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ABSTRACT

A survey is given of techniques for spectroscopic analysis
using intensity fluctuations. Particular attention is given to counting
times, the role of macroscopic sources and detectors, and to the

electronic constraints placed on the observations.
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7 ' I. INTRODUCTION v

A variety of technigues have been suggested in the past few
o
i

years for applying the study of intensity fluctuations to spectroscopic

analysis. An excellent review of these has been given by Wolf and

i - 1 . - . . . . . 2
by Glavber. We have recently provided a quantum mechanical description
,|
of  intensity correlations in connection with a method for measuring the

. 1

vhase of a scattering amplitude in X-ray scattering. We shall here
i ' =

apply this gquantum mechanical analysis to several of the proposed

'
t

spectroscopic techniques. We have in mind particularly the cbservation
of the shape and width of a single spectral line. Although the relevant
machinery was completely discussed in Reference 2, we shall utilize

some notational simplificatlons which have been developed in some

3.k

later work.

We shall consider measurements of intensity fluctuations and

4

time correlations in detectors at separate space points. The classical

5

-

described in the book of Born and Wolf. The study

0]
[N
)]

theory of thes

1 connection with spectroscopy has been reviewed by

1o

¥

of fluctuations

5 ' :
Mandel. The use of space correlations is essentially the technique
of Hanbury-Brown and Twiss. A related method involving interference

of Fourler components in & non-iinear device has been suggested by
Ferrester.
In Section II we review the general features of the problem,

vaying parti

ot

ular attention to the effect of macroscopic sources and

@)
]

]

detectors and to electronic iimitations. ne presentation will be

.
N\
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réésonably self-contained, but will not include the derivation of some
‘ :

'

basic formulae which were given in I, II, and IIT. Spééific applicatidns
wili be discussed in detail in Sections IIT and IV. In Section V we
describe the use of lenses and other optical instrumenis in such
experiments. Finally, in Section VI, a discussion of higher order

correlations, involving three or more detectors, will be given.

o

xx
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' II. THE OBSERVATION OF INTENSITY CORRELATIONS

’iv In thi§ section #e review those results of iI and IIT of
ré}evance to the present study. Our discussion will ﬁopefully beA
éﬁfficiently cémplete that reading papers I, II, and III i1s not
nécessary unless‘missing derivaticns are desired.

We consider a gquasi~-ccherent source,l 3, of obtical radiation,
aé;illustrated in Fig. 1. Light from the source is detected by a photon
cou&ter D ‘after passing through a filter which restriéts the radiation
to én angular freguency interval Au@ at a ffequency f@b . Ve

suppose that

bayy, << @ . o (2:1)

The source-detector separation is described by a vector g from a fixed
point in the source to a fixed point in the detector. Arbitrary points

in source and detector are designated by vectors s and u , respectively,
measured from the fixed reference points [See Fig. 1]. The linear
dimensions of the source (detector) are characteriied by the parameter

L.S (Ld) while the corresponding areas are written as ZS and Zd .
We imagine that source and detector have small angular apertures in

the sense that

LS/Y << 1, Ld/Y << 1. (2:2)

T



“he

. o 2 , .
The photon flux (number of vhotons/cm™/se¢) at a point

in the ‘detector is

z<:
k-

=Y +u at a poin

.y RB/br ‘ ",(2:58.)

Lo

where R is the equivalentiisotropic source intensity. The corresponding

w

differential flux at froquepcy @ in dw, is

aF = 7(y) glo) av, | (2:30)

where the spectral function, glw) , is normalized to unity:

\ Vo _ /rdw g(w)

‘ | Jaoe . (2:1)

[t
o

The spectral width of the source, Au% ; 1ls defined in terms of g Dy

E’
H
1
£

do [g(w))® . (2:5)

o .
[Th~ definition of A&, 15 somevhat arblirery: fo* a Lorentz shape
} B

g(w) = (T 21}{&;&5)2 ; E;/h}ffi Aw =T owl.

