improves with increasing n .- We note

that this estimate applies only when Ebo is large, that is
33y X -

otherwise the saddle point of the original infegral would not occur
in the asymptotic region of the Hankel functions.
The other case for which we can estimate the accuracy of the

saddle point method is that. one in which it is a good approximation

(l)(

to replace XH Ep) Dby its asymptotic value and Hi(g)(mkp) by

1

its value for small argument. This will be seen to be very cilose to

the ultra-relativistic limit. If this is done we find
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. |
£(p) /-;gﬁ) . | (55)

N

Steps similar to those used in the non-relativistic case lead to

g =
. (Eﬁ)g r(en - g)

and agaih the saddle point method is equivalent to replacing the T
function by the first term of Stirling's approximation. For n = 2
this approximation is accurate to 5% and improves with increasing n .

The saddle poiht now occurs at
P o= -1 = | | (57)
and thus this estimate applies if

/

3
2n - 5 >>_l

o (58)
(2n - g) %i,«l -

The true ultra-relativistic limit may be obtained by identifying
it with the 1limit of zero mass, thus

n

i [ 2 wy(
5, (E0) = onPs dp p~ -, (Bp) —-;5) : (59)

| n on -k
U.R. ()-1-71) E : (56)

-
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This integration may be performed by taking the contour to be the real
axis exeluding -1 to 1 and the lower half of the unit circle. The
integrals along the real axis cancel since Jl is an odd function,

while the integral along the unit circle may be easily performed if we

(1)

insert the power series expansion for Jl The result is

: =1 -
s (8,0) = —21= e (60)
o (n-1)! (n-2)!

.

The ratio of this to SnU'R' approaches 1 with reasonable rapidity
as n increases. This is to be éxpected, for as n increases the

saddle point of this integral moves into the asymptotic region of

Iy where the saddle point method was applied to find SnUfR' .
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V.- ISOTOPIC SPIN COEFFICIENTS

In order to complete the calculation based on the phase space

N
model, we must now determine the isotopic spin coefficients, Tt o T}
i’i /

If we consider a state defined by the isotopicvspin of its constituents,
ti , and their third components, ei s then these coefficients are
defined in terms of a projection operator, I& , onto states of well
defined toéal isotopic spin, T , by

2 2" :
T . L —
(rtiei )y = IPT, ltlel, )68, Yl o= (tieil Pr Itiei) . ,(6l>
We now use a standard form for the'projection operator22 in terms of
the Hurwitz integral over the rotation group, which in an Euler'angle.

parametérization is

Y 7

i ‘ ¥ .
SR R o [ ap s X e Reny) L ()

8n2 o o

In this expression ){(T)(ogﬁ,y) is the character of the rotation
defined by _(a;6,7) in the representation ofAdimension 2T+l, and
R(a,B,y) is a rotation operator for those angles. The required matrix

element of'this rotation operator is then simply
T Dyg (0, 8,7) | (63)

where the D functions are the usual representations of the rotation
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group. Now we note that by definition

23

We also have
) v
(T) _ % T m T - \v /1 - cos B
Dmm Y(O‘:_s:l?') = 5:"('1) \-_——l-!— cos B> :
( cos B eim(O«’ﬂ’) | (65)

eim(a+7) dmm? (cos B)

Upon combining these expressions ahd substituting the resulting

: charagtef'into the integral we find that

21 1. =

2 o .
(T, GT)- = 2———-T;lf doc'dyj[ du| = dmmT (1) el(M-u)(OHr)f
i1 8x o -1 =T
(66)
n 'ti
I dgg (1)
i=1l i1
n
where M= X ©, and u=cosfp . But since
1=1 - _

) L
j‘ Taway HU@7) (P Oy, m (67)
o) ' ‘ ’
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ks

(which simply expresses conservation of T ) we have

3

2 ~1 u
T 2T+ 1 -7
(rtiei ) = 5 '}l an Dy, () T

t.
ORI C:)

