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ABSTRACT

A study 4is made_of the linear spatial response of an electron
“plasma to a localized one-dimensional electric field, whose frequency w
is low‘compared with the electron-collision frequency v.. For a fully
ionized plasma, both electron-electron and electron-ion-collisions are
includedf{n the calculations, the ions being treated as fixed scatterers.
It is shown thatrthe neélect of ion dynamics is Justifled for a suitable
choice of parameters. In the hydrodynamic regime, the response function
.decays exponentially,'with.decay length equal to a diffusion.length

-1/2 , whére = is electron thermal speed, and its amplitude is

3/2

awv)
proportional to w . ‘In the kinetic regime, the amplitude is proportional
to w , and the decay is not exponentlal, with characteristic distance

being the mean free path a/v . For a weakly ionized gas, only electron-
neutral‘coliisiOns are inéluded; in the hydrodynemic region, the dependénce

ofamplitudeanﬁ decay length on w is the same as for the fully ionized

gas, but the decay is no longer exponential.
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I, INTRODUCTION -

The linear response of a thefmal'eleétron plaéma wiﬁh zero magnetic

field was first studied by igndau,l with :egard'tolboth-initial conditions

' and‘boundary cohditions, under the asgumption that collisions are negligible{
. In the present paper, we consider the boundery-value problem for the case .

in which collisions are'important.

Interest in this problem was<stimulated‘by the experiments of

Wong, D'Angelo, and Motley,2 who subjected the. quiescent cesium plasma"V

of a Q;machine3 to a longitudinal field (of fixed frequencj w ) produced

by a plane grid, and observed the plasma response &s & function of

distance from the grid. Gould carried out a theoretical analysisu of

the linear response in the collisionless approximation, replacing the

R single grid by a pdir of closely spaced grids, He found that, for

(the ion plasma frequency), the response decayed'épatially with
i, ,

' three characteristic distances: (a) in the distance Ay (the Debye
length), De?ye shielding occurred; (b) in the distance ai/m (ai £ jon..

thermal speed), ion Landau damping occurred; (¢) in the distance ae/w'x

(ae 2 electrbn thermal speed),,electron_Landau damping occurred. The

experiments indibated-good agreement with theory in-fhe.region (v),

.. the regions (a) and (c) being too short and somewhat too long for the o

experimental situation.

The experimental conditions of Wong et al, were such that the

electron-collision frequency Ve greatly éxceéded o e Cleariy then, ;
- & study of the electron response must take electron collisions into

account, In this paper we investigate the linear electron response, .



K . amplitude of'the’response is proportional to w

k-plane, Considering always

-le=

' treating the ions as fixed scatterers, and including both electron=ion

and electron-electron collisions.: (In Sec. VI we show that the neglect - -

. of ion dynamics is Justifiable under;appropriate conditions.) We shall

in particular be interested in the low-frequency domain w << Vg
Section II is devoted to a gehéral formulation of the problem,
The response function G(z,w) , defined by Eq.'(2£2), is-expressed in

terms of the dielectric function K(k,w) in Eq. (2.5): The behavior

"of G as a function of z can thﬁs be discussed in terms of the

j’ singularities of the analytic continuation of K-l into the complex

> that w << v , we'may'divide.the k-space

" into the three regions: (a) x]~x E'ABI , the Debye region; (b) {
k]~ A;l = v/a << k , the kinetic regime; and (¢) |k| << v/a , the o

" hydrodynamic regime.

1

Thefe is no need to study the Debye region, éincé'every plasms,

"‘,model, whether collisionless or collisipn-dominated; yields a zero of K
" at k =+ ic , and thus a contribution to G of exp (-x[z|) . We
 therefore always limit our discussion to [x| << x, thereby allowing

some algebraic sihplifications.

The hydrodynamic regime aliowgla cqmplete explicit solution, based

' ;6n the equations of two-fluid hydrbdynamics.6 This:solution is carried

lu*izout in Seec. III, the results being given in Eqs. (3.16) and (3.15). The <

3/2

' is a diffusion length A-va/(wv)l/2 .