detector [calied detecSor "1 since we shall shortly oduce a second
detector "2"] by the countinz rate cperator at time T.
oo} .- o
r - n 1Kyt1 -1A£t,
/ it
e sl — ! T4, [m -~ ! A7y \ ‘\' d "( - \,, -
Cl(-hl) i hd ’lLl\—j "l> |' ~ 1'171(}’{1 RN O\zl {:/fj/v
< - T £=1
+

£
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Here the sum oﬁ, £ runs over the n photons emitted by the source
during the time interval T of a given observation. The quantity

X, is the space coordinate of the fth photon, énd Kz is its
kinetic energy operator. The integral on Y1 runs over the volumq_
of detector "1". We shall assume that 7 @ factor taking into
account the efficiency and calibfation of the counter, is a constant.
Finally, Ll is the transient response function of’ the countgr, which

we write as

® .
L (1) = J( %% B,(9) et RT |
-0
(2:7)

Ll(T) = 0, for T<O.
A characteristic resbonse tinme, A@r, for the detector is defined by.
the expression

| e o : »
=) 2 p@r ' (2:8)

[For a simple R-C . filter, where L(7T) = exp {-T/RC} /FC, At = 2 RC.]
The wave function at time t for the n-photon system is

[see Eq. (2:1) of II]

¥ (%) =JI=I 9, (x;:%); (2:9)

7oi=l

Al

25
'/



where @i is that for the 1ith photon. The symbol gif7means to take

i .
the symmetrized product of the @'s. As in I and II, we are interested
in the ensemble average of many observations, each conducted for a time

intervel T. We suppose that on performing the ensemble average, the

-

?

@i have randém phases and_are effectively orthogonal. Mean beam
properties sﬁch as the photon flux are considered to remain constant
during the inferval T. There are some delicacies associated with a
coordinate space representation of jhotons which we shall not.go‘inﬁo
hefe. They are of no quanﬁitative significance.
The mean rate of counting photons isvthen

(@) = ((W(0), & () ¥(0))) | (2:10)

where (...) denotes the ensemble average. By assumption this rate
is independent of T, and has the form [see™® Bq. (2:15), I1I)

(¢} = B (0) % ny F(¥;). | (2:11)

Here Zi is the area of the active detector volumeiand iy the
detector efficiency. Actually Eg. (2:11) is just a definition of
uhy since all of the other factofs must enter into the counting rate.
In our previous papers we assuﬁed either

(2:122)

b

3,(0) = 1,




B(0) = 0, (2:120)

corresponding to placing a dec. blocking filter in the detector outputb.
' The'lattei' choice is convenient when discussing fluctuation experiments
so it is worthwhile to define the mean counting rate in the absence of

a blocking filter, namely,

<Gl>0 = {a) /B0y . - |  (2:13)

An explicit evaluation of the counting rate, Eq. (2:10), in

terms of the wave function of the system, Eq. (2:9), yields

<Gl) = Bl(O) Zl‘wlyl.HX.(l) (2:14)

where

7 o= (), o (2:15)

wi is the detector thickness, and See Eg. (2:19.),. IIT

(1) = (o () 2 Gryoty))

: . : » (2:16)

hye y12
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with ¢ +the velocity of light. The point Y, mey be taken anyvhere
in the detector volume becavse we have assumed that X(1) is constent
over the detector and also independent of the time tl in deducing

Eq. (2:14). By comparing our two counting rate expressiohs, Egs.(2:11)

and (2:14), we complete the definition of the efficiency n, oras

we prefer to use it, 71 :
(2:17)

Although the counter thickness Wy doesn't enter into our
results in a critical way, it is worthwhile saying a little about it.

