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ANALYSIS OF A PROPOSED ANALYTICITY TEST
Graham H. Campbell

Lawrence Radiation Laboratory
‘University of California
Berkeley, California

: Augus"c 10, 1965

ABSTRACT

-An analyticity test proposed by Regge and Viano* has been analyzed

under conditions similar to possible appli'cations of the test to experi-

- mental data. It has been shown that any results of such an application

‘must be inconclusive, The class of functions to which this procedure

may be applied has been determined. This class may be broadened if

partial knowledge of the asymptotic behavior of the functions is available,

* T. Regge, G. A, Viano; Nuovo Cimento 25, 709 (1962).
E. Albino, M. Bertero, G. A. Viano; Nuovo Cimento 32, 1269 (1964).



I. INTRODUCTION

In a series of two papers,l the following problem has been
solved and the solutipn used as an‘analyticity test_fdr proton-proton

scattering amplitudes in the complex angular momentum plane. Given

‘the knowledge of the values of a function f£(z) on the set of points

z =N+ (N=0,1, 2,¢-+5 A > 0) reconstruct the function in the
right‘half plane if '£(z) 1is subject to the conditions:
1) £(z) is analytic for Re z'>'0
2) |f(z)] has certain bounds as |z| > ® for Re z >0 .
We shall comment on some aspects of this analysis and in?éstigate
the possibility of obtaining definite'conclusidns about experimental;

amplitudes by this reconstruction.



IT. THE RECONSTRUCTION PROBLEM

The problem is solved in I by use of the Pollaczek polynomials,

an(z), which are orthogonal under the weight function®

22K-l : '
'w)\(z) = =~ I(A+iz)l(N-12). )
- wT(en)
We note that for A = % , WK(Z) takes the convenient form
v, (z) = sech x = ' (2)

2

Cauchy's theorem is used to write

£(z) wx(-i z) = 5%3 az' - | (3)
where C is shown in Fig. 1 and the point =z i; interiorvto C.

Next we are instructed to evaluate thisvintegral'by summing'over the
residues at the poles of Wx(-i zf) (ﬁhich ére on the real axis) énd
discarding the circular arcs at infinity.  The first comment that we
wish to make upon this.anéiysis is that this step is ﬁalid only if we
place strqnger bounds on the asymptotic'behavior than were explicitly

stated in I . In particular we must at least require

.li(—z—)l'—»o



Fig. 1. Contour of integration for equation 3.
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N

as lzl - o 1in an angular region containing the real axis. If we now

assume an asymptotic behavior that validates this step and write

F(y) = £(iy) we have
® A
f(z),wx(-i z) = é% -[ dy Féyziwgz}
, ' o
| an-1 ' ' (h)
b n 27" Mn+2N)  £{n+n
) nEO (-1) 7I(2N) -I‘gn:l)) " E(;r;)\)

To evaluate the remaining integrél we express both F(y) and (z - 1 y)-l
as series of Ebllaczék polynomials. It was poiﬁted.out in I .that the
asymptotic conditions insure the convergence of tﬁe above intégral and
also insure the existence of the expansion of F(y). The éxpansion of

(z - 1 y)-l was carefully considered in II . ' Thus if we write

Fy) = 2 %n IEX(Y) : ' (5)
. n ‘ .
we have
3
. Ve
£(z) w (-1 2z) = ;3;- Zo 8, an (-1 z)
o _ n= .
» | (6)
- ?(-i)_n 221 T(n+2))  £(n+\)

0=0 wD(en) T(n+l)  z-(n+\)

where an(z) is the associated Pollaczek function introduced in I .

The a, eare given by

-
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jeo]

: 1“(n+1) r(eﬁ@) f

aywy) B My . (D).
I(n+2A\) - ' }

The next step is to evaluate this integral in terms of values of

f(n+\) by reintfoducing the variable z = i y and closing the contour

 in the right half plane. To insure that there is no contribution from

the circular arcs at infinity we must again impose more stringent

asymptotic bounds than are mentioned in I and ITI . We must now

- require that

e(z) Pn%’(-i z)l% 0

as 'zl - ® in an angular reglon containing the real axlis. In order
for this to hold for all n we must have f£(z) decreasing exponentially

in this region. With appropriate assumptions we now have

I(n+l) oo T (m+2\)

a, = 2" ——u 5 () —— 'Pn" <—i(m+x)> f(rh%x) (8)‘

I(n+2N) m=0 D(m+l)
. e Jg ‘ ,.
and the problem is solved. The follpwing'assumptions are sufficierfc5
to insure the validity_bf the aﬁove procedﬁre |
1) |£(z)] decreases exponentially for z = o on the positive real axis.
+

2) If(z)l increases less rapidly than exp(%[y[> asr y.~> % co where.