An important simplification can be made if we restrict ourselves

to isotopic spins % or less. The following properties then facilitate

the computation of all the relevant dT functions

7 \.T
T, \ T RS P A FITR
dmm (u) - d_m’ -m. (IJ‘) 4 dTT (}J') _'_ \ 2 /
(69)
. 2. |
ey = u osa %y = 1 - 2 - op-i
A 2 2 ’
We now introdﬁce the following counting scheme. Let nte be the
number -of ‘particles of isospin' t and third component 6, and
include the initial state in this number. Then we define
2
2 t ' o
i = £ = |e] nte
£=0 6=-t '
. 0 b o
J = nl . (70)
D
k = n 2 +n 2 .
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Now the integral can be written as

L
/ . .
T 2T+l NUE ko T
(o) = Fhr | @ @ty Ge) - om0 ()

We note that, for any state which conserves total isotopic spin, i is
an integer. Using this form we can easily 6btain the following

recursion relations.

T 2T+1

030 = ST 6j,2nk n any integer
T 1, T - T
Pivi, i,k =2 CPogx * P s,k ) (72)
. T 1 1 T LT
Pi‘,,j,k+l T2 G Pi,j—x-l,k - Pijk )

Thus the isotopic spin coefficients are'easily calculated with a

'high—speed computer (or even pencil and paper).



...28...
VI. CALCULATION OF SPECTRA

We can also reasonably expect the phase space model to predict
~energy distributions of final state particles averaged over 'all angles
of emission. To obtain fhis prediction we simply do not integrate over
the momenta of the parﬁicle in question. ILet this particle be labeled

particle 1, then

. 3
a’p { n d7p.
) 1 4 .
s, (Bmg) = ;{ | s) (pp- T p) M- —
' 4R =2 - T
3 , (73)
[n L
EEAC) Sy (P-pps 1) :
We now use the Lorentz invariance of 'Sn-l to evaluate i’b in ’che_ center

of mass system for P -~ py. Tt is then clearly independent of the

direction of -51', 50

N

S(mm;) = b J(pl % Spa <r - Ve Pray+ m”  my »} (74)

Thus if we denote the unnormalized probability of obtaining the finél

state f containing the particle 1 with e.nergy ® and having a:

total energy E by Pf(E, ®) we have
| II V1(2 s.+ 1) . o
P (B,0) = it h 1*‘wg-- m, 2
£y ‘b 9
I n
J

(13)

N,

Sn‘_l_<—“f’E2- 2E w + 'ml2 ) My \ .

/
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This gélculafion is straight forward, however due-to our
inclusion of resonances as final state particles it yields the spectrum
of these resonanceé, not the observed final‘state particles;' To obtain
" the observed spectra we must determine tﬂe spéctra of decay products
of resénances, given thé spectra of the reéonances and their decay
modes?

Tet ﬁs denote quantities refering to the resonance by capital
letters, and to a decayvproduct by small letters. Iet étarred‘quantities
refer to the C.M. frame of the resonance, Z#; and. ﬁn-starred guantities
vo any other frame = (which will iater be taken to be the C.M. frame
of the.entire reaction). Then the momentum and energy of the resonant
state in X determine the Lorentz transformation pérameters between’

5 and SF'. Thus we have

e = 7(e"+p picos &%) | | | (76)
where
B =% 7 ==¢ (77)

and © is the angle between p* and P. Now let n be the number

-of decays, then

an _ __én a(cos 6%) _ dn 1 ()
de d(cos 6*)‘  L d(cos ) Bp
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If the decay spegtrum is independent of cos © (which is certainly

true if the resonances are not.polarized) as we shall assume, then

the spectrum of particles of'a given enérgy in I will be constant

in % . If e, and e_ are the maximum and minimum possible energies
in ¥, the normalized spectrum is simply (é+- e_}-l . Explicitly we .
have
' * % R '
_ Ee + ED :
e_,_ - M - M °. (79)

