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~ IMPROVED TECHNIQUES FOR THE ANALYSIS
OF NUCLEAR MAGNETIC RESONANCE SPECTROSCOPIC DATA:
ANATYSIS OF FOUR-MEMBERED RING COMPOUNDS

T. R. Lusebrink
Inorganic Materials Research Division of
Lawrence Radiation Laboratory and Department of Chemistry
' University of California, Berkeley, California
ABSTRACT
August 1965

Two computer programs have been writien which substantially aid the

| enalysis.of complex NMR spectra. One progfam; DECOMP, allows the decompof.'=
'o:sition of superimposed groupe of peaks so that peak positions in an un- -
' resolved group can be determined nearly as accurately as resolved peaks.A
.'A?'The second program, ASSIGN, calculates all poss1ble sets of energy levels
'whlch are consistent with the observed frequencies and 1nten51tes of

~ the completely resolved spectrum.

‘These two methods rectify the major limitations of the Swalen and

‘Reilly iterative method by providing peak positions and intensities for

essentially all the lines in‘:a spectrum and by making it possible, in
principle, to calculate the NMR parameters directly from a spectrum without

any prior knowledge of these parameters. These programs, in conjunctioh

- with the Swalen=and Reilly method, result in a more complete and objective

»

andlysis in less time than the preéent methods.

| This Eystem of programs has been utilized inlthe‘complete.spectral
analysis of fwo-fouf-membered rl;é compounds; a class of compounds which
heve not previously‘beeﬁ analyzed. The compounds are 3-chlorothietane and

5-thietanyl'acetate, two'highly mixed filve-spin sjstems of the AEBEX‘type.‘]'

The most interesting parameters resulting from these analyses are the
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.three long-range coupling constants across the ring. One of the cisoid
coupling consfants is unuswally large fof unstrained rings, 3;1 cps for
-4thé chloro éompound and 2.6 cps for the acetate. The other %wo long—range
.coupling constants are small and negative.‘These.values agree gqualitatively
with the semiempiriéal valence bond treatment of Barfield. The vicinal
~coupling.constants agree with the trends predicted by Kafplus’ theory and
jfhe geminal constants with fhe theory of Pople and_Botﬁner-By.

Details of the anal&ses and listings of the computer prdgrams are
éiven.' Extension of the methodltp six nuciei AEBA systems, occurring

in four membered rings, is also indicated.



I. INTRODUCTION

Nuclear magnetic resonancé spectra obtained under resolution
:sﬁfficient t0 distinguish chemical shifts of‘nonequivalent nucledl
in the same molecule are referred to asA"high-resolution" nuclear ’
_maénetic resonance (INMR) spectra. In addition, present spectro-
. meters have suffiéient,resolution to allow observétiop of the fine-
structure sﬁlitting of these resonance signals due to nuélear
spiﬁ-spin interaction. Such spectra are observed in liquids and gases.
.where theArapid‘motion of the molecules averages the'direct magnetic
‘:dipole interaction to zero. -
The factors‘modif&ing the magnetic enﬁiroﬁmenté.of(the nuclei
~in afﬁolecule,which lead.to the‘observation,of‘chemicalishifts and-
ZISPin:coupling are caused by the interactions of the electrons and
nucléi,;-3 - The chemical shift is a result of tﬁe induced orbital
motion of'the electrons whep the moleculé is placed in an external
field'and‘is proportional tovthe'applied field, Ho" The local field
et fhe nucleus is given by H = H (1 - o) , where © is the screen-
l;‘ing constant. A compleﬁe theory for the chemical’shift‘was\first
given by Ramsey.)Jr '7 .

On the other hand, the fine structure due to nuclear spin-spin
cQupling is independent of the exte;nal field and arises from mag-
.._netic fields within thé molecule itself. The'first successful theory
éxplainiﬁg these interactiqns was given by Ramsey-and i’urcellS and
‘further expanded by Ramsey.6 |

High-resolution NMR spectrd can be completely described_by the
cheﬁical shift and spin-spin coupling pafémetefsg however,vin most

- spectra of interest these are related in such a complicated manner,
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~ coupling constants in molecular systems while the molecular orbital

2.

that a complete.analysis must be carried out in order to obtain these
parameters from the spectrum.7 During the past few years much effort has
been directed toward extracting informatioﬁ regarding spin-spin coupling
from the fine structure of hiéh-resolution NMR spectra, particularly with
regard to coupling between protons.

Several theoretical calculations, 5ased-on Ramsey’s'work, have been
made to explain and predict spin coupliﬁg constants. McConnell8 first

7

developed a molecular-orbital method of calculating coupling constants

' which,'however, predicted proton spin coupling cons@%ﬁﬁs to all be positive.

An approach using valence-bond wave functions waSjuEéﬁ'by Karplus, et ai.,‘-
' 9-11 o | i

- : (R . . .
in a series of papers which showed good agreement with ‘a number of
. : .

:experimental data, particularly with regard to vicinal coupling constants:

in substituted ethanes and ethylenes. For a period it appeared that the

-_Valence-bond approach might be a more satisfactory way to calculate the

method seem more appropriate for the conduction electrons in metals. Re-

. cently, however, Pople and Bothner—Bylz have presented a molecular orbital

method for calculating nuclear spin cdupling between geminal protons which

vgives'quite satisfactory agreement with experimental data.

Since nuclear spin coupling is rapidly attenuated through saturated

bonds, it has only been recently that coupling has been observed ﬁhrough

15-17

as many as four saturated bonds. The observed long-range coup-

ling is always less than one to two cps, unless the system is highly

.-_strained and/or highly substituted. A recent caleculation, using va-

lence bond wave functions, has been made by Barfieldl8 to calculate

proton spin coupling across four bonds in both saturated and unsaturated

: dompounds. A rigorous test of his calewlations for saturated systems

[ X4
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has not been possible, since the experimental long-range coupling con=- -
stants which have been reported are obtained in highly strained or sub-
stituted molecules for which the moleCulér configurations are not well
enbugh known. Furthermore, the calculations were based oﬁ exchange
>integrals for ﬁnstrained and unsubstituted hydrocarbons and extra-
polation to the strained or substituted systems sﬁould be made with
circumspection.

Saturated four-membered ring compounds sare éxcellent subjects for
a2 study of spin coupling cpnétants. They contain geminal, ficinal, and
 at leastvtwo tyées of long-range coupling constants in the same molecule,

s0 a complete analysis will yield all thev¥elative signs as well as
| -magnitudes for these parameters. Furthermore, the molecular structures
.. of these compounds are relatively well defined, having been determined

19 -2L nese factors should allow rigorous

'exaéfly in éeveral cases.
- tests of the various theories discussed.above, when information from
the analyses of these ring compounds becomes available. Due td the
-complexity of their spectra, no NMR analyses of simple saturated four-'
membered ring compounds have yet been reported.

' Probably the most importantvadvance.in.fhe'anélysis\of complex NMR ..
spectra has been the development of iterative computer techniq_ueé22 - 25
such as NMRIT develoﬁed by Swalen and Reilly.el'L NMR parameters of many
molecules having quite comple# spéctra have been determined through the
use of these methods; ﬁowever, in the case of the above mentiqned four-
-membered ring cpmpounds they have generally failed. The failure of
attempté with NMﬁIT can be undersfood by a consideraéion of the infof-
rmation necessary for a sucéessful analysis using the method. It depends

upon sufficient prior knowledge of the NMR parameters so tha£ individual -

experimental lines can be assigned to theoretically calculated transi-
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'.tions, thus determining the true energy levels of the molecule. However,
for highly mixed spectra, not enough of the experimenﬂal lines can be
resolved to make such an éssignment, éven under opt imum exﬁerimental
conditions. Thus there are two probleﬁs to be sol&ed to insure thé
successful application of the iterative method. First, as many as
-possible of the experimental lines must be known accurately to insure
Jthe defermination of the energy levels and to check tﬁe agreement of
- the experimental spectrum with the calculated one. ‘Second, the analysis
must be carried out so that it-is not so dependent on prior knowledge of
' the approximate values of the MR parameters. |
The increasing éomplexity of problems encountered makes thé use of
computer‘techniques essential. Spectrometers are usually operated at
' their limit and it is often rossible to extract still more information

fromlthe existing data with the aid of a computer. Furthermore, com-

puters operate in a comnletely dl ferent time domaln than that of most

"'experlmental instruments and if the computer can be used, this is general- -

1y preferable to accomplishing fhe same end experimentally.

This dissertation will describe computer techniques which have
”'J_been>developed fo extend the present methods of analysis of high-resolu-.
. tion NMR Spectra by solving the two problems stated above. These tech-

niques are then épplied to some four-membered ring coméounds to demon-
straté the méthod and to obtain spin coppliﬁg constants of these éystems
for comparison with values predicted by theory.

In order to determine'enough experimental lines to apply NMRIT
éuccessfuli&, it is neceésary to utilize mofe éowerful méthods than the
usual visual estlmatlons of the llne pesitions and 1nten51t1es. DECOMP,
ce computer method of resolv1ng over- lapplng NMR spectral peaks descrlbed

below, was found extremely useful in such analyses and promises to be

-



useful in the analysis of many similar spectra.

DECOMP soives the first problem in the analysis of complicated
second-order NMR spectra. However; even with this techniqué, one is
lefé with the problem of constructing an energ& level diagram from the
observed transitions. Whitman26 has discussed a computer assignment

technique and has applied it to a well resolved A spectrum. Although’

2B2
in theory this method could be applied to any system with well resolved

lines, it has two drawbacks: It becomes prohibitively time consuming

with larger systems -and the program must be rewritten for each system

pf different symmetry. ASSIGN, a computer assignment program described’

' “below, helps to overcome these problems and has been used on complex .

four-membered ring systems with five épins; the extension to six spin

4

systems is also indicated.

R Once all possible sets of energy levels are known, the chemical

14
t

- shifts and the coupling constants can easily be found by NMRIT. Any

- set of starting parameters, consistent with the symmetry and equivalence

requirements of the molecule, will quickly converge to the corresponding

sets of pafameters, if they are real. Thus, the second problem is

- solved, and in principle it is possible to proceed directly from the

experimental spectrum to the NMMR parameters in a systematic manner with

© little or no previous knowledge or estimates of those parameters.
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- II. THEORY

A. MNuclear Spin-Spin Coupling

The complexity of high-resolution NMR spectra is greatly increased:

due to nuclear spin-spin cbupling. This phenomenon was discovered by
Gutowsky and McCall and Hahn:and Maxwell. The first successful theory,

based on the complete Hamiltonian for electron-nuclear interactions in

a magnetic field, was given by Ramsey and Purcell5 and developed in

.detail by Ramsey.6

The complete Hamiltonian for a molecular'system in a magnetic

field consists of four terms:

A T C (1)
whe}e ' ‘ '
: ; 1y ;er .
byl Nn Y ey N kN NP
TS “é'xik')['f f*‘“s:_(zN' 3 3 E-X_lik) J
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2 7RG 5 TS (3)
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ﬂhAcan be éliminéted»immediately for our systems since it is the
‘term for fhe'dipole interactioh and averages to zero under conditions of
rapid molecular collisions. The squared term in l& is the orbital term
which was discussgd byRamséerL in the calculation of the chemical shift.
'.The last ﬁerms in this Hamiltonian are, respectivelyj the electrostatic
potentiél energy, electron orbital-orbital, spin-orbitai, spin-spin and
{'ispin-external fieldjinteractions. None»of-these latter terms enter into
this discﬁséion since ncne 6f them involve the nuclear spin vectors, I
;The two terms;-}g and }% are the terms fo;:thg magnetic interactions
}between the nuclear and electroﬁic spins{ ﬂé éorresponds to the classical
';magnetié'inéeractionAenergy of two magneﬁic momentg; EB is the hyperfiné
struétﬁre ihteraétion or Fermi contact term.
'The indirect nuclear coupling energieé-are founa by'tieating the
b-parté of’fﬁe Hamiltonian which depend on EN’ the nuclearvspin vector, as
v aﬁpertﬁrbation on the remainder. It is necessary to carfy the perﬁurba—_
E tion calculation to second order since all first ordef ﬁerms_vanish for
.molecules in singlet groundlstates (no fesultant angular momentum). -
In‘most cases the largest contribution comes from the contact term
‘3i3‘since this corresponds to the electrons béing-closest to the nucleus.
.Letting E(S) represent the energy of interaction between nuclei N and N',

NK{I
the second order perturbation energy is:
OlH, n)(n|H, |o
CIERENREY

I R N O

3
I

o fvSubstitutihg the value of l%, separating out.the NN' terms and multiplying
by a factor of 2 to account for the terms in which N occurs in the first |

matrix element and N! in the second and vice versa, we finally obtain:

n
[

e v oy
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£(3) [16mBRR . — ~=
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n o

Since the sum is not over the nuclei, the nuclear spin vectors can be
_ taken outside the summetion giving:

<018(r-m)sk|n><n16(r'5Iq;>§Q§O>

(5) 157;_54& / .
& N 7N' N nkj E -}

: n o
i The numerator under the sum is a second rank tensor with principle axes

" in the molecule. In a liquid it can be replaced by its rotational average

which gives

(3) <O‘5(i_’s_n_ n>-<nl_8(m,)8_j_10> -
N\T' B Bh ( / 'YN”’N'nﬁJ O — X IN "Iy
L T n ol .

The above expression is the one which should be used for accurate calcula-

tions of the coupling constant J however it requires a knowledge of

l\’Nr}

- the wave functions of the excited state. . Therefore it is necessary to make

the so called average energy or closure approximation in which the operator

,n)(n]

TR is replaced by the constant === , where A E has the meaning
n "o ~

1
N
of an average excitation energy of the molecule. The closure approxima-
“tion is correct ifvthe contribution of one partieular state %o the above

sum far exceeds that of all the other states, for instance if this state
Cis abnorﬁally close to the ground state., In the general case it is little
more than a shorthand notatlon, used because of lack of knowledge or

excited shate wave functlons. Us1ng»th1s approx1matlon the equation forﬁv

the coupling constant becomes

p—————————. 1, )
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and evaluation of the matrix element requires only a knowledge of the
wave fﬁnction for the ground electronic state.

Thé perturbation energy due to the direct magnetic dipole interaction

- - between electronic and nuclear spins, l%, can be treated in an analogous

, manner.‘_The contribution to the spin coupling constant is

| (2) 2 V.. v 1 38 Ty T _Slz -
| NN' = .<"3T1X28h VNVN'nio E_-E_ O} 5 B e
o . L . kN kN .
X, ' .
S.+ Tet)ros S, .
e 5(_; rJNr)rJNr J S
ni = - —5= |0 o (11)
¥ S Tawe ‘

tAg;in‘using the:closure relation this reduceé té a term éontaining ——%57 .
AN

It is also poss;ble to obtain cross terms in.}% and.l% which are bilinear

in the nuciear spin vectors, however Ramsey showed these averaged to zero

" for liquids. |

The remaining contributions to>the total spin coupling constant

:JNN' arise from the interaction of the orbiﬁal electrohic currents with

" the nuclear magnetic momeﬁts. This can‘be thouéht of_in classical

terms, for each nuclear magnetic momént will_inducé certain currents iﬁ

‘the molecule, wﬁich in turn will set up a secondary magnetic.field- |

- experienced by othef'ﬁuclei. ,In general this confributioﬁ will not

.average to zero over-rotatiéns.r' |

v’ There are two tefms i#.£he'éxpanaed Hamiltoniéﬁ; Ml’ which involve

nuclear spins. These are
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The‘tezmllg.> is already bilinear in I and the corresponding nuclear
§ . - .

couﬁling is simply (9%1&%?0[95) where 95 is the ground state wave function
fOr‘the molecule. Although this is a first order term, it is very small.

This is essentilally due to the fact that it is a sum of one electron

_)< <)

D
XN kN'

. operators

N

" so that when the first factor is relatively large, the kth electron being

"near the nuclear moment IN’ the second term is necessarily small.

The other term,,lgP), is treated by second order perturbation theory . .
in the same manner we treated MQ and.ﬁg. The contrlbutlon to JNV' from:ﬂi
are then . b L SR o .
22 Txn - T o |
(1a) L e%H — _ o
2me o .

3 .5
ey T



a tion to J

"1 trons oﬁ a hydrogen atom are wellfrepresented by a ls type orbital,

~1]-

(lb)  8 | 1

| o . o
(o By
x <o] —2 o) (15)
' 5 '3 . '
v T

In order to evaluate the relative importance of the above contribu-

tions to the nuclear spin coupling constant, Ramsey‘6 made a calculation of

J.e Using the closure approximation and the James-Coolidge wave function

Im .
for the hydrogen molecule, he obtained

[3) _55.8
D - JAND

where AE is in Rydberg units. It is difficult tb_estimate a_géod value

I

for AE, however based on available data he used AE = 1.4 Ry as a reason-

} : N .
able value. This gives Jég) = 4O cps; the best experimental value is

43,5 cps indicating that the contact term accounts for the main contribu-

HD" Ramsey also made estimates of the other contributions aﬁd
concluded that JHD'was approximate;y 3 cps and that the orbital contribu-

tions were probably less than.0.5 cps. Based on these conclusions; later

work has considered only the contact term when attempts were made to
calculate coupling constants, as will be seen below.
It seems reasonable to assume that Fepmiftype'coupling contributes

the major portion.pf the coupling constant between protons in 6ther mole-

" cules where there is no direct bond. This is primaerily because the elec-

s

4
H

" whereas the other spin coupling terms of the Hemiltonian depend on the

pxesénce of angular dependent atomic orbitals. It should be possible,

" therefore, to interpret the observations on proton-proton couplings in
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)sk . sJ_ 0)

terms of the ma?rix element from Eg. (10)‘(0 k% B(fEE) S(fiﬁ'
together with a valﬁe of the mean triplet excitation energy AE. _ However,
to use Eq. (10) in the calculation of spin coupling constants, it is
'lneceésary to know the ground state electronic wave functions. Theories
uéing both moléculaf-ofbital and valence-bond wave functicns have been‘
‘édvénced for this purpose.. |

- The method of moleculai orbitéls was first used by McConnell8 to
calculafe spin coupiing constants. _In principle, the ﬁethod of molecular
orbitals is an extension to molgcules of the selffconsiStent field

method for atoms. Insteadrof a -central seif—consistent_field as in atoms,

fa self-consistent field is sought that has the symmetry of the moiecﬁle.
 vIn practice this is too difficuit, and the usual précedure is to repre;

_ sen{ each molecular orbital as a linear combination of atomic orbitals
;(LCAO); In the ground staté(of a dlamagnetic molecule is it assumed that
'jp orthogoﬁal orbitals, Y., .;. éb, are available to contain 2p electrons.

If we take the spin into account, a Slater determinant 96 can be con-
structed from the 2p one-eleciron states.

; Using the LCAO-MO's and assuming that tﬁe values of all atomic or-._

‘bitals, except local ls orbitals, were negligible at the protons,

. McConnell obtained the following formula for the coupling constant:

2 2 A - ’ |
. _ 168°vn .
'Awhere ' '
Ty =22 Coy Coye

and (0) ‘is the value of a hydrogen ls A0 at its center and Cqyp 15 the
LCAQ coefficient of the ofbitai centered on proton N. McConnell's

calculations predicted coupling constants to be positive (neglecting



configuration interaction) whereas experimentally they have been found

to have either sign.

9-11

Valence-~bond wave'functions were used‘by Karplus et al. for

the calculation of proton spin coupling constants. They also used only

the Fermi interaction term of Ramsey's Hamiltoniah, Eq. (10) and obtained

the following expression for J..,

-L6 ¢cC .
_3%10 L I’m -

In this equation the complete wave function is written

v =‘§ Czyz

where Yﬁ denotes the functions for the canonical vaience-bond struc-
[ .

tures; n, i(f,m) and f(f,m,PNN,) are quantities occurring in the evalua-

; .

.tioﬁ of matrix elements'betwéen the valence-~-bond functions Yz and Yﬁ.

This approach predicted a coupling constant of 10.4 cps for methane
while the experimental value is now considered to be -12.4 cps. The theory

has been more successful in accounting for the dependence of protons in

- vieinal groups of ethanes and ethylenes upon the azimuthal angle between

. the C-H bonds.ll

Recently molecular orbital calculations for spin coupling between

"geminal hydrogen atoms have been published by Pople and Bothner--By.12
“For this calculation, eléectrons are treated independently and assigned

to molecular orbitals, 9&, with energies €. ‘The molecular orbitals

are'approximated by linear combinations of valence atomic orbitals (LCAG),

_The nucléar spin cbuplihg constant is_calculated, as usual, by consider-
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ing only the contact interaction and using perturbation theory. TFor

" protons the spin coupling constent is given by

2 L,
T = B48/3)7 5, (0) I o
: where: .
hocc unoce Cih Cih’ th thi
Tt =42 2 €, - €
P) s : 3 i ’
ioJ i i

; and sh(O) is the ﬁagnitude of a hydrogeﬁ 1s orbital at the nucleus. The_r'
agreement with experimental values for geminal coupling constants is
- more satisfactory than previous treatments.

Barfieldl8 has recently calculated long-range coupling cdnstanfs
over four bonds iﬁ both saturated and unsaturated systehs. He used
val%nce-?ond wave functions after the maﬁner of Karplus et al., and
K obtéined reasonably good agreement with unsaturated molecules, where 2
considerable amount of data is available. The method essentially'con-
siders the long range system as two coupling vicinal systems freatea
‘in the manner of Karplus.ll However, to improve the correlation with
experimentai data, Barfield used semiempirical exchange integrals derived
"frbm e#perimental data on the parent molecules, ethane and ethylene.
Using this information, he then plotted the variation of the long-range
coupling constant as a function of each of the dihedral angles of the

C-H bonds with the skeletal C-C-C plane. As mentioned in the introduc-

P
i

tion, it was not possible for Barfield to compare his theory with data

from éatuiated systems, because the only data availlable for such systemé'

- was for highly substituted and/or strained molecules. ‘ R 8!



B. ‘"Analysis of High-Resolution NMR Spectra

An NMR’speqtrum.ariseé from rf radiation induced transitions betweén
stationary state enefgy levéls of the system under consideration. The
jcalculation of the enérgy levelsvand the dérivation of the spectroscopic:
:selection rules are calcﬁlaﬁed from the Hamiltonian (18) which is based

on Ramsey's Hamiltonian discussed above.

=3 +3 | | o T a8)
where : 1 : . | . '
W = R Iz(l) - (19) -
and’ . . | .
W= 33, I(3) 1) - (20)
i< - |

The complete Hamiltonian ¥ is the sum of the two terms X and H'. The

term EHO gives the sum of the -magnetic interactions of all nuclei with
the_externaily applied field, and §' gives_the sum of the spin-spin
‘interactions:of all pairs of nuclei, which is the main topic of this
diségssion. In the‘above equations,vyi is the gyromagnetic fatio'of
nucleus i, Hi is the stationary magneﬁic field acting at nucleus i, and
A:Iz(i) is the component. of the spin angular momentum vector of i along
- the stationary field which is faken to be in the regative é direction.
Jij is the spin-spin coupling constant beﬁween nuclel i and j. The spin.
angular momentum vector of ﬁucleus i is I(4). . It is convention to
express all’energieé in cps for‘convenience iﬁ comparison with experimentél
data. Thué in the above expression, all sﬁins I(i) are in units of -
making'thé quanﬁi@ieszz{i) and.Iz<i) diménsionless_and the Jij in cps.

The analysis'of‘an'NMR speétrum‘involves the calculation of the

transition frequencies and intensities by diagonalizing the matrix of
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this Hamiltonian in fhe manner shown below. The best available method
-of accomplishing the analysis éf complex spectra with an iterative computer
method, NMRIT, will then be described. Finally the methods which have
 been developed in this research, to extend the analysis to systems of '
higher complexity than has been feasibie, will be discussed.
Thié discussion will consider only nuclei with spin 1/2. For a

.systém containing p magnétic nuclel there.is a total of>2p-possible

sfétes. Thé simplest set of functioﬁs which describes thé system is

the 2p basis product spin functions, such as

v =a(1)8(2) ... B(p) : . (21)

i
"where ¢ is the wave fUnctibn for the state IZ‘= % and B for the state
I, = - % This product function will be written in the usual manner as
aﬁ;..ﬁ, where the symbols are in special‘order; i.e. the ith symbol
applies to the ith nucleus. If the nuclel were actually independent, .
‘ these basic spin functions would themselves be stationary-state wave
'functionsriﬁ the presence of the external magnetic field. However, the
spin-interaction Hamiltonian.}b may'cause mixing between different basic
functions, considerably complicating the calculation. In order to
diagonalize the matrix of the comélete Hamiltonian (18) we construct
“linear combinations.of the orthogoﬂal basic functions. The corresponding

energies are obtained by solving the secular equation
H - E | -0 ' (22)
o ™ PO |

2
s

This eqﬁatipn is of order 2° but can be greatly simplified by factoriné:
into a number of equations of lower order. This can always be done by

classifying the basis functions according to the expectation value of



‘of the Paull spin matrices (23)
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the total spin component in the z direction, MZ ='Z Iz(i). It is possible
. : i

to show7 that there are no off-diagonal matrix elements of the Hamiltonian

between basis functions corresponding to different values of Mz since

'the operator Mz commutes with the Hamiltonian.

Additional simplification occurs 1f more than one species of nuclel

"1s involved. This is an approximation to the order that the coupling
_constant, J, is small (a few cps) compared to the difference in resonance

" frequencies, several megacps. This approximation is best when nuclei

are different elements bub it is also géod if the chemical shift is large

_ compared to J.

The matrix elements of the total Hamiltonian (18) can now be evalugted'

between basic product functions corresponding to the same value of M7..

Because each basic product function, Qh, 1s an eigenfunction of each

“term in the external-field Hamiltonian (19), we have only diagonal elements

1

' ”L’which.are easily evaluated by replacing Ié(i) in (19) by % 5 corresponding
~ to its spin function & or B. Thus, for two nuclei, the diagonal element

. of (19) for the function 0B, is E%— (lel - yéﬁé).

The spin coupling Hamiltonian (20) has both on- and off-diagonal

" matrix elements. The diagonal element of a term such as Jis I(1)-1(2)

* depends only on whether the spin functions associated with nuclei 1 and
2 in Ym are oo, OB, B, or BB since integration over the remaining spins.

~yields unity. Integration of the above term is carried out by writing

<

the vector.product in component form and using the appropriate components

' 1 1/04\ L. - 1/1 o\ ]
I = §< _ §,<-i o) L= 2'<o -1) ' (@3

. Thus, for the example above "
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(¥

m

1) = @8l 10 “x(2)]em)

e

T LEIL I EIT ) + @l )@l o) + @1l (elT,lp)

3
= - 1/h 0y, (ak)
The general expression for the diagonal element is given by "
(@ Hlv)y=2 5 7.1 | ’
™ m/ ~ I ij "ij (25)

1
where Tij is 1 or -1 depending on whether spins i and J are parallel or

antiparallel in iﬁ.

The off-disgonal elements are ¢alculated in a similar manner. Again
using the term J,, I(1)-I(2), the matrix element between two different
basic product functions ?ﬁ and 95 will be zero unless the spin functions

for all the nuclei except 1 and 2 ave identical in both ¥ and ¥. In

addition, the only possibility to be considered is the interchange of
o for e, dve to the festriction of considéring only.elements'between
functions with the same Mz' Hence, +the off-diagonal matrix elemeﬁt is - ]
given by

(g X1 ) = (o8l ,I(1). I(2) |gar)

Tl @lTe) el o) + @I l8)elT lo) + (@] 1,88l T, lor)

i, - - (26)

The general expression for off-diagonal terms-in (19) is | .

(leﬂ'lwn:%mij,‘m;én“ o S (7).

where U = 1 if Yh differs from Yh by one interchange of spins'i and j

and is zero otherwise.

We.now have all the matrix elements of Emn and can obtain the
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eigenvalues by solution of (22). The corresponding stationary state wave
functions can be found as linear combinations of the basic product

functions

cbqe Za ¥ g =1,2...2° (28)
. m

where the coefficients N satisfy the following set of equations which

determine the relative values of aqm.