Since our counting rate operator G, defined by Eq. (2:6) does not

1
take into account the stopping of photons in the detector, we interpret
Wl as a measure of the depth of penetration of the photons into fhe
counter, assuming this to be less than the actual counter thickness.
We turn now to the de;cription of an intensity correlation
experiment, schematically illustfa£ed in Fig. 2. ﬁbre we have added
a second detector, referred to as "2". This will be described by a
counting rate operator, Eg. (2:6), etc., but distinguished by a
subscript ”2".‘ In a correlation experiﬁent, both detectors are used
simultaneously to count photons from the sourée. We.imagiﬁe the
instantaneous output from detector "1 to'be fed'iﬁto'a delay line
and then mix#d with that from "2t in é correlator which multipiies

the two outpﬁts. The correlator output in turn is represented by the

operator



ry’

Glz('r) = C'12<T2’T1) = GQ(TE)Gl(Tl) (2:i8)

Here T = T2 - Tl is the delay deliberately introduce by our delay

line. In writing Eq. (2:18) we are tacitly assuming that the counting

1 2

particular quantum mechanical effect does not lead to quantitatively

operators G, and G, commute. This not rigorously true but this

important corrections. A precise formulation of:the theory of
correlated counting rates is given in an earlier paper.!3

A special case of the experiment just described is that in which
a single detector is‘used.‘ In this case we imagine that the detectors
"1" and 2" | referredfto.in Eq. (2:18) coélesce into one. To do
such an experiment, one might split the defector output into two equal
signals, pass one through a delay line aﬁd then mix them in a
correlator. [A specific.example, will be discussed in Section IV.]
Formally we may go from the general two detector analysis to the single
detector case by equating the subscriéts "1" and 2" at an appropriate
point.

If the correlator in Fig. 2. were a simple square law device

and 1f the signals were added linearly ahead of it, the relevant

_quantity for our intensity correlation experiment would become

| 2
CGor (T Ty) =[G (7)) + 6, (T,)1° |
(2:19)

[Gl(Tl)]2 + {GE(TQ)'J2 + 2G12(T2,Tl)
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Evidently all of the terms in Eq. (2:19) may be obtained from suitable
specialization of GlE(TE’Ti)’ for example by setting "2" equal to
"1" and getting Gle .

For subsequent order of maghiﬁude estimates we shall feel free

4
to set
L R i
i
% le W2 =~ W ; 1 | _
E _ o . ' (2:20)
| Bp~B =58
: | le Yg =Y ,
N C _
altPough in practice this is entirely unnecessary.
’d The average correlator output during an interval T, as
obtained I &nd II, in the notation of IIll, is
l -
i A
i , -2 s
n :
e = e e+ 2 [ fe) raB . (2:21)
sy
Here we have writteﬁ )
0 .
- ' . 5 . .
(1)... -f dt, Ll(Tl tl)f Y7y (2:22)
- 1 :
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and similarly for "2", and [compare Eq. (2:16)]

where

x(12)

*

__ﬁﬁ_ : d5s J[ ]
i b ¢ n ,;Vle(E,),Dg(Eg) ddg(w) i (2‘25)
% -exp {iw [% (DQ(E) - D]_(E)) - (te- tl)] ,
Dg) = 7 -s
| (2:24)
Q2<§.) = Xz - E L

and the integral over source points extends over the source volume Vs .

For analytical (and presumeatly practical) convenience we shall

assume that the experimental geometry is so chosen that [here

A= Eﬂc/hg, and strictly speaking }Yi-

Cmax |y - v,l)

and

should be replaced by

2.
by [Yl- YE‘I
—s—-—-—e-—— <1 (2:25a)
AY
1
AZ—D’? 6 (zs)2 <1, (2:25b)

A

N A
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‘wﬁere ) is the angular spacing of the two detectdfs as seen from
! . 1

tHe source or ‘simply the angular size (Zd)2/Y in the case of a x

single detecto;). t is also true that except in oséillating e

exponentials the replacement
o : D, ~Y, , D.=Y. ., . , (2:25¢)

is'harmless:, .

| It follows from the conditions (2:25) that thé'fundamental
qqa%tity X(12) defined by Eq. (2:23) may be split inﬁo a purely
géometrical factor and one which depends intrinsically on the beam

spectral function g(w). [See Egs. (2:26), III for further discussion].