If we now have a spectrum, W(E),vof resonances and a decay spectra,

w* (e*), we can obtain the decay spectra in 2 by

we) = [ dEJ[ ae* W—@——L-Z s (e,me®) (80

[2le}

where
S(e,E;e*) = o(e-e_) - 6(e-e+) - . | '(81)

defines the actual domain: of'integrétionﬁin terms of the usuval step

functions © . This can be written as

=
[~

=
S

-

: | * ; ‘Ek
w(e) = %ijde* W—-(—i’—l jE‘“ dE (82)
T P

where



"51" s

- '
B, = = S5 =BP (83)
The .e* integration runs over the allcwed decay energies. For this
calculation we are iﬁterested only -in two and three body decay modes.'
The two body spectra _w*(e*) is simply a &-function. For the tﬁree
‘body modes we shall assume 'w*(e*)_'is givenlby pﬁase-space (since -
" this is itself a spectrum‘the three body modes require only,knowledge

of the two body phasebspace).
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VII. RESULTS

Since ‘the results of this investigation are predcminately
negative with respect to its primary aims, i shall not give a détailed
description of the various calculations but merely try to indicate typical
results and their inadequacies.

Due to the rapid rate of discovery of new resonances, this
calculation must be incompléte. A list of the particle ‘states included
will be found in Table I, however most of the calculations have neglected
the stronge particles, which is an adeqpate'approximation within the
expected accuracy of the model.

A. 5 ~ p Interactions

One of the early problems attacked with the Fermi model was
25

the pion multiplicity in antiproton annihilations at rest. It was
found that the interaction volumes ﬁad to be increased about tenfold
to agree with experimental results.

‘The iﬁclusion of resonances in the present calculatioﬁxhas
achieved good agreement with meésured multipliciﬁieé without modification
of the volume factors (that is all gi = 1). These results are presented
in Table II. Thé'calculated spectrum of éharged pions (Fig. 3) is
however in poor agreement with experimental data.26 It was found ﬁhat
a E factor of 0.1 for the rho meson.would improve the spectré without
disturbing‘thé multiplicities excessively (see Fig. 3 and Table III}. 3

However, this limited agreemeht seems to be fortuitous in the light of

25

more recent experiments which demonstrate that multiple resonance
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TABLE T -

"Particles” included 4n the calculation.

NOn-Strange .. ' o L Stran5e v
o - | K
nucleon | S - ' A

deuteron . oz

i

w(1238) gt
w ' e E '

L S L
1 S Y, (1520)

* N
¥, (1k05) o

Ws2) o rtass)

Coame) . T
o R AL I
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. TABIE IT’
. Plon and charged prong multiplicities in p-p ennihilations at rest

with fvp’= 1 and assuming pure T = 1.

n, % Theo. % Exp. - o % Theo. % Exp.
0 1.9 . 3.0 0 0.95
2 - 5.0 42.0 ” 1 0.46
b 53.0 - 51.0 ' 2 5;71.-
6 10 ko 3 5.10
avg. 3.0  3.12I0.1 o 2748 ‘
y 5 47.68
' 6 8.78
7 5.72
‘avé;j‘v L5 ~ . L.78 f 0.17
n o4 % Theo
-
o 2.0
2. L4 . 48
% s3.01

6 0.10 -

avg.  3.02




32e-

4 ' ' T ' I
3'.; —]
R B
=
) >
5 \
< | R \ ——
o L | I Y D
0 . - 200 :\ 400 - 600
Energy (MeV) |

MU.36511
Fig. 3. Plon spectre v'_from P-D anr_xihilé‘bion st rest. Smooth

curves are theoretical pi'ediétions normalized to the total

number of experimental tracks.
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TABLE IIT

Pion and charged prong multiplicities in E-p annihilations at rest

with vp = 0.1 and assuming equal T.= 0 and T =1 contributions.

nch.- % Theo. nﬁi % Theo. ’
0 6.5 | 0 8.2

2 39.9 : , 2 38.2 )
" 534 | o 55,4

6 0.2 & 0.2

avg. 2.95 ) v , avg. 2.91

Average number of §ions 5.01

ey
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production.is quite raré_(e.g. & branching ratio of 0.006 * 0,003 for
the ® p final state) while these states dominate the calculation
(e.g. & calculated branching ratio of 0.30 for thé wp final state
aésuﬁing pure I-spin 1). Table IV listé the dominant contributions
to the calculation.

