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i 
P~O~ERTIES OF LORENTZ COVARIANT ANALYTIC 1,FUNCTIONS * 

: ~. 

Henry P. Stapp 

La:wrence Radiation Laboratory.· 
University of California 

Berkeley, California 1
· i 

September 8, 1965 

ABSTRACT 

A theorem is proved that asserts, roughly, that a function 

that is real Lorentz covariant a~rhere is complex Lorentz covariant 
I 

I 

e..J-erywhere in its domain o;f regularity. It is also shown that the 

a~alytic continuation of a scattering function from a regularity 

domain in the physical region of a given process along all paths 

generated by complex Lorentz transformations leads to a function 

that is single-valuea·--rn.~e neighborhood of all these paths. 

Applications are discussed. The results derived constitute neces-

sary preliminaries to a discussion of the analytic structure of 

scattering functions to be given in subsequent papers. 
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PROPERTIES OF LOEENTZ COVARLA.I'I'"T .Al1"ALYTIC FUNCTIONS 

The 1 requirement that transition probabili~ies be invariant 

under physical Lorentz transformations 
\ 

l i ~k • implies thc;t the scaL.venng 

· functions Ivl( K) 

. ; 

' . ' 

'I 

liJ(K) ! 

' 2 3 
satisfy the Lorentz covariance co~dition : 

A 
s 

-1 
I~( A K) 

·:for all real K corresponding to physical points and for A any 

etement of the real proper orthochronous homogeneous Lorentz group. 

Here K is the set of variables 
! 

I 

K t.} ' }_ 

where kiJ m. and t. are the momentum-energy, spin quantQ~ number; 
l }_ 

and particle t:ype of particle i , and As is an operator that applies 

to each spin index 

The specific form of 

m. 
l 

a matrix transformation corresponding to 

A is given in Appendix A. s 

A • 

In this paper some consequences of assmning that M(K) is also 

regular analytic at some physical point will be examined. The main result 

to be established is that if an M function is regular at some physical 

point then the complete analytic extension of the function is defined 

over a multisheeted manifold each sheet of -vrhich maps onto itself 

under any proper complex Lorentz transformation. Furthermore; the 

function defined (single valuedly) and regular over any sheet is 

' 
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invariant under proper complex Lorentz transformations. Finally) if 

M is regular at each point of some real domain containing only 

physical points then the sheets described above can be chosen so 
i 

that all the points of this domain lie in a single sheet. These r.esults 

have some important consequences; i·lhich idll be mentioned at the end 

of the paper. 

The initial considerations ,,·ill refer to a function F(K) 

whose domain of definition is not restricted by the mass shell and 

conservation-lav constraints. Also the type variables T = { t. J 
~ 

i.rill be considered fixed; Thus the argument of F(K) will be a set 

of the type introduced above but vlith the mass constraints and type 

variables removed. 

I 
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Let the following definitions be rrBde: 

Definition: L viill denote the real proper ortoochrcnous homogeneous 

Lorentz group. It is continuousJ.y connected to the identity. 

_p 
Definition: ·d-___ •-rill denote the complex proper homogeneous Lorentz 

group. It is continuously connected.to the identity. 

Definition: A 1-iill represent a Lorentz transformation and 

(A K)::: rA k. ; m. ) 
- l l ) • 

(The_ t: are temporarily 
l 

suppressed or eliminate~) 

Definition: The noint K represents the set of-momentum-energy vectors 

but a fw~ction at a point means the set of functions having 
V'f•\"".e~ v'\ -\\.. <­

K; all
11

spin momentum-enerbf variables specified by the point 
.I 

. indices ·:.are·· allOived. 

Definition: Points IS_ and K
2 

related by RJ_· = A K
2 

will be said 

to b.e connected by A • , 

Definition: The set of points connected to K · by some 
t? 

A E J., (or L ) 
5 

idll be denoted by -d-...K (or L K ) • 

Definition.: 
\ 

The set of points connected to some element of the set 

£D (or 
_;; 

A E d- (or -v;ill be denoted by L ) D by some ~ D 

Definition: A point K is real if and only if the four vectors 

. : are real, 

I; I 

/ 

.. 
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.· 

Definition: A real set is a set of real points. 

Definition: A function F(K) is a (sinGle-valued) mapping to the 

complex numbers. 

. I 

.Definition: The spin indices of (K) i-l'ill be presumed to h.:.v e .\sorr.e 

spinor index type ~;l,;v'4~, a::1d A F(K) '\-l'ill represent the result s 

of the action upon F(i<:) of the corresponding spinor transfornations 

associated with A , as discussed in Appendix A. 

Lemma 1. If F(K) is defined (single valuedly) ove:r a real set D 
a. ii 

and satisfies for all A € ~ and 
A 

K such that K and A K 

are elements 

F(K) = 

of D. 

-1 
A F(A 

s 

c.o '•t 

the .s:s.variance condition 

v) <\. ) 

then (6.2) vrith 
-1 

A KED and A E c':G defines a (single-valued) 
. . . -

.. . ...p .. ·- . --- . 

function over w D , provided. any t•·ro points of D con.."lected by 

1 1 .1- p .._/? - , - b 1 , a rea . e emen v OJ. ,_>0 are a..1.so COlli"lCC'tea y an e emen-c of .u • 

Proof: Tne prescription vill uniquely define F(K) at K' 

if for any ti\'0 points K, and K2 of D for vhich 
..L 

I 

A2 
...c 

K = Al Kl = K ·with Al and A2 € o/..,_, 
' one has 

2 

"ls ~(lvl) • F(K ) H -'- \. = H2S ,. \.2 

B .... b , . , K2 = .2-1 Al Kl -_ • "Kl U v . Y "Cne grOUp pr0per-cy H Jl il • 

F(K ) 
2 = 

-1 
/1.2 A_ 

S J.S 
F(K ) 

1 

of -c&D 

(?)()) 

Thus (6.2) 
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provided A = (A
2 
-l A

1
) E L Hence it is sufficient to shoH that 

A is an element of L • If the rank. -r (IS_) of the Gram detecminant 

G (·G, .= k. • k. ) ·,:q l . J 
at the point 

. ·4 
~ is four, or equivalently' 

.L 
if there· 

are four linearly independent vectors among the vectors of K
1 1 then 

the rank is also four at K2 , since inner products are unchanged, 

e.nd the s<:~me four vectors are also linearly independent at 1<'"2 • In 

this case the linear transformation A is unique. Since K1 and 
_f) K2 are real, A is a real element of v~ • By hypothesis it is then, 

I . 

by ·virtue of its uniqueness, an element of L • This completes the 

proof for the case r(~) = 4 • For r(~) = 3 the transformation 
4' 

A is still unique and the same argument holds. 

If r (~) < 3 then the transformation A is not ahiays 

lli~iquely defined by the equation K2. =A~- and it rr~y not be real, 

as requixed for the above argwT<ent. Ynere are several cases. If 

the rank r(~) is equal to n(Y'l) ' 
the number of linearly independent 

.L 

vectors of ~ } then the space·separates into a manifold l<l(IS_) of 

dimension n(K
1

) = r(~) s'!)Cinned by the set IS_ and the orthogonal 

manifold _N.L (~) • One cah construct a set of real orthogonal basis 

·vectors e P (IS,_)> each of.:iength plus or minus one, 

such that' the first· n span m(IS_) and the last 
I 

1
To construct such a basis one first takes 
\ 

( 4- - n) 

. n(Is_) 

s::;an 

linearly 

inclependent real vectors fro::n the set K
1 

. This set is augmented 

by (4 - n'(y'j_)) real vectors to give a completeset of rea.l linearly_. 

' ' . ~~ 
independent vectors. Because tte rank r(Y'j_) eqyals n(Kl) the linear 

equations arising in the construction of . ep (Is_)' a1·e sol\fole ·. The 
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'4' 
details have been given by Hall and 1-lightman. · · Since the 9riginal 

vectors are, for us, real the coefficients in the linear equations are 
. s 

real. and hence the solutions can be taken to be real. A similar real· 

basis, e P (~) , .can be constructed for JS 
Our interest is in the various Lorentz transformations A' 

satisfying IS = A' X]_ ' 
the X]_ and K2 being the fixed :points 

,.;; 
D connected by A € c:J.._. 

~ K2 = A K. . The transformations 
l. 

~~··.'. can be represented by the "' . A" defined by mavrl.ces Po 

where a ·5Uiillil~·cion convention is u::;ed. -Thc-.labels : P, o 1 and -r 

· specify the basis vectors, not components) and 

ep (K.) 
·J 

= 7 6 for j = 1 J 2 oe 
For either value of j three of the vectors e 0 (K.) have 

' J 
• • ; 6- I . ' 

length·minus one and the other t'..as leng-ch :plus one. ·Tha-c all 

of 

four have length minus one is impossible because any vector v can be 

expg.rided as 

1-rith 

·v -

v (K.) 
0 J 

v (K.) 
(J J 

= 

e 0 (K.) 
J 

= e fl(K.) v 
0 J fl ? 

where fl labels the component of the vector. Then 

(jf,. 8) 

/ 
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v (K.) GP0 (K.) v (K.) 
p J J Cf J 

1 If the negative sign were always to occur in (T:f~6) then all vectors 

!represented by real v (K.) would have negative length. 
p J 

But the 

(']§( 9) 

I 

~vector 
I 

v with components v = o has reaL.: v. 'and· uosi tive lenrrth 
1-l. !J.O . p . ~ ...., 

i,.- ''V 
{G~""" 
c.. (1, - 1, - 1, - 1) l , i·Thich is a contradiction. On the other .. ~ 

hand if there were tvo real orthogonal vectors 1 
v· and. 2 

v of length 

plus one then 

. 2 

l:l: 
2 22 2 2 1 (v ) - = 1 J (v ) lv I = 1) 0 0 "' 

and. 