The kinetic regime 1s discussed in Sec, IV, Here only a formal

"'aolﬁtion, Eq. (h,lB),nis possible without extensive numerical work, The .

» and the decay distance . = -
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amplitdderf the response isiproportional to 'w', and the decay distance .
is the mean fgee.paph :Av.= g/v « The use of the Krook: model, however, - -
alloﬁs'éh explicit solution in terms of a quddratﬁre, from'which.the
asymptotic behavior for large and s;all Z o in the range 2z~ }v‘vis
obtained [Eqs. (4:20 a,b)] . |

Section V is devoted to the Lérentz model, appropriaﬁe:to a
weakly ionized gas, in the hydfodynamic regime, The amplitude and decay
length are the same as in Sec. III, but the decay is nonexponential.,
The asymp£otic behavior is agaiﬁ found, thié time in-terms of the velocity

. I
dependence of the transport cross section,

II. GENERAL CONSIDERATIONS

We consider a uniform electron gas in thermal equi;ibrium,
neutralized by fixed positive ions. it is perturbed by an external
electric field E,(z,w) ; this field has fixed frequency w , has a
componentxonlylin the z~direction, and varies with "z. oniy. Such a

field is produced by a set of plane grids; we assume thét'they intercépt

l( .
. & negligible fraction of the electrons crossing them, so that their

only effect is electrical. We.also assume.that.the field EO ‘extends.

over only a finite part Az of the (theoretically infinite in extent)

‘plasma, so that its spatial Fourier transform exists:

a0

By(kio) = f az &2 B (2,0) . (2

NN



"is even in 2 f We may thus limit our attention to z'> 0.

-l.‘-
The plasma-response function is defined by the linear relation
E(z,w) =‘/'dz' Q(z -2', Q)IEO(z', w) o (2.2) .

vhere E = B  +E_ is the total Vlasov field; E_ {s that due to the -

pérturbed electrén distrivution, and is determined by

- ik Ee(k;w) = hnq én(k,w) ;' , (2:3)

where 6n is the perturbed electron density,'and qQ = =-e is the electron

charge., . , : !

The object of this paper is the study of the response function

G6(z,w) . By Fourier transform1ng Eq. (2 2), we see that

Glic,0) = %(‘)k-(;(-“-’;’,-,- s ko), (2.

vhere K(k,u) 1is the (longitudinal) dielectric function, The response

function is thus given by

d(z,0) = f & i rgat (2.5)

Since the unperturbed system is isotropic, K is even in kX , and G
‘It is &onvenient to introduce the susceptibility x(k,uw) :

b

x(k,w) = K(kf?) - 1 = =B (k,uw)/E(k,w) ='-huq6n(k,m)/ikE(k,w) . (2.6)f ‘
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" In the kinetic description, we use the electron phase-space density

:Tz,lx; t), and its perturbed part &f :

£(r, s t) = nog(v) + 62(z, Y3 t) . - | . '(2.7)

o

where n, is the-unperturbed density, and

‘s(v)_s y'3/2a-3 exp (—v2/a?) ‘ | (2;8)

is the normalized tﬁree-dimensional‘Maxwell distribution, For 6f , we

}
introduce the dimensionless function

o(v, w3 k, w) = 'OOGf(k.&;;»w)[noq¢(k;w)g(V)]°l . (2.9)

vhere u = vz/v » the unperturbed temperéture is
.12, | | o iy
.60 = ‘é‘ ma | 9 (2010.)
and ¢ is the total potential (E = -ik@) . Equation (2.6) then becomes

x(,0) = <(x2?) f Sve(vulv, us k, 0) (2.11)

where

H
Y, #4

is the inversé:sqpare Debye length.

ok
3

The kinetic equation satisfied by f  is

Lz
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[% +v, -g—; +i~ E‘;‘,“;;] £(z, v t) = -;C . - - (2,12)
vhere -C} répresentg the rate of change of f due to el_ectron-éion and
e_lectron-électron collisions. For f;'equencies w much less than the
'plasma frequency 0, , end for ‘ k_ << ¢ ', the Landgu form of{th‘e Folgker-Pla;nck
equation may be used,with an accuracy of order (&n A)-l , 1.e., about