A -cursory examination of the frequency of KK palirs indicates
that the volume factors of the X-m resonances should be increased by

27

& factor of 6 or 7 to achieve agreement with experiments.

B. p - p Interactions

In our analysis of the p - p interaction we attemptéd éo fit
“the energy dependencé Bf gross featurés of the reaction and'the shape
of the spectra of emitted particles.
1. Gross Features
OQur primary concern was to £it the variation of the average
' number.of charged particles emitted, denoted LSRN Y , and the relative

probability of a gilven number, denoted n, + The ﬁstraight-forward"

h

prediction of the model (all Ey = 1.0) overestimates ¢ nch')

badly (Fig. %) and the disagreement increases with the energy.29 If

we attempt to improve this situaﬁién by decreasing all the gi

uhiformly, the high energy behavlior can be improved but the overall fit

is not. If the corresponding only to the resonant states, denoted

gi
gi* , are reduced to 0.05 we obtain the second curve in Fig. 4. The
Jusﬁification for this procedure ls basically empirical, however this

step was 1nitially taken. tQ crudely account for the very short
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TABIE TV

o= o1 o T = 0
State Branching Ratio _ - State Branching Ratio
ot ~0.013 A 0.002
o™t 0.018 ~ ot 0.013
0°n°x° 1 0.013 p":ron+ : 0.012
Ot -~ 0.018 | | o x” N o,oozi
X | 0.013 EEEEs 0.002
p+;t'no o 0.018 | ' pono - 0.013
U ‘0.021'.  - XX 0.012
0°0%x° 0.016 ' ' poﬂ+3'r—ﬂo © 0.003 \
o o’ ". 0.149 . | ' p*n“~“ 0.013
o p'x° 0.021 | vp+ﬁ-ﬂov  o.omw
o0 " , . 0.021 p+n-1r°:r° 0.002
wn® : _ 0.026 o | o't , 0.002
oty 0.1 o’ 0.014
opx” 1 0.021 | o o°p° ~0.079
wp’ . 0.8 L o7o" 0.157
wp'n” | 0.021 o B p-p+1t° ©0.01k
axonc® . 0.017 | %" 0.01k
T © 0.009 S - on®® 0.011
nc® 0.007 o ot o.0e2
next . 0.2 e 1%t 0.00k
ne° 0.088 S wpx" 0.023
non” o026 o op’x® ; 0.023
wnat® : 0.049 f ' .~.‘ wetn™ L 10.023

e’ 0.015 . . ww 0.235
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TABIE IV (Cont.)

T = 0
State Branching Ratio
e On° 0.00k
e 0.009
1 0.00%
ne nt 7 0.028
necx" 0.028
no'r” - 0.028
wn o 0.1%0
m 04019

nmn - 0.005
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Fig. 4. The variation of (nch) with energy for p - D collisions.
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lifetime of these particles and the corresponding like;ihood they would.
not escape from tﬁe "hot spot.” In view of the nature of ﬁhe data and
the expected accuracy of tﬂe model one might be tempted tb claim this
is a reasonabie fit. However any,atteméﬁ to extrapolate using this
rmodel is likely to be Very incorrect, since apparently above 15 GeV.
the curve is resuming the very rabid increase that was the failure of
the "straight forward" caiculation. The cause of the leveling of this
curve in the region 7 vto 13 GeV. 1is unclear since the computer is
considering a large number of final states (<-1000) and ( 0.y Y depends
on a rather'delicaté and intricate relationship among theﬁ.

The problem with the high energy behavior may be made clearer

by consideration of some mumbers. If we it the form
n(E) = aE A (81)

to ( D ), then a very rough fit to the upper end of these curves

ylelds x = .62 for the §, =1 .case and. x = (U6 for the ¢ * 2 .05

1 i
case. In the high energy limlt for the phase space model we havégg
X = 2/3 (this limit is approached very slowly) and yet cosmic ray data
‘indicates we need X = l/h, although accelerator data only may be fit
with x = 1/2 22 | .