»

s H =E a . | , (29)

a
n ™oan g gm

X

Since (28) should also be normalized the coefficients also must satisfy.

s =1 | O (30)

a a
p am Tam

The probability P(m-n) (in sec—l) that a nuclear system undergoes

thébtransition m-n (i.e.,@%.—aQE) is given by the relation

P(m »n) = §§§ (Mﬁ)ian ' (31)
where
M_o=#83yT (i) " (32)
_and
() = (e v e ) o (33)

In (31), e, is thé energy dengity ber wnit frequency'rgnge arising from
the oscillatory rf field in the x-direction.

In Eq. (31) the operator Ix(i) will ha&e a matrix element only
between pwo basic products which differ only in the spin of nucleus 1.
This means that the total matrix element in Eq. (31) will be non~vanishiﬁé
only between states which hafe valﬁes of the total spin component Mz ,

differing by *1l. In addition, if several species of nuclel are involved,



20-

both the states m and m' correspond to definite values of the separate
spin componénts of each species Mi(X), MZ(Y), ... to a good approximation.
Only the terms involving X nuclei in Eq. (31) will contribute to the

intensity of an X transition in proportion to

-~

};{:Ix(i>}q'> °

"_ whgre tﬁe éum'is ohly over nuclei of tjpe X.

If the molecule possesses elements of symmefry, further simplifica-
tion is possible. This approach was firéﬁ proposed by McConnell, McLean,
~ and Re.illygl‘L and later discussed by Wilson.25 It is often the case thaﬁ
- unperturbed states which woﬁld otherwise interact are forbidden by

. symmetry conditions to do so. In symmetfical molecules some of the

. couﬁling constants, J, will be equal. The Hami;tonian must remain un-
“.valtéred'when a permutation of equivalent nuclel is carried out which is
eqﬁivalent to one of the point group symmetry operations of the molecule.

| The wave functioﬁs must then conform to the groﬁp theory restrictions
‘i that each function or‘set of degeneraté functions must transform in the

¢ same way as one of the symmetry species‘of the point group. 'States which .
belong to different symmetry speciles caﬁﬁot interact.with each other.

To determine the‘species which are represénted by . the unéerturbed
wave functions we consider sepérately each set, X, of symmet:icall&
eguivalent nuclei aﬂd each value of Mz f@r,that set of nucléi. The
"spin‘produét functidné can be set ué, and if necessary, can be further
divided‘iﬁté equi&alent sets, such that the product functions of one
 set are éll obtdinaﬁle by‘éperating oﬁ any one memﬁer with the permu-
,tations‘bf the moiecule. 'Thus they will form the basis for a represen-

tation of the point group. This representation can be reduced to
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1rrecucible representatlons us1ng the character, Xi;ffor the‘setnof wave

‘functlons, ¢, and each permutatlon operatlon, P. :(Alternatively, the'

"#;f y.:,L‘prepresentatlons of the space group can be used for clearer plctorlal value. ) ‘ .ft

;; are not changed by P,

T The simole case of two equivalent nuclei'Will.beVgiVen here as an~ | -

"lexample,. systems w1th moxre splns w1ll be treated as they arise in Sec. IV;;“

“'Jwe can take the s1mple spln product functlons as a set of baszs fUnctlons_

-4for a group and cla551fy them accordlng to thelr total Spln component M .f

oHowever, these basxc product functlons will not necessarlly belong to the e

',1rreduc1ble representatlons of the symmetry grouo.’ It is always poss,ale,

) ?however, to construct a new set of basic- functions whlch do belong to

! .
'~¢;1rreduc1ble representations by taking llnear comblnatlons of the s1mple

:produht functlons. Such a set is called the bas1c symmetry functlons.

5:}For the set of two nuclel the functlons oo and BB are symmetrlcal unaer

'1nterchange. However, the palr ae and ea must be replaced by the normallzed

—1/2

VJ;pair 2 l/ (aﬁ + pa) and 2 (0B - 5&), which are now symmetrical and entl-.ihv

?;symmetrlcal respectlvely The bas1c symmetry functlons for thls case are '*5»a~';*}

‘”Qy_shown below w1th their notatlon de51gnated.;

" Designation & .0

'Spin‘Function,f‘ 3{3ffspin Componenthp o

ST ,

e’ . .

B R oo
B

(aa+ aa) {‘:‘
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The symbols s and a are used for symmetrical and antisymmetrical respec-

tively with subscripts indicating the value of M,

Use of basic symmetry functions greatly reduces the ordef of the
secular determinants to be solved and also results in additional selec-
tion rules for tﬁe transitions. This arises because there are no matrix

elements of the Hamiltonian between functions belongLng to different

~irreducible representations. This is because the Hamiltonian is totélly

symmetric with respect to permutations of equivalent nuclei. Thus
the basic functions can be divided into classes according to their
values of M and their symmetries.

In addition, Mk; the x-component of the nuclear moment, Eq. (32),

is also a totally symmetric operator with respect to permutaﬁions, SO

'f_that it will have no matrix elements between functions of different

symmetry. As a result, transitions between states of different symmetry
are forbidden, resulting in a very considerable reduction in the number
of lines in a molecule where symmetry exists.

Only the simplest eéses are solved by direct application of the

7

above methods' because of the difficulty or impossibility bf obtaining

closed solufions_for matrices of order higher than two. Castellano and

30

Waugh solved the general three spin case by use of a set of complicated

algebraic equations which indicate that the method is unlikely to be

::used for systems w1th a greater number of spmns. Théy were able to

show that for the ABC case, there are four sets of parameters which are

entlrely consistent if only frequency sum rules are applied, and thut

it is necessary to resort to 1ntens1ty 1nformatlon to decide whlch'of'

these 1s the correct answer. Whitman 9,has also obtained some expressions

for the direct analysis of certain special cases of up to four spins.

H
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In generai, hoﬁéver, it is necessary to résort to numerical méthod822—25
for systems.of any éomplekity. One widely used'methoﬁ, which is uséd in
this inveStigation is that of Swalen and .'Reilly‘g)+ (S and R).

The S anq R method utilizes twoicoﬁputer programs (NMRIT).and (KWEEN)_
'to.anélyze the sﬁectfum in three‘steps; NMﬁIT 1s an iterative program 
.f'and.the number of itérétions used will bé designated in parentheses aftér_
the name, e.g. NMRIT(N). |

The analysis is performed:by first-esfiméting:a trial set of NMR
.parameters (chemicél shifts and coupling constants) for the system. These
valuéslare uséd by’NMRIT(O) to generate the ma%rix elements of thé high;
.resolution Hamiltoﬁian, Eg. (18), and then to diagonalize this Hamiltonian,
o using two by two rotations in the cémputer,.to‘dbtéin‘the energy levels.

.
l

Thevdiagonalization can be written as
-1 : . : : |
sTHs =4 o (3k)

where Sis a transfdrmation matrix, the columns of which represent the

" -eigenvectors, and.é.is a diagonal matrix of the eigenvélues. The diégonél_
elements of A are the spin energy levels. NMRIT(O) then computes the
.fépectrum which corresponds to these parameters, using all the selection
rules, and pfints out a listing of the transitions, frequgncies and iﬁ-
tensities of the éalculated lines. = The estimafion of the parameters is,
of course, a criticél part-ofvsuch an analysis. If it is not ?osSiblg

50

- to make close estimates{ pérhaps basedloh moment'calculations, obser-
f~vatioﬁs of separatiohé in fhe speétrﬁm, or from simiiar knbwn sysfems,'j;
'L it is difficuit to obtain a caiculated‘spectrum whicﬁ resembles the

PR

experimental one. Current procedure is to continue guessing at these

.parameters,'usinglall poséible intuition, until a reasonable fit to the
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observed spectrum is made. : -
ter a feésonaﬁle resemblance to ﬁhe experimental spectrum is
found, the second phase is begun. Here_it is necessary to build up an
energy level diagram based on the transitions caléulated by NMRIT(O). -
The experimentél lines are matched.as well as possible to the freguencies
‘ calcuiated by NMRIT(O) and assigned to the corresponding transitions. If .
it is possiblérto identify enough of these transitions so allvthe energy
levels are connected at least once, these assignments are used by NMREN
to calculate the best least séuares it to all the energy levels.‘ These

"calculated energy levels are now called the "experimental" energy levels.

The experimental energy levels, together with the original estimates

.. of the parameters are then used as input to NMRIT(N). NMRIT(N) then

calgulates ﬁhe ehergy levels correspohdiﬂg to_the estimated parameters,
andicompares them to the experimental values. . If the fit is hot‘good it
‘ tﬁen chénges the paraﬁeters and recaiculétés the energy levels corre-
sponding to the new sef; In this way it iterates the procedure until it
converges on a bestvsolution for the given set of experimentél energy
- levels. One fhen comparés the final calculated values for line positions
vwifh the experimeptal spectrum aﬁd if the match is notAsufficiently good,
the linéé are reassigned, put back through the NMREN calculation,and the
'proceduie repeated until the calculated and experimental spectra match
- satisfactorily.. It may be seen ﬁhat this method begomes difficﬁlt, .
especially for complicated systems where all the lines are not resolved. |
It is alsé'possible_that more than one set of trial-ﬁarameter ;;
- estimates in NMRIT(0O) may give a fit‘whichvis close enéugh to allow a -
tentatiye gssignment. vFor‘example, in many systems, changing the

relative signs of small coupling constants has a very subtle effect on
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“the spectrum. Small lines may merely be perﬁuted within a group of
partially resoived lines and/or intensities of small pezks may cﬂange
| slightly.l It is necessary to either eliminate some of these possibilities
or to éarry all of them through NMREN and pérhaps NMRIT(N). The usual
procedure ié %o reject assignments whiéh are significantly poorer than
_‘the best assignment, on the basis of_frequehcy information alone. (It
A:might be menéioned here that the S and R method does not utiliie intensity -
:information since this is not generall& known nearly as well as frequencies.)
:'If mofe than one assignment is good afte: the NMRIT(N) step,vintensities
of the peaks are used to méke‘the choicé'of the best solution.
From thevabove discussion it is obvious that some severe limitétions
 exis£ fdf the itefative‘method as currently practiced. The experimental
spéctrum must be well endugh resolved so that a majority of the lines ‘
ma& be assigned to the calculated spectrum. Sécondiy, oﬁe must be able ‘ i
 to estimate tﬂe parameters close enough so that‘the calculated spectrum .
at least resembles the‘experimental oné. While a large amount of infor-

‘j: mation is available on trends of these parametersvwith molecular structure,
._the.uﬁusual situations are precisely the ones of interest in many ins%ances.
' A case in point is thg simple four-membered ring compounds which have

nof been analyzed until the.present time. Another poésible difficulty

" is that the method may not converge to a'unique solufion to the problem.

.~ The tacit assumption has been made that the systems are so complex that

—1if one fihds a set of parameters which describe the experimental spectrum
qlosely,?one considers the problem solved.
Our interest in the hitherto unanalyzed_ciass_of four-membered

ring compounds and the above limitations of the best available method . S

. of solving the problem has led us to develop more powerful methods to.
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assiét in the analysis.of NMR gpectra. A better method than visﬁél
estimations of'line positions and intensities was needed to enable the
idehtification of more lines in these highly mixed spectra.. Accordingly,
DECOMP, a computer methed of resolving overlapping NMR spectral lines,
was developed.and found extremely useful for these analyses and promises
to be useful in the analysis of meny similaf spectra. This method will
be described in the next section. o

The use of DECOMP was successful enough in resolving spectral lines
- so that another compﬁter program, ASSIGN, was written to find all pOssibler
sets of energy levels from the experimentally determined lines,‘using
frequency and intensity sum rules. This program will be described in

- the section following DECOMP.

-
i

‘C. Spectral Decomposition

;1 Generally,.when an'absorption spectrum consists of unresolved peaks,.
visual estimates of the total nuwber of peaks and thelr positions and
intensities are made usihg those maxima, minima and inflection peints
which are visually observable. Only a very small part of the information_
‘available in the recorded spectrum is utilized in this procedure. In
fact, the intensity at all points on The aﬁécissa provides information.

* By using all of tﬁié.data faf more information céh be ‘extracted from
- the spectrum than‘ié possible b& the usual visual procedure. Mathe-
matical methods for improving the resolution of overlappling spectral

52

lines have been reported -5k but do not appear to have been m1de]y ueeﬁ_
One way of mathemaulcally 1mprov1ng resoluulon is to consider an

'unresolved group as a superposition of peaks of the same general type,

.e.g., Lorentzian, and to minimize a least-squares fit of the experimental
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speptruM'with respect to the parameters: infensity, half—widtﬁ and
Aposifion re@uired to describe thé.peaks. In the case of NMR, overlapping.
absorption lines are caused Ey similar nuclei having similarnfelaxation
times, i.e., half-widths. In order to reduce the parameters reguired

© for h peaks from Bn.to-Eﬁ + 1, the half—widths are assumed to be egual..
This assumption is not necessary, of course, and>if in fact the individual
line'shapes do turn oﬁt to be substantially differenﬁ,va minor modifica-
> tion of'ﬁhe program would allow all 3n variables to be used.

" The experimentai spectrum, G(v)z is assumed to consist'of é super-

» position of lines having the same form

i

n o _ .
Gv) = = I, flavg, v-vl) - - (35)

i=1
_'Qhe;e f(ANi, v—vi) is a shape function of half width Ayi and centered
at ; = v;, Ii is the intensity of the 1B peak, aﬁd n is the number of‘
peaks in the multiplet. As stated abbve all of the half widths are
assumed equal. Hence Av, = Av. o |
The function to be minimized,»F, is a least-squares difference
function which is a m;ésure of the fit of the exﬁerimental dafa Witﬁ
the curve calculated from Eq. (1). - |
» o m n L 5 o
F(Ii""In’lyi""vn’Ay> = 3 [?i~‘2 ij(ij ti—vg)] (36)
: i=1 j=1 “ ‘ :

‘where m is the number of data éoints taken over the multiplet,'and Pi
and'ti are the.ordinant and abscissa of'thg ith data point.

' The Qalue of F after it has been minimized is a measure of the fif,ﬁ”
For a given numEer of variables this minimum vélue will be referred to
'-as the error functibn.

Numerous computer programs are available for the minimization of
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a function‘of a large number of variables. Qne of these which appears

- to converge répidly was chosen. This program was adaﬁted to minimize the
 function given in Eq. (35). Mathematical details of the minimization

program are aveilable élsex&here.55 |

In actual spectra theré exists an additional problem besides that
of noise. Although under ideal experimental conditions it is possible to
obtain alspeqtrum which consists of nearly perfect Lorentzign lines, it
is very difficult to establish and maintaih such conditions over long
periods of time. It is relatively.easy, however, to obtain high resolu-
'tion curves which have a slightly skewed Lorentz-like shape. In many
.cases’these peaks are sufficiently Lorentzian to be fit well as;uming a
Loren?zian shape function. In general a slight deviation from the ideal
shape%does not substantially change line positions but can have a serious
inflﬁénéé on the intensities of the peaks. For this reason a "digital
shape function”, reflecting the actual spectroﬁeter conditions at the time
the spectrum is recorded, has also been uéeda Considerable improvement
in the fit to spectra consisfing.of skewed Lorentz-like peaks 1s thus
obtained.

DECOMP will fit spectra witﬁ either a Lorentz function or a standard
digital function. If the Iorentz function is desired; T2, the spiﬁ relaxation
time reiated to the half-width is read in as a'parameter.‘ To use a digital
funetion T? is set egual to zero and introduces the s et of points which

?

represent the standard digital shape function. (Details are explained in °
Appendix B): ~The data points for this standard peak are then treated as £
& "continuous" function by linear interpolation between points. The Lo

‘appropriate partial derivatives are calculaﬁed by TABLED so that the

- Tit can be minimized in an exactly analogous manner to that using an
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analytical expression. For the digital shape function, only two parameters,
peak positioﬁ and intensity, are needed for each peak in the superposition.
Since the use of DECOMP is greaﬁly facilitated by visual comparison

of the fit to the observed data points, a description and 'Fortran IV listing

'of a plotting program PLOT is given in Appendix C. PLOT provides the option

of plotting peaks as Lorentzian or digital shaped peaks and can be used as a
guide, although details will vary at different compuﬁe} installations.

In practice, the spectra are decomposed in the followihg manner. A
spectfum of an unresoived group ﬁith good signal-to-noise ratio is digitized

by one of various means. A single peak in the spectrum is selected and

~digitized for use as the standard shape function. Points of the standard

peak are taken such that a linear interpolation can be used between adjacent

poinfs_to provide a "continuous" curve. Although this standard peak need

not belong'to.thg compound under investigation, bettér resulis have been

- obtained when such a peak was selected. ZIstimates are made of frequencies

and intensities for those peaks which are at-all visually discernible. These

data are fed into a computer and the difference function is minimized. A

. theoretical spectrum is then calculated using the calculated frequencies and |

intensities, and this spectrum is plotted along with the experimental points.

In the frequency regions where the fit is poor, estimated lines are ddded.

' .+ The original results along with the additional estimates are then fed back
into the computer for another minimization of +the difference function, this
time with more arbitrary parameters. This process is continued until a

 sufficiently good fit is 6btainéd.

As one adds more and more peaks, the fit continues to improve
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indefinitely, and it might appear difficult to determine the actual number
of peaks in a éroup._ In practice, this problem resolves itself very
nicely. When DECdMP is allowed too many peaks to fit the observed
spectrum, one of the following three types of spurious resultis occﬁr.
The additionai peak can be used to fit noise; this manifests itself iﬁ
a small intensity for the additional peak which is of the order of
»_magﬁitude of the noise. Conseguently the addition of this peak does not
: improve the resulting error function by a reasonable percentage. ter-
| natively, the additional peak can be used to correct a line which is
too broad or too narrow.. If the line.is too broad, the additional
line will appear, with comparable intensity, very close to an already
existing line. = If the line is narrower thgn the standafd line the
.eﬁtra line will appear véry close to an.alread& existing line, but with
Tneéative in%ensity. Finally, the additional peak can be wasted bj
assigning two lines immediateiy on top of each other with the algebraic
sum of their intensities equal to the true intensity. |

An example of the method is shown in Figs. 1-4. The decomposition
of the same group of twelve peaks from two different spegtra using a
digital shape function is shown in Figs. 1 and 2. The same two groups
decomposed with a Lorentz function are shown invFigs. 3 and 4. In
Athelfigures, the dots are the original‘data points taken from the
experimental spectrum, the vérticai lines are the decomposed positions
and intensities of the individual peaks, and the solid line is.the |
calcﬁlated spectrum based on the decomposed frequeﬁcies and intensitieéj
The agréement betﬁeen the calculated and experimental spectra is |
excellent. Table luéompares values of positions and intensities for

.the twelve lines among the digital and Iorentzian decompositionsvfor
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the same group of peaks taken from two different épectra obtained

under different spectrometer operating conditiéns. Spectrum 2 contained
lines which were quite skewed, and it may be seen that the agreement
between the two groups decbmposed with the digital function is good.
However, the valuesvfor intensities derived from the Iorehtzian shapes
show a‘iarger scatter. In fact it.was not possiblevto fit twelve
Lorentzian peaks to this spectrum. Several sets ofAstarting parameters
were tried, includiné the best values from the other sﬁectra, but one
peak with negative intensity was still obtained.

?he ability %o décompose an entire spectrum into.its constituent
peaks is complimentary to, aﬁd agreatly facilitates the use of Swalen
and Reilly's NMRIT. Tor example, in the sﬁectra to be discussed belqw,
| tﬁere are several groups containing twelve lines, several of which are
nét visible, even as shoulders on other peaks. ‘These lines would be
impossible to assign in the usuai application.of NMMRIT(0). (This would
not necessarily invalidate the method, however, since the energy levels
involved might be connected by other transitions.) With DECOMP it is
possible to obtain values‘for positions and intensities for almost all
the‘lings in the group. Thus far more ;ines can be assigned than would
be possible from é visual estimate, making the experimental energy
;b‘lévels mere representative of the real épectrum. Even in the worst case
only one or two cf'tﬁa lines in a group would.not be identified.  Con-
versely, NMRIT(O) can hélp in the decoméoéition_of a spectrum by showing -
how méni lines bf appreciable intensity arebtb be expected in a given ?
region'§f the spectrum,.if‘the estimated parameters are close enough !

to the true values. The application of these methods will be discussed

in more detail in the specific cases covered in Section IV.

‘&
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D. Spectral Assignment®

.

‘Once the frequencies énd intensities of all lines in an NMR spectrum
are known, there remains the problem of building consistent sets of spin
energy levels which account for the experimental frequencies and intensi-
ties. .As discussed above, when using the S and R method of analysis it is
necessary to_continue"guessing perameters until the calculated spectrum
is close enough to the experimental spectrum to allow the assignment of
pairs bf energy levels to observed transitions. ZEven thougﬁ all the
experiﬁental lines wefelknown from DECOMP, the use of this method requires 
estimation of the parameters close enough to the real values so-all the
line positions and intensitles correspond close enough for identification.

A less subjecfive method is to assign these experimenﬁal’lines

i : .

acco?ding to freguency and intensity sum rules with the aid of a computer.

i
$

A.coﬁputer program, ASSIGN, has been written to accomplish this task for
any system of spins by use of_a computational algorithm which is part of
the input data for_the pr&blem, In the following discussion of ASSIGN,
":upper and lower energy.levels'refer torthe vosition of the eneréy level in
the energy level diagrams, not to the actuailvalﬁe of_the energy. . The
convention within ASSIGN is that AM, = -1. Also thé word ”transitioﬁ”
will be used to denote an unknown transition between two energy levels,
and the woik "line" will be used to denote an éxperimentally determined
transition. The purpose of ASSIGN is to aésign the lines to the transitions.
In ordér:to take advantage of any information which limits the '
frequenéy.fégion in which a given transition 6ccurs, ASSIGN, allows
constraints to be placed on the ranges of lines searched for o particu-

lar type of transition. This considerably reduces the number of lines

to be searched for each assignment, and reduces the computer time con-

sidérably. For example, ih an A2B2X spectrum, only the linecs in the X
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region of the spectrum are searched for X transitions and all of ihe
A A2B2 lines need not be searched for A +transitions. Even more specif;c
-vrestrictione might be epplied with information obtained‘from order of
magnitude guesses:of the spectral papemeters, for example from NMRIT (0).
In addition, ASSIGN is completely general for any system of spin
of any symmetry.’ This generality arises from the use of a computational
algorithm, part of the inpui to ASSIGN, which guides the manner of
;assigning the lines for a given system, e.g., ABC, AEBQX; Ideally it
would be necessary to meke up the algorithm onlyﬁonee for each type of
.system? but additional information about a specific case may merit a
special‘algorithm. | |
The first step in the construcﬁion of the computationa; algoritﬁm ,
.1s to work out the symmetry basis functions:for the system and to draw -
an{eﬁergy level diagfam for each symmetry group. Next, all transitione
Aare put onto the diagram and the type of nueleus associated with each
trensition is determined. For some molecules it.will be strongly sus-
pected that some transitions will have vanishingly small intensities.
If this is so, these transitions can be left out. The transitions are
next numbered in the order in which it is desired to assign lines to
them. This is done so as to allow the maximum number of checks against

2k,26,30,36 at the earliest possible

.'frequency and intehsity sum rules
. time in the assignment procedure. TFig. Slshows the energy level dia—
v'gram for the ABC case wifh the eﬁergy levels numbered. The transitions
are also numbered and labeled as to type. . |

~An aléorithm for the ABC case appears in Table 2. The second
column specifies the type of transition, i.e.; what range of lines -
should be tried as possible assiéﬁments for the transition. The next

two columnsgive the upper and lower energy levels for each transition.

Minus signs are attached to an energy level number after all transitions
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to and from that energy level have appeared in the algorithm. This in-
dicates that an intensity check for that energy level is to be made after
” a line is assigned to that particular transition. The frequency check
column contains a 1 when the transition under consideration completes

a frequency sum rule "loop", and a check of this loop is to be made.

- In order to use the intensity sum rules it is necessary to normalize
the total spectral intensity to n~2n_l, where n  is the number of pro-
tons. The sum of all transition intensities from a given energy level

wilLvthen be 2m plus the sum of all transition intensities to that energy
.level, where m " 1is the Z component of the spin angular momentum
associated with that energy level. In Table 2 the sum of iﬁtensities
 column (SI) lists the value of 2m for each of the energy levels.

[ ASSIGN can best be explained by following it through the ABC case

4
given in Table 2. The first energy level is set equal to zero. As the
i

'assignmeﬁfs are made the other energy levels are calculated, by adding
thé frequency of the assigned line to the upper energy level of the
trénsition. ASSIGN iniﬁially assigns the first A line to transition 1,
the first B line to transition 2 and %hé fi?st C line to transition 3,

thus temporarily establishing E and-Eu. The intensities of each

2)E3}

of these lines are subtracted from the sum of intensity (SI) associated

17 i.e., 3.0, as they are assigned. The minus sign at the upper

energy level for transition 3 causes a check to be made to see if the

 Yith E

value of S; at El is zero to within * A, an input parameter. This cri-
vterion gssﬁres that thé_sum of the intensities of the three lines'assignéd
~is 3.0. if not;,the program negates'thellast assignmentiandicontinues

on throuéh the range of thé.type'c lines. If none of these fi%t, the

program backs up one step to the B transition and tries the next line

in the B range, and then goeé back through'the range of the C lines



-

-35-

again. This is'repeated‘until three lines are found, one from each of
the speéified fanges, which have the total intensity required by the
intensity sum rule.

Next, the fourth transition ié assigned the first unused line from

the C range, thus establishing E6. Transition 5 is assigned the first

~unused A line. This last assignment established E6 a second time and
; hence it is possible to make a frequency check around the loop of

“.transitions 1,4,3, and 5. If E6 is not the same by both paths to within |

5, another input parameter, i.e., 1 + 4 - (3 + 5)> 6 then the next un-

. used A line is assigned to transition 5. This is‘contihued until the

- sum rule is satisfied or until the A range is exhausted. If no consist-

ent assignment is found then the next‘C line is'assigned to ﬁranéition L
and the search continued. If no two lines, when assignea to transitions
L %nd 5 are consistent with the temporary &alues of E2 and Eh’ then the
program must back up further‘yet and.find another set of three lines
7hich satisfy the intensity sum rule associated with El' The program

continues in this manner until a complete set of lines is assigned. The

‘assigned transitions and energy levels are printed out and the process
'is continued until all possible sets of transitions'and energy levels

.are obtained.

All 15 lines in an ABC systen can‘be assigned to all possiblé 

arrangements, consistent with the éum rules in 0.05 minutes by an

IBM TO9L.

There are several further aspects of ASSIGN which can be quite ié

useful at certain points in a problem. It is quite possible that one - %
el > _ v

or more first order lines in the algorithm do not appear in the spectrum
due to lack or resolution or low intensity. If this occurs in the middle

of thelseqpence, no assigmment would be possible even though each of the
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‘energyvlevels ié established by several paths. There is no a priori -
way to knéw where such a line will occur so a provision is made to allow
‘the inclusion of one or more "dummy” lines which can fit by assigning a
freguency equal to the difference between the upper and lower energy
levels ;or the last frequency assignment in the loop. This line would
be assigneq én intensity of zero. For example, if two combination lines
in the ABC system discussed above were not seen, two dummy lines could
'be used‘whichvwould eventually be assighed as two of the lines 13,1h4, or
© . 15. The usé of such lines greatly increases the time required since
they have to be assigned through fhe entire scheme, if it is assumed
‘that oné has no idea where they might 5e needed. For the ABC case
cited above, the céﬁéuter time was increased from 0.05 minutes to 0.5
minutes. Clearly fof systems with a large number of spins, it is de—}'
sifable to know which trénsitions willthave_negligible intensities. -
This information can often be found by a computer_dalculation of the
' éxpected transitions for the molecule using order of magnitude guesses
for the unknown parameters.

