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ANALYSIS OF A PROPOSED ANALYTICITY TEST 

Graham H. Campbell 

Lawrence Radiation-Laboratory 
University of California 

Berkeley, California 

August 10, 1965 

ABSTRACT 

An analyticity test proposed by· Regge and Viano* has been analyzed 

under conditions similar to possible applications of.the test to experi­

mental data. It has beel;l shown that any results of such an. application 

must be inconclusive. The class of functions to which this procedure 

may be applied has been determined. This class may be broadened if 

partial knowledge of the asymptotic behavior of the functions is available. 

* T. Regge, G. A. Viano; Nuevo Cimento ~' 709 ( 1962}. 

E. Albino, M. Bertero, G. A. Viano; Nuevo Cimento 32, 1269 ( 1964}. 
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I. INTRODUCTION 

1 In a series of two papers, the following problem has been 

solved and the solution used as an analyticity test for proton-proton 

scattering amplitudes in the complex angular momentum plane. Given 

the knowledge of the values of a function f(z) on the set of points 

z = N + A. (N = 0, 1, 2, • • •; A. > 0) reconstruct the function in the 

right half plane if f(z) is subject to the conditions: 

1) f(z) is analytic for Re z ~ 0 

2) lf(z)l hascertainboundsas lzl-+cofor Rez~O· 

We shall comment on some aspects of this analysis and investigate 

the possibility of obtaining definite conclusions about experimental, 

amplitudes by this reconstruction. 
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II. THE RECONSTRUCTION PROBLEM 

The problem is solved in I by use of the Pollaczek polynomials, 

Pnr._(z ), which are orthogonal under the we.ight function2 

= r(r.. + i z) r(r.. - i z) • 

We note that for 1 
">-. = -' 2 

takes·the convenient form 

w
1 

(z) = sech ~ z 

2 

Cauchy's theorem is used to write 

1 J f(z 1 )wr._ ( -i z') 

C z' - z 
= 2:rri 

dz' 

where C is shown in Fig. 1 and the point z is interior to C . 

Next we are instructed to evaluate this integral by summing over the 

residues at the poles of wr._(-i z') (which are on the real axis) and 

discarding the circular arcs at infinity. · The first comment that we 
., 

wish to make upon this analysis is that this step is valid only if we 

place stronger bounds on the asymptotic behavior than were explicitly 

stated in I • In particular we must at least require 

f(z) 
~ 0 

z 

(1) 

(2) 

(3) 

•• 

• 
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Fig. 1. Contour of integration for equation 3. 
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as lzl ~ oo in.an angular region containing the real axis. If we now 

assume an asymptotic behavior that validates this step and write 

F(y) = f(iy) we have 

f(z).w;>..(-i z) = 
co 

1 J dy F(y) w(y) 
2~ z -i y -oo . 

m n 22:>..-1 
E (-l) iT(2:>..) 

n=O 

f(n+:>..) 
z - (n+:>..) 

(4) 

To evaluate the remaining integral we express both F(y) and (z - i y)-l 

as series of Pollaczek polynomials. It was pointed out in I . that the 

asymptotic conditions insure the convergence of the above integral and 

also insure the existence of the expansion of F(y). ' The expansion of 

( 
-1 

z - i y) 

we have 

was carefully considered in II • · Thus if we write 

\ 

F(y) = E an Pn;>..(y) 
n 

1 00 . 
1' = - E an·~;>.. (-i z) 
~ n=O 

.... f(n+:>..) 
~-

where ~;>..(z) is the associated Pollaczek function introduced in I • 

The a are given by 
n 

(5) 

(6) 

r· 

'¥'> 
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a:·· 
n = 

,. 

r(n+l) r(2i\) 

r(n+2i\) 
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()) 