Z=iy .



- The uniqueness of any reconstruction procedure'such as the
above is insured for a very large class of functions by Carlson's

theorem which is given by Boash as: .
If f(z) is regular and of exponential type in the half
plane Re z >0 and h(—g—) + n(- -g-) <2x then f£(z) =0-

if f(n) =0 =n=0, I, 2,°** where

n(e) = limsup r ° log |f(r ele)[ ' _ (9)
v r - ‘ '
and r = IZ¢Q p 1is the order of - the function,5 and:

the limit is taken for Re z > O .

Rouéhly speaking, this asymptotic condition on f(z) excludes oniy
those functions which contain asymptoticaliy a mixture of exp (¢ 1 a z)
that can be éombiﬁed.to form sin Bz with '3 é,ﬁ .- This allows a far
wider class of fﬁnétions than‘the'conditions assumed in I -allow.

Indeed the conditions assumed in I and II do ﬁot allow finctions

of the form exp(- a z) which are used fhere to test the reconstruction
procedure. We note that assumptions 1) and 2) above imply that the |
functions for which the reconstruction pfocedure is ﬁalid are insured ..
of a unique reconstruction by Carlson's‘theorem. If information is
available on the asymptotic behavior of £(z) then assﬁmption 1)

may be relaxed. We simply apply the reconsfruction procedure to»fhe.
function g(z) = exp(- a z) £(z) with a chosen sufficiently‘large to

insure the validity of 1) for g(z). This will not affect the uniqueness

.



of the reconstruction since (even with a complex ) it will add nothing
to the sum of ‘h(g) and h(- g)'. Hence this procedure can be extended

to apply to any function of exponential type which is subject to

assumption 2) (which may be stated as n(t g)'<'ﬁ). This procedure

breaks down for the remainder.of the functions which have unique

reconstructions, since these functions cannot be expanded as a series

of Polléczek polynomials.



III. THE COMPUTATiONAL PROCEDURE

The previous applications of this>technique have centered _
about the following procedure: If we.use as input the function.
[z -~ (&) £(z) = hk(z) (which.vanishes for z =k+\) and eﬁaluate‘
the derivative of the reconstructed function for z = k+\ we obtain | v
f(k+\) without including it in the input. If this process i‘s repeated
for all k we obtain an infinite set of simultaneous linear equations
which thé values f(n+\) must'satiéfy. For numerical work we must
obviously truncate the infinite sums appearing here. Let us denote
by M the index of the last coefficient am which we calculate and
let us denote by N the index of the last iﬁput value of £(n+\).
It was shown in ITI that the value of AN 1is irrelevant for the analyéis
in the complex angﬁlar momentum plane, and that if we fix ‘k_ 0 be

' %- we obtain

1
vhere f = f(n + 5), and

Vo

o)
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i

(M+".L )(-1 )n+k+l

g

(1s,,) i(M,n) {M+1, k)

(M, k) (M+1, n)l

)

+

L
Mn) = 1+ PM2 [- 1 (n +'-21-)]
| B
Mp) = (<)M Q,M2 [- 1 (o + %)] )

These equations are used by computing fi’ from equation (10) and then

adjusting M +to yield the best agreement with fk .. To this end an

error function, d fn , 1s defined by

5 f = —— 01 . | | (12)

This error is then minimized in some sense (e.g. the root mean square

of the & f is minimized)l-'Although the analytic procedure is

linear in f(z), the computational procedure is not..That is, if

fn = fln + fEn then the computational procedure would not yield

£(z) = £,(z) + £,(z) since the optimal value of M mey be different

for f(z), fl(z), and fe(z) individually. -
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.IV. APPLICATTIONS

Any application of this computational procedure must be'based
on the assumption that the restrictions 1) and 2) on f(z) are
necessary apd sufficient conditions fo: the values fn to satisfy
Eq. (10). We will shéw by counter-example that this is not true.