1 2 1 2 
vo vo = v . v 

"' "' 
~11) 

From these it would follmr that 

cv 2 
2 

lv
1

1 

2 --~ 2 
. v ) = (1 + ) (1 + ~~ I ) , 

"' "" "' 
(E<:l2) 

I 

and hence that 

(-il v2) I l· 2 I 2, 
2 

> vi VI ( . --) ;; ....... 1.) 

Hhich is not possible for real vectors. Thus there is, for each j , 

precisely one vector of length plus one. Because of this 

the vectors e 0 (K.) can be generated from the original set of basis 
J 

vectors by real Lorentz transformations. The transformation 1\ con-: 

necting the two sets 
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will then also be a real Lorentz transformation. 

The basis set ea(K2) is not completely specifie~ by this 

cor.struction. It is possible to take the first p. vectors (~rhich 

may or may not include the one of positive length) to be given by 

For 1 since K2 = A Y'l : these vectors span the ·s}Bce M(IS) • They 

"-b 1 · "-h ea(K
1

) d A ·t" are or L> .ogona ). since L> e are an E o---. A..'1d they are 

(;'1.15) 

realJ since A takes all the real vectors of ~ into the real 

vectors of K2 : and hence by linearity all real vectors of M(Y'l) 

into real vectors of M(K2 ) • Because n(Y'l) < 4 1 one can by proper 

choice of the sense of the vectors ea(K
1

) vith a> n(~) make 

Ab 
j) 

a real element of d~ · • 

vlith the basis vectors fixeel in this WJ.y it is clear that the 

basis vector of positive length occurs either in the first n vectors 

of both sets ea(K
2

) and ,e,u(~) or in the last (4- n) vectors 

of both sets. Also: vrith this choice the first • n-by-n subrr:atrix 

of (A ,i.:)· a. :P 2· s. · h " 't e n-oy..;n unit matrix. Since A.' takes all vectors 

of M(~) \
1 
into vectors of M(K

2
) the first n 1columns of An :have 

zeros except in the diagonal positions. The same property holds also 
" "' ·.'i \ T -J.. 

for the first n rows as a conseq:uence of the relations A·. 

and 
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= 

which is the characteristic property of Lorentz transformations. That 

A" is a Lorentz transformation follm·rs from ('}:(5) ·and (~14) j one 

obtains 
...... · 

-1 
I nO' 

A. A e P(K1) = e cr (K1)A p 
0 

t: -1 
which s11o;.;s that A A 

0 
A' Since A. is real; the transformation 

0 

A" -;.;ill be real if A' is. 

The conclusion from the above remarks is tha.t for the case 

n(K
1

) = r(K
1

) all Lorentz transformations 1\
1 €·~ satisfying 

i·ri th and for some 

A E ;C , can be represented in the form 

= {'fl8) 

vii th a fixed real 

\ 

-./'--'"' 
E: c ... !_/ clifi,er~~_;.:g from the identity 

r 

only in the (4 n)-by-(4- n) subspace corresponding to 

i " ..c? 
:And conversely, for all A 
I 
I 

· ;p , the transforr.~tion A' 

Ed~- satisfying this property) -;.;hich ve call 

1\ A" is an element of c.:0 satisfying 
b 

:.:I This'· result is used in the. folloving -;.;ay: L'1e tra::1sformations 

. I lf -f'J. 
A E c/___, satisfying 

I 
. " cr . 

·elements . ( 1\ ) P ' s 
! 
p. neighborhood N 
i 

P can be para;·neterized in such a -vray that the matrix 

are analytic functions of these parameters regular in 

of the identity, and such that real parameters 

~ive there real A" E L . Such a parameterization pas been Given 
. '7 

by - .... ~"" the case -vrith no constraint p The restriction to a JOS '-: J.Or . 

It' 
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submatrix is accomplished by setting some of his parameters to zero. 

Noi-r suppose first that ~ E L . Then the hypothesis of the le!Th"!la gives 

= A~ F(IS_) = ) 
'!vi (.o-.19) 

for all All E L satisfying p . For then IS = AI IS_ ) Hith A' E L ) 

the IS_ and IS being the fixed • .L polnvS of D connected by IS = A K '"' ~,. 1·7l en 

A € L. But the validity of this equation for real values of the 

parameters of A'.: 
) together Hith regularity in .N } implies its validity 

(~19) 
_f) 

! .4.. • .J:t • throughout N Thus is true for A:r I 
p J E o--- savlS.J.ylng 

in a neighborhood of the identity. The restriction P . does not destroy 

the group property, since products of matrices having this property i-iill 

also have it, and inverses of matrices having this property must also 
. I r. 

have it. Using the fact that the subgroups of L specified by the 

constraints P are connected., or more specifically_, that any element 
.J) 
I of c:J-~ satisfying P can be expressed as a product of a finite nu.-noer 

of elements of J~ satisfying p from any fixed. neighborhood of the 

origin,. one obtains the reslllt that (6-.19) is true for all 

. satisfying A 1 IS_ = K
2 

• This ensures the -v-alidity of ('J;(.4); from i.rhich 

the lemma follOI·rs, for the case n(JS_) = r(K
1

) , provided A
0 

is an 

element of L • 

in the above arg1.11nent it ;.ras supposed that Ab was an element 

of L ; ~hen for All E L it followed that A r E L , and :(J5..2) vas 

immediately applicable. Nmr A is by construction a real element of 
0 

-f 
o-.....- satisfying ~ E]_ = IS . Thus .• by virtue of the hy:pothesis of the 

lemma_, there exists some A' E L such that A 1 KJ:· =IS . For this 
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11...-1 i A' the transformation A'' = A' must 
' ! 

I , 0 

. I 
•.I.. is ~either element of L it . Thus J.v an or 

is an eleinent of 

be a real element 

can be 

L and 

~;ritten in 

A 
0 

is the 

of 
y 
J~. 

the form 

p T C= ;,CPT) 

: . ~ I .L. . .CO .t.. _'• 

~.~rans~ormavJ.On; which is a real element of 
_p 
d- . Parameterizing 

1

1\l € L instead of A" one can develop the same argument as before and 
.-; 

·.:prove; from the validity of C6.14) for the A' € L just introduced; 
I 

'-

1its all A' 
../"' 

satisfying A' 1S_ ~ This v-alidity for E d~ again 
i 

!vctlidates (0. 4). and com_pletes the proof of the lerru'rt.a·, for this case 
I 'I .I -

I 

n(I2-) :;: r(0) . 

The rerraining possibility is n(Kl) > r(lS_) < 3 . For these 

cases the vectors of I~ are linear combinations of r(IS_) orthogonal 

vectors of nonzero. length and a single vector of zero length orthogonal 

to these. Tne r(Kl) vectors of nonzero length are obtained by first 

picking r (IS_) of the vectors of I~ such that the Gram determinant 

of these r(KJ_) vectors is non-v-anishing. Tnis is ah;ays possible. 4 

If any one of these vectors has nonzero length then normalize it to 

:plus or minus one, by multiplying by a real scalar; and let .it 

be the fiTst vector of a real basis. If on the other ~~nd. all these 

vectors have zero length then some real multiple of a combination of ~~e 

form (1\ + kj) must l'..ave length plus or minus one_. :since the (Gram) 

determinant of the matrix (Gij) = (~i · };:j) is nonvanishing. S!.ib-. 

tracting a real mu~tiple of this normalized vector from the other 

vectors, in the·usual ivay, one gets a set ·of (r(rs_) - 1) vectors 

orthogonal to Since the Gram determinant is still nonvanishing 
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the process can be repeated to give a real or.thonormalized (i.e. to 
r(K,) 

plus or minus one) set of r(:~) vectors ( e 
1 

(KJ_) .' : e ..L (K...L) 

·This same construction ¥~s used (though not described) in the' case 

r(KJ_) ~ n(KJ_) 

Sfnce in the present case n(K]_) > r (Y~) } there must be a 

vector of K
1 

that is linearly independent of these first r (K]_) 

vectors •. By subtracting from it multiples of the e
0 (KJ_) (a= l: 

a linearly independent vector w orthogonal to them can be obtained. 
I 

Since the value of the Gram determinant is w~altered oy adding linear 

combinations of certain of the vectors to others the·Gram determinant 

of the first r(K..) vectors together vith v must vanish. :But then 
.L 

if must have zero length. The next step is to augment the set :K., • by 
·.L 

adding ( i+ - r (KJ.) ) real vector2. 'Cl<.at together vrith the first. r (Y~) 

basis vectors cive IOlu linearly independent vectors. Since n = 4 
h 

implies· r = 4 one can complete. the construction of a complete set 

of real orthonormalized basis vectors 
v ; 

e (K1 ) ) using the procedure 

just described. 

The vector v isorthogonal to the first r(KJ_) of the 

e 0 (KJ_) and hence it is a linear combination of the remaining ones. 