We. find
X(12) = xp(le) Q(12)  (2:26a) i
where
. Mo »
X (12) = Jf@m g(w) exp iw%—“ (y.-v-)-(t.-%. )11 (2:260)
P h1c n Y Y e "2l 21
and
4[ dBS wb ~ ~ |
Q(12) = s T, exp¢i - (Zl— zé)-g . (2:26¢)

L]

We may nowue§press the average correlator output, <G12(T)>’ Eq. (2:21),

in the form ' o '
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—2

| ro
(60 = (o) (o) + 5 I _fkl) Je) xa)® (2:27)

where [see Eq. (2:31), IIT]

2 2

r dv d’v, 4
I, =) —= Jf —2 a2 . (2:28)
. o .

1 Zl' ,Zév

Here Y is the projection of gl = le gl on a plane perpendicular

to Yi , etc. Is is a function of the dimensionless quantity
i t

0=Y xe/ Z, Ty (taking Y, z]?é ~ Y here) and has the limiting values

_ T = 1, 0> 1, o (2:28p)
- B ) Y2 7\'2 ‘
e . = , o<K1l. o (2:28¢)
P : ZNZd
i [ . ‘» N = .

We;shall henceforth assume that o << 1, so that the limit Eq. (2:28¢)
applies. S

It will be convenient to assume in what follows that we put a

|
"

|

,| . ’
de. blocking filter in the detector outputs which means

| B,(0) = B(0) = 0, (2:29)
sq that <Gl> = <G2) = 0 [see Egs. (2:11) and (2:13)]. Then




~1l-
(6,,) = (ae,) T, - (2:30a)‘

where [as given in Eq. (2:30 III)]

(6), (G5,

{ »Glz)p = 5 I, o (2‘:501‘3)
| ry , ,
IC:,[LZ]_]_IQ [dmfdm g(w)g(w)B(w-w)B(w-w)( )
2:31

o

x e {sloar) |2 Gy 9y) - (@ 1)

It should be possible and it is desirgble to design sufficiéntiy;

fhinvdetectors, weli’enoughvaligned, ao thaf we ﬁay set
¥p- ¥y = ¥,- ¥; in the exponential of Eg. (é:}l). The pfécise tolerances
,involQed here clearly depend on both the electronic and spectral band-
widths, but they do not appear too severe. We shalT asaume in wvhat
follows that it is legltlmate to write in place of Eq. (2:31)

r 7
jwj@’gmgw)B@-MB(WW)ﬂp1@@@{—( H)@ T)?
J

(2:30c)

We note in passing that the average value of the square law correlator

output, GSﬁ is obtained from Eq (2 30) 1n_uhe,form )
£ ! a . ; s . :

() =2 (e 21 +(e) 21 +2(c) (c) I (e32) ¢
SL 2 1710 Tel 270 T2 1'g '2°g "¢ ) ¥
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where

r : >
Ty - o e g) glr) (Bl |
o (2:33)

B R~
1, - [ fwr e@) s In,ew)l .

The signal-to-noise ratio is of vital importance in analyzing
a correlation experiment of the sort under consideration. To discuss

this we first define, as in III, the quantity

T
¢ (1) =Jf aTy G (T 7, T,). (2:34)
o
Thus,
(G (0 = T (e, (7)) - (2:35)
The fluctuations in Gav -have been computed in IIIlE.Afrom
2 2 -
Gy ) = ((0(0), 6, 2(x) w(0))) (2:36)

The result obtained there for the large source case; 0 <1,

Eq. (2:28¢), is

(Op) = (e, )° = Tle) (o) M (2:37)

@\
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where

25 Qv/2c | ’

(2:38)