SASSIGN can be made to converge'much more rapidly if the frequencies
of some of the transitions are kpown exactly, or éven‘within a small
range. This type of information might be obtainable from double resonance
expériments or from calculations baséd on order of magnitude guesses for
the unknown parameters. + 1s then possible to designate that +transition .
as a unigue type in the algorithm and restrict the assignment to one of-

a few lines. If several such transitibns are known end fixed in this
‘manner, a considerable reduction in time is realized. In this way,‘any:ﬁ
~knowledge about the coupling constants or chemical shifts can be used té"w

restrict the limits of search for given transitions.
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In case a molecule has transitions of several different symmetry
types, each symmetry type may be assigned separately. After one obtains
all possible assignments for the first symmetry type, one uses the same
data for the second symmetry cla;s. However, on the second run, a vector
is added which indicates the lines which have élready been assignedlin a
v previous assigament.

A simple example of a system which contains more than one symmeﬁry
'class is an A2B2 system, such as o-dichiordbenzene. The protonksystem ‘
of this molecule contains a plane of symmetry. Thus there ﬁill be'two
sets of énergy levels, one symmetric and the other antisymmetric with
respect to reflection of the spins in this plane. The basic symmetry
| functions, given in Table 3, are easily constructed by multiplying the

basﬁc symmetry functions for A2 and B, derived earlier. These basic

2

functions- are then used to make up symmetric and antisymmetric energy -

i
i

level diagrams, since no transitions are allowed between states of
ldifférent symmetry. The eﬁergy levels,.identified with the numbers of
the corresponding basis functions in Table 3, are shown in the diagram
'gf Fig.6. As a first apprbximation, it was assumed that the only lines
to be seen in the spectrum would be those which odcﬁrred as a result of
‘the change of épin of a single nuéléus (first order transitions). Al-
though it is known that combination lines, i.e., those occurring as a
result of simultaneous change or spin of mdre_fhan one nucleus, can have
a2 non-zexo intensiﬁy, this intensity is generally very low. Thé first
brder_trapsitions which were used to build up the computational aigorithﬁ
for ASSIGN are alos shown in the figure. In this case, where more than 5

.one symmetry group exists, each group can be considered as a separate

problem. The algorithms for the_AgBQ'case‘are shown in Table L.



Ordinarily the transitions are considered as going to successively
lower Mz‘levels.' When more than one energy level is in tﬁe highest MZ
~ level, one of these is used as the zero point. When the energy levels
in the next lower Mz level are established,‘two transitions back up to
the undetermined energy level at higher Mi are designated by a minus
sign bvefore the type of transition. ter this upper level is established,
. additional transitions can be designated in the usual manner. After all
the anti~symmetri¢ sets of energy levels have been determined, the
assigned lines are given values of one in the input vector and the unused
-’lines are used to find all the sets of symmetric energy levels for the
: partiCular_antiwsymmetric set.
The analysis of o-dichlorobenzene will not be discussed here since

26,27

C it hasvbeen reported in the literature. It was used as a test for

ASSION in the case of more than one symmetry group and as an example of
1 .

construction of the algorithm for such cases. - The time reguired to find

the sets of energy levels for o-dichlorobenzene was between two and three

minutes with the IBM TO09kL.

E. Additional Methods to Aid the Assignment of Spectral Lines

Inlthe ideal case, to make an assignment with ASSIGN one needs to
know a minimum of information, that is, only the general region of the
spectrum for each type of nuclear transition and the liné positions and
intensities fronm DECCMP. Unfortunately there is enough ﬁncertainty or
noise in present spectrometers so that DECOMP cannot élways locate allib
.the lineé in a complex.spectrum precisely enoﬁgh to allow ASSICGN to
automatically mske all assignment;. If the uncértainty limits are sét
tod narfpw in'ASSIGN, it.is possible to miss the correct assignﬁent due '%

to a bad value for a line positicn or intensity, or to get no assignments
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at all. If.the limité are too wide toc many dssignments are obtained.

The two. five spin systems which will be discussed in detail below,
were difficult to assign for two reasons, both resulting from experimental
limitations. The spectrum of one compound was decomposed quite satis-
factofily, howe&er many of the peaks which were close together alsé had
fery similar intensities. This meant ‘that with reasonable uncertaintyv
limifs the number of possibilities was so large that the time required
to make the assignmentS‘greatiy increased.. On the other hand, the
spectrﬁm of the second compound contained peaks with greater intensity
diffe:ences, but a number of small peaks located befweenvtwo or more

large peaks made the decomposition more &ifficult. These situations

'-_may exist in any complex spectrum, of course, but it is felt that slight

improvements in instruments and techniques will resﬁlt in épecfra which
can %e analyzed directly‘from the experimental data.

In such cases, the time required ﬁo assign lines can be greatl& re-
duced by placing additional constraints on the system. This can be done
by the use of estimates of parameters in NMRIT (O) and the use of double
"resonance experiments. The informatioh obtained from these sources can
be used separately or in conjuncﬁion with each other. |

If the parameters.qan be estimated with any degree of accuracy,

‘a convenient way to calculate approximate line positiéns and their
.transitions is by use of NMRIT (d), as discussed above. TFor the spectr
discussed below, it Waé possible to estimate the large coupling constants
fairiy well. The‘profiem was then to ;ort out the.effect of chénging
 the-three small coupling cohstants; whose effect was mainly to change
transitionsiof peaks within.the larger groups'of‘peaks. This meant

that 'in a partially resolved group of twelve peaks the transitions were

i ey e 5 e ooy et >

s i e
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knowvn, but it was not known which lines in the group correspon&ed to
each +ransition; Accordingly, eacb unresolved group of peaks was called
a "type" and all of the transitions occurring in that region, as calcu-
lated by NMRIT (0), were assigned to that type. Thus the number of lines
to be searched>for‘a particular A transition, for examplé, was reduced
from 36 to 12. This will be described in detail in connection with the

particular analysis.

The second method of obtaining information regarding the locations

-43

.of transitions is the use of a second rf field.” If the second
" irradiating field is strong, the irradiated nucleus is effectively de;‘
coupled from the rest of the system, simplifying the spectrum consider-
' ably. The method has been used for such purposes as the‘measurement of"
cheﬁica; shifts of hidden resonance lines and the determination. of the
reléﬁi&e.signs of nucléar spin coupling constants.uu’us For these
applications the rf field strengths have usually been of the same order
. as, or greater than, the perturbed spin coupling constant J. Since, in
general, the spectra of strongly coupled spin systems have transitions
separated by frequencies much less than J, it 1s not possibie to select-
‘ively irradiate single lines in these spectra with the stfong rf field.
Freeman and Andersonl+3 have investigated the effect of using weak ir-
‘radisting fields. They found that the use of a weak field made it
possible to determine which transitions have energy levels in common,
and furthermore to distinguish the two poésible cases, i.e., where
M = O end A = 2. |

Freeman and Anderson considef three double irradiation experi-

ments: 1) field sweep, where the main magnetic field, Ho is varied

while wy and Wy remain constant; 2) frequency sweep, in which Ho
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and wé remain constant while varying the ob;erving frequency, wl;

and 3) varying the perturb%ng frequency, Wy while HO and wy remain
constant.‘ Although the field sweep method is simpler and requires less
eguipment, they conclude that it has several disad#antages and the fre—-
guency sweep method is preférable.

They describe in detail frequency sweep(method 2) above in which
one peak in the spectrum is irradiated Qith the wegk field aﬁd the
;pectrum is recorded.by sweeping the observing frequency, Wy - The
épectrum thus obtained has the usual appearence except for thoseltransi—
tions which have energy levels in common with the transition being per-
 turbed with Wy If the t%ansition shafes an energy level with the
;irradiated'peak and the éhange in MZ is 0, the peak will appear-as a
sharp doublet whereas if the change in MZ is two, the pesk is broadened.
Tﬁe ﬁethod requires a separate spectrum for'each peak irradiated and the
peak; must be reasonably resolved in the spectrum .(at least visible as a
.shoulder) to observe the phenoménon. Those peaks for which changes
can be observed may be used to build ﬁp at least part of ép.energy le&el
.diagfam and may prévide the additional amouht of infdrmation required to
solve a given ?roblem. \

The third possibility, that of sweeping the perturbing frequency
‘While observing a single line, was mentioned by Freeman and Anderson
and is of most interest to us for use with ASSIGN. For this experiment
the obse:ving frequency is positioned on a peak miximum uéing a very
lsﬁable oscillator. The perturbing freguency, w2’ is- then syept across
the spectrﬁm and as 1t traverses peaks whichhhave an.energy level in

“common with the observed peak, the height of the observed peak will

change. In the above paper Freeman and Anderson stated that the peak

i
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height would dip for both cases where thé lines shared a common eLergf
level. The.dip'would be sharp where VAMZ = 0 and broad for AMZ = 2!
Such information would be very useful for ASSICN. Accordingly the
program was modified to take advantage of such information. The method
has the advanfage over the first frequency sweep method in that the
peaks which are perturbed do' not have to be resolved. The location of
a dip will indicate the perturbed peak within a small frequency range
and all the peaks which have been foﬁnd by DECOMP in that range can be
~used as a transition type. ‘This will further feduce the location from,
say twelve peaks to three or four. The advantage here is that the peaks
do not have to be resolved in the original spectrum at all. (The other
frequency sweep method would be Qf less interest hgre since it would be
necessary to decompose each of the separate spectra to observe differ-
venégs which occurred due to the perturbation.) It is necessary to ob-
serve a peak which is far enough from its nearest neighbors so it may‘-
be observed alone. .If another peak is £00 close, the lines whiéh have
energy levelé in common>with both lines will be observed. TFor the
limited number of experiments we performed this required separation
aﬁpeared to be about one cps although this could ﬁrobably be reduced by
further improvements in the instrumentation. The recorder pen is swept
with the perturbing freguency and will dip at the freguencies of lines
which have common enérgy levels. Since these dips may cover a range
of several lines all the lines within say #0.5 ¢ps will be included.
The'input’algorithm of ASSIGN was changed so this information
could befincorporated in the following manner. The ranges of all the
lines in'the dips showing comﬁon energy levels a}e included in the al-

gorithm opposite the corresponding observed line. Again this can per-
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haps be best explained by returning to the ABC case of Fig.5. Tor

simplicity, assume that all the lines are well enough resolved so that

it has been possible to observe each of them as the spectrum has bee

‘swept by the perturbing field. The array of common energy levels {de-

termined fromithe transitions of the correct assignment) is written as
shovn in Table 5. In.an actual experiment, of'course, these values
would be obtained by doing the experiment. Each set of two numbers in
the horizontal direction indicates tﬁe beginning and end of the range of
lines whicﬁ was indicated by'the dip as having an energy level is common
with the line indicated in column one. Now the rgstriction on the choice
of lines for a given transition is very much more restricted than in the
original.ABC case where the range for A was 1 - 10, B was 1 - 15,

C was 5 - 15 and that for D was 1 - 15. The double resonance re-
stféction is invoked from the second line assignment, even before the
sum rule checks come into play. Thus to assign line 2, ASSICN checks
the energy levels of previously assignéd transitions to see if any of

these energy levels are common with those of transition 2. Since energy

level 1 is common to both transitions 1 and 2, the choice of lines Tor

transition 2 is restricted to lines 3,5,6,8,9, or 15, rather than the

whole range of 1l lines as was previously the case. The choice for

transition 3 1is now restricted, within its range of'type‘c (lines 5 - 15),

to a line which is in common with both transitions 1 and 2, as well as

having to conform to the intensity sum rule check., After a Tfew lines

have been assigned, the possibilities are almost uhique for this trivial

H

case. As an example, one assignment for the first six transitions is

the lines 2,&,9,13,6,'and 12. To assign a line %o transition.T ASSIGN

first notes that transitions 3,5, and 6 have energy levels in common



with transition 7 and have been assigned lines 9,6 and 12 respectively..
The range of the type for transition 7 is 1 - 15 so no restriction
operates here. ASSIGN then compares the ranges in the common energy
level array for lines 9 end 6, and when it finds a line common to both
these lines, it then checks the arrsy et iihe 12 to see if the.line is
common to all three-lines. Tn this case the only line common to all

three previously assigned transitions is line 8 and it is then assigned,

if it will meet the sum rule criteria. In a more complicated case the

lines in the array would be replaced by small ranges but it can be seen

by the above example that a considerable simplification is to be ex-

pected &hen such information is availabie.

To test the utility of these ideas, the:double resonance frequency
sweep experiment was.tried with one of the five spin systems which is
discgsséd in detail later. Instead of the dips predicted by Freeman and
Al'lci.exi'sc.>n,~ it was ébserved that both dips and peéks occurred during the
sweep of Wy Furthermore, The dips. corresponded to the case wﬁere
A, = 0 "and the peeks to A = 2. This information is far more.useful
than haed been expected sirce it is much easier to disﬁingdish peaks
from dips than it is broad dips from narrow dips.. One difficulity which
occurs, ‘Is that at a f w places in the spectrum the two types of transi;

tion occur rather close together. It was observed in one case that two

such transitions canceled each other andscould not be distinguished

from n

[}

ise. With present instrumentation, two such transitieng have to
be separated by about 0.5 cps or greater to.be seen. After the above
effect had been observed in these experiments,‘it was also found thet
the effect had pfeviously been 6bsefved bvaaiseruT who explaihed it

qualitatively as a nuclear Overhauser effect.
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III. EXPERIMENTAL

‘ , L8 :
The 3-chlorothietane was synthesized by Mr. W. D. Keller accord-
. " o LRI 3 1 O B 57)58 PRIV ] ] -~
ing to the method of Dittmer and Christy. Purification was carried
out in a spinning band coluwm; a middle, c¢onstant boiling fraction was

used to obtain the NMR spectra. The 3-thietanyl acetate was made in a

Cs

similar way by Mr. R. Millikan; purification being carried by vacuum
aistillation. The samples, containing a small amount of tetramethyl-
silane as an internal reference, were degassed under vacuum and sealed.

Spectra for the 3-chlorothietane were recorded with a Varian A-60
spectrometer which had been modified by replacing the 25 rpm sweep motor
with a 2 rpm motor, allowing slow passage sweep rateé. The X and the
AEBZ parts of the ;pectrum were taken separately with a sweep width
of 50 cps and a sweep time of 1250 seconds (0.0 cps/séc). The spectra
were also filtered at 0.2 cps to reducevnoise and to facilitate the
subsequent digitization.

All other spectra were taken with a Varian HR-60 spectrometer which
had been modified by Mr.‘J. A. Ferretti Qith a field lock system for
malintanence of a stable Tield and with auxiliary equipment to allow

h3,46,59

double resonance experiments to be performed. The spectra

taken with this instrument were directly digitized through an analog-
‘to—digital converter connected to an SDS 910 computer.  The spectra

were recordéd at a rate of 1800 seconds for a 50 cps range (0.028 cps/sec)
.and were smoothed in the éomputer using a nine point smoothingvfunction,l

56

after the method of Savitzky and Golay.



Iv.; RESULTS AND DISCUSSION e

- A, Systems w1th FlVe Spins
1." 3-chlorothietane A s .~-?h;?';hi’

coad

Two well resolved'spectra were used for thelenalysis; one of which

o'ls shown in Fig. 7. The spectra were : digitlzed u31ng a Benson—Lehner
‘i"OSCAR" X~ y analog to digital reader, directly coupled to an IBM 026 .
card punch As can be seen from Fig. 7, the spectrum is divided into ten
i ;groupS'of peaks which show-the fine structure due to nuclear spin-spin
‘coupling. Each=of these:ten groups were decomposed using DECOMP in the _
i-;hmanner described above.  All 6h llnes in the spectrum were resolved.

y

vi;results for each of the separate groups are shown in Flgs. 9 -16. Again,
the experimental data pOints are shown as dots, the llnes found by the
decomp031tion are shown as vertical llnes, and the calculated spectrum
based on the sum of the vertical llnes lS shown as a solld curve. fhe.
" agreement between the calculated curve and the data p01nts is very good.»u

The average ‘difference between lines decomposed in the two spectre was

0.03 cps; the two largest disagreements out of the;ﬁhupairs of lines was-

0.1 cps.: The line positions and-normalized intensities of the average of .

. the two spectra, used in the subsequent work, are listed in Table 6.
The set of basi symmetry fUnctions, formed by multiplying the
AEB symmetry functions in Table 3 by the spin functions & or B for
the X nucleus is shown in Table 7 These,functions were then used-to='
vvmake up the symmetric‘and antisymmetric energyﬂlevel'diagrams‘shown in'<
 Figs. 17 and 18.. Using onlyfingle’nucleus transitions, the algorithm |
:]'in Table 8 was made. The transitions'are not‘numbered in the.fiEUfes :
. ; , o . _

but can easily be,identifiedvhy their;upper and'lower energy level

H
3

o designations in the algorithm‘endfdiaérams.‘ The order of making
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‘ assianments is arbitrary;‘paths are chosen to aliow the maximun number
of frequency and 1nten51ty checks as early in the scheme as p0551ble

| The above algorlthm w1ll apply to any A Béx system of spins for
which the line positions and intensitles are available.v However, as
discussed earller, addltlonal 1nformation11s often avallable and can
be used to further simplify the problem; Such information may be
different for eachvsystem and the algorithms will then have to be
construcped to fit the specific circumstances.

Using the direct approach of liaiting transition types tovthe
three types of nuclei, and setting reasonable limits forlthe_undertainpy

ffof the frequency and intensity, no assignments were made for the anti-‘:‘
"symmetric energy levels_of 3=-chlorothietane in two hours bybthe IBM |
o 70§%.' As mentioned above this was probably due:to many of the peaks

- having‘similar frequencies and intensities.. Accordingly,'additional
constraints were placed on the problem by using.NMRIT (0) as discussed
earlier.

Since one of thelobjects of this study was to simplify the analysis p_
of complex spectra, the first approach was to use estlmates of the para~p
meters obtalned from ‘the spectrum in IMRIT (O) to calculate & 'spectrum
which could be matched to the lines obtained from DECOMP. If this
approach were not satisfactory, it would thenvbe necessary to resort.fov'
vmore complicated procedures; perhaps double resonence experiments or;
the calculation of moments.SO

For 3~ chlorothletane the parameters were estlmated as follows The .

A and B parts of the spectrum each cons1st of 2& llnes in . groups of 51x,]j

-twelve, and six lines. The chemical shifts are approximately in the
middle of the respective groups of twelve peaks and can thus be estlmated ‘:

" as the positions of the second group of peaks from gach end of the AQB2
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. spectrum. The chemicaljshift of Xvis given by thé center of its spectrum.
The next important parameters are‘the.larger couplipggconstants.

These are the "éis" ana "trans' vicinal coupling constants between pro-

téns on adjacent carﬁonvatoms and‘the-geminal coupling éonstant between

protons on thé'éame carbon atom. The &iéinal constants can be calculeted

reasonably well,‘sihcé their sum is given by half the width of the X

spectrum and their difference is given by the splitting of the two

doublets in the second and fourth peeks in the X épectrum. This can

be estimated to within a few tenths of a cps from the values obtained

3

by DECOMP, éinéé the entire group is only two cps wide.

Estimation of the geminal cbupling constant is less certain. It
was estimated to be between -9 and -llcps on the basis of'representative
vglues in e recent review by Banwell and Sheppérd.h9 Since it has been
wéll established that geminal coupling constants are negétive and oppo-
site in sign.to vicinal coupling constants, the latter were taken as
positive.

All the long—raﬁgé coupling donsﬁanﬁs acrosé the ring were eéti—
mated as small and positive according to the_pest knoﬁiédge at the time
of beginning this study. |

After a few’adjustﬁents, these estimates reSulﬁed iﬁ axspectrum
caleulated by NMRIT (0) which resembled the experimental spectrum. As
discussed under .the sectidn on spectral analjsis, this estimate was
good enough to localize the sets of transitions within the ten largé
groupings 6f peaks.

A second algorithm was constructed using enefgy levei éssignments .
from NMRIT (0) and classifying each of the ten groups of peaks in the |

spectrum as a "type of nmucleus". Used in this manner, "type of nucleus"
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has lost its origiﬁal meaning and merely serves to indicate‘the'general
location of a line. This new algorithm and the ranges for tbe(transitions
are shown in Table 9. Us:».ng this algorithm, the time required to find the
two aﬁtisymmetric sets of energy levels was reducedvto 50 minutes with the
IBM 7094, The lines remaining from each df'%hese Eets were then used to
make symmetric assignments. No symmet?icwaseignment was possiblé for one
of the antisymmetric sets of energy levels, but three symmetric sets were
possible With the other antisywweuric set of energy levels. The three
complete sets of transitions corresponding to the sets of energy levels were
then used in NMREN to get the best least squares fit of the energy levels
and adjusﬁ the traces. These adjusted energy levels were‘then ﬁsed in
NMRIT(N) to calculate the corresponding chemicel shifts and coupliﬁg o
constents. The twc worst seﬁs of eneréy leveis correspond to coﬁplex
parameters, as shown by the failure of NMRIT(N) to conveige. A number.of
Q;peaks:in these sets are several tenths of’a cps away from the,experimehtai N
. peaks, whereas‘only one peak calculated from the best set of parameters
| was as far away as 0.13 cps from the experimental peak.

The numbering system used for the protons in the molecule is showm
in Fig. 18._ The reasons for numbering the protoﬁe as shown will be
given below, however,iit mﬁét be pointed out that these experiments cannot
'determine whether the large long-range coupling constant is between protons
- 1 and 2 or protons 4 and 5. This information could be obtained, for
example, by'substltuting one of the protons with deuterium._

The theoretical spectrum calculated by. NMRIT fTom the oest set of
"parameters is compared w1th the ehperimental spectrum and the line~
found by DECOMP in Figs. 19 and 20. In these figures the upper vertical"vfaF
lines are the line pOSitions and JntenSities calculatec by NMRIT and the

uppcr golid curve is the theoretical spectrum calculatea from the sum of

- all these lines. The lower curve is the ‘experimental spectrum snd the
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lower vertical lines represent the line positions and intensities ob-

tained by decomposition of the experimental curve. The agreement be-

tween the line positions is excellent; the average frequency,-deviation

is 0.031 cps -and the léfgest single deviation in the 64 lines is 0.133
cps. The-intensities do not agree as well; in some cases being off by

50 per cent of the calculated peak heigﬁt:' These worst'cases, hdwever,g

- are for those peaks which cannot be seen at all visually; in the cases

where the peaks can be at all distinguished, the agreement is quite

satisfactory, being of the order of 5 - 1O percent.

ter 3-chlorothietane was analyzed, additionalvinétrumentation

became aveilable so that the double resonance experiments described

~above could be pefformed. Since the NMR parameters and transition

frequencies of the chlorothietane were now known, it appeared to be a

good test of the double resonance expérbnent in which the perturbing
]

freéuency was swept while a single line was observed. The X part of

the épectrum hds several lines which are'separated by nearly one cps

~ and it was possible to do the experiment while observing lines.1,k%,5,6,

| 11,12,15 and 16 in theé X spectrum and line 59 in the A2B2 spectrum.

A calibration spectrum was first taken of ﬁhe entire’ chlorothietane
spectrum on the modified HR-60 using a frequency sweep rate of 180

seconds for a 50 cps range. A very stable oscillator was then used to

set the observing frequency right at the peak to be observed. The per— '

turbing frequency was then swept at the same rate as the calibration

spectrum waé taken, with the recorder pen following this Sweep. A

‘fairly noisy base line was observed which showed the dips (A M, = 0)

' and peaks (A MZ =_2) which were discussed above. Fig. 21b shows the

calibration spectrum for the AEBZ part of the spectrum; 2la and 2lc

are the records obtained while observing lines 11 and 12 respectively
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while sweeping across the same frequency rangé;v Usiﬂg values of line
positions obtained from DECOMP, it is‘easy to_determine‘thé poégfion of
the line corresponding to the peak or dip, té within thrée or four lines;
vThis informatidn; shown in Table lla,'can thgnAbe put into the algorithm
for ASSIGN, furthér restricting the choicg'of lines in a given type. A
large beat freguency appears_at the right of spectrum 2la and in this
case doés not correspond to a line with an energy level in common with
line 11. In some of the experiments, a line did lie atrthebsame place

i ‘as a beat ffequency ahd the only hint that the two wére SUperimpoéeq“
was that the beat pattern waé slightly asymmetrical.’ of course; this
could not be relied upon in an unknown syétem and some infqrmgtidn

vmight be lost in this mahnér; Figure 21c shows the efféct'obtained when
two tr%nSifions, which have an energy lével in common with ﬁhe observed
line, ére closé together. As seen by the dip and peak, the first transi-
 tion has AMZ = 0 and the second AMZ =2, The separation of these two
lines is 0.7 cps. A similar set of lines occurs at the positioﬁ indicated
by the arrow, but.in this case the separation}of the lines is only 0.007
cps and the peak and dip cancel and are nét observed..

Because of limited access to the instrﬁment it was not péssible to
exhaustively explore experimental vari ables in this system. The present
set of experiments indicated that the observed peek had to be approxi-
mately one cps, away from adjécent peaks tovbe sure of observing only.one
peak. Considerably more dlfflculty was encountered when the observed
peak was between two peaks, even when separated by one cps, than when -
.,tne observed peak was at the edge of a group. These llmltatlons could
undoubtedly be reduced by re¢1n1ng the technlque more thoroughly..

The 1nformatlon from the double resonance experlments with the
. ( - il N
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nine lines was put intoiASSIGN using only the three types of nucleus,
",A, B; or X, as constraints. The two antisymmetric assignmentsFWere
éalculatéd in 82 minutes by the IBM 7094 compared to no assignmentlbeing
made in 120 minutésvwithout the double resonance information. After the
antisymmetric set of energy levels has been assigned in such a problem,

assignment of the symmetric set takes even less time due to the considerable

reduction in available lines. Since 3-chlorothietane had already been

completely analyzed, the assignment of the symmetric lines was not attempted

because it was felt'tﬁat the computer time could be better utilized.
This experiment verifies our original premise that 1t is feaSigle
to determine the energy levels of a complex system directly from the -
‘ experimental spectrum without any assumptions regarding the NMR para-
meter;. Double resonance information from even a few more lines would
probably reduce the time aﬁpreciably, however, it cannot be assumed that
more than nine or ten lines would be available in the general case. In
fact, this approach would be less successful with the thietanyl acetate
since the X part of that spectrﬁm is considerably less wgli resolved
than for the chlorpthietane,.with only the two oﬁfside'single peaks resolved.
Due to the particular nature of the AEBQX spectrﬁm, a great deal
of information can be extracted from the use of a combination of all
the techniques discussed above, in the following manner. ' The X spec-
trum of 3- chlorothletane has two single peaks at either end. It was

observed from several NMRIT (0) calculations that these two lines,

'ﬂnumbérs 1l gnd 16, were always assigned to transitions 31-32 and .