Since it is real and of zero length it must; for the case r(Y~) = 2 } 

be of the form '·· 

,r: 

± e\Y')_)) = } 

>-rhere ·a ~ 0 is real nnd .··'e
0

(I<J_) is the basis vector having positive 

,· . .. 

) . 

/ 
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length. T"r...at the coefficients of the e0 (K,) are real for real · "' 
.L 

follm-rs from the existence of the real inverse of the real Lqrentz 

transformation generating the u(-r ) e 1-..
1 

from the original basis vectors. 

in (~20) depends on the sense_of the 

vector e 3(K,) 
.L 

Hov;ever, only one sig,.'1 is possible; if different 

.L. f K ./.. • • h • d • n.r.> .L. • • ('~ 20) vecvors o 
1 

i·rere vO gJ.ve ·w s .avJ.ng llierenv sJ.gns J.n p... , 

then one 'i·iould have n(K,) == r(K
1

) + 2 == 4 
j_ 

n(K
1

) == )+ im:ylies r(K
1

) == 4 

'\·ihish is impossible since 

For the case r(K
1

) == 1 the vector vi nust be of the form 

vi th a 

of K 
1 

il- - a! o 
0(K ) ..:. "'-in e e2(K

1
) . - \'- . 1 . --

and e real and a \ 0 Ivloreo...,.rer: 'I( . 
TilUS""C; 1-1hen the part along el(Kl) is 

for this case all vectors 

removed, give multiples 

of this same vector w . To see this, note that the Gr~u determinant 

of t;;o vectors 'i·l a:::1d of t'h.e form (~21) • is 

) (~22) 

·which is different from zero unless "'' is a multiple of '\·i • Thus 

if t'i·iO vectors· '" and i·r' of the form (} .... 21). can be obtained as 

linear ~ombinations of the vectors of . (K,) .• then either vi 1 

. -'-
is a 

multiple of i·r or r(K
1

) ~ 2 . T"ne second possibility contradicts the 

assumption r(K
1

) == 1 . The form (P,. 21) can be brought to the form 

(¥.20) by a redefinition of the basis vectors that leaves them real 

and orthonormalized. 

I . 
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I 

In the case r(IS_) = 0 all the vectors of IS_ are of zero 

length and they are mutually orthogonal. Expanding them in terms of 
I 

:an arbitrary real orthonormalized basis e
0
(K) , e,ach one has the 

.. I -"l 
' ' 

iform 
i 

+CX J 

,:1here a and (cxJ ~' y) are real and 

+ + = 1 (R24) 
< 

If w \ 0 J then any vector H: of the. same form for which 

is) as before, a multiple :of v . Thus for all the cases n(I~) > r (IS_) 

one can construct a real orthonorrr~lized basis e 0 (EJ_) such tr~t the 

vectors of IS_ are real linear combinations of a zero-length vector 

vi = eo(IS_) '+ e3 (Y'l) 

and the vectors 

~cr(IS_) (cr = 1: J T(IS) < 3) . / Cp.27) 

A similar basis can be constructed for K
2 

The set is 
_f· 

related to the set K
1 

by the relation IS_ ; A E d:~ . Since 

A is not necessarily real the vectors need not be real~ 

Hoi·iever for cr = 1, • • • , r (K.. ) these vectors must be real_; 'the basis 
1. 
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.L e u(-.K_ ) vec(,ors ·1. can be expressed as real linear combinations of vectors 

of IS_ and hence the A acr (KJ_) 1-rill be the same linear com"jina tion of . t 

the corresponding vectors A K]_ o:JY A JS : and hence also real. They 

have a Gram determinant of rank r (JS) = r (IS_) and are orthogonal 

and of length minus one and hence they can be chosen to be the corres-

r <rS_) ) 

The entire set of real vectors ecr(IS) : constructed in the same 

manner as tl:c (~.28) for • 
; (l (-r ) \. a. = : • • • , r 1'l ; , 

can be related to the set e a (EJ.) by the eq_uation 

; (/5:. 29) 

i·ihere \ is a real Lorentz transformation uniq_uely defined by this 

· · e
0

(K.) ~nd e
0

(-_u"".-.. _) eq_uaw.. on,·· once . l. ~· ··c 
·.t;. 

are picl~ed. 

All real vectors of zer.6 length in M(l;) , the manifold spanned. 

by the vectors of IS_ : are ~llitiples of the single vector 

= 

since·. any: real linear Combination of the vectors of ('(5:.27) is orthogonal to 

1-r(K.) and of nonzero length unless zero. 
.L \ 

vectors of M(Y'2) are multiples of 

= 

: 
Similarly all real zero-length 

' 

;-0-
0->-31) 
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Since w(IS) is a linear combination of the vectors of rs_ the vector 

-A .i.r(IS_) is in M(IS) } the rnanifold spanned ·oy the vectors of K2 . 
But then !I.. w (K..) 

.L 
is a real nonzero vector of zero length in M(K

2
) 

Hence it is a multiple i·l(IS): 

vl(Y'2) = c !I. ·, i·i (K.. ) L Q ' . 
.l 

~32) 
, .. 

The factor c can be taken to be ".J. um .. vy. This follovrs fran the 

fact tr,at a real Lorentz transformation in the (0, 3) subspace gives 

siinply a scale transformation of a vect.or of the form (Ke 31): 

.. 

sinh a\ ?-v-· ) 
\,13.. 33 

cosh a J ' 
(c;sh a sinh~) ( ( l \ 

cosh a + 
= 

sinh ~ slnn a COSh a l' + 
\ \ I 

. ' 

: This transformation preserves the realit;:r and orthonormality properties 

\of the . e
0

('Y'l) • Thus it can, and -...rill, be assumed trat the basis 
. ; (J . 

. e (K2) is chosen so that 

::I 

.I 

. I 
i 

I 

c :=!., l 

Using (6.29) one obtains; then, 
I 

Tiie general form of the J·,orentz transforrr..ation /1...-l A E f_ 
0 

(}!.. 32a) 

t{.32b) 

\,/ 
(i.:\. 34) 
• 

Q 
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satisfying ('P-.31+) ~s readily computed. If the ro;.;s and colwill1s are placed 

in the order (0, 2, 1), the general transformation matrix 

defined by 

!! ..P 

(A") u 
:) 

gs.. 35) 

-1 
and consistent 1-rith (6.34)

3 
vith fl. E c!J in place of the fixed J\. A 

0 

can be "hTi tten 

1 + a - a c .C' 
.L 

a 1 - a c .c-· 
.L 

(c cos 8 + .(:> sin e) -(c cos g + .co sin e) cos 6 sin 8 .L .L 

(f cos e c sin er -(f cos 8 - c sin e) -sin 8 cos g 

(),<.. )6a) 

f and 8 are arbitrary complex nu.:~t~rs and 

2a 
2 . 2 

c + f 
. ,, 

( 
... _,.. \ 

/5>. )ObI 

The condition (~ 34) imposes the. constraint that the first t-;.;o colu;"Jms 

are the negatives of each other; aside from the unit contributions on 

the diagonal. L'lis gives four conditions, only three of ·v;hich are 

independent of Lorentz transformation condition (0~16). 

Since- the relations (~.28) and Ck-.54) are maintained if A is 

replaced by any A satisfying J\ 'K
1 

== K
2 

, of i-ihich one is Ab the 

general form of \
11'," ):J &- - ( j'•, -1 ,A : ')(> v , ~ • - b (Yf. --) .. h , , , , a.er J.nea. y .?--'· )) : i·.'"l -c. 

0 ....> 

. . . . . (X _,..) .. , .L." 1 .._ J.s gl ven oy p .... )o iH -en ... ne as ... 
~· 

r(K~.) rm·rs and columr.s 

having unity in the diagonal position and zeros else;.;here, provided 

n ._(7 
A E c/J • 
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It can be assumed that i\b E ci • If r(K
1

) ·< 2 +' ... nen th2re 

is freedom in the sign of at least one ea (K2), and Ab can be mac'ie 

a proper transformation. Then Ab 'Hill be a real element of ,>£. 
For the other ca_se 7 r(K

2
) = 2 ; ·the basis ecr(K

2
) is uniquely specified 

by the conditions that have been imposed, and. one cannot adjust ll.b • 

Hoi-rever, in this case the conditions on (11.") cr require it to be unity 
p ' 

even i-rithout the condition i\" E _(,, for one then has c = f = e = 0 

from the conditions on ecr(K1) for a =(1, 2)
1
and condition ~34) 

then gives the unique solution 

To complete the arg-ument 

A. = A E ·;t. 
0 

for the case 

~ 

n(K
1

) 

notes that A. is a real element of oL satisfying 
0 

> r(K
1

) one first 

I v K,.., T'nus \•'-1 . 
c. 

·there must, by h;y-pothesis, exist some i\' E L satisfying A'K
1 

= K
2 

• 

But'· then 

F(K ) = (Ab Au) F(K1) 
2 s 

is valid when i\" i\ -lA, 
b 

corrc:sponds to this A' E L Since 1\, is 
0 

J' 1! A -1;" a real element of c/.._; either A is an e'lement of L or 0 .\. 
II 

is, io[here l\
0 

is the PT (- CPT) transformation. Then A" 

i·Thichever is in L : can be pararne"ceriz8d as in ('[,36), i-rith the appropriate 

r(K
1

) 
i 

constraints if > 0 . For a neir:;hborhood of 

parameters, subject to these constraints, one still 
' 

1-ri th 1\. ~ E L • But .the . splnor transformation 

I 

A' 
s 

\. 