~ and we have set Bl(O) = BQ(O) = O..according to Eq. (2:29). Under

‘the conditions that our previous replacement of Yo ¥y by Yg- Yl

[i.e. going from Eq. (2:31) by Eq. (2:30c)] is justified we can

take for M,

M (2:39)
T or
where ATr is the detector response time. Then we find for the
signal to noise ratio
s (G e 1
! {Eeav?) - <Gav>2 -
_ (2:40)
ICIS %
= 73 AT, T <G1>o <c‘2>o )

/
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IIT. THE BROAD BAND LIMIT

Let us suppose that g(w) describes a spectralﬁline of width

JAY wL at frequency wo' superimposed on a backgrounds of low intensity,
'\ W

as is illustrated in Fig. 3. Since we are interested in measuring the

L B
the frequency band passéd by the filter. In this seection we are

l%ne shape we, of course, assume that A w.  is less than A w, ,

¢ohcerned with ‘the limiting case

1
b

AT lo, <1, (3:1)

L L : K

5 |
coffesponding to the band width ahead of the correlato?:being broader
tha%l the spectral line width. This is the best situation for t’raciﬁg
ouﬁithe line shape, but one may in practicé have to be:content with

ATrAdt’ ~ 1.

The band pass characteristic Bl =~ B2 ~ B 1is illustrated
schematically in Fig. 4. We lmve again taken B(0) = 0. We suppose

B < 1 in the interval A < Q< QAjr)_l , where we assume

AQ, << Ao o -(3:2)

Iet us first consider the case that the filter is so chosen that

Awy~Aw . Then we obtain from Eg. (2:30¢)

. 3 . 2 A8
I, = Igp(P) = lfdm glw) ™ Pl *6/ m—f) o (3:32)
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vhere

0

- - - i
Because of the condition (3:2) we shall drop the terms of order
A szr / A @ . We may also write IC as

. 2
1(w~wo)P

Topp(P) = ']jd‘”‘g(‘”) e - (3w

‘where wo , the central line frequency, is defined by .

- f w o gl) . - | | (5:5):

In the measurement of the autocorrélation function with a
single detector [where P reduces to - (Tg- Tl)] or the use of
two detectors, the measured guantity, in fact, is I b#(P). Unfortunately,
an observation of I bb(P) is not suff1c1ent to determine the spectral
function g(w) uniquely, since the phase of the 1ntegral over glw)
is unsfecifiéd. This "phase problem” arises in & number of ‘contexts,
- mést nctably in X-ray structufe analysis. It has been discussed in
the present'context-by Wolf.;llL It was argued in Ih‘that the observa-
tion of chb% can be usedito deduce a finite set oéi glw) . It is
possible that%the correct one:of these can be found grom physical

con51deratlons, such as the non-negatlve character o; g{w). This

seéms to be usually the case in X-ray structure analy51s.

)
i
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On the other hand, there are a number of features of the line that
are independent of the phase gquestion, and are therefore best suited

to an initial exploration of intensity interferometry. For example,

“the second moment of the line is determinable from the dependence of

the correlation function on P for small P, as illustrated by

dchb = 0
- 2
ap P=0
(3:6)

2 ' z N
a1 ' ‘
—-épﬁ = -2 fdw(cb - wo)2 glw) ,

a , P=0

where we recall the previous definition of. wo s Eq. (3:5).

A probably useful example can be discussed, in which a collision
broadened line is further doppler broadened in the éenter; Such a line
may be observed in the emissions:from‘a hot plasma; we can simulate

its shape (for a narrow line) by

( ) I'x J[ e-o € . (
glw = - de 5!6&)
L N -
where
Q? - M02
2w 2 kT
o)

is the goppléf broadening parameter. For this shape, a@ccording to

Eq. (3:3b) the correlation function is
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P) = e ’ - (3:6p)

so that both the Lorentzian parameter P and the-doppler parameter
o are directly determined by a measurement of the correlation function.
Tt is sometimes convenient to write ‘chb(P) as a Fourier

‘integral in which case we have

. foo P
Tepp(B) = j-oo d‘”‘gj(‘”) e |

with

. ® .
F - [ @ e ee)

It is easy to see that if glw) is concentrated in a line of width
A wL N GQ») has practically zero ampl;tude outside the interval
- 2A wL <w<+2A4A o - It is this feature that makes intensity
correlation'exberiments less sensitive to the geometrical alignment
problems than are classical interferometric technigues.