1-2 respectively. Additional NMRIT (0) calculations, using values Do
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for the initial parameters.far'outside‘the ranges which would ever be .
used, showed that lines 1 énd i6 were:always'given the same @ssignments.
Referring to Fig. 175; it can be seen that double’resonanée information
- on just these two lines éan be extremely hglpfuL in building an algorithm
for the symmetriéél eﬁergi levels; In th;“use of ASSIGN a large portioﬁ
of the total time is used in.establishing the first few energy levels.
Using the information about AMZ f?om the two double resonance experi-
ments, several levels can be established very‘rapidly. |
"Use of such specific information about a system requires a new

algorithm, which is formed in the following way. Tra.nsiti_ons 1 - 2 and -
"1 -5 are Xnown to be lines 16 and 52 respéctively, from NMRIT (0)- and
.the.doubie resonance data in Table 1lb. Transition 1 - L is one of
lines 27 - 32 but the intensity sum rule limits this choice to one of
| twoéiines. ‘Thus the entire set of energy levels for the second M, level
are determined to within the choice of two lines for levél 4., The
transitions 2 - 7T and 2 - 9 are also given to within four lines and can
vbe established quickly uéing frequency sum rules around loops from
energy ievels 4 and 5. We have thus establishgé six'enérgy levels to

e fairly ﬁigh degree of certainty. Even if one of fhese assignments
- were incorrect, there are very few lines left to choose from is ASSIGN
were to back up to make a new assignment. This is a'very great reduc-
tién over the usual arbitrary aséignment of these lines when this in-
‘ - formation is not available. The same amount of informétion is also
available at the béttom of the diégram éo the élgorifhm is writtén to
- establish'a ske%etbn fromework of two.energy levels for each inter; I
mediate M, level in order to connect the top and bottoh'bf the diagram
. as directly as possible., This’is done from energy levels T and 9 to

levels 18 and 20, which can then be used to establish levels 27 and 30.
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These intermediate énergy levels are not.known,with as much certainty,
éince the transitiéns are only known to be within one of theusual large
groups of lines. We aré now in a position to start assigning the lines
.at the bottom of the diagram. More festriptive'éonstraints are again’
operative, éincelﬁhese lines are known to‘iie within narrow limits,

from the double resdnance experiment. Assignments 27 - 32 and 30 - 32
will quickly determine whether the intérmediate assignments were all
consistent. . If so, level 31 can be established using line 1 and the
negative sign in front of the transition type as explained earlier. The.
balance of the double. resonance information from line 1 can be USedftbL
establish energy levels 23 and 26. We have thus used déublé resonance
information from only two lines plus information from an apﬁroximate
NMR%T (0) calculetion to establish 12 energy levels and 22 line assign-
menés with a much higher degree of certaint& than by use of an arbitrary
algofithm.‘ This information is'shown in Fig. 22, The traﬁsitions and
energy levels which are known quite well from the double resonance
‘experimeﬁts are shown in bold lines and those known with less certainty
‘are shown with light lines. 'Onée this much of ﬁhe engréy'level diagram.
is known, the remainder is assigned arbitrarily since no specific in-
formation is known about the rest of the lines. Furthermore, since

the assignment of the symmetric energy levels is the largest part of

the task,. the remaining antisymmetric levels will almost fall into

place and accordingly the entire system .is made up in one algorithm

and thé problem done all at once. Using this approach with the same
data and uéing the ten {ypes of Transitions, the time to calculate the
entire assignment for the 3-chlorothietane molecule was reduced from

50 minutes to 20 minutes.
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2. 3~Thietanyl acetate

The spectrﬁm of 3-thietanyl acetate_ﬁas also analyzed €5‘seevwﬁat
effect another group had 6ntfhé NMR parameters. The Spectrum, shown
in Figs. 23 and 24 was taken with the modified HR-60 and thevbdata ‘digi—'
tized directl& with an analog-to-digital convertér.v The details of the
- spectrum have been‘coﬁsiderably alte}ed by éhanges in the chemical
- shifts, althqughuof course the general features'are similar.: The X
" -part of the Spéctrum.has shifted downfield by 26 cps and is also nearly
first order, meking the decompositién of this portion more difficulﬁ.
(Double resonance experiments unld be considerably less effective for
thié analysis since only the two end lines are resolved.) Tﬁe total
width of the AB, part of the spectrum is 34 cps, a reduction of eight

-cps' from the chlorothietane due primarily to a reduction in the chemical

shift between A and B.

| The A.2B2 region of this sPectrum was more difficult to decompose
then the chloride because there were several small peaks between large
peaks in two of the la%ge groups of twelve. .Slightly more noise was '

" also evident in the spectrum. Accordingly, DECbMP,was ﬁsed in cénjunc—'
liion with NMRIT (0) for tﬁe entire analysis. |

. Since chlorothietane had already been apalyzed, the easiest method
for énalysis would have been to use the samejcoupling consténts with
the new valueé for the'cheﬁicql shifts. This was not done in order to

‘again test and see whether estimates made entirely from the spectrum

were satisfactory to use with DECOMP in a stfaightforward manner. Ini-v»}

S

tial estimates were made in thé same manner as described for 3-chlorof
. thietane and the small coupling constants were egain set to small values. -

‘Although the calculated and experimental spectra did not match quite as
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well as in the caée'of the chlorothietane, the caleulated spectrum
could still be matched fairly well with the lines from DECOMP.  Of the
6L lines in the spectrum, 59 were well resolved by DECOMP. The decom-
positions of each of the separate groups i1s éhown iﬁ Figs. 25 - 32.
Three of the uﬁreéolved lines were separatea ffom adjoining peaks by
only 0.03 cps and the other two were sméll and between two large peaks.
The 59 well determined lines were assigned to the transitions calculated
by NMRIT (0) and after three trials gave a very good fit to the spectrum.
In Fig. 33 and 34 the experimental and calculated spectra are compared.
‘The upper curves show the experimental spectra énd the line positions
and intensities found by DECOMP. The lower curves show the lines cal-
culated by NMRIT (20) and the calculated spectrum which is the sum of
all tthese lines. The a&erage difference between the 59 calculated and
decohposed lines was 6.05 eps and the largest difference was 0.18 cps
for one line. .

It will be recalled that thi§ éart of the S & ﬁ method calls for
assigning the experim_en_ta;l lines to the calculated transitions r;md
- these are then put into NMREN for a iéasﬁ squaras f;t‘ts éll the energy
levels in the symmetry tyﬁe; "These energy levels are then used in the
iterative partAof the calculation to fit the best set of parameters.
The assignments from the initial assignmenf will not be correct and .
some will have to be changed on the bhasis of the vélues obtained from

4.

the iteration. These new assignments are then ﬁsed agein by MNMREN to
get a new set of energy levels, and so on. Having almost all of the
line posiﬁions and Intensities from DECOMP greatly facilitates these

~assignments, yielding an assignment which fits more lines than can

- usually be seen in the spectrum.
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This is ehown 5& comparison of the above aﬁalysis with an analysis
made by the conventional v1sual estlmatlon of line p051tlons ¢ Figs. 35
and 36 show the results of an analys1s of 3-the1tanyl acetate which gave
" a very good fit according to the criteris generally used. in the S & R
method, 61 however, it can be seen that the second and feurth peaks in
the X region of the spectrum do not- have the same shape as the experi-
mental spectrum 1n Flg 33. Slnce the positions of the four lines camot
be seen, it would be necessary to adjust these llnes until the calculated

- spectrum was a closer match to the experimental spectrum. Such a pro-

cedure would require several additional NMREN and NMRIT (N) calculations,-

A}

wherees the pesitions are known directly_from DECOMP. Intensities are
- not as:setisfactory, but they ere not used in NMRIT (N) .and do not
laffeet the~analysis. - o

| .iif~ © "B, 8ix Spin A_B), Systems

binvpr;nciple, the use of DECOMP and ASSIGN can be extended to
"gystems of any complexity, however, there will be practical'lrnitations
: because of the large amounts of computer time required to solve the more
complex problems.' DECOMP is at present limited to & maximum of 20 peaks.
‘uso.that‘the'program will have to be redimensioned for use with larger
Vgroupsvof lines. ASSIGN.will be limited by the amount of time one is
willing to spend finding all poesibilities for a given‘number of lines.
It therefore becomes ﬁecesSary te use all auxiliar& methods available,
such as NMﬁiT (0) and'doubie resonance, | |

A six spin system of interest_here is thietane (trimethylene sul-

fide), the parent compound of the two molecules snalyzed ebove. Thietane* '

hes two geminal coupling constants 'and two long-range coupling constants,

the cisoid and transoid;- The two cisold long-range coupling constants

3 et e it g0t e e o
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cannot be distinguished as in-the case of the substituted compound be-
cause ring invereion of theitane is rapid at room temperature;and only
the average values of thevNMR parameters. &ill be observed. Thus for the -
purposes of NMR analysis, the system can be con51dered as an A Bu system
| with C2V symmetry. (The A&X system, Wthh allows some of the transi-
tions to be calculated explicitly, has been treeted by Lynden-Bell.6O)

| An analysis of thietane has reeently been carried out, ueing NMRIT
and extensive double resonance experiments in the conventional'way, by
- Mr. J.A. Ferretti.h6 It would be interesting to compare the results ob-
tained and time required for this analysis with an analysis carried eut
?usiﬁg the meﬁhods described in ﬁhis dissertation.

The method for building‘up'the basic functions and aigofiﬁhms for

the genefal A Bh system will-be'indicated below. The four B protons
'have e rectangular conflguratlon and have Deh' symmetry. The basic
symmetry functions for both the A2 and Bh protons are given in
Table 15. Combining these sets of symmetry fuﬂctions in the usual
manner, we obtain the stafes, spins and.symmetries for the basic pro-
~ duct functions, eccoféing te the C2V symmetry fq; tbe.mdlécule, tabu- v'
lated in Table 16. The basic syﬁmetry functions, separated according
to theilr symmetry group, are given in Tables 17 tov20. The.corresponding
energy level diagrams are given in Figs. 37 to 40. Again, only single
" spin transition afe'considered for meking uﬁ the algorithms shown in
Tables 21 to 2h, | |
‘ To indicate the magni@ude of the decomposition éroblem, the>spectrum o
of thietane is shown in Fig. 41. The system is highly mixed, with all
1201-‘l3O'lines lying in a range of about 60-cps.. The'number of first

order transitions is predicted to be 136 however, all of these may not

have high enough 1ntensity to be neen in tne experimental epect*um.
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. The algorlthms were made up without assuming any supplementa*y in-

formation, but in view of the complexity of the six=-spin problems, the

. use of allvthe various techniques discussed in thils dissertation would

.
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o V. CONCLUSIONS

A; ‘Use of Computer Technigues for NMR Spectral Analysié’

Two computer methods have been described'which are believed to
': substantially aid'in the analysié of‘combiéi NMR.speqtra. The first '
‘lf‘af thése, DECOMP, determines the line positions of unresolved lines
’Hftnearlyvés accurately as resolved lines have been located in the past.
Due to iﬁstrumenﬁéi limitations, the“intensitiés of unresolved lines
: ar'e not fie_‘termined as accurately but are gqod enough to assist in
" making assignmentsAof lines unresolved in the exberimental spectrun.
- With modest improvements in‘instrumentation, it appears feasable to
 improve tﬂis siﬁuation so that all the experimental lines can be
; uniquely determined from the experimental spectrum.
| Inzthe cases where all the lines are known accurately, the second
Amethod, ASSIGN, will provide the idegl situation of finding all poss-
:'ible solutions to the problemvdirectly from the experimentél data -
without any prior'knowledée about the parameters to be determined.
TriThis ié probebly feasable at the present time w}th glmost-all three
and four spin systems. For the more complicateé‘qaéeé of five or more
spins, the direct spproach may still be possible if the spectrum has
.several peaks well eﬁough resolved to permit the use of double reson-
‘anqe'and the instrumentation is available. .

The most practical method at present ié to use DECOMP and ASSIGN
in conjunction ﬁith NMRIT end NMREN if possible, becéuse'computer time
1s inexﬁensive compared to experimental time. The trans;tions for a
fiv¢ or six spin system can be calculated as less than 0.5 minutes so

that & number of parameters can be tried at little cost. Having a
fairvapproximatioh ﬁo.the experimental spectrum, the lines obtained with

|
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DECOMP can facilitate bbﬁaining the coffect energy levels for the itera-
bion. With the greater number of lines from DECOMP the calbwlation of
the energy levels is more constrained than in the usual case where a
number of lines’must be left out. Thus inconsistencies are shown up
;f more readily and can be cbrrected earlier in the analysis. Afﬁer a
ivifew refinements in the parametersvthe transitions may'Be well enough
. localized, in many caseé, to allow-theiuse of ASSIGN. This will allos
the determination of all the sets of energy levels. .
~Although the additioﬁal methods add considerable complexity to the
'“.ahalysis, their use in the ébove cases demonstrates that time 1s saved
and a ﬁofe objective and complete analysis results from thgir use. Com-
_ puters'are continuélly'becoming more available and less expénsivé to

“ﬁsé'while experimental apparatus becomes more complex; It therefore

" .- behooves one to continually consider ways to use computers to maximize

the information obtained from these complex experiments.

B. Coupling Constants in Four-Membered Rings

The complete analysis of the above two substituted thietanes pro-

' vides an opportunity to compare the effects of minor structural changes o
én the éoupling gonstants. Unfortunately, the exact structure of |
3~chlorothietane is not known and the discussionh8 will invéke.gxtra-.
polation* from chlorocyclpbutaﬁe whose structure has 5een determined

. exactly.el Chlorocyclobutane is puckered in its ground vibrational

f state within the equllibrlum angle of about 20°. The amount of pucker-

ing in a ring can be cons1dered to arise from two opposing forces. One

,1s ring strain which tends to keep the rlng planar. The other is a tengéncy

* ‘ ;
This appears to be a valld assumptlon since 1t has been pointed out 63

by Prof. W. D. Gwinn®2 that the equilibrium structure for cyclobutane®?
is very close to that recently ovtained by Dr. D. O. Harris % for
trimethylene sulfide.’ .
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to pucker arising from the preferred staggered configuration of the
hydrogen atoms or other substituted atoms on the adjacent rigg carbon
atoms. In 3-chlorothie£ane both of these forces are less than in
chlorocyclobutane. The ring sulfur atom decreases ring strain allowing

_more puckering; but the loss of one meth&iéne group decreases the ten-
“dency toward the sfaggered configuration. Since we do not know the

' ‘relative sizes of these effects we have assumed the puckering is roughly

the-same in the two molecules for tﬁe subsequent calculations. |

It is impossible to say‘whethér the quasi-axial or the quasi-
.Jequatoriai protons account for the large cross ring coupling from the

present analysis} With the present data it is only possible to compare

u': the results with current theories.

, The vicinal coupling constants (J13 and J23) ere similar to. those .
found in other four-membered compoundsuB-So
{
_ the usual correlations with dihedral angles, substitution, and bond

and are in agreement with

lengths. The geminal coupling constant, however, is more positive than

=9l he previous

"-those found in other four-membered ring molecules.
values ranged from -10 to ~1T cps andiﬁere foﬁng in substitutéd cyclo-
‘butanes. The present:values were obtéined for ;ﬁbéfiﬁuted thietanes and;;
are in agreement with the trend predictgd by<the recent molecular or- H
’bital treatment by Poble and Bothner—By.lg.

Of greatest interest in these molecules are the long-range coupling

- constants across the ring. One of the cisoid coupling constants is

) especially unusual 1n that 1t is unexpectedly large and p031txve, 3.1

-:.'1;"

N / 4
'_cps in the chloride and 2. 5 cps in the acetate. The other cisoid and PiENE

'; the trans01d coupllng constants, -0.48 and -0.75 cps respectlvely, are

- more nearly the usual sign and magnitude and nearly identical for the

 two molecules,
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Thevbulk‘of eﬁpirical evidence indiéates that the‘éonfiguration in
E which’both.protons,and all of the cohnecting bonds are nearly coplanar,
allows an observable céupling constant acrossifour saturated bdﬁds.

Thié would indilcate that the quasi—equat&rial protons account for the
lj'large coupling,'howe&er, exceptions.to’tﬁis.rule have been repérted.l3’52

Perhaps the best correlations between theory and experlmental date

" for vicinal coupllng constants has been made by Karplus. 1L Agaln u51nd

. the data for chlorocyclobutane, the dihedral angles between H3 and the

| equlitorial protons isA28° and the dihedral angle with the axial proton.
v.is 155°. Karplﬁs' correlations between the dihedral angle and vicinal
"Tcpupling constent, predice Jéqui = 5f6‘cps and Iagx = T cps; This
: would indicate that protons 1 and 2, which are coupled by 3 eps, are
B thg equitorial protons. | | - |
| As discussed above, E&rfieldl8 has méde some theoretical calcula-
tioné of long range coupling constants across four saturatéd bonds .
The calculations foliow the method of Karplus, and Barfield has givén a-
diagram of long-range coupling constants as a function of the angle of o
the C-H bond with'the plane of the three C gtoms. Again using the
- data for chlorocyclobutane, the appropriate angles Qere calculated and
bthe contributions to the coupllng due to these angles were taken from
'.‘F;g.a in Barfield's paper. These calculated contributions are shown
t‘in Tablé 14, The calculaﬁions'prediét Jlaltd be the largest and
;_positive while Jus.is predicted to be small and negative, The transoid

‘constant Jizo=d ! is predicted to be small and positive. Only the

15
:.transoid coupling falls to agree qualitatively with Barfield's theory.
AS Barfleld pointed out in his paper, many simplifying assumptions.,

_are made’in,his calculations. TFor example, the closure,approxiﬁation,

‘ perfect sp3 carbon hybrid orbitals, no hetero atoms in tle coupling path
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and bond lengths equél to those in ethane. TFurthermore, the gngular
calculations are based onlylon ﬁhef"indirect”_(through bond) contribution
to the coupling constants. Any "direct" (through space) contribution

" has been.neglected; Using all these apprbiimations, it is notable

;thét the above degree éf agreement was achieved. Thié limited agreement
with theory is.encouraging and with the improved metho@s for analysis,

a number'éf moleéﬁies}in this and similar séries can be easily analyzed,
resulting eitherlin.vefification or in modific;tion‘of the,ﬁheoretical |

appfoach.
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Table Y.

. Frequencies and Intensities Obtained by Decomposition

of & Superposition of Pesks from Two Spectra

g S b ANy . et e T S e e A e ey o

’

Deéomposition with Digital Standerd Peak .

Decomposition with Lorehtz Shape Peak

Speetraml Spectrum 2  Spectrun 1 Spectrun 2
Frequency(eps) Inténsity Frequency(cps) Inbensity Freguency(cps) Intensity Frequency(eps) Intensity
4. 10.063 ‘¢o.90h 19.053 04925 10.063 0.920 10.063 0.921
82  0.860 | 8.724 0.913 8.6713  1.176 8;685 1.33h

8.529  1.830 8.578 0;983 8.508 2.096 8,73 | 0.3k %Q
8.h3§':' 2;291 | 8.478 2.180 8.503 1.789 .f8.536 1860
‘x§.3hg 0.808 8394 '; 1.555 8.328 0!5i1'>’ Bz 2;851
’ 7,889_' ‘2.356 | 7f883;_ "2.361 7L873 2.581 " | "7.891 :j 2.377

7.156 '1J536A' ;: 7153 1.62) D723 1.38 7.349  1.531

6.815 1.006 '6.791 1.107 6.778 .1.53§ '6.78u. - 1.479

6.683 1fh56‘ - 6.663 1.046 6.618 1.32§ -6.6hé ‘ 1.o§3gg

6.368 . 1.779 0 6.356 . 1.7hg 6.293  1.661 é}3h8f .68

5995 o0.512 5.9l . 0.575 _ 5833 0.537 588 0.539

5.5 0.6i3 5.662  0.58 5.608 0.2 5.606 0.5

e 2 - e - -
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Table 3. Basic Symmetry Functions for Four Nuclei Azﬁé

Energy Level_ '_ Function Basic Symmetry Function

_2_ ._ - . 18 —-—-(or.Borm-&-Bam)

'l;“ ;i.'3-i' J2

- bt :*iiy”uf iéé SR (aﬂaﬁ + a“B@)
T _'ls' f;'};b'f¢  ,1'BBad.
8 .' o ;33 . . %(OLBOLB":- OLBBOL - BCMB + Bafa)
9 ks . H(apaB + aBBa + Paap + BaBa)

G o g = (apBs + Bap)
ST -1 J2

L s ——~<Bﬁaﬁ + popa)

, ( -1 SN

e ‘ - L . o
3 R ) o =—=(aBa - Boow)

Lo Jé
T e, 0 - 3(apaB “_dﬁéa + Baf - Baba)
00 el - 3(aaB + aBfa - Bamp - Paf:)

13 N P »,\-[-z—(aﬁﬁﬁ - Bapp)

15 - 2a | | -—-——(BBaB - BBBa) -
- e e
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Tabie L, Algqrithm for Four Spins A232 Using -

Two Transition Types; 1(A) and 2(B).

oo e ™ o
HEREBY®X N R T S

‘Transition" - 7 =+ Tnergy Level ” | '~ Frequency Check
No. Type - o Upper Lower -
1 3 T
1 310
1 T . 15 ,
1. 10 -1 - .1
2 1 -13 .. .1
-2 ST
-2 -5 -10 1
2. 1 2
SUE 1
Y1 .2 8 .
; 2 ' O - ' 1
1 ‘, - 5 ::. 9
AL x gl : 1
15 2 - '8 12 '
16 2 9 12, . 1
7 1 -8 1k
18 1 -9 1k 1
19 1 12 16
20 2 - L .16 1
21 2 -2 6
22 1 Lo -6 -le 1
23 1 : ol 11
2 211 -1k 1 .

o
=

¥
The algorithm may be used in two parts; lines 1L - 8 are the anitsym-
metric transitions, lines 9 - 2L are symmetric transistion. . Symmetric
transition numbers would then begin with 1L rather than 9.




Table 5. Input Data for Double Resbnance Experiment with ABC Case

Showing Ranges of Nuclei with Common Energy Levels.

Line No. Obs.Fregq. Obs. Int. Lines with Common Eﬁergy Levels
1 -10.600 - 0.016 3 3 5. s 6 6 8 8 9 9 15 15
2 . -o. 0.319 » & 5 5 9 9 13 13 1+ 1+ -0 -0
) 3 ©3.960  0.231 1 1 4 % -5 5 11 11 12 12 15 15
b . 11.020  0.062 2 2 3 3 9 9 11 1 12 12 -0. -0
5. 14.990 . 0.9%0 101 2 2 3 93013 13 1+ 1 15 1S
"6 . 15.930 - - 0.243 11 8 8. 9 9 1010 1 11 13 -13
7 "19.800  2.618 8 8 10 10 12 12 1 1 15 15 -0 -0
-8 21.780 3.330 1,1 6 6 T 7T 9 9 12 12 1 1k
9 25.5%0 2.589 1 1 2 2 4 & 6 6 8 8 -0 -0
10 25.750  _ 0.180 6 6 7 7 11 11 13 13 15 15 -0 -0
11 30.490  0.655 33 4 4 6 6 10 10 12 12 13 .13
12 36.350  0.205 3 03 4 4 7 7 8.8 11 11 14 1b
13 k1,500  0.281 2 2 5 5 6. 6 -10 10 11 11 1 1k
1h 47.370 0.083 i (2 2 5 5 7T | 12 12 13 13
15 - 52.220 0.202 - 1 1 3 3 5.5 10 10 -0 .-0
Line 1 2 3 4% 5 & 7 '8 9 10 11 12 13 1 15
EX(I)‘ 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0

. =0L-
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A;;'.- ‘. - ) — -
. Table 5. (Continued)
The range of nucleus 1 is 1 -10 _~"’ -
© The range of nucleus 2 is 1 - 15
The range of nucleus 3 is 5> - 15
‘The range of nucleus b is 1 -15. )
Uncertainty in frequency = 0.100, in intensity = 0.500
Values for intensity sum rules _
Energy Level 1 2 3 L 5 6 7 8
_ Sum of intensities 3,00 '_1.oo_ 1.00 1.00 -1.00 -1.00 -1.00 -3.00 _
' » V i
-3
[l
t
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Table 6

3-Chlorothietane: Average DECOMP Values of Two Spectra

=t
b
o
®

“Freguency {cps)
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. =301.383

-300.909
~299.959

-292.650 .
-232.010.

-230.754
-229.907
-229.225
-228.045

-227.L11

-222. 416

-222.065 . -

~-221.5L8
-221.3k2
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-206.710

SDOOOOO

3

"'}“I-Jl:’l-’l-"Ol»—’l—JO

!“'}‘—'OOl-

H OO o

=+ N -J\D (Iz\ F0) Ui

(U3 INCV LD BN

21 1 O 10 1 1
[ 19 GOl

N\ I

-2 D [l\l o

\O Y G\

n -

B - O 1 o g
O\ IO

D\ O\ -
=~

)
= U L)

LW
N

O .
O 0N

\O ()

V-0 o

NI

O\D O

(W3 2]

O\NO (0

Ui



P

~T3=

geblz 6 (Continued)

Line Frequercy (eps) .
L S ~205.557
L5 -20k. 835
L8 -20L. 50k
hz - .. =200.639
48 ~199.225
L9 -199.05k "

-198.97k
-103.858

U1 Ut '\
SRR

-168.370

53 -197.613
5k ~197.252
55 ~297.080

_19§.7h0
=195.255

U1 \Ji
~3 O\

- . ’ ‘ = ~

& , -165.073
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Table T.

Basic Symmetry Functions for Five Nuclei Agéék

Energy Levél

-3/2

Function Basic Symmetry Function
1 S5 /o o
| 23 153/2 (oflele S]
- : 1
4 b 253 /n 7 (aBoco. + Boowio)
»_ 5 . . 333/2 , Tg-(msg + oucr,ch)
':7. ’ 181/2 ‘ BBaaav
: 9 ‘231/2 a3 Ba |
c1 381/ 1/2(cBafa - aBBan - Pomba + Bafor)
12 s, /2' 1/2(cpae + affac + Bace + Bafact)’
1k | 58, /o 2 (coBocCLB + Bk )
16 65, /s = L (capp + onsa)
17 15,/ BBap
18 -1/2 mﬁBB '- . : } ' | |
21 | 3s /o 1/2(cBaBp - oBBaB - BouxPp + Babup)
22 RCIR  1/2(cBaPB + aPPop + PauPB + Bafal)
23'.1 ‘. :‘.53;1/2' . \—[-g—-(ocBBBon + BaBBcn)
26.-':-” SRV % = (ppape + BBBm)
o1 - BRBA
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- ‘Table 7. (Continued) e

: Energy Level Function Basic Symmetry Function

. 28;3/2~, - ;ﬁ;~(qBBBB + BaBpB)

BBBaB)

+

'31:‘] R jg"(BB“BB

B S RRRRE

S ;a3/2'f  . Jo (apaoo - Bamaa)

actBac)

.‘ 6 R »_‘_::233/2 ——{ e

H
'
®
8 .
W

1

| 8 L 1a - BaaaB)

1/2'.