The percentages of final states with n charged prongs in the

final state are plotted in Figures 5 and 6. The theoretical curves

*

are for §i = .05.50 This data forms a more sensitive test but by

its nature is subject to much larger experimental errors. These curves
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" Fig. 5. The variation of the percentage of two and four prong final

states with energy in p - p collisions. Triangles are two

prbng data'points and circles are four prong data.
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Fig. 6. The varietion of the percentage of six and eight prong final
states with energy in p - p collisions. The triangleés are
six prong date and the circles are eight prong data.
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demonstrate that the nature of the fallure to adequately fit the’
{ By ) data is an :overemphasis of states near the mean rather than
inclusion of too many states of very high'multiplicity. A narrow

ch

a statistical model without resonances.

‘dispersion sbout ( n. ) 1is expected (at least asymptotically) from

31

2. Spectra
The pion and.broton spectra were‘studied fromvprimary proton
beaﬁ energies of 2.75, h.2, 6.2, 9, 12, 19.8 GeV; We will discuss
the results at 6.2 GeV only sincé éﬁnilar probiems ih fitting'the

data for all energies were encountered.

32

133

Both the exbérimental and theoretice pion spectra aré

‘

presented in Fig. 7 as.histogfams with the same normalization. As
>can readlly be seen, the peak of the theofetical spectruﬁ is'about
200 MeV/C‘ higher than that of the experimental.spectrum, Apparently,
the location of this maximum 1s an approximate invariantbof'the phase
space model. It, like the experimental data, shifts only slightly with
changes in the incident energy. -Tﬁe location of the peak is also very

insensiﬁive to changes iﬁ the ¢§ factors, although the shape of the

i
entire curve can be radically changed by modification of the §i .
Hence the model predicts far too many high energy pions, and drastic

changes of the would be required to alter this situation. We

gi
bellieve that the limited agreement with the crude features of the
interaction (multiplicities, etc.) could not be maintained were such

changes made.
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The proton momentum spectra is' presented in Fig. 8 . It haé
the same propertiesvwith respect to changes in the parameters as_thé '
pion spectra.»Vwaever in this case the theoretical maximum is below
the experimental maximum and much sharpef. The shape of this curve

could probably be impro#ed by variation of the ¢ individually, but.

L
the location of the maximum is very insensitive to these changes.
Again this behavior rersists at all energies for which data are availablé."

C.. 7w =D Interactions

The analysis of the - D interactions followa&#the pattern of
the p - p analysis. Here we also concentrafed upon the energy dependence.
‘of the gross features of this resction and the sfectra of emitted |
particles. The problems eﬁcountered were similar to those of the .

P - p analysis.

1. Gross Features

As in the p~ p case ﬁhe modelvyifh all éi = 1 .predicﬁs
o0 many charged products of the reaétionl(Fig.'9}. If we reduce the
‘g,-‘factors of the fesénant statés% ,gi*', té» O;2l we obtain the.second
curve of Figure 9, which fits thé data reasonably'weli;v waever any
extrapolation in energy fbr this-reagtiohris subject to the same criticiém
as for the p - p case. Figures 10 and 11 contain the Doy data.
and the phase spaée.modei predictions for gi* = 0.2 ;. In general the
fit to the data is.somewhat better in.this case than iﬁ the P ~-D

case, however the data are not as extensive,
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Fig. 9. The variation of
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(ncﬁ) with energy for = -p collisions. '
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Fig. 10. The variation‘of‘thé percentage of zero and two prong final
‘states with energy in x -p collisions. The circles are

zero prong data and the triahgles are two prong data.
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-57-