J 
-()) 

i\ dy w(y) F(y) P (y) 
n 

The next step is to evaluate this integral in terms of values of 

(7) 

f(n+i\) by reintroducing the variable z = i y and closing the contour 

in the right half plane. To insure that there is no contribution from 

the circular arcs at infinity we must again impose more stringent 

asymptotic bounds than are mentioned in I and II • We must now 

· require that 

lf(z) P i\(-i z)l- 0 n 

as I z I - CD in an angular region containing the real axis. In order 

for this to hold for all n we must have f(z) decreasing exponentially 

in this region. With appropriate assumptions we now have 

22i\ 
r(n+l) 00 r(m+2i\) 

P ),. r-i(m+1..)) f(m+1..) a = z (-l)m n r(n+2i\) m=O r(m+l) n \ . . 
(8) 

'-· 
l 

and the problem is solved. The following assumptions are sufficient3 

to insure the validity of the above procedure 

1) lf(z)J decreases exponentially for z-oo on the positive real axis. 

2) lf(z.)l increases lessrapidly than exp(1!1YI)as Y.- ± ro. where 

z = i y 
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The uniqueness of any reconstruction procedure such as the. 

above is insured for a very large class of functions by Carlson's 

theorem which .is given by Boas
4 

as: 

If f(z) is regular and of exponential type in the half 

plane Re z .~ 0 and h(~) + h(- ~) < 2~ then 
2 2 

f(z) = 0 · 

if f(n) = 0 n = 0, 1, 2, ···where 

h(e) = lim sup r-p log lf(r ei9 )1 
r -+ m 

and r = I z1!, p is the order of the function, 5 and: 

the limit is taken for Re z ~ 0 

Roughly speaking, this asymptotic condition on f(z) excludes only 

(9) 

those functions which contain asYmptotically a mixture of exp c~ i a z) 

that can be combined to form sin Bz with B ~~. This allows a far 

wider class of fUnctions than the conditions assumed in I allow. 

Indeed the conditions assumed in I and II do not allow fUnctions 

of the form exp(- a z) which are used there to test the reconstruction 

procedure. We note that
1
assumptions 1) and 2) above imply that the 

functions for which the reco~struction procedure is valid are insured 

of a unique reconstruction by Carlson's theorem. If information is 

available on the asymptotic behavior of f(z) then assumption 1) 

may be relaxed. We simply apply the reconstruction procedure to the 

function g(z) = exp(- a z) f(z) with~ chosen sufficiently large to 

insure the validity of 1) for g(z). This will not affect the uniqueness 

. {, 
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of the reconstruction since (even with ~ complex) it will add nothing 

to the sum of · h(~) and h(- ~) • Hence this procedure can be extended 

to apply to any function of exponential type which is subject to 

assumption 2) (which may be stated as h(± ~) < 1(). This procedure 

breaks down for the remainder.of the functions which have unique 

reconstructions, since these functions cannot be expanded as a series 

of Pollaczek polynomials. 
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III. THE COMPUTATIONAL PROCEDURE 

The previous applications of this technique have centered 

about the following procedure: If we use as input the function 

[ z - (k+A.)] f ( z ) = ~ (z ) (which vanishes for z = k+ ?i.) and evaluate 

the derivative of the reconstructed function for z = k+~ we obtain 

f(k+A.) without including it in the input. If this process is repeated 

for all k we obtain an infinite set of simultaneous linear equations 

which the values f(n+A.) must satisfy. For numerical work we must 

obviously truncate the infinite sums appearing here. Let us denote 

by M the index of the last coefficient a which we calculate and 
m 

let us denote by N the index of the last input value of f(n+A.). 

It was shown in II that the value of A. is irrelevant for the analysis 

in the complex angular momentum plane, and that if we fix A. to be 

1 
2 

we obtain 

where 

f' k 

'. 

. L 

'J 

(10) 



'1 
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.. 
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( 
M (M+l)(-l)n+k+l(l~5nk) t (M}n) (M+l, k) ~ = 

+ (M}k) (M+l,n)}. 