10%. We linearize Eq’. (2.12) ;a.bout absélute équilibrium, Fourier _transform

it in space and time, and use the substitutions introduced above. We'

obtain as the equation for ¥(v, u; k, w) : - !
[~1(w = kvu) + vEIW = ~fkvy , = ~ (2.13)

where v@&, is the linear integro-differential collision operator obtained

from the ;ir;eg.ri;a;tion of C. The factor v. is an arbitrarily defined
mean .collision frequency; therefére O is dimensionless, ,

The -s'olution of Eq. (2.13) is to be substituted into Eq. (2,11)
for x . We now show that :jf:he soluhtion‘_lis 'ux;iqu;z, for ;'eal' Wy ko

If it were not, the corresponding homogeneous equation

o = kvu)y = vy | (é-.ih)

H

i -
would have a nonzero solution, . Let us multiply both sides of (2.14) vy
* i . A
g(v)y (x) and’ integrate over all y, :
PY ‘ C . ' ' : o
1]‘13‘5 g{v)(w - kvu)lw(x)lz = \’fd3V8(V)¢ (u(v) . - (2.15)
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We use the'fa.ct7 that (2 is real and self-adjoint with respect to the
weight function g . Hence the right side of (2,15) is real, but the
left side is purely imaginary. Thus the only solution of (2.1&) is

identically zero, .and (2.13) has a unique solution,

IITI. HYDRODYNAMIC DESCRIPTION

For small k(k << v/a) and ‘small w (w << v) , the hydrodynamic
- approximation is’appropfiat;. The.complete set of two=fluid hydrodynaﬁic |
equations has been derived by one of-us,6 by the generali;ation of the
Chapman~Enskog method to unequal densitites, teméeratures, and flow
velocities for the‘two fluids, electrons.and ions. In these equations,
we take the limit ‘me/mi + 0 , thereby neglecting the ion dynamics, the
Justification for which is deferred to Sec, VI, We then have a set of
equations for the electron fluid with fixed ions, and the electron
subscript is dropped. The equatioﬁs Are linearized about absolute thermal

equilibrium, and are listed below:

(1) the equation of cbntinuity:
iwdn(k,w) = iknbu(k,w) e (3.1)

where wu 1is the electron flow velocify;

(2) the momentum equation:

-iwmnou(k,w)f? noqE(k,m) ~ 1kép(k,w) = %znkeﬁ(k,w)\+ P(k,w) : (3.2)
. ii‘j t P ] o ’

3
T

72N
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where d&p is the perturbed pressure; n is the electron viscosity, and .
P is the rate and density of momentum traﬁsfer from the ions to the

electrons in collisions;

(3) the energy equation: A : : L o | ' )
-iu%noée(k,w) = =pyiku(k,w) - 1kQ(k,w) s - (3:3)

vhere 6@ is the perturbed temperature, P, = noeo is the unperturbed

pressure, and Q 1is the heat flow in the electron frame;

!
(4) the perturbed equation of state:

. Op(kuw) = noée(k,m) + Oodn(k,w) 3 : B (3.4)

(5) the generalized Ohm's law:
Pk,0) = =ngmvu(k,w) - cliﬁnoée(k,d) . . (3:5)

vhere v is the effective momentum-transport collision frequency,
calculated by Spitzer and Hﬁnna to be -

-3/2
-1/2‘. e t

) nqe (n A)m 8 . _ (3.6) .

= 4T
AV 32

and 2 is the numerical thermoelectric coefficient,zcalculateda.to equel
0.7 to 10% acé%racy;‘.