Since the computational procedure is non-linear in f(z),
one has the option, in analyzing experimental‘data,.of augmenting -
the input by a theoretical asymptotic behavior.(e.g. use OPEC for
higher partial waves). If this is not done then one must use a
severely restricted:set of input points since J - parity6 impliés'
that only even or,odd partial waves belong to a givén'fuhction. The\
computational procedure is very unreliable for small numbers of input
‘points (e.g. if fn'= 2™ and we use 3 input péints, tﬁe RMS errbrv..
is 67.5%) hence, no information can be extractéd in this case. If
we do include a theoretical asymptotic behavior in the input (whﬂ:h_in
general will satisfy i) an@ 2i>. we are then faced with detecting a
breakdown of assumptious 1) and 2) in a function which ié smell compared
to the input (and unknown) over most of the range of the input.

In order to have an example foé comparison, we first use the
input funcfién fn = 2-n. ‘The RMS errpf as a function of the number
| of input points.is displayed in Table I. Examples of the individﬁal
errors involved are in IT where we note that most of the RMS error

comes from the first two and last several points.

Vs -
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TABLE I

Errors in the application of Eq. (10) to the function £,o=2" as

function of the number of input points.

N M RMS error (%)
1 0 ei.e
2 0 67.5
3 o 5.9
L 1 ‘54,9
> 0 27.0
6 1 33.3
7 1 1k.o
8 1 27.1
9 1 k.5
10 N 2 22.6
xR 1 13.1L
12 2 17.2
13 2 10.9
i 2  17.2
15 | 2 5.4
16 R 15.8
17 o2 5.8 |
18 B 12.5
19 3 9.2
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7

Let us now consider the possibility of detecting' a breakdown

completely when applied to a Gaussian type function (for fn =30

of assumption 2). It was noted in IT that this methqd breaks down
using 8 .input points gives an RMS error > 1019%). If we now "hide"

such a function under a normal asymptotic form by using
£ o= 27043 | T (13)

we obtain the results in Téble ITI. These errors are comparable o
those in Table I and. hence we are unable to detect such a functiop.
Iflwe concede the impossibility of chegking asymptotic behavior in
this manner, we are free to modify'the input points, as was récommendéd_
in T and done in II, by multiplication by ¢™®. This general 1y ié
expected to allow higher valueé of M and hence better'cbnvergence.
The effect of a breakdown of assumption 1) was.investigated'
in IT both analytically and numericaliy. For a pole in the right half
plane it was demonstrated tﬁere that B fn. for 'n corfesponding.to
the points to the left of the pole was excéssive (analytiéally the
series diverges for these points). We ﬁish to examine functions in
which the pole is masked by an additive term and also to allow for
the-modification procedure mentioned above;_thus we consider the two

parameter famlly of functions

£ a e®M, & o)
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TABLE IT

Errors in the application of Eq. (10) +to the function of Eg. (13).

N=6 N=8 N=10 N=12 N=1L N=16
M=1 M=2 M=2 M=3 =l M=l
K % % % % b
0 -10.0 -5.43 18.9 12.1 -52.2 23,2
1 4.89 2.79 ~7.26 C 2,81 1k - L.75
2 -5.6k4 ~3.1h 6.82 1.60 -9. kYL \‘2.48
3 5.71 o 3.01 -5.78 - .828  5.86 -1.21
Y -6.52 -3.20 5.65 U=, T P .23
5 8.30 ‘ 3.78 - -6.28 -.325 : 3,72 -.507
6 -11.L4 -4.81 7.63 .219 -3.57 | Lhop
7 6.50 -9.92 -.133 3.76 -.352
8 -9.17 13.6 .ol -4.2& ' 331
9 19.4 .080 5.06 -.331
10 28.6 | -.261 -6.32 3L
11 .5hT 8.22 -.378
12 -1.01 -11.0 o3 |
13 | 15.3 -.485
1k -21.6 .563
15 -.659
16. .767
RMS 7.84 5.06 13.8 3.51 16.5 5.81




w44 -

which have a pole at the same place as those functions considered in II.
In order to have an appropriate comparison we have also considered the -