1 (11) 

(M:,n) .M p 2 [- 1 1 
= ~ . 1 (n + 2) J M 

1 

(M}n) = (-l)M ~2 ~ 1 J l- 1 (n + 2) 

These equations are used by computing f~ from equation (10) and then 

adjusting M to yield the best agreement with fk • To this end an 

error function} 5 f J is defined by 
n 

5 f = n 

f ,. - f 
n n 

f n 
(12) 

This error is then minimized in some sense (e.g. the root mean square 

of the 5 f is minimized). Although the analytic procedure is 
n \_ 

linear in f(z )} the computational procedure is not .'.That is} if 

fn = fln + f 2n then the computational procedure would not yield 

f(z) = f 1 (z) + f2 (z) since the optimal value of M may be different 

for f(z), f 1 (z)J and f2 (z) individually. 
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:IV. APPLICATIONS 

Any application of this computational procedure must be based 

on the assumption that the restrictions 1·) and 2) on f(z) are 

necessary and sufficient conditions for the values fn to satisfy 

Eq. (10). We will show by counter-example that this is not true. 

Since the computational procedure is non-linear in f(z), 

one has the option, in analyzing experimental data, of augmenting 

the input by a theoretical asymptotic behavior. (e.g. use OPEC for 

higher partial waves). If this is not done then one must use a 

severely restricted:set of input points since J- parity
6 

implies 

that only even or odd partial waves belong to a given-function. The 

computational procedure is very unreliable for small numbers of input 

points (e.g. if f = 2-n and we use 3 input points, the RMS 
n 

error 

is 67.5%) hence, no information can be extracted in this case. If 

we do include a theoretical" asymptotic behavior in the input (wh:ic h in 

general will satisfy 1) an~ 2)) we are then faced with detecting a 

breakdown of assumptious 1) and 2) in a function which is small compared 

to the input (and unknown) over most of the range of the input. 

In order to have an exam:ple for comparison, we first use the 

input function f 
n 

-n = 2 • The RMS error as a function .of the riumber 

of input points is displayed in Table I. Examples of the individual 

errors involved are in II where we note that most of the RMS error 

comes from the first two and last several points. 

(' 

- ( 



'' · .... 

.~ \,j 

-11-

TABLE I 

Errors in the application of E~. (10) to the function f = 2-n as a 
n 

function of the number of input points. 

! 

I I 

N t~ M I RMS error (%) 
-------·--· ·-. ---. :-----±-:-:-·--··-·---·-·-··· 

I 
I 1 0 21.2 I 

I 
67.5 I· 2 0 

3 0 5·9 

4 1 "·54.9 

5 0 27.0 

6 1 33·3 

7 1 14.0 

8 1 27.1 

9 1 4.5 

10 1. •. 2 22.6 

11 1 13.4 

12 2 
/ 17.2 

13 2 
. I 

10.9 

14 2 17.2 

15 ~ 5.4 

16 3 13.8 

17 2 5.8 

18 3 12.5 

19 3 9.2 

I 
j· 
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Let us now consider the possibility of detecting7 a breakdown 

of assumption 2). It was noted in II that this method breaks. down, 
2 

completely when applied to a Gaussian type function (for fn = 3-n , 

using 8 input points gives an RMS error > 10
19%). If we now nhide n 

such a function under a normal asymptotic form by using 

(13) 

we obtain the results in Table II. These errors are comparable to 

those in Table I and hence we are unable to detect such a function. 

I'f we concede the impossibility of checking asymptotic behavior in 

this manner, we are free to modify the input points, as was recommended 

in I and done in II, by multiplication by -n c . This generally is 

expected to allow higher values of M and hence better convergence. 

The effect of a breakdown of assumption 1) was investigated. 

in II both analytically and numerically. For a pole in the right half 
) 

plane it was demonstrated there that o f for ·n corresponding to 
n 

the points to the left of the pole was excessive (analytically the 

series diverges for these poin.ts). We wish to examine functions in 

which th~ pole is masked by an additive term and also to allow for 

the modification procedure mentioned above, thus we consider the two 

parameter family of functions 

f 
n = -an e + 

-bn e 
2 1 + (n-2) 

(14) 

. ( 

v 



TABLE II 

Errors in the application of Eq. (10) to the function of Eq. (13). 