(6) the gggeralized Fouriers Law :
5

-\

!
i
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. O ’ . . ) .
.8 ) ,
_Q(k,w) = - (92 ik n, 50 + ¢y P) ', | (3.7)

“where e, 1s the numericel thermal conductivity, equa18 to 4,0 (to 20%),

v

and ¢, 1s the same as in (3.5), by Onsager's relation; and

(7) an estimate for the viscosity:

" From the 1néqua11ty w << v /agd Eq. (3;5), we dee that the
inertial term of Eq. (3.2) may be dropped; likewise from k << v/a and
(3.8) , we may drop the viscous term from (3:2), The remaining terms are
all comparéble in our k,s range, |

The solution of the set of equations is most conveniently expressed

in terms of the generalized conductivity:

noq‘u(k,w)

o(k,w) = m— l » o | ' ('3;9)

_which is related to the susceptibility by

x(kyw) = (bn/eiw)o(k,w) . o (3:10)
The solution is straightforwardly found to be °

. 1 - c3'k232(31wv)'1 |
0 1wc, 282 (31uv) ™t + %'c3 [x%a®(31wv)~1)?

e (3:11)
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~ where
_ 24 ., 2.1 o
0y = mpam oV z hwwe v . v o (3.12)
- is the dc conductivity, being the limit of a(k w) as k (mv) +0 3
© and | 4
-
c.: c2
€3 = %2 "% ’
.gh ->'2 + c, + 2cl .
. - s a
(Spitzer and Hirm's values yield c3 3.5 , ch = T.9. )
The response function G(z,w) is
+o AR : ‘
© 6(z,w) =J[ g%- R (1 + (lm/-=-im)'c:(k,m)]-l 4'. o (3.13)

Since o(k,w) is a rational function of k , the only singularities of

the integrand are the roots of the equation

i

o(k,w) = 'ié/hn .'5; : (3.14)

but since w << v << 99 » the roots are gimply the geroes of o(k,w)

~

‘namely

xyor o e M2 L )

Calculating thé residue of the integrand, we finally obtain

.o
i

ey
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. A : v G(z.w) = e ~> k, exp ik+|z| . , | (3f16)
C e \ ] . 3 wé A . ‘

. 2 -, . ) | | o
% . . S We note that the existence of a singularity in the k-plane, or

of a zero of o(k,w) , requires c3 to be nonzero., Since c3 represents

the thermal conductivity and the thermoelectric effect, it is evident that

L ', - a crude model based on the standard Ohm's law (cl = 0) and the adiabatic
\ _ equation of state (Q = Q) leads to ho hydroaynamic response,
: The response decays as a pure (complex) exponentjal in the

hydrodynamic'domain. The decay length is

v A’*’a/(wv)l/é' . (3.17)
;lﬂ which ig chafacteristic of diffusion phenomena., The amplitude of the 4
‘ Y, response is proportional to W32,

A

IV, KINETIC DESCRIPTION

Y

F6r 'kfy'v/a , We must use the full kinetic equﬁtion (2.13).

Y : . _ _
o . Since we are interested in w << v , we expand the solution in powers
of A
. | % . , S BV
v(v, u; ki'ﬁ) = w(o)(V.'u; k) + (w/v)w(l)(vo'u; k) + O(N/V)2 . ‘

5: Equation (2.13), to zero order in wh , is

| 7
Bd i !
ﬁ;' m..’m\.g
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o e v, w0 e e . (.2)

Since the operation of (¢, on a constant yields zero, representing

. conservation of particles, a solution of (k.2) is

Vv wx) = 5 C(h3)

and by the uniqueness theorem pfoved at the end of Sec. iI,,it is the

only solution, From Eq. (2.11), we find the static susceptibility

: !
x(k, w = 0) = k2/k° : (4.h)

which is well known,

The first-order equation is

(ikvy + vfy)w(l)(v, By k) = =iv . : (4.5)

-,Wé introduce dimensionless variables

vz owe | | (4.6)
o= o, 3 o .7

and revrite (h.é? as ’ . | '. |
(=k*v'y ;.16)¢('1)(v-,u-, k') = 1%, '(h78)

L8

.
Fromjiﬁs solution, which must be found numerically for all k' ,

we form



YR, s e

" =l3w-

Tlx) fa3vg(v> TR R ()

The susceptibility is then, to first order,

x(kw) = (PPN = (w/W)T(k') + 0(w/v)?] (4:10)