family of functions

. N
o)\ bn |
5 _ e(b a)_5ne n |

c /

(15)

which are entire and égree with (14) for n =0, 1 . The RMS average
of the B fn using 8 input points for Eg. (lﬁ) is recorded in Tabie 11T
and for Eq. (15) in Table IV. There is nothing in these two tables to
distinguish these tﬁo cases. With prior knowledge of the exiétenpe of
a pole, one can see its effects in the B fh although there are very
few cases in which the pole can bé identified solely by compariscen with
the & f  for Eq. (15). A typical example of this is shom in Table V.
We also note that some of the cases iﬁvTable IV with large errors appear
to have a pole. That this general behavior persists when more input ‘
points are used 1is demonstrated in Table VI which is similar to Table III
except 18 points were used in the input.

Thus we can state that, under conditions similar %o the analysis
of experimental data, poles will generallf not be detected and functions

without poles can imitate the behavior of functions with poles.
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TABLE IXI. RMS error in % for the functions of equation 14 with 8 input points.

hq

=45 =

Coe5CCC Cab0CU Ce7C00 CuatCCU CoS00U LeUUCU 1.1000 142000 143000 le400U 1.5000

24500
2.40LC
"2.3CCC
2.2CC0
Z.1CL0
2.00C0
19000
l.8000
1.70CC
L.6(CC0
1.5C0C
1.40C0
1.3000
1.20C0
l.1CCC
1.6C00
€.90C0
C.8C(C
C.7CC0O
.0.60C0

Ge56G0

18.12
17.42
>1¢.74
16.C7
15445
14.€6
14442
14011
12.6¢
14.05
l4.43
15.¢C
16.4¢
18.24
2C.S¢
Zeolt
18.8¢€

14425

1S.26
16.48
15.¢4
16.74
16.74
16.¢3
16.37

1€.5¢2

1C.11

16.175
24.C7

EGeGE

é.02

4ot

S.Ch
ge4S
[ 2]

1.7

li.c¢
14.28
11.56

.21

11.11
“1l.CS

1C.61

10.52

36653
41.47

39s9¢E

€a11
13.18
1C.%3

3408
.7.59
16422
23.22
25453
17.43

13468

S.65

G.13

8430

leol

2420

4074

3433

22.0¢C

¢3.017
l9e5¢
26.04
3Be.7¢
15.0C
48.41

3.66

EERTL

€eb3
4.0l
"Z.l7
1459

5449

19.40
b e 27
22440

29.45

32.75.

4403
35 .68
24.53
11.59

4)al?

De33

4002

41.77
12.63
16465

4hsdl



0.5000 C.£000 C.7000 ¢.8000

T

RMS error in % for the functions of equation 15 with 8 input points.

C.9000C 1.0000 1.10C0 1.2000 1.3000 1.4C0C l.5CNC

TABLE IV.

b <
2.5000] 22.06
2.4000( 21.27
2.300C]| 19.81
2.2000] 18.25%
2.1000] 16.72
2.0000] 15.12
1.9600| 13.50
1.8000| 11.49
1.7000} 10.33
1.6000| 8.86
1.5000] 7.56
1.4000]| 6.52
1.3000] b5.86
1.2000] 5.66
1.1000| 5.9C
1.0000| ¢€.51
C.9000| 7.42
0.8000| 8.76
€C.7000 | 10.88
0.6000 | L14.43
0.5000 | 20.84

15.52
16.41
17.33
18.27

19.23

20,18

21.13
22.05
22.93
23.76
24451
25417
25. 74
23.08
20.GC9
lé.82

13,02

3.52

4422

17.3¢
18.00

19.40

22.74

15427
13.27

11.24

10.41
11.82
14.10
18.35
21.35

6.21

13.21

10.14
11.34
12.52
13.65
14.72
15.69
16.18

13.11

16,28

7.69

9.90

15.66

25.57

8.l4
11.58

4451
2492
2404

2466

24460

11.83
10.05

8.80
10.07
11.30
12.48

9.66

19.04

23.04

18.14
7.38

22.17

21.22

6443

20.18

27.16

5.98



8 £, for a=.7, b=2.0 for the functions of Hgs. (14) ana (15).
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TABLE V