The all important signal-to-noise ratio may be obtained from
our general expression, Eq. (2:40). We usel[from Egs..(211); (2:3a), and
(2:28¢)] . '

(6) =~ (g =~ n3 Ry /la?

!

( N/

i
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Y

2 L -
~em /sec., X = 5.4 x 10

21~

and also set IC ~ 1 . We find

. 42_.
§_ (2% § = D. % - .
N <N>bb =z (Tan) [T (5:72)

This expression may appear surprising, since it does not depend
on the source-detector distance, Y, or on the detector area ZD . The

reason is that we have assumed the limit o << 1 in Eg. (2:28c). For

large enough Y, I_ 1 and S/N becomes

L By 2y

Lz Y2

=. % (Tar) (3:70)

5
N

It is clear that to maximize the ratio S/N one should choose

A T. as large as- possible consistent with the réestriction

A T A wp << 1. Had we considered the case A @ >> 1 we should have

found that 8/N was reduced by a factor (A 7_ A wL)'l , so that the

1
For a source with black body (BB) intensity on the spectral

maximum signal-to-noise ratio is obtained for . A Tr Aw, =1 .

line of frequency @ and temperature © we find from (3:72)

-

; A o 1 } 1

S L 5 -1

A = ——= no(TA 2 - -8

. = a(® ) {exp [6 WA J 1} (3:8)
As another example, let us assume the mercury arc source of Forrestef%
et. al.l5 . AWe take A T, = lO‘-lo sec., RB/ﬂnZ =2 x lO15 photons/

5

cm and obtain

A

ey,




=P =

=ZHln

~50 aVT , | (3:9)

where T -is measured in seconds.

Up to this point we have assumed that A wy = Axwi . Another

case of interest is where the electronics is still fast in so far as

|

the line is concerned [i.e.. A T A Wy << 1] but that Awé is so

broad that

AT Bwy>>1 . = (3:10)

We now write
g(o)- - g (@) + g_(v), | - (3:11)

where g1, represgnts the line»spectrum and & the continuous
background contribution passed by thé filter. The spectral width
of gc is" A QB . We suppose the line to be much‘more intense than
the background.

Our basic quantity I, Eq. (2:59c ),_ involving both the

electronics and source characteristics, becomes ;

where




AN

..25_>

(DPI2

I =] J’dw gL(w) e (3:13)

cL
and .

P . . ‘
g ; o
Lo = [0 oo g (0) g,0) 3 (0'0) Byl00) HEPT 4 e i)

Meking use of our assumptions about A ™. A w and ‘A‘Tr A @y

i

Egqs. (3:1) and (3:10), we have, approximately,
i 1 _
N . . L
L 100P , , . oy P
Icc.i = [/aw gL(w) e Ja/aw gc(w ) Bl(w GB)BE(aB w') e + ¢.c. |
? _ ' ' : L (3:15)
1| ‘ f .

U F _ {fdw gi}(w) einL c;c.,

. bt ba J

where f is the [small] ratio of continuun to line intensity. Thus

to the extent that £ /’A T, A @y <1,

L]
1
=

(3:16)

and the background gives a negligible contribution to the observation.
The condition on the electronic resolving time imposed by the

requirement CATr A a% << 1 1s a severe one.. If no gain is required

between the aetectors and the_correlator, vave guide or coaxial line

couplings might be used to achieve A-Tr as small as 'lO-ll sec. If



o) I

gain is required, there are available photocdetectors followed by

16
traveling wave amplifiers having bandwidths of about lOlo cps .
We conclude that with "conventional electronic techniques” the method

described in this section is restricted to the analysis of line widths

not much broader than

— ~ 107" cps.