-Since k' is of order unity, @ will be of order unity, and x has no

zeroes on the real k-axis, Further, since x >> k , we have x >> 1,

80 that
+o : !
6lzp0) = [ £ & [x(c,0)17
2 |
=P [ M e eaBe)] s, a)
4z

to first order in w/v + The first term of the integrand yields a

§-function, which must be dropped, since we are in the kinetic domain

z n:xv o (A more careful treatment yields Debye shielding for -z << lv D

We thus obtain

400

oa) = % PE [ Mg (1:12)
: ' dz e .

in terms of the. dimensionless distance z' = z/), , this is

T
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‘ 2 2 M - |
6lzy0) = -2 L 'J[ £ P(xr) exp (1x'2') . (ba13)

 The form (4.,13) indicates that the amplitude of the response function is

proportional to w , and its shape is a function of 2z' , independent

of © . We have not undertaken the extensive numerical work necessary to

evaluate this function.
A more explicit expression for G in the kinetic regime may be

obtained by using a model for the collision operatof e ' The Krook

modello conserves particles and energy, and provides for momentum transfer:

win

. o 2 - 2 .
Cuy = ¥(v) -fd3ug(u)¢(}3) - I -1 -fd3u % -%_- glu)u(y) .
o .a a '
-~ (b,1k)

There is now no need to assume w << v; an explicit solution of Eq; (2,13)

'is found, yielding the susceptibility

e = (AR e maeymT (b.15)°
where | |
E o= (Q +1iv)/ka -, (h.165
. ‘ ; . ] ‘ . . B
: Yy = iv/ka . I : : : (L,17)

L Y,

BT
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Cx (gt - e f‘; )Yz +%+ ye(z? - -Jé- o, o (L.18)
and -
| g P X2 R |
2 = 2(g) = :ZE | dx P | : (4.19)

.

is the plasma dispersion function.ll In the hydrodyhamiq domain

LW << J and k-<< v/a , the susceptibility reduces to the same form (3.10)-

(3.12) as in the exact treatment of Sec., III, with values = 2,5 and

‘3

¢, =5 . | |
In the kinetic regime ke~ v/a and w << v , we expand (4,15)

to first order in -w/v and'bbtain the form (4/13), with U(k') a

lengthy analytic expression involving Z(y) . The function § therefore

has & branch cut along the imaginary k'-axis, The contour of ‘integration

_can be moved up to this cut, the integral then taking the form (for 2z > 0)

jdk"p‘(k") exp (=k"2') o
5 :

-

The function F is too complicated for analytic quadrature, Rather

than carrying Gat the numerical quadrature for this model, we content

ourselves witg’évaluating the asymptotic forms for large and small z'

Rt
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4

o2 | g 5/3 2/3 -
6{z,w) =--—-§—,i“?"2 (g—) [-3( ) ] for z' > 1 , (4.20a)
- 2573 aw, : ,
4
2 fwvd -2 - . ' ~ -
Glzw) = = 5 (z*) Sfor z' <«<1 a {L.20p)
© Vr aw ’ ' .
e
' 1/2
(The inequalltles in (4,20) must still satisfy (v/w ) << 2zt << (v/uw) o]
_ . l
V. LORENTZ MODEL
For a weakly ionized plasma, the Lorentz model is appropriate,
wherein we’ neglect electron-electron collisions and treat only the
collisions of electrons. with the neutral stoms, We assume that the
‘temperature is so low that the collisions are elastic, and we ignore the
recoil of the'neutrals, Thus the neutrals are considered as fixed
.i’scatterers, with a differential scattering cross section :o(v, 6) .
We shall content ourselves with studying the hydrodynamic limit,
i.e.y, w << v and k << v/a , However, the equations of Sec, III do not
apply here,since in the Lorentz model there is no relaxation of speed
toward a local Maxwellian, the speed of an electron being unaltered in
a8 collision. The electron gas thus behevee not like a single fluid, but"
. . <.
somewhat like aésuperposition of nearly isotropic and momoenergetic fluids,
We return to the kinetic equat1ons (2.12) and (2.13). The Lorentz N

model collisién operator C is already linear, and is given by - v
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where
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.nst[denvo(v,e)[f(z, y, 23 t) - £(z, v, 3';1t)]‘“ ’

x/v is the direction of. Vo 0 1is the scattering angle

(5.1)

between Q and ﬁ: s and n_ is the density of scatterers, Since C

is linear, v&y is given by the same form as (5.1), with f replaced by

(v, u; k, w)

It is now convenient to expand ¢ in Legendre polynomials:

: ¢(V.'u; k, w) = E: Py (wy, (vs K, w) o
=

Using the'Legendre addition theorem, we then obtain

- vBy EZ v (V)P (udy, (vs kw)

L

where

m

v (v)

We note that Vo 20, v(v) 30 for 23 OA,‘and.that.,'vl(v) is the

conventional momentum-transport éo;lision frequency.