“aaBaB)

|
%

e }Qal/Q

Bqﬁ{m) :

13 . P | h 33'1/2‘ - l/g((LBCLBCL - @BBCU@ + BacBa

s ual/é  1/2(aBaBo + aBBor - BaaBa - Bafaa)

BaBap)

T T | 1/2(aBapB - aBBap + Badpp

20 2y /p 1/2(apafp + aBPaB - BomBp - Pabap)

: e
S o 3a-1/2 B :/':2"‘(@98{3@

25 | - éha_l/e\/—s-z——(ﬁﬁ’@ﬁ“

BaBBa)

- BpBac)

% . 1 X (appsp

a3 7 JiBaBBB)

| 304‘: P g.'jz—(sﬁass BBpap) -
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Table 8. Algorithm for 3-Chlorothietane Using
. - Three Types of Transitions

- -

.a) Symmetric Transitions

Transition ZEnergy Level 'Freqhency Transition Energy Level TFreguency

No. Type Upper -Lower Check No.  Type Upper Lower Check
1 1 1 i 0 21 1 18 27 1
2 3. 1 2 0 22 2 23 31 0
3 20 A s o 23 1 26 31 1
b3 .1 ol 2 2 20 30 0
5 1 .2 . 7T 1 25 . 2 18 30 1
6 2 -2 9 0 26 .1 -7 17 0
T3 5 9 1 o7 »2 17T 27 1
8 2o b1z 0 8 2. -9 22 0
9. 1 5 12 1 29 1 . 22 30 1
10 - 2. 4 1k 0 30 01 o-hom 0
1, 1 5 1k 1 31 - 2 11. 23 1
12 1 12 23 0 32 2 -5 16 0
13 1 23 1 33 -1 16 - 26 1
W 2 T 20 0 3. 2 o7 - 32 0
15 1 9 20 1 35 . 3 -31 32 1
16 2 T 18 0 36 1 30 -32 1
171 9 /18 1 37 3. =23 27 1
8 2 12 26 0. 38 3 26 -30 1
19 2 1 26 1 39 3 11 17 - 1
200 1 . 20 2T 0 o .3 16 22 1
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Table 8. Algorithm for 3-Chlorothietane
. Using Three Types of Transitions o

b) Antisymmetric Transitions

. Transition Energy level Frequency‘ Tranvs'ition ‘Energy Level Freauency

No. Type Upper .Lower Check - No.- Type Upper Lower Check
TR 6 13 -0 2 3 -3 19 .1
2 2 6 15 - -0 130 20 10 19
3.3 -6 10 o ‘1 8 21 o0
ko2 13 2k 0 15 3 -5 2L |
5. 215 2k 1 6 . 2. -0 21

6 -1 3. 13 -0 7 2 19 8 -0 -

Tl 3 15 1 18 2 21 28 o1

8 3 -3 8 - .0 19 119 29 -0
9 .1 13 25 -0 20 1 -2l 29
10 % 1 15 25 1 21 3 2k 28
111 15 25 1 22 3 25 -29-
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Table 9. LAlgorithm for 3-Chlorothietane
Using Ten Types of Transitions ,o -

" a) Symmetric Transitions

Transition Energy Level Frequency  Transition Energy Level TFreguency

No. Type Upper Lower Check No. Type Upper Lower Check
1007 b o 21 7 18 27 1
2 5 12 0 2. 10 23 31 0
3 9 a1 5 o0 23 - 8 26 31 1
[ A 2 8 20 30 0
5 6 - .2 7 1 25 9 18 30 1
6 8 2. 9. 0 26 6 T 17 0
Tk s 9 .1 271 9 - 17 e 1
8 10 4 12 o 28 8 9 22 0
9 8 5 12 1 29 T 22 30 1
10- 9 » 1 o 30 7 41 0
oo 5 11 31 - 10 1L 23 1
12 12 .23 0 32 9 05 16 o
13 8 1h 23 1 33 8 16 26 1
w9 7 20 0 3 9 C 27 32 0
15 7 9 20 1 35 1 =31 32 1
16 8 7 .18 o 36 . 7T - 30 ...-32 1
17 6 9 18 1 37 . 27 23 w27 1
18 10 12 26 0 38 2 -26 . =30 1
19 W 26 1 39 03 1 17 1
20 6 20 o1 0 20 -3 16 22 1
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Table 9. Algorithm for 3-Chlorothietane
: Using Ten Types of Transitions

b) Antisymmetric Transitions

- Transition Energy Levei vFrequency Transition Energy Level Frequenéy
~ No. Type Upper Lower Check ~ ' . No. Type Upper Lower Cheek

6 13 . . -0 || 12 : -13 9 1

6 15 . -0 13 0 19 1
00 -0 || o 8 21 -0

13 ek o0 A 15 15 24 1

~ ® & ® -3
1
&

150 2 1 || 16 a0 2L 1

6 -9 3 13 -0 7 19 28 - -0
Ti-l0 3 15 1 18 21 28 1

8 L . -3 8 -0 19 -19 29 -0

® W O 3 9 W WY O W

9 10 13 5 -0 || 20 21 29 ; 2
10 9 15 25 O | S S

11 8 8 19 -0 1l 22 2 25 7 29 1
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Mable 10
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Co Ly L 1

I.J. 1=t b 12 oo o ot et jd
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-5658.762 -569.632 -570.037
-2756.137 -277.101 -277.672
-3k7.827 -3k5.557 -347.012
~3k8. 242 -3%9.Lo7: -349.039 '
~370.425. -371 800 ~37n.287
-372.629 -37%.5%2 -372.857 7.
-L£.155 -45,162 -15.533
-46. 155 -47.54%0 -L6.¢99,
-69.178 -70.754 . ~-70.332 ,
-72.655 ~7L b ' -71.837
-127.777 ~123.8%0 -123.509
-151.02 -119, 8Ll -150.285
-151.07 -130.115 ~15k9. o7k
-159.L72 -133.488 -158.290
=159.842 -155.619 -139.033
-17n.bk3 -172.618 -172.C30
183.055 282,797 182.505
158.632 159.601 159.172
158.350 259.702 159.3¢92
159.873 151.337 152.623 .
149.780 130,975 150.572
1356.893 133.738 1356.371
62..895 50. 761 P 61.051
58.733 .59.960 59.51k
50.779 41.9685 Li.5%0
29. 566 - 38.32 - 38.757
300.650 379.3%9 379.793 .
377.232 373.458 378.030
357.555 353.725 353. 259
337.kSk 356.362 , 356.729 -
251.267 250.095 250.232
577.728. - 576.581 575.28L
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Table 1l.

8o

3-Chlorothietane;

Resonance Experiments.

Lines with Common
¢ Energy Levels, Obtained with Double

* Parentheses indicate g peak, i.e., A MZ = 2.

Line Lines with common energy levels
1 27-30 (37-k0)* 5L-56 - (61-6L4)
b 27-30  (29-32)  37-37 . (38-39)  hl-hk  (60-62)
5 b1k (W7-ET) 59-59 “
6 20-20 (27-30)  (53-55) 59-62
11 (27-30) 38-39 43-hk (18-52)
12 19-20 (20-22) h3-bh (k5-L6) 53-56
15, (u7-18)  (23-24) (35-36) 52-55
16 . (17-22) 27-30 (42-46) 52-55
59 (5-5)  (e5-26) 40-40 L7-18 (58-58)
b
1 27-30 (37-10) 54-56 (61-6hY - -
16 (17-22)  27-30 (b2-k6)  s2-52

D T TS
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Table 12. 3-Chlorothietane: Algorithm Used with Double -
Resonance Information From Lines 1 an@Aﬂl6.

Transition Energy Level Frequency | Transition Energy Level Freguency
No. Tyvpe Upper Lowerx Check No. Type Upper Lower Cheek
15 1 2 -0 33 9 -7 -27 1
2 11 5 -0 1 3% 3 12 -18 1
3 12 -1 I 0. 35 8 12 23 1

b3 o 7. -0 136 10 .12 26 1
5k b 1 377 b -23 1
6.1 2. 9 -0 38 3 1k 20 1
7k 5 9 1 39 9 . -1k 26 1
8 9 7 20 -0 Lo 3 16 . 22 - -0
9 T . .9 20 1 8 9 2
108 T 18 -0 b 7 22 -30
11 6. 9 18 1 53 b 3 - 8 -0
12 7 18 o7 -0 10 3 15 -0
13 16 20 27 . 1 b5 9 -3 13 -0
w9 18 30 -0 . w3 15 21 . -0
15 8 20 30 1 vy o9 8 21 1
16 15 27 32 - . -0 (8. 8 .8 19 -0
17 16 30 0 32 1 e 3 13 9 . 1
18 -1 31 -32 -0 50 -7 6 13 -0
19 =17 23 31 -0 51 8 ° -6 15 1
20 -2 23 o7 1 ls2 6 10 -0
21 -18 26 31 -0 - 53 6 10 19
22 -2 .26 30 1 s, 7 210 21 1
23 7. k11 -0 - |55 7 19 - 28  .-0
ok 10 11 23 1 |s6 6 21 28 1
25 L 12 -0 57 .2 oh. 28 -0
26 7 12 1 58 8 137 2k
27 10 -h p 1k -0 - sg 7o 15k
8 8 . 5 ik 1 . 60 10 .13 . 25 -0
29 9 -5 16 - -0 1 9 " .15 25 1
30 8 16 26 f_" 1. 62' 2 - -25" 29" =0
3103 -1 AT L -0 B3 g -19 29 1
32 6 =T 17 1 v 8 -21 =29 1
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Taeble 13. 3-Thietanyl Acetate: Line Positions
and Intensities QObtained by DECOKP

- Line No. Obs. Freq. Obs. Int. Line No. Obs. Freq. Obs. Int.
1 -350.690  0.903 .31 -205.689  1.636
2 ~3&3;028 1.333 32 -202.959 1.742
3 - -342.877  0.991 33 -202.632  1.591

4 -342,720 0.519 3k - -202.169 3.443
5 342,345  0.908 35 -201.892  2.764
6 -335.059 1.Q58 ' 36 -200.960 1.837 .
ST -335.057 0.896 . 37 -200.772 1.604
8. _.' -335.037 1.460 1 38 - -199.089 1.377
9 -33L.967  O.Thk 39 -199.808 . 3.1k45

10 -334.955 © 1.035 . o | -199.011  1.781

11 -33L.8k9  0.976 L1 . -198.605  3.79L .

12 -327.372 - 1.078 Lo -198.722 0491

'13 -327.27%  0.k99 43 -197.722  1.249

b 2327.066 1.6hk M -195.462  1.813

15 -326.563  1.035 L5 2194.38% 3.8

16 -319.170 0.737 L6 -194,298 1.943

17 -217.090 0.487 L7 -194.033.  2.611

18 -216.600  0.712 48 -193.865  0.k95

19 -215.752 ~ 0.951 b9 - -193.331  0.615

20 -215.39% . 0.386 50 - 77.193.167  1.740

21 - -214.505 . 0.531 51. . -192.96hk  0.659

22 -208.981  0.385 52 -192.786  1.ko2 -

23 . -208.699 0.368 . 53 -192.195 . 0.841

2k -208.505  0.725 . sk -191.801  0.188

25 ©-208.303 © 1.954 ' 55 . 2191.721  0.100

26 -207.860  2.053 56  -186.482  0.500

27 -206.962  2.671 57  -184.975  0.9k2

28 -206.827  1.223 - 58  -184.292  0.237

29 -206.657  3.133 59 -183.800  0.375

30 -206.199 1.677 -
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Teble 1b

Jneoretical Contridbutions to long-Range Coupling Constants
(&3 "~

Path ¢ Dinedral fngle BT
ST 7= (cps)
2 - #]
%,C CaCoty ~ .f - 1ko® 220° - ;ii < H0.7
50, SCTH, - a0 EC L +0.5
E,C Cﬁcéis 285° 75° | -0.2
LLCGSC’JS 100° 260° -0.2
21C.CaC5Hs 1ko° 75° +0.3
%,C,5C %5 | 230° 060° - L 40.2
5C.C0E, - | ' 285° 220° S +0.3
5,8 ;Hg _ | 100° 130 0.2

@y 1s the dinedral engle measured clockwise from the Cd-CB-Cé (q;-S-Cé}

-

plene to the C@-Hl(HL) bond. Similarly'¢§ is measured clockwise from
L :

ihe cd-cﬁ-ca (ca-s-ca) plane to 9§e C&-Hz(hs) vond.
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Table 15. Basic Functions for Six Nuclei thh'

Ap
- Spin . Symmetry Fanction
1 A a
0 A 1/ \(2 («B + Ba)
B, 1/ V2 (a8 - a)
By,
2 A o
:l‘r 4 Al (oo + afor + axBa + aoB)
Ay (Baac - oc‘BowL + aofa - acB)
B ' (Bopo + afo - aaBo - aoaB)
o B2~ B %(.Bm - C(,@OZDC - CX@BG. + mﬁ)
0 : Ai ﬁ l/~fé(aBBa + BocB)
SR 1/ J2(8p0c + )
Ai l/ \/—Q(Baﬁq + aBaB) _ '
Ay _ 1/ J2(BaBa - aBaf)
B, 1/ J2(Bpas - ompB)
By, 1/ J2(aPBa - Pasp)
Rl oA 3(apPp + aBp + BBaP + BAGx)
o 1(appB - BapB + BBaB - BBRa)
B, . 3(aBBB + BaPB - BB - BBBa)
B, - 2(cBEB - BaBB « BRaB + BPPa)

-2 Ay pBRB
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Table 16. Symmetries and Spins of a System of Six Nuclei AB)

{ .

Energy Level Spin ‘Symmetry Energy Level Spin  Symmetry
‘ B, A B A . B, A B A
1 1,2 A X A=A ol Aj X Ay = A,
2 L1 A X A=A - 25 A X By = B
| '3 ' Ay X A= A, 26 A, X B, = B,
k- A{ X By= B, 27 -l A X A=A
; 5 A X By B, 28 A X Ay = A,
6 0,2 A X A=A 29 A X B =B
T B, X A= B, 30 A, X B, = B,
N 0,1 A X A=A 31 0,0 A XA = A
9 B, X By= A 32 AL X Ai = A
o0 A X A= Ay 33 .0 0,0 A X & =a
11 B, X B= Ay 3k B, X B, = A
12 A, X By= B, 35 Ay X Ay = A
13 By X Ay By 36 B, X By = Ay
ty Ay X By= B, 37 A X B, =B,
15 B, X A= B, 38 B, X Ay = By
16 1,0;“ A X Ai: A -39 | A, X B, = B,
R Ay X A§= Ay koo B, X Ai = B,
18 f A X Ai:'Al b1 B, X Af = B,
19 DAL X As A, e - 2 =5,
20 A, X Bl; B, O Ay X A=Ay
21 . A X BB, bk B, X.B, = 4,
22 fl,év A X A=A b5 A X Ay = A,
23 -1,1 A X A=A L6 B, X B, = A
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Table 16. (Continued)
" Energy Level Spin Symmetry Energy Levél Spin’ Sym;rfetry
B, A B A B, A B A
b A, X By= B 56 A, X B, = By
18 B, X Ay~ By 57 1,2 A X A = A
29 ' B, X A= B, 58 -1,-1 A X A=A
50 A X BBl 59 A X Ay = A,
5'1 | -1,0 A X A%‘_: A 60 A X B, = B‘i
50 A X A%= A 61 A.XB. =3B
- Mie N N 1 ' 17 72T 2
53' A X A§_= A 62 0,-2  A) X A=A
| 5‘l+ A X A= A, 63 B, X Ai = B,
;>., ‘55_ A, X B=B, | . 6k -1,-2 A X A = Al'
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Table 17. Al Basic Symmetry Functions for Six Nuclel AEBL;

g:sg%y ipén Basic Symmetry Function _
1 1,2 . (cooon: )
2 C1,1 ?(oaeoaamﬁomompamaa)
6 0 2f.,'>'1/~[2(ocsoma+aaoaoa)
8 . 0,1 1/2\/é ozﬁBmamaaswmgwmwﬁma+mﬁm+ﬁwacm+mm@a+moaa)
9 0,1 1/2/2(cspoon-opopen-CRonBa+OBonNA ~ BORODCH+BODBOOH BODGEC! - Bomzaﬁ)
16 1,0 1A 2(coopparcnsons )
17 1,0  1A2(cosseorconcss)
18 . 1,0 1N2(copogoonnpo)
22 -1,2  (ppoooc)
| 23 - -L,1  H(eeeonnpponociBeooRoBE0n0p)
27 - 1,-1 3(000BBe+00L0pB+O0RRaROnEEes )
3L, - 0,0 (0poBBOHOREOLBHROCBENHEOB00B ). .
32 0,0  (cpppooopoopp+EapBoBoOeBs) | .
33 0,0  3(0BROPCHOBOBOBHBOBOLOHBOOBOB) '
Sk 0,0  3(cBoppo-oBEoDA ~EOnBEaTBOBANS ) | |
w3 o,'.~l"_;L/2@(aﬁaﬁBB+Oéf5BOCBB+Oﬂ{36BOCBWBBBBG+WBBB+5@§@BB+B&BBO£B-+WB_536@)'
Ll 0,71 1/ 2J2(0panss -0BBaBE -0BBEAR+OBBREA: BOOBERHEUBORB+BORRNS ~EOBRR )
51 -1,0 1N 2(pposeo+pREc0B ) ' |
52 -1,0  1A2(peeRoc+BR00Rs )
535 . -1,0 1A2(pepopoBRBses)
57 1,-2 (oopses) o
58 -1,-1 (BBOBR3+BELOBE+BARECAHBEBAR) -
6o 0,2 1N2(opBessrponBEes )
6L

_1,-2 (pepess)
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Table 18.
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A2 Basic Symmetry Functions for Six Nuclei AQBh :

Energy Spin.

Basic Symmetry Function

Level A,B

3 1,1 %(aﬁBaam—aaaBaa&aaaaBa-aaaaaﬁ)

10 0,1 /Zf?(aBﬁaaa—apaBaamaBa@pa-aBaaaB+BaBmaa—Baapaa+8aam8a;Baaaao)

11 0,1 /eJe a,rsBmﬂuamsm-BaﬁowmBmb-aBaaBa-aBmﬁ+Bmﬁa+Bomocﬁ)

19 1,0 /J’ 2{ axBaBo~aoaBa )

2k 1,1 %(BBBac-BRaBam+BRacBa-BhaaaB) -

28 1,1 (craBpp-anBaBBanpBal-anphBa)

35 0,0 H{aBBapo-afaBal+BabaBatBacBas)

36 0,0  Z(cBPBac-aBanpB-BaBBas+BanaBB)

b5 0,-1 /2\f2(aBaBBB—aBBaBB+aBBB&B-aBBBBoc+BaaBBB BafaBB+BaBhaB-BabBBc)
o Han (aBapBB+aBBapp-aBPBap-appBa-BanBp B -Papap B+Bapfol+PabBpe)

5k -1,0  1//2(BpBaBu-BBaBaB)

59 -1,-1 %(BBaBRB-~BBRRxBL+BRRRwB-BARBAx)




_91;

Table 19. Bl Basic Symmetry Functions for Six Nuelei AQBh

Energy Spin Basic Symmetry Function

Level A, B
L 1,1 %(adBaaaﬁaaaBaa—aaaaBa—aaﬁaaé)v
12 0,1 l/zf 2(aBBmmﬁaam-aswsa—aﬁms+sasm+Bmﬁm-Bmso,-saams)
13 . 0,1 1 /22 (B Bana-aBoBomraBocBo-aBacs - BaBacos BaaBam-BaaaBar+Baaaap )
200 1,0 1N2(capBom-aauaBB)
25 -1,1  A(PeBaca+BPafan-Bhacfa-pacal)
29 1,-1 H{oapBpranfaBB-ansBap-auppBa)
37 0,0 L(cBBBon-aBonBBubBun-BoaaBp )
38 70,0 I{abPaBa~abafas -BabatatBacas )
BT 10,1 /af2(aBapB+aBBaBp-aBBRab-aBBERwPanBpi+RauBE - PubfuB-BaBssd,)
L3 : 0,-1 l/afé(aﬁaBBB-aﬁﬁaﬁB+aBBBaB-aBBBﬁ&—BamBBB+B@B@BB-B®BB@B+B@BBB@)
55 -1,0  1A/2(BRABam-BRacBB)

60  <1,-1 3(BPapBA+BBBaBB-BABAB-BAAAR)
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Table 20. B, Basic Symmetry Functions for Six Nuclei AQB)_;.

2

Energy Spin Basic Symmetry Function ‘ A
“Level A, B o

5 1,1 %( mﬁmm-mﬁw—mﬁamﬁ ) L
7 0,2 1N 2(aBacan-Bancac) ;
15 0,1 l/2fé(aBBaaa+a5aﬁam+aBaaBa&aBagaB—BaBaad-BaaBaa-BaaaBa—BaaaaB)
S 1k 0,1 l/&/é(aBcha,-aBaBm-aﬁmBa+aBamB+BaBm—Bmﬁm—ﬁmﬁoﬁﬁmﬁ)
21 1,0 1/N2(acaBBa-ccBaaf)
26 -1,1  (BBBoxa-BBabac-fBoxBetBanap )
30 1,-1 2(aocBBp-aaBabB-aaBRab+anBBBu)
.39 0,0  Z(ckaBPa-aBBaap-Baaffa+Bafucf )
Lo 0,0  3(aBophorraBBond-Banhfa-BaBans)
L 0,0 3(eBBBan+aBoabR-BapBoc-BancBB)
ke ; 0,0  Z(aBBapo+aBaBal-Bafuda~PaaBas)
ho 0,-1 */2V2(cBoBpB+aBpasl+aBbBap+appERu-Banh BB -PabubB-Bappul-Pulfhe)
50 0,-1 l/EJé(mBaBBB-aBBaBB—aBBBaB+aBBBBa*Ba@BBB—BQB@BB-BmBBaB+BmBBB&)
56 0,-1 1/N2(BPaBRa-BBBwB)
61 -1,-1 4(PBapBBB-BRBaSB~BARRS+BRBAA)

63 0,-2 1N2(cBRBBRR-RuBBRB)
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Table 21. Algorithm for A. Basic Symmetry Functions for

1
¢

‘Six Nuc;ei AB,

Transition Energy Level TFrequency Transition Energy Level TFrequency

=
[\9]

No.. Type Upper Lower  Check " No. Type . Upper Lower Check
1 1 1 6 1129 2 23 51
2 2 -1 2 30 1 31 51 1
3 2 6 8 31 2 23 50
b1 2 8 1 32 1 32 s2 1
5 2 6 9 T3 2 -23 0 53
6 1 2 9 1 3 1 33 53 1
701 8 23 35 2 .51 58
8. 1 9 23 1 36 2 52 58
9 1 -6 22 37 2 =37 58
10 2 -22 23 1 38 2 31 L3
1, 2 8 31 : 39 2 32 L3 1
- 9 31 . 1 o - 2 33 ey 1
131 2 8 32 51 2 3k b3 1
1 2 9 32 1 fe 1 o7 W3 1
15 2 8 33 . L3 2 -31 Ll
16 2 o 33 . 1 S - I S
17T 2 -8 o34 , hs -~ 2 -33  kk 1
18 2 -9 3k 1 L6 2 -3u', Ll 1
19 2 2 6 YT 1 -3k 51 1
20 1. 6. 31 . 1 81 27 hk 1
21 1 6. 3% 1l 2 b3 62
22 2 21T o so 2 uh 62 1
23 1 17 32 1 st 2 w21 ST
2h 2 2 18 s 1 w57 62 1
25 1 -18 33 . 1§53 1 43 58
2% 2 -16 27 o fisk 1k 58
7 2 . -7 21 1 lss 2 .58 6k
28 2 -18 27 1 56 1 =62 -6L 1




Teble 22. Algorithm for A2 basic symmetry

- functicns for six nuclel AEB’

Transition Energy level - -
No. Type , Upper  Tower - Frequency check
1 1 3 © 10
2 1 3 o
5 2 -3 19

K 1 10 © ook

5 1 11 ok 1
6 2 10 35 - '
7 1 19 35 1
8 2 -2k 54 ‘

9 1 35 _ 5h o 1
10 2 -10 36 '
11 2 11 36 | 1
27 e -11 35

13 2 BT 28

1k 2 35 b5

15 1 28 bs L 1
16 2 35 . k6

17 1 28 Y

18 2 36 s

19 2 =36 . L6

20 1 45 59

21 1 BT 59 .

n
n
o
t
Ul
=

-59 o 1
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Table 23. Algorithm for Bl Basic Symmetry

Function for Six Nuclei AQBﬁ

Transition Energy Level = Frequency Transition IEnergy Level Freguency
No. Type Upper Lower Check . No. Type Upper Lower Check
1 1 k12 _ . iz 2 13 37 1
2 1 b 13 13 2 -20 29
3 2 '-& 20 L 2 37 47
T 12 25 Coflis 1 e ouT 1
5 1 | 13 V25 ' 1' 116 | 2; r =37 L8
A6_ 2. 12 37 » 171 -9 k81
7T 1 20 371 18 2 38 L7 1
8 2 25 55 - 19 2 -3 48 1
9i i 3T %5 1 20 1 -7 60
10 2 | -2 - 38 : fer 1 -8 60 1
11 2 13 38 1 | 22 2 -55 -60 1




P
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Table 24. Algorithm for B, Basic Symmetry

Functions for Six Nuclei AgBu ¢

Transition Energy Level Freguency Transition Energy Level Freaquency

‘No. Type Upper Lower 'Check No. Type Upper -Lower Check
11 5 1L . 19 2 -1k L2
2 1 5 15 20 2 -15 b2 1
32 5 & 21 2 1-21 30
L 2 1h 39 22A 2 39 49
5 2 15 39 1 23 1 30 49 1
6 -2 7T 1k : 2k 2 -2k 50
T T 5. 1 -85 50 1
8 1 21 39 L 6 2  -56 = 61
9 é 1w 26 ' 271 1 ko 6l 1
01 15 26 1 6 1 50 .61 1
11 2 26 56 20 2 49 63
12 1 39 61 30 2 50 -63 1
13 1 21 . ko B T 50 . k9 1
o2 15 ko .. 1 2 2 . -ho 50 1
15 1 ko 56 1 33 2 B
16 2 L Lo 1 |3 2 . a1 50 1
17 2 1k 41 5 2 ko ko 1
18 2 15 b1 1 36 2 - k2 50 1
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APPENDIX g

A. Steps in Making an:.Analysis

In this appendix, the steps required to carry out an analysis will
be outlined for two cases: 1) fhe situafion in which noise level is
fairly high and the decomposition is not perfectly ciear cut so that
ASSICGN cannot be used directly and 2) the case in which the noise level
is low énd a good decoﬁposition is obﬁained, so that ASSIGN_may.be
used directly'to obtain all the sets of energy levels.

The original digital data is scaled to a form‘which is optimal
forluse.in DECOMP (Appendix B) by using the base line adjustmenf program
LINE (Appendix E). The individual groups of péaks in the spectrum are

then decomposed using DECOMP as discussed in Appendix B.

'If the nolse level of the spectrum is low enough and the nature
of the peaks are such as to give an unambiguous aecomposition, the peaks
found by DECOMP can be used in ASSIGN (Appendix D).. Before using
ASSIGN it is necessary to normalize the intensities and it is also
convenient to scale the frequencies so they correspond td thosevof the
experimenﬁal spectrum. This can be done withVSCALE.(Appendix E).

The setsbof transitions which are calculated by ASSIGN can be
‘directly used in NMREN to get a leas{ squares it to the energy levels
~and to adjust the trace. (This function Waé not built into ASSIGN
since it is readily availeble in NHREN,) 'An_option in ASSIGN will cause
these assignments to be punched on cards for direct insertion into NMREN.
The adjusted sets of energy levels are then put into NMRIT(N)‘for.cal—
culation of the parameters. Any set of inifial parameters cén be used
as long as they are consistenﬁ with the eqﬁivalence.and syﬁﬁetry proéer%ies

of the molecule.



If the spectrum is such that ASSIGN cannot be used directly with
. -
the decomposed lines, it is very helvful to use MMRIT(0) as an aid. It
will be necessary to estimate parameters until a reasonable resemblence
to the experimental spectrum is obtained. When this has been accomplished,

5

oeen decomposed to transitions

(0]

assign all of the lines which hawv

n the usual manner. Since a far larger number

|

calculated by NMRIT(0),
of lines are known from DECOMP than would have been known by visual
estimation, the task shéuld be easier and more efficilent.

The analysis is then carried out in the usual manner for the S & R
method. These aséignments are used in NMREN and the calculated energy
levels used in NMRIT(N) to obtain a set of parameters and transitions.
These are then reassigned as necessary and the process repeated wuntil a
good set of parameters 1s obtained. After a'reasonably good Tit is
obtained, the assignment should be close enough so that it can be used
in the construction of an algorithm for ASSIGN. This will allow the

possibility of picking out the correct assignment faster than the trial

o

and error method, if the transitions can be localized to within
fegion as was done in the five-spin cases above, ASSIGN will not only
save time but will provide all sets of assignments consistent with the
constraints placed on the system.

A1l programs are written in TORTRAN IV for an IBM 7094 and are
listed in the subsequent‘appendices, along with sample problems.
AProblems can be stacked in all programs and the last card in the entire
data deck is blank, causing the program to call exit. It is assumed
that input and output data formats will vary with the personal preference

of the user and have only been mentioned in the descriptions.
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E. DECOMP

A listing of DECOME,.a description of the information needed for
input, and two sample problems are given below. After the spectrum has
teen obtained in an arbitrary digital form it is‘necessary to be certain
it is scaled pfopérly for use in DECOMP. Tﬁis is necessary beéause the
program changes the fitting parameters in préportion to the fit as well
. as the partial derivative of the function with respect to that particular
parameter. Consequently all the parameters must be of the same order of
magnitude. This is easily accomplished with the simple program, BLINE,
in Appendix E which scales the x~ and y-axes, adjusts the base line
to zero and will find initial starting parameters if desired.

A convenient scale has been to set th¢ x and y axes over a range
of about 0-50. The final values for peak positions and intensities can -

‘then be normalized and shifted to any, frequency range desiréd by using
SCALE, also described in Appendix .

The best procedure has been found to make the‘initial decomposition
fased on the peaks which can be visually distinguished, plus two or
three additional estimates., The results from this degoﬁpésitién can
then be plotied (Appendix B) and subsequent problems done with peaks
added where the fit is unsatisfactory. The present progfam will
decpmpose almaximum of 19 peaks using a LorentzZian shape function of éO
peaks using a digital standard shape function.