Pole (M = 2)

B No Péle M=2)
\\\\\
K™ 5 1 (%) 51, (%)
0 .83 2.39
\ 1‘ =1.9k -2.89
2 - 2.55 3.21 -
3 A~5.5h -3.98
oy 4,96 5.38 -
5 ~-7.26 -7;77
-6 11.06 11.73
7 -17.40 -18.36
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TABLE VI. RMS error in % for the functions of equation 14 with 18 input points.
a
b C.5000 0.43¢C 0.76C0 N800 C.9GOC 1.0000 1.1000 1.2000 1:3000 1.4000 1.5000
2.5000 | 13,664  1.75  5.18 4.5 2,65  1.88  4.55  2.99  1.31  2.15  1.43
2.4000 ] 13.97  1.67  4.35  3.49  0.86  5.05  Z.42 6.47  3.84  2.85  4.38
2.3000 | 13.82  1.21 . 3.17  1.66  2.46  6.33  1.72  6.00 £.03  7.63 10.10
2.2000 | 13,50 0.87 1,48 1.20  5.54  3.97  4.71  2.46 10.30 13.30 15.54
2.1000 | 13.21 2,01 1.24  4.34  7.65  l.sé  B.82  3.28  4.HT 10.10  8.35
2.0000 ] 12.65  4.32  4.43 © A.47  5.C5  3.08 1C.54  B8.33  2.30  3.22  1.37
1.9000 | 11,86 7.68 9,60 7.87  2.44  7.80  5.56 14.34  8.74  4.93  7.41
1.8900C | 10.80 10.75 9,13 5.C7  3.35 12.83 2,13 21.10 16.16 12.67 15.05
1.7000 | 9.41  S.ge 6457 2,47  7.61 16.73  7.52 15.00 24.00 20.43 21.97
1.6000 | 7.62  £.55  3.T4 4,02 12.87 10.42 14.56 7435 31,92 27.60 27.33
1.5000 | 5.4%  3.92 2.5 8.56 18.67 3,91 22,18  2.05 27.17 33.43- 29,91
1.4000 | 2,84 2,16  5.S6 14,13 22.94  5.02 3G.05  8.21 22.03 36.78 27.46
1.3000 | 1.92  4.S1 10.68 2C.51 15.62 .12.44 37.91 14.24 1S.87 35.53 13,47
1.2000 | 5.51  9.57 16.50 27.85 6.17 20.07 37.20 18,05 23.61 24.00 33,23
1.1000 | 10,38 15.16 23.62 25.56 2.8l 27.13 33.93 17.43 43.00 23.79 18.82
1.0000 | 16.20. 21.61 31.C7 18,42  7.7C 32,78 36.15 5.58  9.13 40.05 27.83
0.9700 | 23.00 22.78 25.€2 11.22 13,26 35.31 45.24 45.41  5.36 14.66 16,37
C.B00C | 28,65 30,45 22,28 5.8C 15.75 29.4C 20.66 48.37 -31.51 28.65 28.14
0.7000 | 21.99 23.14 15.88 3.6  8.75 10.31 32.34 39.86 41.29 41.65 41.86
0.6000 | 15.05 16.36 12424 16,40 41.53 15.40  25.10 26.87 27.27 27.48 27.68
C.5000 | #.51 11.87 15.3¢ 55.72  4.€1 13.57 “16.C1 16,46 16,67 16,88 17,14

fl
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V.  CONCLUSIONS

We have demonstrated by working with known functions that the

‘computational>procedure.outlined in I and II cannot be successfully

applied to determine either the preéence of poles or ésymptotic bounds
of an input function. In addition we have determined the class of

functions to which this procedure can theoretically be applied and

. indicated how to broaden this class 1if information on asymptotic

behavior is available.
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1) Let M(r) be the maximum modulus of f(z) for |z| <.

and z' in the sector.
2) Then

&) if “lim sup M(r) <o ; p =0
B r->
' b) otherwise:

_ lim sup log log M(r)
T r=->o log r

A function 1s of exponential type if p <l orif p =1 and

log Mir
T

1im sup <'o
r - o

226& (1962).

!

In all calculations we have consxdered the small" functlon as

being exé&tly known over the entire input ‘range.

3
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