Using (5.3) in Eq. (2.13). and projecting the latter onto P, 5 Ve obtain

[iw + vziv%]wz + ikv [

2+ 1

L
T Ve Yo 3 Y

L+l

’nsvjfdaﬂc(v?e)[l - ?z(cqs 8)] v.'

] = -ikv&zl .

(5.2)

(5.3)

(5.4)

(5.5)
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. In particular, for £ =0 and % =1, we have

whg "“_%,'k""l . © - (5.6a)

- +vy(]yy + vl + Byl = e L (5u60)

‘ For % > 1 , we can conclude from Eq. (5.5) that either’ wz/*z;l = O(kv/vz) << 1

or w£/¢£+l 0(kv/v£) << l‘; The former qpoice leads to a convergent series

"for (5.3) , and from the uniqueness theorem of Sec, II, ip then the only

" solution.. In (5.6b) we thus drop wz', and also . w , and then solve

the set (5.6) for wo‘:

k2v2

bo(vs ks @) = = > - o

~Bimvl(v) - k2v

The susceptiﬁility 1s thus

. x(lf.;m) = za'fd3vg(.v)y2[k‘2va:- 3iw'vl(V')]Tl‘ e (5.8_), . |

In contrast to ﬁhe result of Sec. 111, x' is nowvno longef rational ‘ .

~ function of k , but has a branch cut in the k-plane along the line rotated : 

n/4 from the real axis (see Fig. 1) . For the evaluation of the response

function
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. G(z,u) =f%-k; et 1+ _x('k,ta_:)']"l e  (5.9)

'_: we may again neglect unity compared with ‘X .,'dndAthén_defbrm the contour

from C1 to 02 l(for % > 0" 3 recall that G is'eveh.in z). No

poles are swept over in this deformation, as is easily shown by the

© Nyquist method. o I ’

For the ihtegration along C, » we set k2'=ri(p? :.ie) , and

obtain : o ’ |
- Glz,u)= x'2ei"/hf %9-_ > F(p)e' - exp (e3i"/h pz) . , .(5.10)
. : : 0 F(p) + P7(p) o .
vhere
_F(p') aanfd%g(v)a[p?; 3 v'l(\}');"?] . (5.11)
" and
P(p) = Pfda’v_"' i L (5.2)
: p° = 3w vl(v)vl S

It is clear from these formulas that the characteristic decay

distance is oflﬁrdqr 2&(3@5)'1/2 , where v is a mean collision frequency;

4 : : :
i,e., the behﬁv@or is a diffusion process and is characterized by a

=< I
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diffusion length, However, the decé& is not exponential, as in See, IIT,
: becauée here x has a branch cut'rathér than a pole.
Explicit evaluation requires numerical quadrature, given vl(v)
for the neutral gaé of interest, However, we can obtain thevasymptotic | <
ﬁehgvior by assuming a power law for vl(v) as v-+0 and « , We

. suppose that

. o -0 *
vi(v) = v (%-)w o .’.. o o (5.13a)

wse

"’1(_",) ;Z .v,:( > ) ~ (5.13b)

we note that the classical interaction of an electron with a'polarizable'

molecule yields s =2 for all v , i.e,, V independent of v,

1
The limit v - 0 corresponds to p + = (for sg. > 0), and thus
1/2]

to 2z + 0 [by which vé mean, of course,$ a/v << z << a/(wv) ; likewise
v + @ corresponds to 'z + ® , The asymptotic evaluation of (5.13) is

straightforward, and we find

" p Jal -3+(6/80)
G(z,0) ~) - -7 2 o= liexp|-~ 3mi ) (=23 1z ,
’ z+0 ﬂl ?so s0 2s0 0 A0
' \ v (5.1ha)
: -2