2. Specﬁra 4 -
. We analyzéd:the spectra produced at 5, 6.8; and-l6 GéV incidenf

. plon beam energy. :Wé seléct forgdiséussion the cdmpafisoh of the,résults
at . 6.8. gev to e}iperiment.54 Thevfesuits afjother eneréigs were similar
fto these. Histograms of the experimental date and theoreﬁicél fredictiohs
 for the plon and proton spectra are in Figures 12 and‘lB respectively.
Here also the fits are somewhat_beﬁter than in the p - p case, although
the fit to the'proton{spectra is not good; The major failings of the
fit to the pion spectra are the peaking at a élightly lower momenta
| by the theorétiéal spectrum and & failure to fit the high energy.
‘tail of the sﬁectrum. Consldering the nature of the model thése are

not serious difficulties.
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VIII. CONCLUSIONS

| The phasé space model has been used in an attempt tovfit the
energy dependénée of varioﬁs features‘of elementary particle reactions.
The agreement with e#periment for p - p reactions is iimited and
cannot be expected to persist for higher energies unless an.ehergy
dependence 1s introduced into the volume factors. The fit to the
spectra of created. particles is poor and we feel thaﬁ it cannot be
improved in a reasonable manner. The situation is better for ﬁ'- hs)
reactions, however déta are not available for the higher energies
where difficulty is expected.

. .Finally, multiple resonance production is the predominant
feature of this.modél in all reactioms, yet this is in contradiction
to experiments in 5 - P anﬁihilation. Perhaps experimental evidence
on multiple resonance formation in other processes could clarify this

situation.
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APPENDIX. A. DETAILS OF THE CALCULATION

Two computer programs were used’in this calculation.' The
first did the basic phase space calculétibn, producing as output various

gross features of the reaction such as the average number of varilous

particles produced, the average number and distribution of charged‘

particles, etc.  This program also produced the spectra of barticles'

‘and resonances which.the second program used as input. The second

program calculated the resultant spectra of long-lived particles and
prepared various displays of these spectra (CRT plots, histograms,
ete. )

The three basic tasks performéd by the first program were

| the generation of all final states having the'appropriate quantum

numbers, the calculation of the phase space of these states, and the

bookkeeping necessary to prepare the output. The third task presented

no problems and was programmed in a straight-forward manner.
In programming the first task we were confronted with the

problem that the number of final states allowed by energy conservation

~increases very rapidly with energy. Care was taken to develop a good

criterion for seléction of only the important states which would take’

2 minimum of time. The method selected was as follows. Let ny 'be

the number of particles of the i1th typé treating all charge states

of the particle as & single particle (ﬁhe sum over variouskcharge
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combinations was done at a later point) and not including nucleons,

K mesons, or pions in this enumeration.. Nucleons were added to a -
state defined by ={ni} to conserve baryon number,"K mesons to
conserve strangeness, and Tpions to enabie charge to be'conserved.‘
The phase spece, etc., for this state was theﬁ cbmputed and pions
ﬁere added until thethase space had passed its maximum and fallen
below a cutoff percentage (typically 1o'u ) of the maximum phase
space computed previously. If contributing states were found then
pairs. of X - mesons were added until no such states were foﬁnd.
Then pairs of nucleons were added and the process repeated unbil .
no contributing states were found.r Then n, was increased by one

and the process repeated. When no contributing states were found

for a given {n } the n, were scanned in order of‘increasing i.

i
The first non-zero n, found was set to zero unless increasing it
would reduce the number of nucleons and K mesons needed to conserve
3aryon number and strangeness. ,Iﬂ the latter case _ni was increased
and the new {ni} was used in the above process; In the former case
one was added to .n, . and this (ni] vas ueedr
The phase space'was eﬁaluated in-a straight-forward manner,
using Newtonian iteration to locate the saddle point. The necessary
Bessel functions were evaluated by & tabuler interpolation scheme which .
employed a verlable increment tabulation to retain sufficient accuracy I
and minimize table sizes. This procedure reduced the running time |

of the program considerably relatively to that required by an "exact"

'calculation of the Bessel functions.
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The decay spectrum calcﬁlation by the sééond'program was
conceptually straight forwafd, however the large number of particles
and decay modes.reqpired a rather elaborate treatmeht; The ﬁrogramv
was structured +to uﬁilize data on the decay modés of résonancés in
tabular form. It was:therefore relatively easy to expand or modify.i
.The necessary integrations were performed by the trapezodial rule

since this yielded sufficient accuracy.
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APPENDIX B. THE NON-COVARIANT PHASE SPACE INTEGRAL.