II 

fl.. i\ 
OS S 

or (i' fl. ) 
0 o, s 

real values of the 

has AtKl = K 
2 

:/ ,_. 
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,. 
: ~; 

~ ~ 
: : :;i.s an analytic function of these para"ileters: regul¢-r in a neighborhood 

I 

·,: bf the orie;irt of the free variables of (c, f, e) • .. Since J...S 

. I .· 

true for :r:eal' values of these vari.9.bles it is also valid. for con~lex 
;· I 

valt:.es in this neighborhood. One sees by inspection of (Y'-. 36) that th~ 
I 

1! 

.set of A: satisfying t}?.e conditions corresponC..ing.to 

is a ·coru'"lected set of transformations in From this 
I 

I 

. f,ollovrs that any element of the set can be expressed.: as a :p:roduct of 

:a: finite number of elements of the set lying i·:'it.hin any neighborhood. 

f ..... , . -" .:.. . .J- • • " ' . .... ..... (v' 7.7) o v~e ~uenv~vY, anQ nence vnav ~'~ is valid for all 

-'-• f • A'T(l Tr· sav~S y~ng . = ,~2 . T'nis validates (')) .. 4) for this last case and 

completes the proof of Lemma ., 
.l.• 

Lerr~a lA. Real points coru'"l.ected. by a Lorentz transfo~ation 
_o . 

A € -::)_. are connected by some real 

Proof: The transformation . Ab constructed. in the course of the proof 
_p 

of Lel'l'.r::.a 1 is the required real ·A E: cJ"·' 

Lemma 2. Let K
0 

.be a set of l1 ·linearly independent vectors. For 

K 
0 

N of the id.en~ity in 
·o 

7 .J..h . 
~~ v.t.ere is a neigh~orhood 

such that any t•ro points in. D(N, K0 ) con..'"l.ected 

by a Lorentz transformation are cor~~ected. by a Lorentz transfor-mation 

Proof: Suppose the ran..'< of the Gram C.eterminant of· the vectors of the 

:.,: . 
r(K0 ) =· r .• One can arrange tho vectors of K0 . 

~-- ;.:_;~~~-;~-.-~:.,. ~~~:~·20_1:?~~ ;. : .. :·): ... _:i:~·~:J.~-t~~.-i:..._~.;·;j__·_~- ::·:,_·: ..... "-. ·_ ... ._::::"'-;;·;...· '""--'-'--....;._--. ; :· . ; . . : . .; . ' ' . ~ ; . 

.. 

.I 
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such that the rank· of the .. Gram determinant of the first r vectors of the 

set is r .. Using the procedure disc-ussed in .Ierru'l1.8. 1 : but lvithout the 

reality co~ciitiol1; Q Get of ,.l. orthonor;.uJ.l Oasis~ vectc~s (> (~( \ ••• 
"-- .... ,...... j) ~ 

~ h: l 
-...... .., \--.--.I 

('..:.::-.: 

·- -.~. 

···~ -....... 

the ctO.U.::tio:: c~ '' 

.1. u . 

-~ ... .i ( !....· - "'.·) , . more 

':vectors en~l (K0 ); • • ·: e 4 (K0 ) that are orthonormal: and orthogonal to the 
I 

·,: I first r of\ the basis vectors. For the case r = n this gives a com-
.I 

plete set of basis vectors 
I 

e (K
0

) • 
(j 

il-0 
-~ r+ 1 

For the case n = r + 1 the subtraction from of its 

'.components along e
1 

(Ko-): • • ·: er (K
0

) leaves a vector -w
0 

= i·r :\= 0 , 
I 
i 
1.;hich must be of zero length; since othenvise the ra;nk r "Yrould be 

n • For some . a > n one must have e 
0 

(K
0

) _ • i·i ~ 0 ·) since oL1enrise 

"'o "Yrould be a zero-length vector orthogonal to thxee orthonormal vectors 

in a four·-dimensional (non:legenerate
1
+) space and hence zero. Take this 

vector to be Then 

is a vector of unit length orthogonal to 

Take this to be the final basis 
e ..... ;!. ( i',<) ~ ''' e., ( l<o) lt.oii ,.,,,.,....~.:.~ ~· h ,, 

vector e_-'-_ (K
0

) :, ~d. ""e-c-.-+ 1":J"·_..."l:~'lc 
1 - . ;..· • j_ 

'jJ.-~&..-.tfW'\.c:-f p.-LJt...t!do..tY(_., 

For the case .r = n - 2 ·the subtraction of components along 

from the vectors must leave tHo. 

linearly independent orthogonal vectors w 
r+l 

and ·IV 
r+2 

having zero 

length. Othen.;:i.se there 1-rould be fei·rer than n linearly independent 

vectors) ot the rank of the vectors of K
0 

vould be greater tl:e.n r . 

' The vectors if = w ~...t.l ......... and. \·Ti S --;,; 
r+2 

cannot both be orthogonal to 

e a (K0 ) for all a > n , for then they H) ulcl be orthogonal to tiw 

'.) 
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orthonormal vectors. This iWul<i provide tim linearly independent zero-

. t d . . l ,_ . . . . . . l 4 0 
leng~h vectors 1n a :wo- J.mens1ona_ space, iv.rncn lS 1mposs1o~e. nc 

can order the vectors of Ko and of the ecr(Ko) v > n ) so that 

w.e
4 

(K
0

) \ l c~.(Ko) ~ ~-1] 0 . Then the vector i - ·.,; e 4 (K0
) "iv) is a 

vector of unit length orthogonal to the vectors e 1 ( K0
): • • ·, er (K

0
·) 

4>a>n can then be reorthonormali zed follovring the standard 

procedure so that the e
0

(K
0

) for a ~ r + l and a > n become an 

orthonormal sec,. If the original eu(~<:0 ) , a > n ; are appropriately 

chosen the suotractions of the required vectors i·iill not give any 

zero-length vectors. 

From the relation i·i'· er+l(K0 ) == i(::i' · e 4(K0 )) 

[ w' - e4(KO)(e4(KO) . w') - er+l (KO)(er+l (KO) . w')l 
it follo·ws 

~hat •·1 is 

a zero-len~th vector orthorronal .to e,.(K0) , e (K) ·•· e (K) 
~ l:> u. · 1 0 ' · ; r+ l 0 

It cannot vanish since ',r' is linearly independent of i·i i·ihereas 

e ( e . ( K )· · v ') is proportional to u . r+l\ r+l 0 · -

Otherwise w uould be a zero-length vector orthogonal to the first 

r + 1 basis vectors and the last 4 - n basis vectors and hence 

orthogonal to 4 -. n + r · + 1 == 3 orthonormal basis vectors. Let this 

ea(K
0

) be 

i [ e
3

(K
0

) 

it is not 
-1 ~ 

-w) J . 

Then the vector 

e is a vector of unit length 

these vectors are all orthonormal. This is impossible unless r = 0, 

since a vector orthogonal to four orthonorr;;al veqtors is zero. 

• 
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. Thus one can set e
2

(K
0

) = e .. This compietes th~ construction of the 
I 

iorthonormal' basis e,..,(K0 ) for the case n = r + 2 
! ' v 

The case 
• j 

n> r + 2 is not possible. 

For K in a sufficiently srr.all neiehborho'od of K 
0 

one can 
'I 

construct a basis e (K) folloHing the procedure just described: except 
(J 

for the follai·ring changes: The ( !+ - n) vectors that are added to the 
.I 

()-

'ret K to make A linearly indepen<ient set \·rill: for all K , be taken 

to be thefixed vectors. e
0

(K
0

) for v > n , constructed above. For 

in a sufficiently small neighborhood of K 
i 0 

the augmente<i 

set i·rill continue to have four linearly in<iepen<ient vectors, and one 

·can proceed \·lith the construction; one constructs a set e (K) 
0' 

0' > n 

by subtracting in the standard \·iay ... the components along e (K) CJ' / .,. 
cr' , ) .;::. ... ; 

... - . 1· . 'i<'or K E D';(K
0

) eve. ana norma ~zlng. _ • 

in this procedure -vrill have nonzero lene;th, so that a uniform procedure 

_ __ ... At the next stage tne vectors Ca.~ n 'oe .£', o lJ.o·,.,·ed f'or all K E D" r, K
0

) • 

[and er+2(K)] · can be defined in the same v72q as above except 

that additional normalization factors ~ (and ·~ ) must be supplied. 

i?or K . .ro.£>· • tl -- . -. . d D 111 (K
1

) C D"(K·-,) ~- ln_a SUi.L~C~en -Y sma~~ nelghoornoo -~ the 

various factors that are required to be nonvanishing i·rill continue to be 

nonvanishing; since they i·rill depend continuously on the vectors of K • 

The only ~nbiguity in the procedure is in the choice of sign for the 

normalization factors. Ynis sign can be fixed by requiring the normal-

ization factors to be continuous functions of K . Thus in a 'sufficiently 

'i' small neighborhood D(K0 ) a basis can be defined so that 

these basis vectors depend continuously on the vector K. Also, for the case 
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r = n.- 1 the vector obtained by subtracting from 

its components along e (K) (j = 1; ... 
(j 

) r ) -vr.i.ll aliv-ays have the 

standard forw. vl = (e4(K) + i·'(e (K)) (w· e4 (K)) For the case r+l 

r = n - 2 = 0 this vector viill ·have the form vl = (e4 (K) + i'i(_e1 (K)) ·. 