T
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IV. THE NARROW BAND LIMIT

Let us suppose that a single photoelectric detector is followed

by a tuned circuit and then by a square law detector, as illustrated

"in Fig. 5. The two detector situations may be similarly analyzed. The

function Bl(SZ) = BQ(SZ) = B(Q) will peak at the resorance: frequency
SZO and will be taken to have a band width & 2 . We suppose that
5 f is very much less than either A @ or A % . In this case

we set Yl =Y

5 in the expression for I Eq. (2:30c),

and Tl_= T2
which becomes ?

H
1

aw jsz g(w) glo") Bla-w) Bz(w—w’)

A

fda) deﬂ glw + g) glw - g) lB(Q)le

(h:1)

oerd

Q Q
4 wa glo + =) glo - 7})} ;fdfl 3(2)|°

d

ﬁ 1
= YY) @)
! .
where we have introduced the previously defined function gb(ﬁo ), and
/
our old definition of the resolving time (A Tr)’l, Eq. (2:8). Ve
expect that (& Tr)‘lNa Q.
The function gj(szo) can thus be measured by varying the
frequency, 2, of the tuned circuit.”! As we have noted, éj(ﬂo) is
- ; )

. {
Just the Fourier transform of chb(P) so that measurement of A(I is
. : : ]
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in principle equivalent to'measuring' I [see‘ equations following

(3:6)].

The signal to noise ratio is again obtained from Eq. (2:40)

cbb

but now with I given by (4:1). For macroscopic sources and

detectors [ i.e. I = 0 << 1] we have

<‘ :Lm N T (k:2)

where (S/N)bb is the broad~band ratio given by Eg. (3}:78‘)‘

In conducting the expériment’ d_escribed in this Jsection, one
might use a resonant cavity to provide the tuned circuit illustrated
in Fig. 5. Bo'th the photo -detector and the square law detector would
then be coupled to the cavity. By such means it séemé feasible to
study line widths up to 100 cps. The choice of & 9 will depend
on the precision with which it is desired to.measure Q;J(SZO)’ and
on the acceptable counting times. Since ng (SZ ) has a width of the
order A wy and g(w) has magnitude ~(A wB) ggj(sz Y~ (O @y )
[recall thaté jdw glo + 52 ) g(a))] and also A T, ~1/8 2, so we

may write (4:2) roughly as

o) (22) (1)
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V. USE OF SUPFLEMENTARY OPTICAL INSTRUMENTS

Such opticél devices as half-silvered mirrors, lenses, and

diffraction gratings may be inserted between source and detectors, as

may be convenient, in intensity correlation experiments. To take

account of these we need only replace X(12), as defined by Egs. (2:26),

by

R 3 : ]
X(12) = B j d Sfdwlg(w):;,-éxp'ia)P'- (v2- V,) - (t- ¢t .)s s
Yoten Y. Y v L = 2 1 J
. 172 s s ?

(5:1)
where [here u(y) is the refractive index at point 7y ]
rl’l
v, = J n(x)ax (5:2)
s

. 8
etc., is the optical path length integral (eikonal)l taken along
the ray path leading from point s in the source to point ¥y in

detector "1". The appropriate distances. Y, and Y, in Eq. (5:1)

may be deduced from the photon intensity at the detectors, or from an
analysis of the geometry used [in principle these are given by the

eikonal treatment]. -

Iet us write Vio and Véo for the respective values of

Vi4 and Vé when the point s 1is chosen to be s = O,'the fixed

. & . T 4
reference point in the source. Then for a source of small aperture

we have
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1' fad o0 KR ;7 O
N | AT RS R R
. g ' (5:3)
| o . ~ 0 (o] .
Vé £ s XE + Vé »