The non-covariant form of the phase space is

' n n - n .
s, = jE(E- Z'w)BC” (z p.) T qﬁ% . (B:1)
4 i=1 * i=1 % 1=l | .
This multiple integral may be reduced to a single integral by a method 'vq

‘similar to that applied to the covariant form. The resﬁlting integrand -

'is, however, quite complicated and the integral is not as readily

approximated.
We start. from the expre_ssion55
. o -ie o " n r21r2mk2 ] N
o ioE ) ~/ ‘
S, = —EE—H - Ao f' an x? e Il l_ 5 _H'E(E)(mk of - x?) . (B:2)
(2x) doeic b k=1l o~ N - : § ’

The only essential difference between this and the corresponding -
expression for'the covariant phase space is the presence of the factor
ot Since these .integrals define'generalized functions we may replace

- this factor by n-fold differentiation with respect to the energy.

Thus
SA . <;Ji:>n~J[oo-i€ da‘Jpo an A e‘mE (VP22 \ vv} (3;3) |
n ";;Sﬁ dE - J. ) ] . | R
where |
n 2n2mk2 : '(é)' e
fle) = T |—% B (m e)] . (B:14)

k=1 ip _
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Now we use the.résults of the covariant calculation to obtain

*n J (Ep)

S o= [dpp f(p)\\dE ——-———- E o (B:5)

(2ﬂ -

If we let x = Ep , the n-fold derivative may be reduced to polynomials.
in xTT times .Jo(x) and ‘Jl(x). The integral theﬁ may, in prihciple,
be approximated by the saddle point technique; .

The nonjreiativistic'and wltra-relativistic limits of fhis form
may ‘be investigated by a method analogous to that used fo? the

covariant form. This yields, essentially, the results of Ref. 3k,
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. APPENDIX C. THE NON-RELATIVISTIC PHASE SPACE

The exact form of the phase space using the non-relativistié

expression for the énergy is well known. However since I have been
- unable to find a derivation in priht, I.shall record one here.

. The quantity to be calculated is

D i=1
3 :
where D dis defined by
o on P
g > 0 g pi | B
b, = , S B ’
i=1 ~ 4=1 Oy

This domain is an ellipsoid ina 3 n - 3 dimensional space and the

integral may be evaluated exactly. If we sol#e the first relation for

Eﬁ and insert this Into the second, we obtain

n-l n-l - ' mn
 Z PPyt 1+ 813 E; s 2my .E

i=1 j=1

The matrix Bij 13 |
therefore the domain is an ellipsoid. We “transform to the principal
exls system of the ellipsoid by the orthogonal transformation which
diagonalizes B. ' Let the eigenvalues of B be *Ki and denote the

- principle axis coordinates by Ei then -

= (1L +3,, m /'mi)"isla real, symmetric matrix,

’(é:l) |

(c:2)

(C:B)
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D is now defined by

If we now let Hi' =Y Ki E;

S = = I Xfiﬁ I dBiﬁi
o = /D =l o

(c:5)

| (c:6)

D" is the interior of a  3n-3 dimensional sphere of radius 7\ 2mnE .

In an n-dimensional space the volume of & sphere of radius r i

P ox

Vn = I.‘(n+2 T
Thus' -
n-3 3n-5
_ $27t ) m 2 E 2 -
i— P(Bn—5 n |

The product of the A; 1is the determinant of B which can be

shown to be

Whergv Qy = mn/mi . Thgs

(c:7)

(c:8)
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. . - 2
n-3 n 2
2 I m
m i
n i=1 .
5 = — (c:10)
rn-l 7_2 i%l mi
xi L . i
i=1l
and 3 1 2
n 2
n~3 T m
' (21) e =1 *
S = (c:11)
n P(ﬁn-B) n
) 2 DI mi
| 1=l i

To compare this result to the non-relativistic limit of the covariant

phase space we must recall the covariant phase spdce‘has extra factors

of aa-l in its definition, which become mi-l' in the non-relativisitic

limit.
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