(v • e 4(K)) 5 Q.nd the other vector; v; ;.rill have the standard.form 

vi = (e_ (K) + i·iie
2 

(K)") (w • e_ (K)) • 
) l ) 

For any bro vectors K1 and K
2 

in a Lorentz trans-. 

forrr..ation A (•• K ) ...f 
H ~J '2 E c:J.-...- is defined by the equa ti on . 

If K]_ and K '2 are connected by a Lorentz transforrr..ation then 
.,.. 

(IS_, IS)ISr K]_. = 1\. . _.t;r , vmere :-. is the set consisting of the first 

r vectors of K . This is because the vectors e
0

(K) are constructed; 

folloving a standardized procedure; as a linear combination of the vectors 

of I~ 1 and the coefficients are.given as f·unctions only of the inner 
.,... 

products of the vectors of It" For the case r = n : ~ = K~ and 

this transformation connects Y'l to K
2 

• Since the transforrr,ation 

1\. (K]_; IS) , is a continuous function of (E]_1 IS) the inverse image of 

any open set in N containing the identi t:y contains a neigh"oorhood of 

~nis neighborhood w~st contain a neighborhood of the 

""'o.,..m v E D(N K ) K... E D(N K ) l·iith D(N1 K
0

) c D(K
0

) •. This 
.L .J..! ~J. ' ; 0. ; c ; 0 J \ 

D(N; K
0

) satisfies the requirements of the lemrr..a for the case r = n 

For the cases r<n any points K and. 'l. connected. 

by a Lorentz transformation are connected. by a Lorentz transformation of 

the form 

• 
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I 

b A v Kr -- Tr.Lr vl .ere H _j_ .n .... For ·the subcase r = n - l tne I<J_ and 

• 1\2 differ only in the -v-c.lue of 'G.1. e vector If , and both v-alues_, i·T 
l 

(P,.4o) 

·and v2 1 lie in the : (e:5 (KJ_); e 4 (KJ_)) subsps.ce. B'u.t t>w vectors in 

a subspace cow~ected by a Lorentz transformation are connected by a 

Lorentz transformation in the subspace. This is a conseq_uence of Lem..."T.a 2 ·--

of Hall and Vlightman. ·· .... , 

. ~ ..... ' 

The Lorentz transformations in a tva-dimensional subsp2.ce can be 

expressed as a product of possible inversions about the space or time 

axis times a transformation 

a.~-. ('6-. 41) 

i·rhere r is a complex number and .the a± are components along two 

. orthogonal light-cone ·vectors. If ti-ro points are connected by a 

transformation of the form A(r) then this transforr~·?otion is uniq_ue .. 

If: .. tvro points are in a neighborhood of the :point (a+; c:.:.:·) = (l; 0) 

tr.at contains no point viith c;+ · = 0 then if they are connected -oy any 

Lorentz transformation they are also connected by a A (r) This ·iS 

becau::;e '!.'6r the case a,·. (0) =\ 0 one can transform-'-using a A(r)--to ,_ 

a point o..r::ere 'At ::;uch a point the reflections are 
I 

eoyivalent 

either to the identity c:r to the particular i\ ·: (r) given -oy 

exp r = e~p (- r) = 1 As a conseq_uence of this any seq_uence of 

....... 
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reflections and proper transformations can be reduced to a sL~gle trans-

formation A, (r) 1 for th~s case; by the elimination of reflect:Lons. in :pairs. 

On the other hand if a~ = 0 any product of reflections and A (r) 

·takes t:r.,~ ·point to_ a point i·ii th a = 0 which can be reached by 

A (r) alone, or to a point viith a+ = 0 : vhich by assumption is not 
'~ .. 

in the original domain. Thus ;.;ith the. neighborhood take::;. small eno-cgh 

so that points f!-+\ = 0 are not included all points in the neighborhood 

connected by a·Lorentz transformation are connected by a ~~i~ue trans-

forrration of the form A (r) . One can trerefore define a uni~ue 

. \ (K.. Y ) = A(r) A (K.. •• ) 
J 1 J.' '2 ~- j_J ~ ttat satisfies 

This transforrration is a lli~i~uely defined and continuous function of th~ 

K
1 

and IS , ·provided the : (K
1

, K2·) is restrict.ed· to· a sufficiently 

are not connected by a Lorentz transforrration 

E~. ( 6. 41) : cari be modified ·' · ·. ·• . by the inclusion of a 

scale factor ~ defined by 

a;t _, :r.. (exp + r) at = :r.. A (r) a:;: / 

The Al is still clefined to be fl. (r) A (--
\~} IS) This Al is again 

continuous in 1<]_ and K2 

Since . A
1 

(?S_; IS) is continuous one can proceed just as before: 

and D(N, K0 ) can be taken to be 2.r..y neighbornood of K0 such- that 

D(N: K0 ) tlJ D(:iif_ K0 ) is in the inverse image of any neighborhood of 
' . 



. 

·,., 
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the identity contained in N . Such a D(N; K
0

) must exist since the 

inverse image contains a neighborhood of (K07 K
0

). The neighborhood 

D(N; K
0

) is to be restricted also by the condition that the vectors vi 

do not have a zero component along the iH axis. This is possible since 

for this condition is satisfied (for this car-e r = n - l). 

For the remaining case n = r + 2 2 similar argw;cents apply. 

The vectors of K are specified ·oy the tviO vectors l'i and 1,~ The 

vectors and both lie in the ·subspace and 

the vectors and both .. u.e 1n the 

Thus the transformation 1\.·vr i·rill be a product of transformations in t\-ro 

orthogonal subspaces. The prob1e::7! sep:1rates then into tvo disconnecJced 

parts; each of vrhich is treated in the san:e vray as 
"i.·l 

A for the r = n- 1 case. 

Lemma 3. Let K
0 

be an arbitrary set of vectors. .Let the first n vectors 

of K
0 

be linearly ind.ependent. For a.ny neighborhood N of the 

/0 

j_denti ty in cZ: there is a neighborhood of K 
0 

such that 

".C> 
l..J. any tiiO points Kl and K2 in D(N; Ko) are connected by a 

Loren"~z transformation then IC 
n 

J\ K,...., 
n 

vith 1\. I.J; where • ..J.'1 
E 1\ 

..L c. 
is 

the set consisting of the first n vectors of K . 

Proof: This is a trivial extension of the preceding lemma. The neighbor-

hood D(N; K0 ) can be the intersection of any (full) neighborhood of 

"r "..t..h ho i·Tl. ~,_ n( ..... n) , h . ""'' , .. D N7 r'-
0 

; -c .. e ne1.g""oornooct in the subspace associated ivi"ch 

+he Kn .. n • ct.. " L r. 
v SpeCli le uy ·CL'lt'na c.. 

Definition: · .. A simple point K is a point for 1-rhich the number of linea1~ly 

independent vectors; n; is equal to three or four or to r:. the rank of 

gram determinant. 

Lern.ma i+. Let K
0 

be a:1.y simple poi:rrt- and .. D(K
0

) be any neighborhood of K
0

• 
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Then there is a neighborhood. D rv ') o '~'·o of K 0 ; contained. in D(K0) : 

such that any tvro points IS_ and IS in Do(Ko) connected by 

_j} 
a A E .)..._ are connected by a continuous path K( t) = A ( t) IS , 
'\·lith K(O) = IS K(l) = 

_;; 
d.._. and and : such that A ( t) E: 

K(t) E D(K ) for 0 ~ t ~ l • . 0 " 

Proof: Let n be the n~~ber of linearly independent vectors of K0 

and r the rank of .their Gram determinant. Arrange the vectors 

of K 
0 

so .that the first n are linearly independent and tre rar& 

of the Gram determinant of the first r is r • Then.. according 

to Iemrr.a 3 tbere is: for any arbitrary neighborhood N of the 
_/) 

identity in d..___ ,• a 'nEi ghborhocd 

so t:t'.a t if 7"1. and K2 are in 

D(N; K0 ) 

D(N~ K0 ) 

small enougn 

and. are con:::1ected by a 

..p 
Lorentz transforrnation ·A E ·-'~: tnen there is a A

1 
E N such that 

-r n A Kn h -- n · K_ n · h · · "" -- and l]_ = . 1 :-'2 ) 'lti ere l']_ · and. ~'2 _ are "G. e . suose"Gs Oi A 1 
IS consisting of their first n vectors. The neighborhood N cc:.n 

be taken to ·oe· a domain (i .. e .. connected), and: hence a· path A(t) ' . 
in N .can be constructed vii th A (o) ;, l > ·: · 

A(~) = 
I 

A. : and 
.L 

A (t) E N for I• The 

and •• I 
1~ : can· e:v-idently be chosen small. enough so that all ·points 

Consider first the case 

ivill be taken small enough so tr..3. t for all K E D
1 

(K
0

) ; tne rank 

r(K) of the Gram determinant of the first r vectors of K 

remains equal to r Then any K E D
1

(K
0
): can be uniq_uely 

: 
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decomposed into a sum of hiO terms) K ::::=If + V., · i·7here ·the vectors of 

If are in the subspace spanned by the first r vectors of K) and 

the vectors of v lie in the subspace orthogonal to those r vecta s. 