: ' 8 : s +1

) X : [ 3 - _h

Glz,0) — —— - : ! k24" 2 ‘
T e W (s + W2 ]2 A - 12!
i f S -8, .. 1/(s_+h)

x exp (-(s_ + 1)[(]z]/88_)"s_ “e=™] } , (5.14b) »

7N\



~';,\d/”ﬁ.F,:“.__.....J.‘...M.“.ﬁ.,. ¢ e -

 for w >> v, # 0, and by Kivelson and Du Bois™3 for w <x v

“2lm
where o T
A, = g(3mvo)'l/2.

8, = al3w )2

VI, ION DYNAMICS

For an electron-ion plasma, the totél'résponse is determined by

" the total susceptibility

]

' »Xig Xe"')(i 'y ’ (6.1)

where Xe and *i .represent the contributions of electrons and ions
respectively. For the applicability of our results, it is necessary to

Justify the négleét of the ion response, and»thérefore to show- that there

~ exists a parameter rangé,of ky,uw vhere

Clxgl ek o C (62)

When, on the other hand, !xi[nu [xel , the responses are comparable;

this is the range of the quasi-neutral ion-acoustic waves, They occur

- at k‘f-’w/ai for w << wy » and for all values of the ratio - w/vi .

They have been studied by Gc‘Suld)4 for vi =V, = 0 ; by Kulsrud and Shen12-

g {The

~subseript i ?efers to purely ion quantities; in particulaf, vy is

the ion~ion collision frequency, and Wy is the ion plasma frequency.)

ey

JS—




1.

2.

3.

Te
.8.
9.

10,

FOOTNOTES AND REFERENCES

Work performed under the auspices of the U, S.‘Atomié Energy Commission,

L. Landau, J, Phys. USSR 10, 25 (1946),

A. Vong, N. D'Angelo, and R. Motley, Phys. Rev. 133, A436 (196h),

Phys. Rev, Letters 9, 415 (1962). In their experiments, a confining

uniform magnetic field was presént, and the perturbing electric field'

was parallel to it, If the magnetic field is not so strong as to
affect the collision process (Debye length << gyro-radius), and

if the plasma column radius is much greater than the‘Debye length

(Alfred Wong, UCLA, private communication), then the magnetic field .
may be ignored in the analysis, and the plasma may be taken as infinite

. in extent.

N. Rynn and. N, D'Angelo, Rev, Sci. Imstr. 31, 1326 (1960).

R. Gould, Phys. Rev, 136, A991 (196L). See also M, Feix, Phys,

 Letters 9, 123 (196L4) for the collisionless electron response,
When only electrons are considered, we omit the electron subscript,

A, N. Kaufman, Plgsha Transport Theory, in The Theory of Neutral

‘and Tonized Gases, C. Dewitt and J, Detoeuf, Eds, (J. Wiley and

Sons, Inc., New York, 1960).

B. Robinso% and I, Bernstein, Ann, Phys. (v.Y.) 18, 110 (1962).

L, Spitzer and R. Hdrm, Phys. Rev, 89, 977 (1953).
22

It 1is intg}esting to note that in the opposite limit k“a (o)™t » w,

X ‘takes bh its static value 2/k° .

R

P, Bhatﬂaé;r, E. Gross, and M, Krook, Phys. Rev, gk, 511 (1954);

102, 593 (i956).

s
e



.-25-

11, B, Fried and S. Conte, The Plasma Dispefsioh Function'(Academic )

Press, New York, 1961).
12, R. Kulsrud and C, Shen, Effect of Weak Collisions on Ion Waves,
Princeton preprint (submitted to Phys. Fluids),

13, M. Kivelson and D, DuBois, Phys, Fluids T, 1578 (196L).

ot e e e ae e oL o . ————




Fig, 1

w26

FIGURE CAPTION °

Branch cut and contours in the K-plane for X and G , in the

Lorentz model,
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