i) • 

... N=6 N=8 N=lO N=l2 N=l4 N=l6 
M=l M=2 M=2 M=3 M==4 M=.4 

K 1o 1o % % 1o 

0 -10.0 -5.43 18.9 12.1 -52.2 23.2 

1 4.89 2.79 -7.26 -2.81 14.1 - 4.75 

2. -5.64 -3.14 6.82 1.60 -9.44 2_.48 

3 
I 

5.71 3.01 -5.78 - .828 5.86 -1.21 

4 -6.52 -3.20 5·65 .493 -4.32 . 723 

5 8.30 3. 78 -6.28 -.325 3· 72 -.507 

6 -11.4 -4.81 7.63 .219 -3.57 .402 

7 6.50 -9·92 -.133 3.76 -·352 I 
8 13.6 .041 -4.24 

I 
-9.17 ·331 ., 

I 
9 19.4 .o8o 5.06 ·-.331 I 

10 28.6 -.261 -6.32 .347 

I Ill .547 8.22 -.378 

112 
/ 

; 

I -1.01 -11.0 .423 

l 13 l5.3 -.485 
I 

~ t 14 I -21.6 .563 

15 

I 

-.659 
•,_1 l 

!16 .767 
I 

I 
I . I 7.84 5.06 13.8 16.5 5.81 ·:RMS 3.51 

I I 
I 
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which have a pole at the same place as those ·functions considered in II. 

In order to have an appropriate comparison we have also considered the 

family of functions 

f 
n = 6 rl -an 1 ('2 

5 .L e + b~ 
(b-a)\ -bn l 

e ) ne · J (15) 

which are entire and agree vrith (14) for n = 0, 1 • The RMS · average 

of the o f using 8 input points for Eq_. (14) is recorded in Table III 
n 

and for Eq_. (15) in Table IV. There is nothing in these two tables to 

distinguish these two cases. With prior knowledge of the existence of 

a pole, one can see its effects in the o f although there are very 
n 

few cases in which the pole can be identified solely by comparison with 

the o f for Eq_. ( 15). A typical example of this is shown in Table V. 
n 

We also note that some of the cases in Table IV .with large errors appear 

to have a pole. That this general behavior persists when more input 

points are used is demonstrated in Table VI which is similar to Table TII 

except 18 points were used in the input. 

Thus we can state that, under conditions similar to the analysis 

of experimental data, poles will general;:Ly not be detected and functions 

without poles can imitate the behavior of functions with poles. 

' ~. 

1.• 
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TABLE III. RMS error in ~ for the functions of equation 14 with 8 input :points. 

C.60Cu ~.7COO C.cOCU C,9GOU 1.UvCO 1.1000 1.2000 l,jQOO l.~OUU 1.5000 

J.scoo 1~.~3 15.~~ ~.c~ 11.59 4,53 1.a9 1.ao 1.74 j,2s ~.31 19.C4 

1.ucoo <<.7c 2.46 12.cc 13.7c 11.41 7.~~ ~.3d 9.~3 2c.04 32.75. 2.c~ 

C.SCCO 14.25 1C.l1 3.2C l!.~S 2€,72 23.22 5.73 36.8d lS.OC 3S.c8 41.77 

C.7CCO S.C1 16.7~ 1t.Cl S.SC 3c.~3 25,53 11.30 30.Y7 48.~1 24.j3 12.93 

Q,60CO 3.ec 24.C7 l7.e7 3.22 41.47 17.43 47.96 17.70 3.66 1l.S9 l6.65 
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TABLE ,IV. RMS error in % for the functions of equation 15 with 8 input points. 