(Note that i! is not the same as in LemJna 2 .. ) 

The neighborhood D1 (K0 ) can be specified by conditions of the 

form II If < and II v II < P J 1-1i th 

since this is an arbitrarily small open set containing 

can use here for instahce the Euclidian norms; e.g.; 

ll vIi :2 
V. j = 
~ 

p · and 

K 
0 

Th= proof Hill be completed1 for this case1 if a continuous 

A (t) for (
1· fl. -) :=: fl. 
2 l 

, and A (l) K2 == K]_ 1 can 

be found that acts only in the sps.ce orthogonal to the sp.ace spar.r:eo. 

b t . .... K~n , . y ne se v ~"1. ana Keeps II v ! i < P • 

The Lorentz transforrnation A = A(l) A~.J.. € L i-i:i1ich takes the 
l. ) 

point A (~)Y'2 =. 1\ Y'2 to A (1) K2 =. K1 )can1.Jas. any A E J~) be ex:;_:>ressed 

in the forms 

A = R exp A J 

Hhere R is a unimodular real orthogonal (hence unitary) tn nsfor::r£.tj_on 

and A. ·is Hermitian and imaginary: 

.y,. 

A =-A 
I· ('( 4·h) 

t-~· . = 

(Tne metric tensor G ~2s been converted to the unit rr~trix by the 

introduction of the apprc:priate irr.aginary units.) The required 
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transformation A ( t) :for ~ ~ t ~ 1 can be.· taken to be· . defined by 

where R ( t) for t ~ t ~ 1 

R(t) exp A 

is arty continuous curve from the identity 
; . 

' ! : . 

E · to R in the connected space of real unimodular orthogonal matrices. 

The Euclidean norm II V(t) II of V(t):= fA (t) vi) is 

the square root of 

},' 

\""" 

D~(t) = L :A(t)v. 12 = L. ~~ ··A~- J~ )' A,~ ( t) vi . ~ 

i i 

(f. 47) 

' i '. . 3 . 
.. ; In the interval . 4 ~ t ~ 1 the II v( t) II . 'iS constant, because of the 

I l 
.. ; unitarity of R(t): 

I 

Rt(~) R(t) = ~(t) R(t) 

·.· i . 
,· On the .other hand, in the interval 

\ 

\' ' . 

= E 

one has, since 

('({ 48) 
i 

t 
A=A , 

? 0 • 

·<.,. . 
' ~- } ; ~ .... 

~cruse the second derivative of , . llv(t) !1 2 
is non~negat~ve its maximum 

i,,~· ~-.'' -~ 
value mu~t be assu~ed at an end point. 

end 
As the/points are in D

1
(K

0
) 
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they satisfy llv(t) II·<: P • Thus for all 0 ~ t ~ 1 .this condition 

is satisfied. Consequently all points K( t) = .'· A( t) K2 .are in 

This completes the proof for the case that r. , the 

rank of the Gram determinant of K
0 

, is equal to n , the number of 

linearly independent vectors of K0 • 

In the case r < n the first part of the transformation, 

1 0 :;;;. t ~ 2 , can be performed as before. For n ~ j this already com-

pletes the proof,. since the coincidence, of three linearly independent 

vectors ensures the coincidence of all vectors. Th~ special form of 

D1 (K0 ) is not needed for this c_a_s_e_·--·~-----------·--··-------·-·-· 



i 
' ! 
. ; 

. : 

-32-

.· 
' 

l . 

Definition: A function F(K) will be said to be regular at a point K 
l: 1 

.I 
if and only if the various functions of K co~responding to the various 

·.: 1 combinations of the spin indices are all regular analytic functions 

of the canponents of the four vectors [ ki ~ at the point· K 

I 
I 

:C. emma 5. Let A .be a fixed Lorentz transformation •. Let FA(~) ·be 

definJa by 

'". I F(A -l i') (){5o) F.~~:(K ) = A .·• 
~· ... s 

'·~· -1 . 
F/\ (K) If F(K) is regular at the -point K=A IC then is 

•' 
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regular at the point K = K' • 

Proof: This is an immediate conse~uence of the theorem in several :com-

plex variables that an analytic function of an analytic function is 

analytic. 
\..·1 

This well-lmo1m theorem is easily proved "'-using the Cau.chy­
'"1 

Riemann e~uations. 

Corollary A. Let FA (K) be defined by ~50),/ where A is fixed·. 

Then F.A(K) 

regular at 

is regular at 
-1 ., 

K=A K -:. 

., 
K = K. if and only if is 

Proof: The first part of the corollary is just the-lemma. To prove 

the converse apply the le~~ to the function 

FIT (K) = . A -l F (A K) / .. 
s ·A . 

to show that F" (K) is regular at K if !·A(f... .K) is regular at 

A K • But F 11 (K) is just F(K) • The substt tution K == A -lK' 

gives the desired result. The fact that the inverses 

A-l exist is essential to the proof. 
s 

. \ 

-1 A and 

: Corollary B. The property of being regular at a ,~oint does not depend 

i 
! 
i 

l 

l 

i 
I 

i . 

on the \choice of· coordinate system relative to which the components 
the 

of the vectors k are measured, p~ovidedjcom~pnents in the two 

systems are related by a Lorentz transformation. 
1·. ... 
·:~~ 

The proof is the same as for the lemma. 
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Definition: A domain in an arcwise connected open set. 

Definition: A real domain is an arcvrise connected real set open With 

respect to the set of real points. 

c.o . 
Lemma 6. Let F(K) satisfy the -±nvariance condition 

F(K) = A F(A-l K) 
s 

for A € L and K and A-l K in a real domain D 
-~ .. -
·containing the 

point K
0 

• · Suppose F(K) is defined (single valuedly) in a domain 

D(K
0

) containing K
0 

and is regular at all pdints of D(K0 ) 

Then for each point K in D(K0 ) Eq. (~53) is satisfied for 

A € N (K) , where N (K) is some neighborhood of the identity 
r r 

in L • 

·proof: Let K
1 

be .a fixed arbitrary point of D(K0) • Since D(K0 ) 

is a domain there exists a continuous curve K(t) , 0 ~ t ~ 1 , 

from K
0 

to K
1 

, all points of. which are in D(K0 ) • Let the 

distance between two points be defined as maximum of the absolute 

value,s .of the differences of the components of the vectors ~ ki ~ Then 

the distance of a point K in D(K0) to the boundary of D(K0 ) 

will be defined as the maximum (real) number ~(K) such that every 
I 

poin~ ,.,hose distance from K is less than ~(K) is inside D(K0) 

Sine~ D(K
0

) is a domain ~(K) > 0 for all K € D(K0 ) . More­

oveN ~(K ( t)) ~ a·> 0 , for 0 ~ t -~ 1·. For if there i.:ere no 
\. ,· 

pos~tive lower bound a> 0 of ~(K (t)) one could find a sequence 
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6(K (t )) < 2-n. 
n . 

i -

'These tn . .\would have to have 
\• 

~n accumulation point t , 0 ~ t ~ 1 •. But 6(K (t)) = b > 0 • Hence 
I ~ o 

·ror all. t ·such that the distance between K(t) and 
i . 

K(t) is less 

. I ha :t n b/2 one would have 6(K (t)) > b/2, by the triangle inequality • 

',:Since K( t) 1·1s a continuous curve the inverse map ,of the open set 
. I . 

IlK( t) .. K(t) II < b/2 contains an open interval 6t about t . But 
:. I 

since 6(K (t)) > b/2 
I . 
I . 
can be in: 6t • Hence 
.I 

i 

for t € 6 t only a finite number Of the t 
n 

t c.annot be an accumulation point. This is a 

, dontradiction. Thus there is a positive lower bound .a • 

I 
Let the maximum value of IlK( t) II for 0 ~:t ~ 1 be A • ·Let 

:N(K
1

) be a nei_ghborhood of the identity in o/; -1 . . 
such that if II. .·. € N(K

1
), 

· •. i \ 

-1 . 
II. € N(K1), it follm.,rs that II( - 1)'·.'~ . <;:...:..vII c /4 ) then 11. \\• - v .•.· < a A • Then, for 

.I j 'tl\ ,i'tl, 
-1 . ' I j11... K( t) - K( t) I! < a, and the (continuous) curve. Kll.(t) = 11.-~(t) 

remains inside of D(K0 ) for all 0 ~ t ~ 1 • 

let N~ be a neighborhood of the identity in L sue~ that II.-~0€D 
for 11.-l € N 

r 
The existence of such a neighborhood follows i~mediately 

from the continuity of 11.-~0 

11.-1 € N 
. r n · N(K1 ) ·= Nr(K1 ) 

in A at the identity. For any fixed . .. 

there fs a real domain 

K0 € D(A, K1) , such that for ·all K € D(A, K1) the. point$ K and 
. . 

11.-l K are in D n D(K
0

) •. The exist~nce of such a D(ll., K) follo•,rs 

with 

' 1 
from the fact that K0 and 11.- -K

0 
are in D n D(K

0
) , in conjunction 

with the ·~ontinuity of A-~ as a function of K. Thus (/(53) is valid 

for any l!xed A -l < Nr. n N(Kl) 

(:c!-53),. :h~~ fixed A-l€ NrnN(K1 ), 

fo~ all K € D(ll., K1). The validi~~ of 
tt,; 

for all K in the real domain D( II., l(i), 
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together with the analyticity of both sides of the equation, as functions 

of K 1 (Lemma 5), implies the validity also at the point K1 , since 

one can analytically continue along K(t) with the argument of the 

function on the right tracing simultaneously the curve KA ( t) 1 l·rhich 

remains inside the domain of regularity D(K0) . 