CARD 1 Read M, IZ, IMOUT,. IDATA (Ik,313)

| M 1s the number of data points. If M=O program calls exit.
IZ is number of peaks which are to be fit to the data.
TMOUT ié»an option to select primtout. If IMOUT = 1, values

of F. (fit), G (gradients), x (parameters) are printed at



CARD 2

DECK 3

DECK L

CARD 5

every interaction and the entire error matrix is printed out
with ﬁhe final values. Thié option is only used for diagnostic
purposes since most of this informetion is not ordinarily
desired. IMOUT = 2 prints out only the initial ana final
valués and is the usual option.

IDATA % 0 if 211 the date points are to be printed out,

IDATA = O if data points not printed.
T2 (20X%,710.3)
T2 is the reciprocal of the peak half-width at half-height
when a Lorentz function is used for peak shapes. If T2 = 0O
then the program assumes a digitél standard function will

be used. This is read in later. These two types of problems

can bpe mixed.

TT;, VV, 1= 1M (10r8.0)

These are the x. . values of the data points.
50 Yy

X X, i=1, Iz : (30X,2F10.3)

i}

p

b

i

. .th .
1e 177 peak, one set per card.

=

FANY
i
. and Xi are the estimated frequencies and intensities of

ct

Note: If T2 = O the digital standard function must be read

in after the frequencies and intensities.

Read MSTD, LST - (213)

ygzg.is the number of data points in the digital standard peak.
LST The program searches for the maximum in the digital
standard peak, sterting from the iSTth data point. This is
necessary because there might be a local maximﬁm in the noise
at the beginning of the peak and this would be used‘as an

erroneous peak position. ILST is chosen as the just point



located on the digital standard peak which is high enough to
3 . . . i
be above the ncise level but below the maximum.

=1, MSTD : - (1078.0)

DECK 5 XSTD ,, YSTD

2 r

Data points for the digital standard peak.
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SIBFTC MAIN

DIMENSION H{40,40) ,xﬁﬁgjyﬁiﬁp) SCADY XP {40 ,5P(40), TLan) 6R140)
DIMENSTON TITLE(12).XIN(40) +TT{500,1 1,V¥(520)
DIMENSION_ V{3)

COMMON  H s X s G + S s XP y GP

CORMMON T B e M e N s e LS

cCoMMnN M s MS s NS s IT s GS s GSP

COMMON __GTP 2055 1 1T 2 G328 . F _FP :
COMMON 8 e FO s F 5 K sy P s 10

C“ﬂMQN RS SU e T s QL v A L~
COMMD DELTA s, TITLE TMOUT s IFOUT vV » IDH .

rgn\ﬁw LIEQT ) o - . o

1000 READ(2,1)M,17Z,IM0UT,IDATA
IF(M DEQ.O)CALL FXIT

=.001
P=0. - _ B

T e e e et e _

OEAD (2,200 T2 S

IF(T2.NE.C.) X{1)=72

READ (2,150 (TITLE(I) 121,12} ‘
151 IF(IDATA.NE.Q) WRITE{3,16) TITLE

READ (2,4) (TT(I,1),YV{1), I=1,M)

IFUIDATALEG.0) GO TO 148

WRITE{3,155) TT(T,17, V(i)
51 CONTINUE
148 Ml=1
D099 I=1,2 ] e

99 V(1)=0.0

LTEST=0

”S Q

(72.€0.0.) GO 10 53
M 7&rz+1

on 777 1=1,12
I1I1=1+17+1 S

READ (2,18} TTT),Xi1+1)
XIN(T+1)=X(I+A)

777 XIN(UID)=X{III)
GO T 52

53 N=2%{Z
DO 778 I=1,127"

ii=1+117
READ(2,18) X{IT),X[1}

XIN{I1)=x(11) B
778 XIN(I)=X(I)

52 DELTA =1, ) , ‘ N - :
DO_175 I=1,N - . :

DD 175 J=1,N | H_ 7 B B g
175 H{I,J)=0, - | ; . | o .

DO 180 I=1,N
180 H{I,i)=1,

CALL FONIN:GeF 4 XyMLsI12TT VV,T2) h
12=17 ‘ '

WRITE (3,6)N.KsE,P,DELTA B -
WRITE (3,7) '




WRITE {23,8)0(X(T).7=1,4
WRITE (3,13 e e —
120 1L=1
121 CALL _READY(IZ. 7T .VVyT21 . e -
L 1Z=17
122 L=L__ .. e - o —
. 123 GO TO (139,159,137,126),
: 124 L=2
125_G0 T 121
e 126 CALL AIM{IZ,TT,VV,T2
, 17=127
127 L=L . . o
128 GO TO (129,135,137),L
129 CALL FIRE(IZ,TT,VV,T2)
12=17 .
. 130 L=l R e
131 6O TO (135,132,126),L
132 1=1
133 CALL DRESS
G0 T0 124
135 L=2
GO T0_133 . S
137 L=3 -
GC 10 133 . - B —_ S
159 L=4
GO 10 133
139 L=2
JMS=C o e e e
GO TO (120,142).L
142  WRITE (3,16) TITLE ) L e
L'Q!Tf‘ (3?14)1;: ?IT
WRITE (3,100
OWRITE (3,7)
_ IF{T2.EQ.0.) GO TN 54 L
I?(T7 NFLO O ARITE(S pL9Y T2 4%(1)
RITE(14420) X(1) o
Dﬂ 57 I=1,11
[11=1+17+1
WRITE(14518) X(III1)X{I+1)
57  WRITE{3,5) XINITII} XIN(I+1},X{ITT),X{I+1) ~
. GO TN 56 4
54 NDNS5 1=1,17 -
[I=1+1Z : ,
. WRITE {144,18) X{I1),X{I}
55 WRITE{3,5IXIN(TE) o XINCTI )y X{II)4X{I)
56 IF({IMOUT.EQ.2) GO TQ 700 - o
’ WRITE ({3,12) ‘
WRITE (3, %) xc(r>,1-L N) o L ) .
CWRITE (3, : ‘
- HRITE (3,8)((H(I,J>,J=1°N>,1=1.N)
700 M1=3 ,
CALL! FCN(Ny Gy FoXyM1,17,TT,VV,T2) -
C11=17 - T
161 GO TO 1000 . i
1 FORMAT( 14,313 ,F7.2) T
2 _FORMAT (213,11,14,F9.3,2F10.3)
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3 FOPMAT {AF10.5)
“ FORMAT {1CE2.C) e e e e e

5 L»\?’Al {1H &F '[’-l-.,a; .
6 FORMAT (BHCN=T12.:40 K=12,44 E=fFla.5,4H  P=016. Z G 8H_ DELTA=F14,5)

7 FORMAT [ 1HO» 15X 1 HX/)
8 *:’.)” MAT (1H 8F14.5) 0 e

uT (THO 355X, 1HI/)
AT (3HO, 13X JAHINITIAL VALUES, 12X, 12HFINAL VALUES)

No
n -t
DO
“J

10

AT (1HC, 12X, 12HERROR MATRIX) , )
1\]{1“‘/"95)\<71H,\/) L ‘ . _

)
7 o
3

D

T M

11

2l

13 FORMAT (3HOFZE14.5)

14 _FORMAT (3HOF=Fla.4,8M IT=13) S
15 FORMAT (1246) -

FORNMAT _(IH1////7//_ 1206)

.n
L")D'“i
5

cGR R

AT (30X,2F10.3)
CFORMAT(IH F14.3,14X,F14.3)

1
1
1
2 FORMAT(20X,F10.3)
05 FCORMAT { 13H DATA POINTS//)

5

8

g

0

105 _FORMA

155 CORF‘:/\T( 5(€£20. 5%
END

!
: .
) '
3 ] e e
e e ) e
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-

S

URROH DTT“‘C_‘T‘__C‘{_\_‘?__LI\’_(7v| v_\_<') A T VV,T2)

)"5(40>,x PL40) 6P (40), T(40),6B(40)

SRVA
40
]

i1
DITMENSIOMN H{40,40) s X {401} . G{
DIMEMSION VI(3),PD{4C) sAA010,

DIAENSION TITLE(12) ,XIN(40) 4 TT(500,1 ),VV(500)"
COMMON, H_ . '.A..-‘ X, s G v S s XP . GP

COMMON T . GR , M , N . L .S
TFE(ML=1) 60,40,60

40 KK= 1
| MP=

wqrftk3.153>dY o :
SRS Tﬁ ( "3 150 )N e e : -

N“Iik (3,151) M
A0 F=0, '

DO 4 I:: 1 ’ N
DI =0,

G(I1)= 0.

4 CONTINUE
A= Q. ~
D5 _IDAPT= 1, MP

D06 J= 1., KK
5 AALJ)=TTLIDAPT, J}

1E(T2 JE0.0.) 6O TO 20 , .
CALL TABLEL(FIT,PD, X, AAsM1,17) - o

GO 70 13
20 CALL TAPLED(FIT,PD, X, AALMILT7)

13 JIF{MINEL.LY GO TN 14 :
MlNZ R L o : : L

14 F= F+ T {FIT-VVIIDAPT) ) %2 _
D07 J=1s N N . i

Glyl= GUJ) +(FIT VV(IJQP')) PR J) %
7 _CONTINUE

5 CONTINUE
100 FORMAT (5{110)) L

105 FORMAT { 13H NATA POINTS//)
150 FORMAT{36H THE NUMBER OF FITTING PARAMETERS =12)

151 FORMAT{Z29H  THE NUMBES OF DATA POINTS =13/}
153 FORMAT(IHL1,5H M1=12/)

155 FORMAT( 5(E20.5))
22 RETURN

END

R . e e e e m. .
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5IBFTC

TABLED '
SUBROUTINE TABLEN(FIT PO X, TyMl ,17)

DIMENSION X(AOT-DD(AO)gXSTu(lCO)yYSTD(lOO)9Y(ZQ)

IF (M1-1) 20,10,20C _

READ (2,1) MSTD,LST,SCALE
TE{SCALE.CQ.N.) SCALE =1. ___

READ (2,2) (XSTDIL),YSTD(L), L=1,MSTD)
DD= YSTD(I)

EE = XSTN(1)
DG_25 _1=1,MSTD

XSTD{(1} = XSTD(1) — EE
YSTD(IY = (YSTD(I) — OD)*SCALE

5040 J=LST,MSTD '
TFLYSTD(J+1)=YSTN(JI) 30,40,40

RESSTD = XSTD(J)
1H=J

WIDEL= PESSTD=XSTD{1)
WIDER = XSTDIMSTD) = RESSTD

YRCSTP = YSTD{Y)
GO TO 20

40
29

CONTINUE . s
FLT = Oe )

D’j ‘(5 e 1 ,._{_2.....__..‘. e et e - -
I i = I{' I 7

SHIFT = X{1I) - RESSTD
IE(T={X{IT)=WIDEL)160,70,70

Y{lj) =0.

_PDLI) = 00001
TPDUIT) =-.00001

GG T3 50 e ' -

IF{T-(X{II)+WIDER})BD,80,65
Y{I) = 0.

PD(I} = .C0001
PO{Ii)= .CCO01

80

CIF(X{II)=T) 90,100,110

GO 740 5¢C

100

Y{I} = YRESTD*X{1I)
PD{I) = YRESTD

PD(il1) = 0.
G0 _TO 50

90

95

TA = M
IF{XSTD(IA) + SHIFT-T) 956,97,97

96

TA =IA+1
GG TO 95

97

1

Y{iy = X(I)’(YSTW(IH)+((XSTD(IA)+§HIFT TI®{YSTD{ A~ 13—YSTD(IA)))/

IXSTDOTAY=-XSTDLTIA=1Y))

o

PO = Y(TY/%X(T)
IF (MSTD-IA )} 98,98,99

98

PDITIT), = 0.00001
GC_T0O 50

PD(II) =-((YSTD(IA J=YSTD{UTA-1Y)=X(I)Y/{XSTD(IA
GO T70. 50

)

=XSTD(IA-1))

110
111

IN = IM - :
IF(XSTDUIN) + SHIFT~T) 120,120,115

115

IN = IN-
GO TO 111




120 Y(I)
1

1

YSTD(

{
) -
POTI) = Y(I)/X(1)

IELIN - ) 121,121,122

121

PD(II)=0.00001
GO TN 50

122

POCIT) == ((YSTD(TN+1)=YSTH{IN
GO _T0 50

SRSRUNIE: b R

KOTTH(YSTHCING 1) ={ (XSTDUIN+ L) ¢ SHIFT=T1#(YSTR{INCI) =
MYV ZAXSTOCINFLI =XSTROING ) )

J1EX (1)) 7 (XSTDLIN+1) —XSTOC(IN )

50
55

FIT = FIT+Y(1)
CONTINUF

RETURN
FORMAT(21I3,F7.3)

1
>

) FORMAT (10F8.0)
3 FORMAT {5E14.5)
- END




I8FTC TABLEL

5y

B

O

DECOMPOSITION OF NORMALIZED LNREN
SUBRNUTINE TABLEL(FIT, 0N X, T,!

DIMEMSION X{4C) o POUAOY

S 12=12 .
FIT=0.0 _ e e et e e - e ~ -

PD{11=0.0
DO 10 I=1,17 : Q

T1I=1+17+1
Z=X{111}=7 e+

Y=X{11%Z _ 4
- RECIP=1. /rl.fy Y) L . -

FIT=FIT+#2.% )X {T+1)%RECTP

PD(1)=PD(1)+2,~ XK{I+1)*RECIP*{1.—-2. *Y*Y*QECIP) -
POLI+1)=2.% (l)““C"ID
10 PRUITI)=—tfo% X{1J3xX{1)%X{T+1)*YXRECIP*RECIP

RETURN
END o o

H
=
/
~
-

\

i

Pt g I 5w e s

ot g g

T T T T



$IBFTC READY
SURROUTINE READY(IZ,TT,VV,T2)

DIMENSION H{40,40)¢X(40),G(40),S{40),XP(40),6P{40), T{40),GB(40)
DIMENSION TITLECLI2) .. »1T500,1 ),VV(500)

COMMON  H y X s G s S s XP v GP
COMMON T 2 G3____ _o. M ___ 4 N L . LS
COMMON M1 s MS s NS + IT ¢+ GS s GSP
COMMON  GTP v 5SS v GTT y GSB y F s FP
COMMON FB s FO s E r K y P ¢+ T0
COMMON_ RS . SL____+ Z .1 Q ' A . EL
COMMON  DELTA y TITLE 5 'ITMOUT s IFOUT
1Z=17 : = o '
L=L
GO TN (200,201).,L

200 1T=1

201 CALL MATMPY(NsNsH:G,S)

203

DO 203 I=1,N
S(I1)=-S{I1)

M=1
CALL MATMPY{M,NsS,G+GS)

207

IF{GS+E) 207,226,228
EL=AMINI(2.0s={F/GS)-(F/GS}))

210

SL==-GS :
DO 211 I=1+N

211

XP({I)=X{IY+EL*S(1Yy
M1=2

CALL FCN(NsGP.FPsXPo ML, 12,77 VV,T2)
12=17 | '

CALL OVERFL(KGOOFX)
GO _T01214,215),K000FX . . .

214
2141

WRITE (3,2141)
FORMAT {(1HO,5X,14HREADY QVERFLOW)

EL=EL/2.0
GG TO 2190

215
216

CALL MATMPY {M,N,S,GP,GSP)
IF_{GSPY 2175229+229

217
218

[F{FP~F1218,229,229
IF{IMOUT.EQ.1) WRITE(3,1)

FB=FP
NO 234 I=1,N

234

GB(I)=GP(I)
T =XP (1)

221

IF{FL~2.0)221,223,223
L=3

223

RETURN
DELTA=DELTA+DELTA

TO=1.07/SL
L=2

228

"RETURN

L=1

RETURN
L=4

229

RETURN
FORMAT (10HOUNDERSHOT)

END
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$IBFTC

ATM

SUBRQUTINE AIM{TIZ,TT,VV,T2)

DIMENSION HIU40+40):X{40),G6(40),5{(40),XP{(40),GP(4G),

7{40),GB(40Q)

DIMENSION TITLE(12) 2 TT(500,1 ),VV(50Q)

COMMON H s X » G » S ¢y XP » GP

COMMON T s GR s M s N s L » LS

COMMON M1 + MS s+ NS o IT ¢+ GS + GSP
COMMNN  GTP y GSS o GTT +_GSA s F « FP

COMMON  FR ¢y FO v € v K ¢ P vy T0

COMMON RS v SL A v Q v A v EL

COMMON DELTA , TITLE  IMOUT o IFQUT

[Z=17 '

M=M

GO 70 {301,313),M

301

L=GS+GSP+3. 0% {F-FP)/EL

T0=GS/Z

 Q=ABS(Z%#SORT(1,0-TO%TI))

TI=GSP/Z

A={GSP+0-7)/{GSP-GS+Q+Q)
TO={EL*{GSP+Z+R+0Q)*A%*A) /3.0

FO=FP-TO

CALL MATMPY(N,N,H,GP,T)

TP1=6SP/SL
DO 308 I=1,N

308

TI)=-T{I)+TPL%=S(])

M=1

CALL MATMPY(MVN*}TvGPvGTP)

TP1=F+GTP/2.0

312

IF (FO-TP1)

31253124317

v e e i

LI SRR RPL

¥
o AL 10 e e petia ey g o

oo arana,

CALL OVERFL{KOOOFX)
GO TO{340,313),K000FX
340 WRITE (3,2)
A=.5 ‘
313 TP1=1.0-A
’ DO 314 I=1,N ,
314 TLI)=A%X{1)+TPL%:XP(I)
L=1
. RETURN
317 1IF (TPl) 312,318,318
318 DO 319 1=1,N
319 T(I)=T(I)+XP{1)
M1=2 , .
321 CALL FCNIN,GB,FBsTeML,1Z,TTVV,T2)
17=12 . K
CALL OVERFLI{KOOOFX) ;
GO TO(350+322).KO00FX :
- 322 IF (FB-F0) 323.312,312 i
323  IF(LIMOUT.EQ.1) WRITE(3,1) ¢
DO 325 T=1,N {
325 S(I)=T(I}=XP(1) ;
CALL MATMPY{M4N,S,GB,GTT) :
IF{GTT-GTP) 335,330,330 :
330 GSS=GTT-GTP a
SL=-GTP
EL=1.0

L=2




=115=

RETURN

335 L=3
RETURN
350 WRITE {3,3)

DO 352 I=1,N

352  TUI)=AT(1)+XP{I}) /2.0

GO TO 321
1 FORMAT (9HORICOCHET)

) FORMAT (1HO+5X,15HAIM OVERFLOW-=1)
3 FORMAT (1HO,5X,16HATM OVERFLOW~=T1)

END

s e ey, Tt o 4R AN s v o

oy i,

e e

ARy o
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$IB8FTC FIRE

SUBROUTINE FIRE {I17,TT,VV,T2)

DIMENSION H{40+40),X{40),G{40),S{40),XP{40),GP{40Q)

17

T{40),:GB(40)

DIMENSION TITLE(12) cTT{500,1 ),VV(500)
COMMON H y X » G s S s XP 10 4 GP

COMMOM T . GB . M s N s L s LS

COMMON M1 ., MS ¢ NS s IT s GS y GSP

COMMON  GTP : GSS » GTT , GSB , F , FP =
COMMON FB y FO sy E ) y K s P y TO

COMMON__ RS s SL y 7 5, 0 s A v EL

COMMON DELTA -+ TITLE , IMOUT 5, IFOUT <
[7=17

M]=2

Cf\LL FCN{N!GB?FBvTlevIZVTT‘JVV’TZ) )
12=12 -

CALL OVERFL{KOOOFX)

440

GO T0(440,403),KQ00FX
WRITE {3,4401)

4401

FORMAT (1HO+5Xs13HFIRE OVERFLOW)
M=2

A={1.0+A) /2.0
GO 1O 426

403

M=1 .
CALL MATMPY(M,N,S$,6B,GSB)

TPl= AMINI(F FP)
ABAR=1.0-

406

IF(TPl—FB+E) 418,406,406
TP1=A/ABAR

TP2=ABAR/A
TO=GSR*(TP1=-TP2)

410

IF(ABS(TO)=0) 413,410,410
GSS=0Q+0

P

L=1
LDOPF=0

RETURN
GSS=T0+Q+Q

DO 415 I=1,
u(I)=(GB(I)—G(I))“TP1+(GD(I)—G3(I))%TPZ

LOOPF=0

=2

418

RETURN
CONTINUE

e e

LOOPF=L0OOPF+1]
[F{LROPF-60N1382,383,383

383

CALL EXIT
CONTINUE

382

419

IF{F-FP)419,428,428
ITFIMOUT.EQ.1) WRITE(3,1)

PR S LN
b e ek e

EL=ABARXEL
FP=FB

GSP=GSB
DO 425 I=1,N

425

XP{I)=T(1)
GP{1i=GB{I)

426

L=3 :
RETURN

R S T AT o e Ao

IR S LN
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428

JF(IMOUT.EQ.1) WRITE{3,2)
EL=EL*A

F=FB

_GS=GSB

DO 434 I=1sN
X{1)=T¢(1)

G{T)=6B(1I)
GO TN 426

FORMAT {1CHOMOVE LEFT)

FORMAT {11HOMOVE RIGHT)

CEND

ey e Y A aee, s
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$IBFTC DRESS
SUBRAUTINE DRESS

DIMENSION H{40,40),X{40),G(40),S(40),XP(40),6P{40}, T{40),GB(40)
DIMENSION TITLE(12) :

DIMENSION V{3}

COMMON__ H X . G v S s %P 1 GP
COMMON T + GB s M ¢+ N s L + LS
COMMON M1 s MS s NS s IT s GS v GSP
COMMON - GTP s GSS s GTT + GS8 y F s FP
COMMON __FB + FO » E v K y P v 10
COMMON RS s SL y L v Q s A v EL
COMMON__DELTA , TITLE , IMOUT , IFOUT . V , IDH

COMMOGN  LTEST
TF{IMOUT.EQe.1) WRITE(3,13)1L

GO T0 (500+5255529,510) 5L
500 CALL MATMPY(NsN,H.GyX)

M=1
CALL MATMPY(M,NyX,6,T0)

TP1=SL-GSS*GSS/T0
[F{TP1l) 505,524,504

504 IF (TPl-t) 524,505,505
505 DO 507 I=11N

DO 507 J=1.N
507 H(I;J)—H(I J)-X(I)*X(J)/TO

DELTA=DELTA®{EL®GSS/TO)
TO=EL/GSS

510 DO 512 1=1,
DO 512 J=1, N

512 H(I,J)=H{T,d)+T0%S{I)%5{J)
529 CALL OVERFL{KOOOFX)

GO TO(531,519),K00GF X
519 F=Fp

DO 522 I=1
G(II=GR{1)

522 X{I}=T(I)
J=IMOUT

GG 70 (515,517),J
515 WRITE {3,1)]T,MS.F

WRITE (3,2)
WRTITE {3,12){(X{I}sI=1,N)

WRITE (3,10)
WRITE (3,123{G{I)sI=1,N)

WRITE {3,3)DELTA
WRITE (3,4)

517 DO 518 1=1,3
IF {V(I)=-F) 523,518,523

518 CONTINUE
IF (LTEST) 550,560,550

550 WRITE (3,16)
' GG 10 532

560 LTEST=1
‘ WRITE (3,15)

D0 562 I=1,N
0O 562 J=1,N

H{(I,J)=0.0

562 H(I,I)=1.0




~119-

DELTA=1.0
DO 563 I=1,3

563

ViI)=0.0
IT=1T+1

RETURN "
VI3i=V(l2)

Viz2)1=v{l)
Vill=F

[T=1T+1
RETURN

- 524

WRITE (3,5)
GO 10 5320

525
530

TO=EL/GSS-1.0/SL .
DELTA=DELTA®EL*SL/GSS

531

GO TO S10
WRITE {3,6)

532

WRITE (3,7)
WRITE (3112)((H(19J)7v=14N)1I=lvN)

WRITE (3,14)F
ARITE {3+2)

WRITE {(3,12)(X{1).I=1,N)
WRITE (3,10) _

HRITE (35120{G(T1)s1=1,M)
J=2—-1F0UT

539

GO TO (539,543),J :
WRITE { 3,110 IX(I),I=1oNY o ({H{T,0)9d=1,NJoI=1,N),

DELTA

543
-

CALL EXIT
FORMAT (4HOIT 14,7H STEP [4,4H F=£16.8)

2

4
5

3.

FORMAT (1HO,55X, 1HX/)

FORMAT {THODELTA=E14,.5) —
FORMAT (20H0~ - = = — - - - -
FORMAT (QHNCOLINEAR)

SN

6
7

FORMAT (9HQOVERFLOHW)
FORMAT {(1HO,13X,12HERRDR MATRIX)

9
10

FORMAT (2HOF=Fl4.5)
FORMAT (1HO,55X, 1HG/}

11
12

FORMAT (5E14.5)
FORMAT (1H 8E14.5

13
14

FORMAT (6HODRESSI3)
FORMAT (3HOF=E16.8)

15

FORMAT {50HO FOUR CONSECUTIVE VALUES FOR F ARE IDENTICAL

15X+, 30HPRAGRAM ASSUMED TO BE IN LOOP

25X436HH IS SET TO IDENTITY FOR ANOTHER TRY
FORMAT {(1HQ,5X, 24HSECOND LOOP——=CALL EXIT )

S Iy

. 16

RETURN

END . - . S

S N st ey

SO S

e U VIO

T et e T v s« L e

RS -
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SIBFTC MATMPY

SUBRAUTINF MATMPY(MyN,H.G.S)

DIMENSION H{40:40)4X(423,G{40),S{40),XP(40),G6P{40), T{40),GB(40)

CO_P{»‘iON H . L] X y__G 9___S 1 XP b GP
COMMON T ¢+ GB e M + N s L s+ LS
COMMON M1 4 MS 4 NS r IT s GS 2 GSP
COMMON GTP s GSS e GTT vy GSB s F s FP
COMMON F3 - . FD s E 4 K , P » 10
COMMON RS s SL v 2 » Q s A ¢ EL
COMMON DELTA . TITLE . IMOUT 5 IFOUT
1€ (M=1) 705,705,702
702 DO 703 I=1.M o
S{I1¥=0.0
DG 703 J=1.N
703 SUIY=H{T,J)¥%G{J¥+S{I)
RETURN
705 S{11=0.0
‘ DO 706 1=1,N
706 S{1i=H{I,1)%G{I1)+S{1)
RETURN
END - = |
% VEND~QOF~FILE® CARD kX




0170012002
600,

100,

3.