2.5000 

2.4000 

2.3000 

2.2000 

2.1000 

2.0000 

1.\1000 

1.!:!000 

1.7000 

1. 6000 

1. 5000 

1.4000 

1.3000 

1. 2000 

1.1000 

1. 000.0 

C.9000 

0.8000 

c. 7000 

0.6000 

O.!!OUO 

0.5000 C.6000 0.7000 ,,8000 C.9000 1.0000 1.10CO 1.2000 1.3000 1.4000 1.500C 

22.o6 15.52. 3.52 1S.~7 7.72 4.51 8.80 1.65 7.98 1.14 6.27 

21.27 16.41 

19.81 17.33 

18.29 18.27 

16.7~ 

15. 12 

n.so 

11. d9 

10.33 

8.86 

7.~6 

6. ~ 2 

~-86 

5.66 

5.\IC 

6.51 

7.42 

8.76 

10.88 

14.43 

.:W.!I'< 

19.~3 

20.18 

21. 13 

n. o5 

22.93 

23. 10 

24.51 

£5.17 

2 ~- 74 

23.0o 

20.09 

16. 82 

13.02 

8.60 

5.55 

9. 16 

1'1.39 

4.22 13.27 8.92 

5.17 11.24 10.14 

o.27 9.21 11.34 

7.46 

8.b9 

9.93 

11. 1 b 

12.34 

13.45 

14.47 

15.36 

16.12 

16.74 

17. 3(; 

18.00 

19.40 

22. 7'• 
11.87 

7.21 

5.J2 

3. 73 

2.tN 

3.2.6 

4.42 

5. 77 

7.0~ 

!l.26 

9.3J 

10.41 

11. 92 

14-10 

18.35 

21.35 

6. 21 

lJ,l!l 

12.52 

13. b5 

14.7 2 

15.6~ 

16.18 

13. 11 

10.2H 

7.69 

5.29 

3.1o 

2.7~ 

5.59 

9.90 

15.66 

.!5.57 

8. (4 

11. §fl 

2.92 10.G7 

2.04 11.30 

2..66 12.48 

4.0'1 

5.6b 

7.19 

11.6] 

9.tl6 

10.91 

11.75 

12.41 

13.01 

t:;.R7 

12.07 

3. 7l 

6.13 

13.62 

24.6C 

11. 83 

10.()~ 

9.66 

6.80 

4.2 3 

2.1q 

1. 76 

3.01 

4.42 

5.79 

7.32 

<:J .3 7 

12.40 

11.7.(' 

3.31 

11.80 

23.82 

15.00 

ll.63 

1. 98 

3. 55 

5.24 

6.8~ 

8. 32 

9.58 

10.62 

11.42 

12.01) 

9. 91' 

5. 82 

1. 70 

4.52 

9. 61 

15.90 

3. 74 

1~. 04 

23.04 

18. 14 

1. 38 

9.35 

8.R7 

5.86 

3.17 

1.2 2 

. 2 .o 1 

3.b2 

5. 00 

6.2() 

7.4 4 

9.12 

11 .62 

2 .C H 

6.9'1 

14.53 

6.62 

6.29 

72.17 

21.22 

2.04 

3.\12 

5.69 

7.23 

8.50 

9,47 

1 o. 16 

7.54 

4.05 

0.99 

4.58 

'1.09 

7.06 

4.51 

13. 16 

9.93 

~.62 

21.22 

24.21 

l)·. ij3 

7.80 

7. 56. 

4.50 

1. 94 

o.tn 

2.33 

3.77 

5.21 

7.03 

9.53 

1.39 

6.54 

12.45 

2.58 

11.7 2 

13.31 

5.14 

2C'.1S 

27.16 

;,qfl 

,, 

. (• 

·:.) 

, ~ 
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TABLE V 

o f for a == • 7, b = 2. 0 for the functions of Eqs. (14) and (15). 
n 

• • 
J I 

i 
i 

Pole (M = 2) No Pole (M = 2) 
I 

.. 

',"" '.. 
'-....._ 

.. 
K''·-~ 0 f (%) 5 f (%) . . n n 

,. 0 .83 2.39 

\ .: 1 -1.94 -2.89 

2 I. 2.55 ' 3.21 . 
I 

I -3·54 -3.98 ' 3 

4 I . 4.96 5.38 
I 

,. 5 I -7.26 -7.77 

6 I 11.06 11.73 

I 
7 -17.40 -18.36 

.. , 
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TABLE VI. RMS e=or in % for the functions of equation 14 with 18 input points. 