Lemma 6A. Lemma 6 modified by the substitution of ~ for L and of 

a (full complex) domain D for the real dorr~in D is also valid. 
c 

Proof: Makes these substitutions throughout the probf of Lemma 6. 

Lemma '7. Let F(K) 
co ~ 

satisfy the ·l::R.variance condition (~53) for A € L 

and -1 K and A K in a real domain D containing the point 

Suppose F(K) is defined (single va·luedly) in a domain D(K0 ) 

containing K0 and is regular at all points of D(K0) • Then (~53) 

is also valid for all K e: D(K0 ) and A e: .:£ such that there is 

a continuous path A(t) e: d, 0 ~ t ~.1 ,·with A(O) == E and 

-A(l) ~A., such that K(t) 
I 

. I 

Proof: The assumptions 'of the lemma are the same as those of Lenu"na 6. 

Thus the conclusions of Lemr.~ 6 may be usedj (~53) is valid for 

ever~ point K e: D(K0 ) for ~ neighborhood of the 

. \ 

• l 
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q 

identity in L • 
4 ~ 

Following Hall and Wightman, and Jest, . the Lorentz 

transformations A in a neighborhood N :of the identity in £. can b~ 

parameterized by a continuous one-to-one mapping A (A.j) in such a i¥ay 

-1 . . 
that the representations of A and A are regular analytic fQ~ctions· 

s 
~ ~ ~ . 

of the A.j for . A . € N ; and such that for A € N 1-1 L. the A.j 

are real; and such that the origin in A.j maps into .:the .. identity in 
• .J;a: '7 . 

A • Such a parameterization has been given by Jest. 

Considered as a function of the A.j the right-hand.side of (~53) 
I -1 

is an analytic function regular at all points for .which A ·. € N and 

-1 ( ) -1 I A . K € D K0 • But for A in the real neighborhood of the origin 

Nr (K) the right-hand side of the eCluation. is, by lemma 6, eClual to thq 

.left-hand side, which is independent of A.i • Thus the right· side must 

be eClual to the left for all A = A ( t) such that A -l ( t 1 ) € N atd 

A(t') K € D(K0 ) :tor 0 ~ t' ~ t, since one can analytically continue 

to this point, the right-hand side remaining regular. If for all 

0 ~ t ~ 1 the A~1 (t) are not contained in N. tl:en the continuation 

-1( ) . can be cari'ied out stepwise by expanding A t ~ in the manner specifieG.. 

' .above, abput a finite seCluence of intermediate points, t , and ·by using 
n 

~0 . . 
the gro t:J? properties. The :b:rvariance eCluation is in this way·· validated 

for all ~oints K, A-~ connected by a continuous path A(t)K thl.t 

remains always iriside the domain of regularity D(K
0

) • That only a 

finite number of t are reCluired follows from the Heine-Borel,C~vering 
n 

i ~ 

Theorem. 
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j Lemma 7A. Lemma 7 is also true if the real D and L are replaced by 

i , I 
'; 
, I 

comple~ D c and ;£ . 
\ ' 
. I . ' 

i Proof: Make these substitutions throughout the :proof ·of lerrJll8. 7 •. 

I: I 

. I 

Lemma 8. Let F(K) be defined (single valuedly) and regular for points 
,' i 

in a domain D(K
0

) containing K
0 

.. And suppose 

' \ F(K) = A F(A-l K) 
s 

for A € L and. A and A-l K in a real domai~ D containing 

K0 • Then for ever_y point ~ € D(K
0

) there is a domain D
0 
(~) 

containing ~ such that the e~uation 

F(K; D0 (~)_) := As F(A-l K) (){55) 

and A € !... 
with A-l K € D0 (~)_/defines a (single valued) function ~(K; D0 (K)) 

over the points K € .i D0(~) • This function. :1s regular throughout 

its domain of definition and coincides with F(K) in the domain 
r 

i. 

Proof: The assumptions are the same as. those of lemma 7 . Thus the 

~variance e~uation (~54) holds_for ali K -1 
and A K connected 

by a fB.th A(t) K ; . 0 < t ~ 1 , that is ever:r-rhcre in D(K0 ) . 

Consider an arbitrary point ·IS_ € D(K
0

) • According to L2rr.ma 4, ·' 

ther~ is a domain containing Ki such that the points· of :~yery pai~ 
,. 
~ ~·o 

poihts in D0 (~) connected by a Lorentz transformation are conne~ted 

,.,.....,~-~ 
\ 'j]o'\J 

•/ 
! __ ..... 
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by a continuous path A ( t) K , 0 ~ t. ~ 1 1 that is everywhere in 

co I'd 
D(K

0
) • Lemma 7 then ensures that the :i:nvariance equation \Jll..54) is 

valid for a~l K, ~-l K € D
0

(KJ.) • This in turn.~nsures that (~55) 

define~ a (single valued) function F(K; D
0

(KJ.)) • Toshow this 

..)I ( ) -1 -1 suppose for some K € d ...... D
0 

KJ. the. points A
1 

K and A2 K are both 

in D0 (KJ.) Then one· ·can write · 

F1 (K; D0 (Kl)) = Als F(A~1 K) 

and 

That these are equal follows from· Eq. (J5'...54) expressed in the form 
/: 

which is true because both;arguments are in· D0 (KJ.)· 

~"5:.57) 

Since F(~; D0 CK:{)) is independent of .the particular A used 
\ 

on the right 
I 1 ., 

of (~55), so long as A~ K € D0 (K:\_) , the values of 

F(K; D0 (1)_\)) in some neighborhood of any K € J!. D
0

(El) can be generated 
! 

from a f~xed . ! 

. \ -1' . 
A , as a consequence of the continuity of A K as a function 

•;, 

. : of x·, for fixed A • That is, the inverse ma:i;>.of the open set D0(is_) 

I of A -l K 1 s, .is an open set D A (E)_) ·of K' s • But for fixed A the X' 
··:: regula;i~y of the left-hand side of (~55) is ens~ed by Lemma 5, siJce 
1,! l : f.• \ • ' .,.,..:, 

. ·' i A-l K ~ t
0

(JS._) c. D(K
0

) • Finally, that F(K.; D
0

(KJ.)) coincides ''itl:i 

:· ~ F(K) ·!'~* . K € D0(KJ.) is true by virtue of cr(.55) with A= I • '" 

I 
I 

i 
I 
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9 
Remark: P. Minkowski and D. Williams have shovm that Lemma 8 can be 

proved without the restriction to simple points. This restriction 

will therefore be henceforth omitted. Lemma 4, on the other hand, is 

not true for nonsimple points, as shown by a counter example of jost 

generalized by R. Seiler.: 9 

Lemrr~ 8A. The lemma remains valid if the real D and L are replaced by 

a complex D and -? of_, 

Some concepts from the theory of functions of several complex 

variables vrill nm·r be introduced. 10 

,• l 

Definition: A regular function element e is a triple 1LrK ; D ; F (K)l e .e e , 

consisting of a base.point K , a domain D containing K, and an 
. e e . ~ 

associated function F (K) defined (single valuedly) and regular in D . . e e 

Definition: ~vo regular function elements will be called equivalent if 

and only if they have the same base point and their· functions coincide 

in some neighborhood of this point. 

Definition: A germ is a set of regular function--elements such that 

( 1) any tvTO elements of the set are equivalent, 
and 

(2) any regular function element equivalent to an element of the 

set is also in the set. 

Definition: A ge11n neighborhood N(DN' FN(K)) is the set of all germs 

containing a regular functions element [K; DN; FN(K)J • The domain 

DN an~: the function F1/K) are. called the bas·e· domain and the characteristic 
.... ~ 

functi.~n of the germ neighborhood, respectively. 

Defini t'iorl1 
l 

The topological '(Hausdorff) space with germs as points and" 
:~~~ ' 

~,,·,:~~~---

'' 

' 
) 

·: 
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germ neighborhoods as neighborhoods will be called the germ space. 

Definition: The domain of regularity of.a fUnction F(K) defined 

(single valuedly) and regular in a doma1,.n ·D is the set of all 

germs connected to any germ of .N(D, F(K)) by a continuous curve 

in the germ space. 

Definition: The uniq_ue germ. g ['e] containing e· is·called the germ 

s'Pecified by e . (Uniq_ueness is easily proved.) 

Definition: The base point K(g) of a germ g is the common base 

point. of the e € g· • 

Def.inition: F(g) = F (K(g)), with e € g·. . e ( F(g) is independent of 

the choice of e € g .• ) 

Definition: Let N = N(DN,. FN(K)) be a germ neighborhood. Then, for 

K € DN , define ~(K) ::: g [ e J , where e.= [ K; DN; FN(K)] 

is the uniq_ue .g € N such that K(g. (K')) :: K' 
·N 

R·estayed, gN(K) is the uniq_ue inverse of K(g) ,· subject to the 

condition that g € N . 

Le~E~ 9. If the characteristic functions of two germ ne~ghborhoodS 

N f3-r}li N' coincide in.a do~.iin , ~·· .. c.', (DN .n DN,),:.the!: ... 

~~(1(). = ~' (K) , for K € D 
... ~ . 