3

DECOMPOSITION USING LORENTZ SHAPE FUNCTION

53,125 2.402_ 53,187 2.482_ 53,250 2.642_ 53,312 2,722 53,375 _ 2.882
53.437 3,042 53.500 3.282 53.562  3.362 53.625 3,362 53.687 3.442
53.750___ 32602 53,812 4,082 __53.875___ 4,562 53.937__ 5,202 54.000 _ 6,002
54,062 60802 5%4.125 7,602 54.187 8.482 54,250 . 9.522 54.312 .10.722
54,375  12.162 540437 13,202 54.500 14,002  54.562 13,922 54.625 12.882
54,687 11.042 54.750 8.802 54.812  6.802 54.875 5.202 54937  4.242
55,000 3,922  55.062 3,922 55.125 3,922 55,187 3.842 55,250 3,842
55,312  3.682 55,375 3.682 55.437  3.682 55.500 3.842 55.562 4,082
55.625 40322 55,687 _ 4.562 55.750 _4.802 55.812 4.962 55.875 5.042
55.937 5.362 56.000 5.682 56.062 6.162 56,125  6.642 56,187 1.202
56,250 1.602 560312 8,162 56,375  8.882 564437 9.922 56,500 11.202
564562 12.882 566625 15.042 56.687 17.602 56.750 20.642 56.812 24.322
56.875__28.562 56.937_ _32.882 5171,000_ 36-,802_ 57.062 39.682 57.125 40-,962
570187 400162 570250 37,202 57.312 32.882 57.375 280242 57437 24.162 v
57.500 21,202 57.562 _19.522_ 57.625 19.042 57,687 19,122 57,750 19.362 o
57.812 19.522 57.875 19.922 57.937 20.882 58.000 22.162 58.062 23.762 v
© 580125 25,122 584187  25.762  58.250  25.042 58.312  23.042 58.375 19.842
580437 160322 58,500 12.962 58.562 10.322 58.625  8.322 58,687  T.202
58,750 6.642_ 58.812 ___ 6.482 58.875 6.562 580937 6,882 ~59.000 7442
59.062 8,082 59.125 8.882 59.187 9.682 59.250 10.562 59.312 11.522
59,375 12.322  59.437__13.122 59.500 14,082 59.562 15,282 59,625 16.562
59.687 17.762 59.750 18.802 59.812 19.202 59.875 18.722 59.937 17.682
60.000 166322 60,062 15.282 60.125 14,722 60.187 14.562 60,250 14.642
60.312 14.562 60.375 14.482 60.437 14.482 60.500 14.802 60.562 15.282
60625  15.842 60,687 _ 15,922 60,750 15.202 60,812 13,762 60.875 11.922
60.937 10.082 61.000 8.402 61.062 7,042 61.125 5,922 61.187  4.962
61250 4.322 _61.312 _ 3.842 61.3715 _ 3.762 61,437 3,922 61.500 4162
61562  4.482 612625 4,802 61.687 5.042 61.750 5.362 61.812 5.922
61,875 6,482 61,937  7.042 62,000  7.522 62,062  1.682 62.125  7.522
62.187  6.962 62.250 6.242 62.312 5,442 62.375 4,122 62437  4.162
62,500 3.762  62.562_  3.682 62,625 3,762 62,687 3,842 62.750  3.922
62.812  3.922 62.875  3.922 62.937 3.682 63.000  3.522 63,062  3.362
635125 3,282 63.187 3,202  63.250  2.962 63,312 2,722  63.375 2,402
63,437 2,002 63,687  1.280 63,937 1.120 664,187 1,280 14.437

0.800



544 2.
57. 4,
57.3 2o
57.8 o5
58.2 3.
59.4 o7
= 59 °._8 2__°
60.2 o1
60.7 2
62 ) A 1.
_62.5_ 05
_ : 63, °H
0170012002
600, 100. :
DECOMPOSITION USING STANCARD DIGITAL FUNCTION .
53,125 2.402 53.187 2.482 53,250 2.642 53,312 2.722 53.375 2.882
53,437 3.042_53.500__ 3.282 53,562 3,362 53.625 3,362 53.687 3.442 :
53,750 3,602 53.812 4,082 53.875 4,562 53,937 5.202 54,000 6.002 b
54,062 62802 54,125 __1.602 54.187 80482 540250 9.522 54.312 10.722 N
54,375 12,162 540437 _13.202 54.500_ 14,002 540562 13.922 54.625 12,882 t
54,687 11.042 54,750 8.802 54.812 6.802 54,875 5202 54,937 4,242
55,000 3,922 55,062 3,922 55,125 3.922 55.187 3,842 55,250  3.842
55,312 3.682 55.375 3.682 55.437 3.682 55,500 3.842 55,562 - 4,082
55625 4,322 __55.687 __ _4.562 55.750 50802 550,812 4,962 55.875 5.042
55,937 5.362 56,000 5.682 56.062 6162 56.125  6.642 56,187 7.202
566250 7602 560312 8,162 __56.315 8882 56,437 9,922 56,500 11.202
56,562 12.882 56.625 15.042 56.687 17.602 56,750 20,642 56.812 24,322
56,875  28.562 56,937 32,882 57.000 36,802 57.062 39,682 57.125 40,962
57.187 40,162 57.250 37,202 57.312 32.882 57.375 28,242 57,437 24.162
570500__21.202 __57.562__19.522_ 57625 __19.042 57,687 __19.122 57.750_ 19.362
57,812 19.522 57,875 19.922 57.937 20.882 58.000 22.162 58.062 23.762
58.125_ 25,122 _58.187__25.762__58.250__25,042__58.312_23.042 58,375 19.842
58,437 162322 58,500 12.962 58.562 10.322 58.625 82322 58.687 7.202
584750 6,642 58,812  6.482_ 58,815 6.562 58,937 6,882 59,000 12442
59.062 8.082 59,125 8.882 59.187 9.682 59.250 10.562 59.312 11.522
590375 12.322_.5%9.437_ 13,122 59.500___14.082 59.562 15,282 59.625 _16.56 .
59.687 17.762 59.750 18.802 59.812 19.202 59.875 18,722 59.937 17.682
000000 165322 60,062 _15.282 60,125 14,722 60,187 14,562 60.250 14.642
604312 14.562 60.375 14.482 60.437 14.482 60,500 14.802 60.562 15.282
600625 15.842 60,687 15.922 60,750 15,202 60.812 13.762 60.875 11.922 i




ML=1
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NUMBER OF FITTING PARAMETERS = 25

THE NUMEBER OF DATA POINTS = 170

I

N

0.3300CE OL
0.30000E 01
. 0.1000CE 0L
. 0.5T3008 02
0.60200E 02

25 K=0

0.20000E 01
0.TOO0CE 00
0.50000E 00
0.57800E 02

~.0.6070CE 02

F = 0.12083E OL4

E = 0.1000CE-02

0.40000E 01
0.20000E 01
0.5000CE 00
0.58200E 02
0.62000E 02

P = 0.

0.2000CE 01

0.T00CCE 0©O-

0.5L000E 02
0.5940CE 02
- 0.62500E 02

DECOMPOSITION USING LORENTZ SHAPE FUNCTION

‘F = 86.8509

f
1

IT = 83

INITIAL VALUES

3.300
.000
.000
.300
.800
.200
R¥elo)
.800
.200
.T00
.000
.500
.000

OFHMNMOMPMOWOMN FN
-3
Q
(@)

FINAL VALUES

3.107
51,46k

57.107
56.160

57.745 -

- 58.170

59.456
59.809
60.269 .
60.680
62.064
62.867

63.239

OCOOHOMNMOWOOO\N

+ .DELTA = 0.1000CE O1

0.50000E 00
0.20000E 01
0.57000E 02
0.59800E 02
0.630008 02

155
.261
317
433
.203 .
664
076
.658
812
.962
.286
.193



8.402

61.125

60,937 10.082 61-.000 61.062 7.042 5.922 61,187 4.962
61250 40322 61,312 3.842 61.375 3,762 61,437 3.922 61.500 4.162
61,562 6,482 61,625 4.802 61,687 5.042 61.750 5.362 61.812 5.922
61875 _ 6.482_  61.937  T7.042 62,000 7.522 62.062 7.682 62.125 T.522
62.187 6,962 62.250 6.242 62,312 5.442  62.375 4,722 62.437 4.162
62.500 3,762  62.562 3,682 62.625 3.762 _62.687 3,842 62.750 3.922
62.812 3,922 62.875 . 3.922 62.937 3.682 63.000 3,522 63,062 3.362
635125 30282 63,187 3.202_  63.250 _ 2.962 63.312 2,722 63.375  2.402
63,437 2.002 63.687 1.280. 63.937 1.120 64,187 1.280 74.437 ° 0.800
e e e o Sl 2.
57, b4,
57.3 20
57.8 -5
58.2 3. -
59.4 a7
5_9 © ._8 2,0 —
60.2 o7 :
60,1 2o N
62. 1. ' =
6225 3 »
’ : 6 3 o o 5
020001 i :
8.31 8.562 25 8.812 o 9.062 - 64 9.312 8
9,562 1.04 9.812 2.002 9.875 2.482 3.937 3.122 10. 3,922
10,062 4,722 10,125 5.202 10,187 5.282 10.25 4,802 10312 3.842
1037 2.722 __ _10.625 2322 10.875_ .24 . 13.4 o1 15,

#ns TEND-OF~-FILE' CARD sen
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ML =1 '
THE NUMBER OF FITTING PARAMETERS = 2L
. THE NUMBER OF DATA POINTS = 170

N=2t XK=0 E = 0.1000CE-02 P = 0. DELTA = 0.1000CE 01
'0.20000E 01  0:LOOOCE 01 0.20000E OL 0.50000E 00  0.30000E Ol
0.70000E 00 0.20000E 01  0.7000CE OO0  0.20000E 01  0.1000CE 01
0.50000E 00  0.50000E OO  0.SLOOCE 02  0.5T000E 02  0.5730CE 02
- 0.5780CE 02  0.58200E 02 0.5940CE 02  0.59800E 02  0.60200E 02
0.60700E 02 0.62000E 02 0.62500E 02 0.6300CE 02

F = 0.45956E Ok

" DECOMPOSITION USING STANDARD DIGITAL FUNCTION

F = 14&,3512 IT = 52

INITIAL VALUES FINAL VALUES
54.000 2,000 - 54.539 3.128
57.000 : 4,000 57.223 5.159
57.300 - 2.000 56.981 2.778
57.800 0.500 57.746 2.040
58.200 3.000 _ 58.233 4.365
59.400 0.700 59.446 0.855
59.800 2.000 59.849 2.he7
60.200 0.700 60.339 1.549
60.700 2.000 ' 60.766 2.260°
62.000 1.000 62.087 1.138
62.500 0.500 ’ 62.734 0.Lk25
63.000 ' 0.500 63.209 0.395

| END EXEC. 2036.66

796 LINES OUTPUT THIS JOB. .
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C. PLOT

"It is highl& desirable to plot the data obtained in an aﬁalysis in
order to visualize how well the curves are decomposed, how well the
values from DECOMP match those from NMRIT, etc. The types of data to be
treated consist-of‘the original data points; peak positions and intensities,
and the curve which results from these peaks. PILOT can shift and scale
any or.all of these sets'of data to any values desired and plot any
cbmbination of them for graphical comparison. PLOT has been written so
that 1t is.coméatible with DECOMP, that is, the entire deqk from DECOMP
can be put directly into PLOT (after replacing the original estimates
of peak positions and intensities with the results of the decomposition)
and vice versa. | .
CARD ‘1 Read M, IZ ' ~ | (1k,13)
M is the number of data points. The first and last data |
points define the length of the X-axls and at least two
points must be used. When it is desired to plot only the
peéks of the curve of the sum of the peaks M = 2 and thé data
| points are 0,0 and Xe,o. |

CARD é Read XLONG, LS, YMAX, T2, XINT, DPl, DD, DP (F8.3,I2,7F10.5)‘
XLONG is the length of the X-axis in inches.
LS determines the option for the wey the data is plotted..
Any combination of points, peaks or curves can be chosen.
The thioné are best described by the following»array;

0 = not plotted, X = plotted.
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PLOT Options

Value Data Curve of the Vertical
of LS Points sum of> peaks lines
-1 0 ‘ o) X
1 O(end 2)* CX 0
0 X(not joined) 0 C0(I=0)%*
-3 X(joined) 0 c(1=0)
1 X(not joined) X 0
-2 X(not joinci) 0 X
-3 X(joined) 0 X
0 "0(end 2) X X
0 X(not joined) X X

*

Two points must be used to define X-axis.

*¥% Read in one peak, IZ = 1, use arbitrary T2, and put in a blank card

for the line. This gives a peak of zero intensity so no vertical

- lines are plotted.

X@é&_ is the maximum value for the Y-axis, used to scale
plot in vertical direction. |

T2 is the reciprocal of the half-width at half-height. If
no value for T2 is given PICT then plots the curve as a sum-
of the digital shape functions and this data must be'reéd in.
Again, this entire deck is identical to that from DECOMP.
Problems can be mixed, since thisvoption is exercised for
each problem.

XINT scales the height of the peaks indepéndently of the
data points. This allows a direct comparison of the output
from NMRIT(N) on the same plot with the experimental points;
One peak is scaled with XINT so its height matches the data
peak and the.remaining peaks are scaléd accordingly. The
curve which is the sum of the peaks will then be super-

imposed on the data points.
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DPl is the value of the first peak in the digital data points.
This Qalue is used to shift the spectrum of lines (from
NMRIT(N)) so the first line is at the first data peak.
DD is the difference between the first and nth peaks in the
data; DD and DP scale the line spectrum between the first and
nJGh peaks.
DP is the differenée between the first and B peaks in the line
spectrum. “ | |
Note:. Only the desired values aboye are punched.as input. Those valués ;
"~ " which are left black éfe se§ to zero or one so they have no effect ’
~on the plot. |
| CARD 3  Read TITIE L | " (1286)
CDECK b X, Y., i LM '
| | Data points read in format desired.
DECK 5 X o X5 i 1, 1z . (30%,2F10.3)

Frequencies and intensities from DECOMP or NMRIT.

Last card in deck is blank and calls exit, problems can be stacked.



$

1D

400510, PLO%,Z,LUSEBRINK

$18J08 MAP
$IBFTC PLOT

PROGRAM_TO_PLOT EITHER SUM OF DIGITAL_ SHAPE OR LORENTZIAN_SHAPES._

WILL COVER RANGE OF 60 CPS

READ IN VALUE OF T2 =(1/HW) IF WANT LORENTZ; NOTHING OTHERWISE

HOWEVER _SET_OF DATA_FOR DIGITAL SHAPE PEAK MUST BE _PUT IN IF T2=0

gheloNalNeNe!

1 XX{150),TITLE{12), XSTC{100), YSTD(100)

DIMENSTON X {(300),TT(2200),VV(2200),T( 6000),FITL 6000);E{150),

COMMON/CCPOOL/XMIN XMAXp YMIN g YMAX s CCXMIN, CCXMAX ,CCYMIN; CCYMAX

10

CALL CCBGN
READ {2,7) M,1Z

IF {(M.EQ.O} CALL CCEND
IF{M -EQ.0Q) CALL EXIT

READ(2,3) XLONG, LS YNAX‘TZ AiNT DPlyDD DP
T2=T2%.01_ S

XLONG=XLONG#»100. :
READ(2:4) (TITLE(ID 2 1=0.32)

WRITE {3,4) TITLE
READ. (2 ¢2) ATTLI) VVLIDsI=131)

15

DO 15 I=1i,M

TI(I)=(YT(I)#SHFTX)%100.

N = 2512
IF(DD129, 29 26

29

FM¥=1.
GO T0 32

26

32

FM =DD/DP
IF(XINT) 27,27,28

27
28

DO_67 I=1-17

Ii=1%1Z
READ_(255) X{I1i}s X{I)

67

X(I3 = X{I)=XINT
XCII) = X(II1)=ENM=#100.

ITI=1+1Z
If _(DP1} 33,33,:34

34

SHFET=DP1-X(III})
GO0 70 35

33

SHFT =0. _
DO 68 I=1,1Z

35

IiI=I+12
X{II)=(X{1I)+SHFT)

68 -

WRITE(3,:6) X{II)eX(I)},TT(I}
IE_AT2) 165)16,37

17

IF {LS.LT.0) GO 70 43 '
T{Ly=T7741)

I=TT(L)
J=TT{M)

L={(J3-1)/5)+1

DO 42 K=1,L

FI =0.
DO _31 1=1,12Z
It =1+12

=T (K =X{11 )
Y = T2s2 =
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RECIP = 1./(lo4Y&Y)
31 FI = FI+200.%T2#X{1 )#RECIP

FIT(K)=FI
42 TAK+1)=T(K)x5,

GC 10 43
16 READ_ (2,1} MSTD. 4LST _______

READ (2:2) {XSTD{I),YSTD(I)y; I=1,MSTD)
DD=_YSTD(1)

EE = XSTO{L)
D0..25 _I=1,MSTD..

XSTD(I) ={XSTD{I} -~ EE}=100.
i 25 . YSTD(I)_=YSTD(I)_~ DD

DC 40 J=LSTsMSTD
IF(YSTD{J#+1)~YSTD(J}) 30+40,40

30 RESSTD = XSTD(J)
Iv=4 . . 2

WIDEL= RESSTD-XSTD{1}
WIDER = XSTD{(MSTID) - RESSTD

YRESTD = YSTD(J)
G0 _T0 20

40  CCNTINUE
20 IF {LS.LT.0)_GO T0O 43

T{L)Y=TT ({1}
I=TTEL)

=TT (M)
L= {{J=1)/2)%]

00 41 K=1i,L

FI = 0o B e
D0 55 I=1, 12
il.= I+12Z —

SHIFT = X{Il) - RESSTO
TF (TAK)=(X{II)=WIDEL))60,70,70

60  Y=0. .
GC 10 50 - :
70 IF (T(K) —={X{IT)+WIDER)) 60580,65
65 Y=0.
GO 70 50
80  IF(X(II)-T(K}) 90,100,110
100 Y = YRESTD=X(1)
GO._T0 50

90 1A = IM
95 IF(XSTD(IA) SHIET-TI(K)} $6:97,97

96 1A =I1A+1
' GO_T0 95

97 Y= X(I) ={YSTO(IA)+{{XSTD{IA)I+SHIFT-T(K))={YSTD(IA—1}-YSTD(IA})})/
1 IXSTO(TA)=XSTD(IA-1)))

GC TG 50
1iC__IN = IM

111 IF(XSTD(IN) ¢ SHIFT-T(K)} 120,120,115
115 IN = IN-1 ‘ -

GO TO 111
120 Y= X{I} #{YSTD(IN+1)=((XSTD(IN+1)+SHIFT-T(K))® (YSTD(IN#1)-

1 YSTD(INI))I/{XSTD(IN+1)=XSTD{INI}}
GO_TO 50

S0 FIl = FI + Y
55  CONTINUE

TIK+1) = T({K) +2a




,..]—_3]_,.

41
43

FIT(K)=F1
XMIN=TT (1)

XMAX=TT (M)
YMIN=0._

CCXMIN=0,
CCXMAX =XLONG/1024-

CCYMIN =100./102%-
CCYMAX=1000./1024,

CAatl CCGRID(L,6HNCLBLS,1)

IF(LS+1) 178,77,178 __ .

178
179

IF{LS+2) 179:1765;179
IF. (LS+3}..180;:;177,518C

is80
176

CCALL CCPLOT(ToFiTsL:4HJOIN:O;0)
CALL CCPLOT(TT oVV,My GHNOJOINg 154

177
183%
77

GO 70 181

CALL CCPLOT (TT, VV7 19 4HJ0IN, 001

[F(LS5.GT-0) GO TO 66

IF(T2) 62462:63

62

DO 61 I=1,1Z
17 = 1+12

F{1} =X{I)#YRESTD

F{2)=YMIN

XX{1)=X{II}
XX{2)¥=X(11)

61

CALL CCPLOT(XXyF5254HJCIN, O, O)
GO 70O 66

63

11 =I+17

DO 64 1I=1,12

F{1} = 200. = 72# X{1)}
F{2)=YMIN

XX{1)=X{II )
AX(2)=XL11 )

64
66

CALL CCPLOT(XX3F¢234HJOIN;O0,0)

CALL _CCNEXT

GO TO 10
FORMAT _(1013)

FORMAT (10F8.0)

FORMAT(F8.3,12,7F10.3)

FORMAT (12A6)
FORMAT _{30X:2F10.3).

O U D W R e

FORMAT{8F15.3)

FCRMAT (14,13}

"END

S enven aren

PR
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D. ASSIGN

The theory of ASSIGN was described in the text; the input details,

" a listing, and a sample problem will be given below. The dimensions

have been set somewhat arbitrarily, a maximum of nine assignments is

made, to prevent an excessive number of assigrments if the limits are

set too wide. Other limits in the present program are; 200 lines; 50

types of transitions, and 64 energy levels.

CARD 1 -

CARD 2

DECK 3.

CARD L

Read LIN, LINO, LEN, LEU, NU, IREAD, ICOUNT (1013)
LIN is the number of lines to be assigned.

LINO is the number of experimental lines from spectrum.
LEN is the number of energy levels for the molecule.

LEU is the nuﬁber of energy levels used in the assignmeht.
NU is the number of types of transitions.

IREAD chooses input format for iines;:O for 8X,2F10.3, #£ O

- for 30X,2F10.3.

ICOUNT is used as a diagnostic or for problems which may run
overtime and thus not yield any information. ICQOUNT = N
prints out every NJCh aésignment and allows one to follow the .
progress of assignments. If N = O, only the complete
assignments are printed.

TITLE |  (1246)

X,Y Frequencies and intensities, one set per cara, accord-
ing to format selected by IREAD above.

IXT., k = 1, LINO (8011)

i)

When informetion from double resonance experiment is

available, punch 1 in columns corresponding to the lines

‘observed, which have common energy levels to be read in.



DECK 5

CARD 6

CARD 8

DECK 9

-133 -

If no double resonance information is put in, use a blank
card.
Read IBij, IEij, j=1,10; i = 1, LINO (2513)

This deck contains the array of ranges for lines with energy

"Jlevels in common with line i. IB is the number of the first

line and IE is the last line in the range; for one line
>

IB = IE. 1i-is the number of the lines for which LXTi = 1

and J is the number of ranges, arbitrarily limited to ten.
If all LXTi = 0, no cards are used in this deck. o
Read IX,, i = 1, LINO (8o11)
This card designates which lines have been assigned in a
previous part of the problem, i.e. another symmetry group.
LX = 1 for lines which have already been assigned and O for
those lines available for assignment. “If no lines have

previously been assigned, insert a blank card. A card

containing the LXi for each assignment is punched for use in

successive problems.

Read MINi; MAX, i =1, NU | (213)

MIN is the lowest number and MAX is the highest number of thel
lines in the range of transition type, i.

DX, DI ‘ (2r10.5)

DX is the frequehcy limit and DI the intensity limit to be

used for fitting the sum rules. These values should be

approximately the estimated experimental error.

Read szj, j =1, LEN . (8r10.5)

The SI, are the values from the intensity sum rules (2MZ)

to be used for each energy level.



CARD 10

CARD 11

CARD 12

CARD 13

CARD 1k
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Read LEVJ, i =1, LEU (2513)

. The LEVj are the numbers of the energy levels actually used

in the algorithm. These levels are used for ordering and
comparing assigmments to avoid duplicéte assignments.
Read JTj, j=1, LIN ‘ _ (2513)
The JTj are the types of transitions.

Read icus, 5 =1, LIN o (e513) |

The ICUﬁ are the upper energy levels of a transition. If all

the theoretical transitions to and from an energy level have -

been used in the algorithm, a minus sign in front of the
last ICU in such a t;ansition indicates that an iﬂtensity sum

rule check is to be made for that energy level.

'Read ICL;, § = 1,  LIN : - (2513)

‘The ICL,'j are the lower .energy levels of the transition, J.

An intensity sum rulé‘check is made in the same manner as
for ICU.

Read Ich, j= i, LIN ~ (8011)
IFCj 1 is a frequency ch;ck is to'make for a closed

frequency loop.

Problems can be stacked, last card in entire deck is blank to call

exit.
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$SIBFTC ASSIGN
c
C .

DIMENSION TITLE(12),X{200),Y(200) ,MIN(50) ,MAX(50) »EN{6LY
TER{10:64 ),K{200),JT(200), IFC(200)y ICUL200), ICL{200);
2LEVIOGS) s ST 64),MAL200,10),13(200,10) ,1E(200,10),LXT(200);
3 IATI40) ,EMD(E4) s LX(200)

20 RFAD(2,1C0YLIN,LINDZLEN,LEUSNU; IPUNCH YQEAD I COUNT

IF{LIN.FQ.0) CALL EXIT

READ (2,101} (TITLF (1) ,%=3,12)

WRITE (3,111) TITLE

WRITE  (3,112) e e

DO 38 I=1,LIND

IF{IRFADL.EQ.0) READI2,129) X({I),Y{(I)

38 IF{IREAD.NE D) READ{2,125) X(T),Y(I)

LINT=0 .

READ(2,126) (LXT(1),1=1,L1NO)

Do 39 I=LLLL§Q“_M_W,Q“,_

IF (LXT(I).EQ.D) GO TO 37 :

READ(25,103) (IB(T1,4), IE(IsJ)sJd=1,10)

WRITE{35213) I4X{I) » Y(I)s{IB{TsJ)2lE(I+J)+J=1510)

GO 10 3¢9 o L

37 WRITE {3,113) I[.X{I);Y(I)
LINT=LINT+1 —
IB{1,1)=0
39 CONTINUE
: READ (25126) {LX{I)}, I=1,LINO) !

WRPITE (3,127) (T1,1=1,LIND) ‘

WRITE (3,128) (LX{I), I=1,LIND)

NO_19 I=1,NU ____ ... .

READ (2,100) MIN(I) MAX{1)

19 WRITE (3,117) 1, MIN{I) MAX{I)

READ (2,102) DX50DI '

WRITE {3,118) DOX,DI

READ (2,102) (SI{J),d=1,LEN)

READ( 2, Lg}) (LEV(J),J=1,LEWL)

WRITE (3,119)

WRITFE (3,120) {1,1=1,LEN)

WRITE (3,121) (SI{I)s I=1,LEN)

READN (2,103) (JT (Jd),y J=1,LIN)

READ (2,103) (ICU{J), J=1,LIN)

READ 12,103) (ICL{J}s J=),LIN}

READ {2,126) {(IFC(J)s J=1,LIN)

WRITE {3,114)

WRITE {2,11%5)

00 40 I=1,LIN

DN 55 J=1y 10

55 MA(T,J) =0, L '
40 WRITE (3,116) I,JT{I1), ICULI),ICL(I},IFC({I)

14=1 .