?.50JO 13.<:;4 

2. 1t0.00 lJ,<;? 

2. 3000 t:L ii? 

2.2000 11.~<) 

2.100C 13.21 

2.0oor, 12.65 

1.9000 

1.~ooc 

1.7000 

1.6000 

1. '3000 

1.40011 

1.3000 

l.200C 

1.10!)0 

1.0000 

0.9000 

C.800C 

0.7000 

0.6000 

C.50JO 

11.9~ 

10.HO 

9 ·'• 1 

7. /) 3 

2.d4 

1.97. 

5.51 

10.1€ 

16.2(1 

~) .,JO 

2". e: 

21 • .J9 

15.0~ 

H, ~ 1 

O.hGCC 0.7CCO O,UO~O C.9COC 1.0000 1.1000 1.2000 1;3000 1.40UO 1.5000 

I. 7? 

L.~? 

1 • ? I 

0. ,,._, 

2.01 

4. 32 

7.1:(, 

11). 7 5 

s.e(; 

5. 1 e 

3. 17 

l. 48 

1. ~4 

4.43 

~-~0 

9. 13 

6. ~ 7 

3. 74 

:,.92 2.54 

?.U: 5,<;6 

4,S1 10,<;8 

9.~7 16.<;0 

15.16 23.62 

?l.t:t 3l.C7 

2c.fl>1 . 2S.c2 

oo.4-; 22.2e 

<'3.14 15,€8 

16.3(:: 12 •. ::4 

ll.R7 1S.36 

'•. /1') 

3.'<9 

l.fo<; 

1. 2o 

4. 3 4 

il.4 7 

7.fl7 

5. C7 

4.C2 

I 't • 1.3 

2C. 51 

27.65 

25.C)~ 

5.fC 

3.PR 

u::. 40 

5t. 72 

?..65 

0. R(: 

2.46 

5. 'i4 

7.65 

5.C5 

1.AR 

s. ()5 

6.33 

4.55 

.<.42 

I. 72 

.3.97 '•.71 

1.84 fJ.IJ2 

3.(>Cl 1C.5'• 

2. 99 

6.47 

6.00 

I. 31 

3. H't 

8.03 

2.15 1.43 

2.85 4.38 

7.<>3 10.10 

2.46 10.30 13.30 15.54 

3.28 4.87 10.10 8.35 

a.33 2.jo 3.22 1.37 

2.44 7.BO 

3.3<; 12.()3 

7.61 16. n 

5. '3<) 14.34 

2.13 21.10 

7.52 15.00 

8.74 

16.16 

24.u0 

;, 1. 'l2 

'£7 • .1 7 

22.03 

19.87 

23.61 

4.93 

12.67 

20.43 

27.60 

7.41 

15.05 

21.9 7 

21.33. !2.e7 10.42 1'•.56 7.35 

3.'H ?.2.18 

15.62 .12.44 ~7.41 

8.17 20.07 37,20 

z.A1 27.13 33.93 

7.7C 32.7il ::;<'>.!'> 

15.7<; 29.-.o ~U.oo 

e.79 10.11 52.34 

41.<;3 .15.~0 2'>.10 

4.t1 13.~7 '1~.CJ 

2.05 

ll. 21 

14.24 

111.05 

33.43- 29,91 

36.78 27.46 

35.58 13,47 

24.00 33.23 

17.43 43.60 23.79 18.82 

'>.58 9.13 

4<;.41 5.36 

48.37 ·31.·!>1 

40.05 

14.66 

2fl.65 

26.87 27.27 27.48 

16,46 16.67 . 16.RB 

27 .a 3 

16.3 7 

28.14 

27.68 

17.14 

~ ... 
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: V. CONCLUSIONS 

We have demonstrated by working with known functions that the 

' " 

computational procedure outlined in I and II cannot be successfully 

applied to determine either the presence of poles or asymptotic bounds 
' t 

of an input function. In addition we have determined the class of 

functions to which this procedure can theoretically be applied and 

indicated how to broaden this class if information on asymptotic 

behavior is available. 

• t 

• 
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