A ‘
where and. .
ere ) Y

f??m s = 0 to the points Zl and. XE

are the respective directions of those ray paths
This permits us to write,

as in Egs. (2:26),

X(2) = x(2)a), (5:1a)
Ry 1,0 o |
%,(12) = oy dw g(w) exp (iw B ‘(v2 - v,7) - (b, H)H (5:4)
Q(12) = f 9%:? eXP[iU'::Q(%O-igO) _ E} . | (5:kc)
s .8 '

On interpreting Z_ and Z& as "effective areas" defined by

the ray paths and on replacing Eq. (3:4) by
_ 1 o ) S
P =7 (Vé -V ) - (TQ- Tl) s (5:5)

we see that the discussion given in Sections II, III, and IV 1is
unchanged, except for detail.

We. 11lustrate this with the exaﬁﬁle shovn in Fig. 6. An ideal
lens is placéd between the source and the two thin detectors,-with The

source neat the focal point of the lens. A point on the source is a

A d
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~distance d from the center of the lens. A point on detector "1"

is at Ll'+ ul , wWhere Ll is the vector from the center of the lens

to a fixed point on detector "1". An image of the source point 4

~

is at I, a distance S from the lens center. The jhase of a wave

arriving at u frod d is 2 V. , Where
<1 ~ c 1
v, = (0 - 1)H sec‘d-+ (@ + 8) —'qi . (5:6)

Here u isvthe refractive indexjand H is the thiékngss 6fvthe lens
at ifs centef,_ o is the angié between d and thévdirection of

(-%l), and g is the dispaﬁce from the image to ‘pl . Assuming ﬁhat
S is very large and that the source and detectéﬁs é&e small, we obtain

H ’ k :
agein Egs. (2530) for the correlated counting rate,:but with Y

replaced by the focal length of the lens in Egs. (2:28).
} . . . ’
- ~ .
. A different arrangement is to focus the source on a single

1

detector. 1In this case we obtain, instead of Eq. (5:1),

. | 3 10(t, - t,)
' x(12) =——-1i-§-—-—- s jda) glw) e 1 2

. | , ‘ lHTCI’l Y1Y2 VS

y - (5:7)
I T X
i - .
\ X_{‘Jl( 55 sin al) .} g Jl( E% sin 02) i
i [ D { Wb s | ’
: (L ¢ St %R JoLge StRoo
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11.

12.

13.
1k,

15.
16.

17.

18.

The actual scale factor by which B should be multiplied is

32 i

We used the term "incoherent” in II and IIT to describe what is often

called "quasi-coherent” radiation in optics. In this paper we revert

to the more conventional notation. : A
We use the notetion Eg. (2:15), (III) to indicate Eg. (2.15) of

reference 111, etc. !

See, Eq. (2:37, II).

The quentity (G§V> was given in I for the limit of "narrow band

r

electronics.’

irrelevant.
E. Wolf, Proc. Phys. Soc. 80, 1269 (1962). ’
Forrester; Gudmundsen, and Johnson, Fhys. Rev. 99, 1691 (1955).
See, for example, D. E. Caddes and B. J. McMurtry, Electronics,
April 6, 1964, for a review of ﬁide bandwidth light demodulators.
The observation of H(QO) has been suggested by L. Mandel in

Electromagnetic Theory and Antennas, ed. by E. C. Jordan

. (MacMillan Co., New York, 1963), p. 811, Part 2. A related

suggestion has been made by Forrester, reference 8.
See, for example, reference 5, p. 109, or Steven Weinberg, Pnys.
Rev. 126, 1899 (1962), for a very general discussion of the

eikonal treatment.
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Fig. 1.
Fig. 2.
Fig. 3.
Fig. L.
Fig. 5.

Fig. 6.
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FIGURE CAPTIONS

Schematic illustration of photon counting.
An intensity correlation experiment.‘
Spectral function for a single line.
Electronic response function.

Use of a tuned circuit in counting photons.

I1lustration of the use of an optical system.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.