LD=1

X NOTR =1

1C0=0

NO = 0

DO 32 I=1,LEN

32 EN(I)=0,




300 SFRIES STATEMEMTS CAUSE SFARCH FOR LINES ONLY OVER THOSE

LINES WHICH HAVFE COMMNON EMERGY LEVELS AS DETERMINED BY ONUBLE

O OO O

RESONANCE EXPTS. IB=ARRAY

FOR BEGINNING OF RANGE ABOUT

LINE PERTURBED, IE=END_OF _RANGE

J =1
GO_TN 309

JA=J-1
[F(J.EQ. 1) GO TO 307

TF(LINT.EQ.LIND} GO TO 310
I1=1

DO 3062 IAa=1l,JA
TFLIABSLICULJ) I EQ.TABS{IC

G(IA)).ORLIABSIICU(J)).EQ.IABS

1

{ICL{TIAY)) GO TOQ 308

IF\IARS(ICL(J))oEOoiﬁﬁgfTCJ(IA))oﬂR IABS(lCL(J))oEQ TABS

1

(ICL(IA)Y} GO TO 308
GO _T9 302

308

TAT{ILl)=1IA
Il=11+1

302

CONTINUE
[3=11-1

310C
3C9

IF{JCN-J) 309,309,307

KY = IABS(JT{(J))

301

I = MIN{KT)-1
I=1+1

- 307

IF(I.GT.MAX{KT)) GO TQ 12
TF(LX{I).EQ.1) GO TO 301

iF{J.EQ.1) GO TG 9

IF(LINT.EQO.LIND) GO TO 13

DO 303 12=1,13
KCD=IAT(I2)

KC=K{KCN)
DO 304 KA=1,10

IX=T1B{KC.KA) A
IF{IX.EFQ.Q) GO T 303

IY=1IE(KC,KA}
DO 306 KB=1IX,1Y

IFILX(KR}.EQ.1} GO TO 306
[F{I-KB) 305,303,206 '

CONTINUE
CONTINUE

I=K8B
GG T 307

CONTINUF
IF Lx{r)) 9,9,14

ME = TIABS{ICU(J))
LE = _JABSUICLIJ))

SI(ME) = SI(ME) - Y(I)
SI{LE) = SI(LE)I+Y(T)

IF{IFC(JY) 3,3,2
TFLICULJ)) 445,45

IFLICL{JY) 10,646

TF{ABSIX(I)+EN(ME)=EN(LE))-DX) 3,3,7

IF (ABS({SI(ME)I-DI) 5,5,7
IF{ABS(SI(LE))-DI} 646,17

O == PN W

Kidy =1
LX{I) = 1




- . =15

MALJ,NO+L) = T
LFAJT(J)) 52,52,53

52 EN(ME) = EN(LE)=-X(I)
GN. 1054 -

FLIE SN

]

53  EN{LE) = ENIME) + X{T})

.- X SR JE-— TN X, -3 SO
' JCnN=g-1
ITF{ICOUNT.ER.O) GO TN 11

Icn =ICC +1
IELICO.LT-1COUNT) 60 _T0 11

WRITEL3,123) (MA(IJ.NI+1).1J=1,JCN)

ICO=] I B
. 11 IF(LIN=J)Y 215141
7 SI{ME) = ST{MEI+Y (1]
SI{LEY = SI(LE) -Y(I)
14 I=1+1

15 IF{I-MAX{KT)) 307,207,12
12 LU =LINO+LD

[F{LDU-LIN} 35,35,34
35 1=LDY

X{1) EN{LE)=FN({ME)
Y{I) =0,

ou

LO=tD+1
G TO 6

34 J=Jd-1
JEN=J+1

56 1F(J ) 17917115
17 [F {(NC) 45,45,31

45 WRITE (3,110} TITLE

46 GO_T0 321

16  IF(K{J)=LIND) 43,43,41
41 1D = LD-1 ,

I = K{3)
LX{1) = 0

J=Jd=-1
JCN=J+1

GO TO 16
43 I=K(J) +1

LX{I=-1) =0
ME=TABS(ICU(J))

LE=TARS(ICL{J))
SI{MEY= SI{ME}+Y{I-1)

SI{LE)= ST(LEI=-Y(I-1)
KT = TABS{JT(J))

GO 10 1

21 IF(NQ= 9 ) 50,s31.31

50  NOQ = NO+1 :
c 200 SFRIES STATEMENTS ORDER ENERGY LEVELS USED IN PROB AND

c COMPARE THEM. LEU=ENERGY LEVELS USED, LEV=NO OF LEU, ENO=ENERGY

Coa ¢ LEVELS ORDEPED

DO215 IEN=1,LEU
1G=LEV(IEN)

215 ENO(IEN)=ENIIG)
200 MN=0

Ty D0 201 10-2,LEU
IF(ENG(I0-1)=ENO{I0)) 202,201,201
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108 FORMAT 0 EMERGY LEVELSY

{ 15H
109 FORMAT {1H T_,FIOA%)WN___M__
110 FORMAT {154 NO ASSIGNMENT 1246)
113 FORMAT_(IHY////L/13H_INPUT_DATA==12A6)

112 FORMAT I@ZHO LINE N3, 0R’S. FREQ. 0BS. INT.

o3 LINES WITH _COMMON_ENERGY .LEVELS)
112 FORMAT (1H X 13,6X4F9.3,5X3F9.3,10X,2014)
114 FORMAT{IHG//46H TRANSITION ENERGY LEVEL FREQUENCY)
115 FURMAT {44H NO. TYPE UPPER LOWER CHECK}

1_16 FO?{MA (1H )Xy[3 ’%Xy 3 h\?I3y3_X9»I~3A_7_‘Y_><ﬁ7_‘_{3)

117 FEORMAT {(23HO THE RANAE T MUCLFEUS I[3,4H IS I3,3H — 13)
118 FORMAT (29H0 UNGERTAINTY IN FREQUENCY = F£5.3,17H, IN INTENSITY = F

15.32 .
118 FCRMAT {32H0 VALUES FOR INTENSITY SUM RULES)
120 FCORMAT {19HOENERGY LEVEL 22{I4,1X))

121 FORMAT_ (19H SUM OF INTENSITIES22{F5.2))

123 FORMAT (1H 4413)
124 FORMAT (lHl//////ZOnyITHAgSluN’ENTS FOR—=12A6)

125 FORMAT {30X,2F10.3)
126  FORMAT (8011)

127 FORMAT (6HOLINE 6212)
128 FORMAT (6H LX(1)6212) :

129 FORMAT{8X,2F10.3}

130  FORMAT{214,2F10.3)
* END

F



e BUE K1 T

202 AE=ENO(I0)
ENO{ICY=ENO{IO~1)
FNO(10-1)=AF
M=
201 CONTINUE
[F{MNY_203,203,200 )
203 IF{ND.EQ.1} GO TO 205
‘ NOQ=NO-1
INV=1 ,
209 0N_20%4 1C=1,NQD
DO 205 ID=1,LEU
LE(ERLIC, IR).NELENOLIN) 60O _TO 204
205 CONTINUE
GO T8 211
204 CONTINUE -
IFLINV.NE.L1) 6O T0O 210
206 DO 207 IBT=1,LEU
207 __ER(ND,IRT)= ENO{IBT)
TFIND.EQ.1) GO TO 210
.00 208 JET =1,LEY
208 ENQUIET)= ENG(LEU)-ENO(IET)
_INy==1 ——
A GG TO 209
211 NO=NOD-1 )
GO TO 213
200 MRITE (3,105) TITLE
: WRITE (3,104) NO
WRITE (3,106) . .
WRITE{145126) (LX(JZ),JZ=1,LIND)
DO 22 L=1,LIN
LL=KI(L)
ME = TARS(ICU(L))
LE = TABS{ICLI(L))
LE(IPUNCHL.MELQ) WRITE(14,130) ME,LE,X{LL),Y(LL)
22 WRITE (3,107) L,ME, LE, X{LL) . Y(LL)
WRITE (3,108)
DO 23 IME = 1,LEN
23 WRITE (3,109) IME,EN{IME)
213" N = J4T{1)
IF {K{1)=MAX(N)) 33,33,31
33 LX({I) =0
d J=L IN
60 TO 7
31 WRITE (3,124) TITLE
DC 43 MC=1,ND
48 WRITE_(3,123) MC.{MA(MB 4C), MB=1___ »LIN)
GO TO 20 _
100 FORMAT_(1013) -

X 101 FORNMAT (12A6)

i 102 FORMAT (8F10.5)

: 103  FNRMAT (2513)

S 104  FORMATLIHO37X,15H ASSIGNMENT NO.I13)
B 105 FORMAT (YHL//////30X,12A6) _
. 106 FORMAT (62HO _ LINE TRANSITION FREQUENCY - IN
: 1TENSITY) :

107 _FORMAT {(3H  I14,19+2H ~13,2F19.3)
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THREE NUCLEI _ABC_EXAMPLE _PROBLEM.
" ~10.6

3.96
--11.02

14.99
15.93

e 060 e ..0319

«016

«231
062

=34
2243

19.89

25.59
2507

30.49
36.34

- 21.78.

. 2.618
—_—3.33

2.589
-18._

- 655

41.52
e 8T 037

281
083

52.22

.202

110

1 15

5_15 S
1 15 ’

1 .1 - _

3o 1. 1. 1a
1 2 4 5 6T 8

i 2 3 3 1 3 2 1 2 2 1

2 3 4 6 6 5 5 8 8 T T~

OO TE TG B 1 § R _
\ saw# ¢ END-OF-FIL

1l 2 & 3. 4 5 623 _.

3 4 4 4
i =3 =2

8 7 -6 -5

E¢ CARD, z2=
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THREE_NUCle.ABC_sf'ULATCD DOUBLE RESONANCE_EXPY___EXAMPLS PROBLEM
-10.6 016
RN ¢ P4 § «319
. 3.96 2231
11,02 _.062
14.99 <94
15.93 a243
19.89 . 2.618
21.78 3.33
25.59 2.589
280 Tl 18
30449 -655
36.36 .205
' 41.52 .281
4737 083
52.22 202
131111113 1].:L};.TLJ;1_~...__._,,_.......__.,...~ _— :
3 3 5 5 6 6 8 8 9 9 15 15
L &L 5 5 9 9 13_13_14_1¢4
i 1 4 4 5 5 11 11 12 12 15 15 :
2.2 3 3.9 9 .11.}11_12_12_ .. N
1 i1 2 2 3 31313 14 14 15 15
i 1 8 8. .9 9 1010 11 .11.13_13
8 8 10 10 12 12 14 14 15 15
13 6 6 1 7.9 9 12 12 14 14
i 1 .2 2 4 4 &6 6 8 8
6 b T 7 311.11.13 .13.15.15._. .
3 3 4 & 6 6 10 10 12 12 13 13
3.3 4 & 7...7..8..8.11.11..14_ 14 __
2 2 5 5 6 6 10 10 11 11 14 14
2—2 5 &5 7 7 8§ ..8.312-12-13_-13
i 1.3 3 5 5 7 7 10 10
1 10
—15
5 15
1 15
o1 o1 ‘
3. 1. la 1a -1 -1 -1
1 2 3 4 5 6 7 8 . '
‘302 3 3.1 32 102 2 1.3 &4 4 &4
1 1 -1 2 4 3 4 S5 6 2 3 7 -4 -3 =2
2.3 4 A6 b 5 5 8 _ 8 27 1 -8 T —h =5
I 11 11111
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T INFUTTLRTASS lh‘r\EE T\UFLEI"AB(T"EXANPLE"‘PRUBD:'VI
e NG CBSs r-“R’I:T.. ' urb. TINTT CTNTS T W e
N 1 ' =10.60C ¢ . C.O0lA:
2 e P55 N
o 3 C3.96C 0 . Q.231 .
3 G 1n020 T OE062 T
d 5 14.990 ~ 7 C.940 )
(&) L.J.;'Ybi" o . Lo/{f-‘s.“
\ 7 16,890 0 . 2.618
* ~ B ' 21“7&(‘&“"""_“'3 330
. s 125.5SC . . 2.589 -
N ' 10 T RSV TACTTT T eV I8 0T "
7 11 ° U3c.49C 7 C.655
» " Iz 36 3%C Y205
) T b T ©41.52C¢ 7 .0 C.281
— 41337 Cr—"""""C30A3
15 52,220 0 . G.202
< :
g LINE 123 456 7 8B S101112121415
AT T CtrFC=0=0=(=C=0=U=C=0=C=C=C=0~0 N
) o ' : '
- TTHETRANGETOF NUCLEUS 1151710 )
5 T TEETRANCETOFNUCLEYS 2~ &~ 1"=""15
H'c. NAl\bt U ROLLTUS _ e IS ) e LD
) M ERANGE—OFNCCLEGS 4 1S =15
5 UNCERTTTNTY“TN—FREQOENCY*ﬁfth507‘1N—TNTENSTTY—=—OTT0U , (
TYRTUESFOR INTENS Y —STH—RULTES
————————waﬁnv—teveL 1 2 2 % 5—6 T8
oy SU¥ OF INTENSITIES 3.00 1.0C 1.00 1.00-1. 00~1.00-1.00-3.00 .
3- i ~-a”
e TRANSTTION . ENERGY LEVEL  FREQUENCY )
T NUSTTTYPE " UPPERTCNER _ umtn\‘ -
gL 1 2 =0 -
U 2 2 1 3 i =0
e 2 o3 -1 4 =0 .
) L A ) 4 TG =T
it 5 1 4 € 1
€ 3 3 5 —=0
7 .2 4 5 I S
) € 1 5- —8 =0
S 2 6 8 1
10 4 z 7 Y
, 11 1 3 7 1
Y =3 =g X
132 4 -4 7 1 “
} 14 ¢ =3 =g 1 -
1 a A ) - -
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1 C ~16.60C C.,016 3 3 5 5 6 6 8 8 9 9 15 15
2 O : ¢o319 & & 5 5 9 AR U T U S L I AR A
3 3.960 0.231 1 1 4 4 5 5 11 11 12 12 15 15
5 TTIV020 T 07062~ A A Ay ' S S b S B VS
5 14,950 C.940 1 1 2 2 3 3 13 13 14 14 12 15
6 rov92¢C 0.257% 1 I B 7 2 AU N (At £ A A S O D O B O A
7 19.86C¢ 2.618 i3] R 110 12 12 14 14 15 15 -0 ~-Q _
B RAVTRCTTTTT T TTTRYB307 S R s Ey G A S - B O E
Q ) 25,59C 2.5896 1 2 2 4 4 6 6 9 8 -G -0
I 10 25T T T, 180 T - & 7 A I R T s S S 1 S AL B N Bl oy

11 3G.490C . 0.655
| 4 , 36, 34C 0o20%
13 41.520 : 0.2%1
14 GITITCTTTT T 0T 08/3
15 -52.2290 : 0.207?

w
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~
)
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{ (& 3 34 L Il 14 T4
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AN S B S A WS B B o
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N
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[ NS B IEEVER

WU

LINE 1 2 3 45 6 7 8 6101112131415
LK =C=0=0~C-C=0=0=-0=0=0=0~(C=0=0=0

— T FETRANGE T OF T N LCUEU ST TS 1= 10

T T Y RETRANGETOFNLCUEUS T2 ST =L S

TFERANCE OF RNUTCECS 318 ST=1T5

TFERANGE-CF NCTEUS 4 I$~1—=""15

T T UNCER VA INTY TINTERECUENCY TECLC SOYTTNTINTEN STTY=07100

Vi;:t: CHS TR TRTERST I Y ST RTUFS

T ENERCY LT VELD i Y 5 & 7 8 i
SUM OF IMTENSITIES 3.00 1,00 1.CC 1.00-1.00-1,00-1.00-3.,00
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O
O THREE NUCLEI ARC EXAMPLE PROBLEM
ASSIGNMENT NO. 1
L INF TRANSITION  FREQUENCY. INTENSITY
o 1 1 2 0. 0.319
o p) 1 2 11.020 0.062
3 1 4 25,590 2.589
4 2 6 41.520 0.281
& 5 4 6 15.930 0,243
‘ 6 3 5 36,340 0.205
B 7 4 5 21,780 3.330
O 8 5 q 19,890 2.618
' Q b R 25,740 0.180
; 10 2 7 14.990 0.940
o 11 3 7 3,960 0.231
f 12 7 8 52,220 0.202
J 13 4 7 -10.600 G016
@ 14 3 6 30,490 0.655
15 2 5 47,270 0.083
O EMERGY LFVELS
1 0.
2 0.
O 3 11.0200
4 25.%90N
5 47,3700
O 6 41,5100
7 14.9900
_ -8 67.20C0
O
s
&

N




THREE NUCLET ARC SIMULATED DOUBLE RESONANCE EXPT EXAMPLE PROBLEM

ASSIGMMENT NO. 1

LINE “TRANSITION -~ FREQUENCY ‘ : INTENSITY

1. 1 - 7 0. 0.319
1~ 3 11.020 0.062
3 1 - 4 25,590 _ 2.589
4 2 - 6 41.520 0.281
5 b - 6 15,930 0243
6 3 - .5 36, 340 0.205
7 4 ~ 5 21.780 3,330
8 5 - 8 19.890 2.618
9 6 - 8 25.740 .10
10 2 ~ 7 14,960 : 0.940
11 3 - 7 3,960 0.231 )
12 7 - 8 52.220 N.207
13 4 — 7 =10.600 : 0,016
14 3 - 6 30,490 0.655
15 2 - 5 47,370 0.083
FNERGY LEVELS
1 0.
2 C.
3 11.0200
4 25.5990
5 47,3700
6 41.5100
7 14,9200
8 67,2000
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E. Miscellaneous Computer Programs
1. BLINE
‘ o As mentioned underlDECOMP, it is convenient to have the ranges of
requencies and intensities within ranges of 0 - 100 and O~ 50 respectively.’
' Since raw digitél data 1s usually not suitable for direct introduction -
into DECOMP, a simple program, BLINE, was written-to perform various |
manipulations upon the origiﬁal data to make it more suitable for DECOMP
" and PIOT. | |

Input data cards:

CARD 1 Read M, MA, MC, IPUNCH (511)
M A O if problem follows '
A allows choice of two input data formats, MA = 1 for
f format 1, MA # 1 for formet 2. AlL output data is
standard.
MC designates the number of points to be skipped below a
level read in as BL. If no points are to be skipped,
MC =VO, skip 1 point, MC = 1, etc.
JTPUNCH equals O 1f data not to be punched on cards, unegqual to>
O for data to be punched.
CARD 2 Read BL, SCALEX, SCALEY, T2 (1078.3)
? | ' BL is the level below which MC points are skipped. If the
lﬁﬁpoints along the base line are too dense because sufficient.
dengity was desired néar the peak maxima, this optioh will
. ' - f © allow as meny of the lower points fo be discarded as
desired. if the entire spectrum is too dense BL ?’ﬁhe
. maxiﬁum peak will skip points all throughlthe spectrum;

N.B., the value of BL must correspond to the values of the



CARD 3

DATA DECK

SCALEX and SCALEY are the multiplicative factors to change

~148-

data points after the values of Xl’ Yi have been

subtracted.

the respective ranges-of_the‘raw data to the desired
ranges. To invert data points for plotting SCALEX
can be -. If the fields are left blank, SCALEX and

SCALEY are set to 1.

*In order to use DECOMP, one must estimate peak positions

and intensities from the spectrum for initial estimates

as described under DECOMP. BLINE will search for all
mexima and left -shoulders and calculate the intensities,
using the vélue of T2 which is obtained from the spectrum
and would be used in the manual calculation. These values
are printed out after the data poihts and punched on caxrds

in the correct format for direct insertion into DECOMP.

" Small noise peaks are also given but these can be dis-

carded. Right shoulders were not calculated because
they cannot be distinguished from some minima, with the
5 point comparison used. The program is arbitrarily

dimensioned to 200 peaks. If T2 = O this part of the

~ program is skipped. . : .

TITLE (1246) ‘

Data points are read iﬁ as Xi’ Yi using format con-

venient to user, Last cérd in data deck 1s blank so
the program can detect end of data points, since the
nuber of points is not read in. The number of data

points in the final deck is printed out.



SIBFTC BLINE

C
C
C

IF{MaEQ.0) CALL EXIT

READE2,109) BL,SCALEX-,SCALEY,T2

IF(SCALEX.EG0«)SCALEX =1.
TF{SCALEY.EQ.0.)SCALEY =1. _

PROGRAM TQ SHIFT BASELINE TO O AND ADJUST INTENSITY.
ELIMINATE ANY NC OF DESIRED POINTS BELOW A GIVEN VALUE.
NO OF DATA POINTS DOES NOT NEED_TO BE READ
DIMENSICN TITLE(12),:X{3000),Y(3000),XIN(200),YIN(200)
READ_{(24100) MyMA,MC; IPUNCH.

READ{Z,I0M{TITLE{L}s I=1-12)

WRITE {2,103) JITLE

IF{MA.EQ.1) GO TO 8
D010 _J=1,3000:5

K=J+4

IF {(X{(J+1).EQ.0.) GC TG S
CONTINUE . ... . . - —

READ(2,102){X{1), Y1), 1=d,K)

DO 11 J= lijOOf
K=J+7

READ{2,105){X(1}¢YE1)sI=d4K)

M=Jd=-1

IF {X(J+1).EQ.0.) GC T0 9

CCONTINUE

YA=Y {1}
KA=X{1)

DO 2 I=1¢M
X{ID=(X{I)-XA)=SCALE

Y(I)—xY(T)‘YAbiSCALEY
J=2 - e

I=2
I“LY(I)QQIJBLL*COmID_,

I=14+MC
X{Jd1=X{1)

Y{Ji=Y{1)
J=Jdr1

I=i+1
IF(1.GE-M) GO TC 6

GO TO 3
K=J—~1

WRITE(3:102){X{1},Y(1),1=1,K)

WRITE(3,104) K

IF(T2.EQ.0.) GO TO 1

IF(IPUNCHoNE.O) WRITE(14,102)

KX=1
MK=M—-1

DO 77LI=2,MK

713

IFEL YUI)aGTaY (I=1).AND.Y {1)a.GE-Y (I+1}) GO T0O

GO0 70.771
XIV(KX) =X{1)

YINIKX)=Y{I)/{2.%T2)
KX=KX+1 :

771

CONTINUE
12=KX~-1

CWRITE (3,106} {XLNfi)pYIN(I)gi 1,12)
IF{IPUNCHoNE.O) WRITE{14,107) 1

CAN ALSO

_IN BUT MUST BE GT O

(X(I)fY(I)?I=19K)

IF{IPUNCHeNE.O) WRITE({14,108)

(XINII);YIN(I)VI 1512
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GO TO 1

100__EFORMAT(511)

101 FCORMAT (12A6)
102___FORMAT_{10F8.31} S

103  FCRMAT (1HL////7712A6)
104 FORMAT (16HONO. CE._POINTS._ =14)

105 FORMAT (16F5.3)
106 FORMAT (2F10.3)

107 FCORMAT(20X,F10.3)
108__ FCRMAT_{30X;2F10.3) _

109 FORMAT (8F10.3)
END

z%3 *EIND-OF-FILE® CARD =#=
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2. SCALE,

SCALE is.a pfogram which scales the frequenciés from the'arbitfary
values obtained-in.DECOMP to the frequency values obtained with the
spectrometer and normalizes the intensities to n2n—l so intensity sum
rules can be apﬁlied. Thé program will linearly expand or contact the
spectrum and shift it to any values desired. The scaled lines are
then printed and punched on cards in one of two formats. Up tc 10
spectra can be averaged if desired.

Input date cards:

CARD 1 Read JS, NS, NN, M, IOUT (913)
| JS .is the number of spectra to be read in and averaéed.
JS = 1 to 10.
! NS is the total number of spins in the system used for
normalization, i.e. NS(Q)NS—I.
NN is the number of spins in the part of the spectrum which
is being scaled. If.the X part of the A2B2X spectrum is
being scaled; NN = 1, NS = 5.
M is the number of peaks to be scaled. If more'than one set
\is to be averaged, M must be the same for all sets.
IOUT allows a choice of formats to be punched on cards.
(sée listing.)
Note: If ﬁore than one set of lines is to be averaged, only the
. following cards are to be repeated in the problem.
"CARD 2 Read TITLE C (1246)
CARD 3 Read DCPS, SHIFT | o (2Fr10.3)
DCPS 1is the difference in values desired between the first aﬁd'{l

last peaks. All other peaks are scaled proportionally between;



DECK L
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SHIFT is the value desired for the first peak.
Read FREQ, PINT (30X,2F10.3)
This deck consists of the frequencies and intensities of the

lines, one set per card, which are output from DECOMP.



SIBFTC SCALE

C THIS PROGRAM SCALES DIGIVAL DATA TO _SPECTROMETER DATA BY ADJUSTING
C FREQUENCIES TO UNITS OF CPS AND BY NORMALIZING INTENSITIES. IT
C THEN AVERAGES UP 70 10. DIFFERENT_SPECIRAL '

DIMENSION FREQ(10,200),PINT(10,200),TITLE(12)
60_READ(251). JSsNSyNN; ¥, ICUT

IFINS.EQ.0} CALL EXIY
FJS = JS

KI = NS#2#==(NS~1}
HI_ = NN#KI/NS

DO 10 I=1,4dS

READ (2,2) {TITLE{Jd},J=1,12)

READ (2,3) DCPS,SHIFT
READ (244) (FREQ{I,J)-PINT{I;J)sJ=1,M)

Si=0.
DO 20 J=1.M _

.

20 SI=PINT(IsJ}4SI
FM = DCPS/EFREQ{I, M)—FREQ(I 1))

FRI = FREQI{I:1)
DC 30 _J=1,M

FREQ{I,J) = (FREQ{I,J}—FRI)=FM+SHIFT
30_PINT(Iod) = _PINT (I Jd)=RHY/ST_ ___ _

WRITE (345) (TITLE(JIyJd=1,12}
IF{JS-.GT.13. 60 70 10 _ __

IF{I0UT.EQ.0) WRITE(14:9 ) iFREéiYZCT”BYﬁ%(IQJ>gJ 1oM)

IF{I0UT.-NE-Q) WRITE(14,%4 1} REQ{I,J),PINTII,JisJ=1,M}

10 - WRITE (3,6) (FREQ(i?JY?pENT{nvv)PJ 1sM)
IF (JS.EQ.1) GO 710G 60  _ . e '

DO 40 J=1yM

DO 40 1=2,J4S

FREQ(1,J) = FREQ(I;JY+FREQII,J)
40 PINT(1,.4) = PINI{1sd) * PINT(I:J)

WRITE (3,73 JS
DG 50 JS=1M___

FREQ{l,J) = FREQ{LsJI/FJS
PINT(l,Jd) = PINT(1,J}/FJS

50  WRITE {3,8) FREQ(19J37PYNTIEJJ>
IF(I0UT<EQe0) WRITE(14:9 ) {FREQ{1,J),PINTI{1,J),J=1,M)

IF(I0OUT.NE-QO) WRITE(;Q 4 ) (FREQ(1:J)sPINT{1,J),J=1,M)
GG, 70.60 _. .. -

1 FORMAT (913) -
2_FORMAT_(12A6). '

3 FORMAT {(2F10.3)

4 FORMAY _{30X,2F10.3)

S FORMAT (1H1iI2A6/71H 1}
6 _FORMAT_{(1H 2F10.3)..

A?‘ ‘
-

7 FORMAT (19H1AVERAGE VALUES FOR13,8H SPECTRA/Z1H |}
8 FORMAT({1H 2F10.3)

9 FORMAT (8X,2F10.3)
" _END '

w2% OEND-OF-FILE® CARD ==z




Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9-16
Fig. 17
Fig. 18
Fig. 19
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FIGURE CAPTIONS
Group.of twelve peaks from spectrﬁm_l decomposed with digital
shape function. Dots are experimental points; vertical lines
show pésition and intensity of peaks found by DECOMP; the solid
curvé is calculated from the peaks represented by the vertical
lines.
Group of twelve peaks from spectrum 2 decomposed with digital
shapé function.
Group of twelve peaks from spectrum 1 decomposed with Lorentz
function.
Group of twelve peaks from spectrum 2 decomposed with Lorentz
function.
Energy level diagram for ABC example.

Energy level diagram for A2B2 example.

Experimental spectrum of 3-chlorothietane, X region.

Experimental spectrum of 3-chlorothietane, A2B2 region.

Decomposed groups of peaks from the SPectrum of 3-chloro-

thietane, digital shape function.

Energy level diagrams for 3-chlorothietane: (a) symmetric,
(v) antisymmetric. |

5-chlorothietane, structure and identification of protons.
Comparison of results from NMRIT and DECOMP of the X region

of the spectrum of 5~chlorothietane. Top curves are calculated

using positions and intensities of wvertical lines representing

peaks obtained with NMRIT. Bottom curves are experimental

spectra; the vertical lines show positions and intensities

obtained by DECOMP.
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Fig. 20 Comparison of results fronm NMRIT and DECOMP of the A232 region
of 3—chlorothietane.. | -

Fig. 21 Double.resonance spectra for 3-chlorothietane: (a) freqﬁency
sweep spectrum obtained while observing line 11, (b) single
resoﬁance frequency sweep calibration spectrum, (c) freguency

sweep spectrum obtained vhile observing line 12.

Fig. 22 Energy level diagram for double resonance éxperiment.
Fig. 23 Experimental spectrunm of 5-thietanyl acetate, X region.
Fig. 2L Experimental spectrum of 3-thietanyl acetate, A,B, region.

Fig. 25-32 Decomposed groups of peaks from the spectrum of B-thiefanyl
acetate, Lorentz shape function. |

Fig. 53> Comparison of results from NMRIT and DECOMP of the X region
of the spectrum of 3-thietanyl acetate. The top cur&e is the
expérimental gpectrum; the vertical lines show positions and
intensities obtained by.DECOMP. Bottom curve is calculated
using positions and intensities of the vertical lines, repre-
senting peaks obtained with NMRIT.

Fig. 34 Comparison of results from NMRIT and DECOMP of the ASB, region
of 3-thietanyl acetate.

Fig.'BS Best spectrum using visual estimation of peaks with NMRiT,
X fegion of 3~thietanyl aéetate.

Fig. 36 Best spectrum using visual estimatién of peaks'with NMRiT,
A2B2 region of 3~thietanyl acétate.

Fig. 37 Energy level diagram for A1 symmetry; AQBA example.

Fig. 38  Energy level diagram for Ay symmétr&; AQBA example.

Figf 39 Energy level diagram for Bl symmetxrysy AEBh éxample.

Fig. Lo Energy level diagram for B2 symmetry; AgBu example,

v Fig. 41 Experimental spectrum of trimethylene sulfide, digital data.
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Fig. 25
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Fig. 29
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A.

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, '"person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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