·). 

. . 



i 
- j 

\ 

-; 
; 

i 
'f 

-! 

-42-

Proof: The associated function of any element e of SN(K) coincides 

with FN(K) for K in some·neighborhood N(K) of K € D . Thus 

it must coincide with FN,(K) in N(K) (j D -and hence in some 

neighborhood of K Thus e-- is in ~~ (K) Conversely every 

e E: ~r·(K) is in ~(K)·._-'· 

Some terminology associated with Lorentzinvariant analytic 

functions vrill nm·r be introduced. 

Defini tion
1

: A function/ will b~ called ~ (or L)-.&variant over a set 

of polnts S if and only if it satisfies 
.-­,. ,_ 

F(K) = II. F(A-l K) 
s . 

' for any K and II. such that A is in ;t (or L) and both K 
. I 

and 11.~1 K are in S . · 

\- -~Definition: An orbit is a set of points K all connected to a single 
: 

point by a Lorentz transformation 11. € c:(; . 

l 

Definition: A reeular orbit is a set of germs whose base.points cover 

exactly once the points of an orbit, and such that the imaee in the 

i - germ 1 space of any continuous curve in the orbit is a continuous 

curve in the germ space. 

Definitiort: Let g(K) for K €,L, K0 , K(g(K')) = K' , be the genns 

orbit. - This regular orbit will be called 

if and only if the function F(K) = P(g(K)) is 
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d -~variant over the orbit ·.o;; K0 

Definition: A domain of regularity will. be' called L -~variant if and 

only if it is a union of. cC -:fuR variant regular orbits. , 
.l 

Theorem 1. A function defined (single valuedly) _.and regular in a domain 

con.taining a point and L-~variant over a real domain containing 

the point has an ~-~?variant domain of regularity. 

Proof: Let 

called 

F(K) 

. :~; .·· .: 

KQ be the point in the real domain and let the functiofi be 
I ·.,' ~i 

F(K) • There is a domain D(K
0

) containing K
0 

on whtQh 
(;;~~ 

is defined and regular. Thus the set e0 = (K0 ; D(K0 );··F(~)] 
constitutes a regular function element. Let g0 be the germ 

' specified by e0 • This g0 is in N = N(D(K0 ), F(K)) • 

g1 an~ 5
2 

be any ~wo germs in N Then there is a continudus 

'I 

curve in the germ space connecting g1 and ~ • In particul~~) 

if K(t) is a continuous curve in D(K0 ) connecting K(g
1

) and K(g2 ) 

then ~(K(t)) will be a continuous curve·in.the germ space connecting 

g1 ~hd g2 • For consider any germ neighborhood N' = N(D') F' (K)) 
j 

t:b.at contains a germ .. 9/K ( t 0 ))). where t 0 is some fixed value of 

t , 0 ~ t ~ 1 • Let D" be a domain in D·' n D(K
0

) containing 

K( t 0 ). • Any germ of N' with base point in D" is identical to the 

germ of N with the same base point. For D" is a domain and hence 
'•,, 
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the function F' (K) must be identical with .F(K) for K € D" • This 

is true because F(K) and F' (K) are. both .regular over the domain D" 

and they coincide over some neighborhood of . K(t0 ). e D", since g(;K (t
0

)) 
' . 

contains both [K(~0 ); D; F] and [K(t0);D'; F'] . Since the fu..."l.ctions 

. F' (K) and F (K) are· identical for K € D" the germs of N' and N 

with base points in D" must be identical, by virtue of Lerrur..a 9 • 

Because K(t
0

) is 'in the domain/'D" , and K(t) is a continuous curve, 

the inverse image of the points K( t) € D" contains an interval !::::. t 

that contains t 0 and is open with respect to the set 0-< t ~ 1 • 

The germs gN~K(t)) with.,: t in the interval. !::::. :t are all in the 
·.· 

. arbitrary rieighborhood . N' containing· gN(K(t
0

)): •• Thus,· this curve 
. . l •·· 

~ (K(t))= g(t) is continuous. Hence any two germs\ in N can be connected 
..... , . I 

by a continuous curve. This means that th~ word "·any" in the definition 
l . 

. pf domain of. regularity can be replaced by "every11 with no change in 
' . ' 
the meaning.· (That two continuous curves joined atltheir end pC>ints give 

.. I 
:·a continuous curve follows easily.) 

I 
:.:I I, 

.I 
Consider now an arbitrary germ g in the domain of regularity 

· ·. of F(K) • It is connected to go. by a continuous curve g ( t) in the 

:germ space. Since g(t) is continuous the inverse image of any germ ~ 

I · i 
neighborhood containing a germ g(~ contains an interval !::::.t contaiping 

iO that is open with respect :to the set 0 ~ t ~ 1 • By the Heine-

:B6rel theorem>the closed bounded set 0 ~ t ~ 1 .is covered by a finitd' 
' \ ' f! 
:number o/·~hese intervals, !::::.+ , with ~ = 1 1 2, • • • 1 n • Associated with 

.these intJ~vals are corresponding germ neighborhoods N 
1

) with i = ·1, 2,;: l., n, 
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such that for t € .£\ , g(t) € Ni • And trere is then a seq_uence f \) 
so that g(ti) is in both Ni and Ni+l • 

The assumptions of the theorem are a par~phrasing of the 

assumptions of Lemma 8 .. Thus for each point Kl of D(K0 ) there 

is a domain n
0 

(Kl) c. D(K
0

) containing Kl such that F(K) is 

i:f£variant in n0 (KJ_) • c The first Ni can be taken to be N1 = ;~. 

Take K]_ = K(t
1

) . Then K1 will also lie in the domain n2 , in which 

lie the base points of the germs of Ng • The germ neighborhood u2 
' \ 

is characterized by the req_uirement that each of its germs has an element 

having. the domain n
2
. .and the function F2 (K).: Also) N

2 
contains the 

· germ g ( t
1

) , which is also in N l. = N:. , and which .therefore has the 

element [x(t
1
); D(K

0
) ;. F(K)J~·' But then F

2
(K) and ~(K) = F

1
(K) 

must co inc ide. with each other in some neighborhood. of KJ.. • But· since 

F(K) is L-fd?.variant in D
0

(KJ_) the function F
2

(K) is -L-f:fvarian=t 

in some ~omain containing K~ • Thus the conditions for 

Lemma &!'are satisfied for F
2 

(K) • Hence for any point 

there is a domain containing K2. such that F
2

(K) is 

K2 in D2 

;{ -ffi'variant 

. ::, 

in this domain. Take· K2 = K(t2 ) The argument may then be repeated to 

give L,'i?varianc~ in a domain about Ki = K(ti) for i = 3 , and by 
I 

· iterati~n, for i = n ..: 1 • In particular, there is a point . K 
1 n-. ' 

of the d~in Dn , in which lie the pase po~nts of Nn , such that 
~ r . o. . 

Fn (K) ; i~ ;;!._ • frC{variant .in some domain containing Kn-l • Lemrna 8A 1 

now shdw~. that there is a domain D (K ) containing K . the base po1:ht ,, n g g , 
~ ~ 

of the~gehn g , such that there is a function F (K) defined (sing1~· 
g '~ 

I, 
! 

: ~~);,·: 
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'. . ·. . . . 

v,aluedly) over oi D ( K ) , where it 
. n g 

. ,;:' {:0 
is regular and_ -o& -J:nvariant, 

' i 
:and.which coincides with F (K) 

n 

The germ neighborhood 

by virtue of Lermna 9, since 

hood of Kg 

in D () Zn (K ) 1 • which contains 
n. n g. 

N(cf D (K ) , F (K)) contains g , n g g 

coincides with F (K) "in a neighbor­
n 

The set of germs g' e N with 
g 

K( g' ) € of K constitute an g 

rt" -£variant regular orbit. containing g • Let g(K(g')) = g' for 

g' € N g That any continuous 
_::; 

K(t) € r·; K · has a continuous image ...... .- g 

g(K(t)) follows from the .argument given earlier, since g(K(t)) € N g 

(See Lemma 10. ) The ~ _f:gvariance of the set g € N with K( g) <:: .£ K g g 

follows from the ·ol -~variance of F g(K) over d; D ( K ) :7 cZ K 
n g g 

Thus each germ g in the domain of regularity of F(K) is on an 

~;t -~~ariant regular o~bit •. Since all pints of this orbit are con.••1ected 

to g by a continuous path they are also contained in the domain of 

regularity of F(K) • Thus each germ g in the domain of regularity 

of F(K) is. a member of an . c;{ -:f£variant ;egular orbit each of whose 

members is also in the domain of regularity of F(K) • This is what was 

to be proved. 

Theorem lA.: Theorem 1 ·is also true if "L-.~variant" is replaced by 

;, dL -~;ariant"} and the real dom~in is replac~d by a_( complex) do:nain. 

Defini tiott: A· germ neighborhood will be said to be c:( -:€€variant if and 

only 'if its base domain is of the form ;{, D and j.ts characteristic 
., 

func!ion is ci -~variant ov~r ~ D • 
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Theorem. 1': The domain of regul~:d ty of a funct~on satisfying the 

conditions of Theorem 1 is a union.of ~ -~v~riant germ 

neighborhoods. 

. . 
Proof': In the course of proving Theorem 1 1 t "'as shown that each g 

·' 

.i .JJ c..O in the domain of' r~gularity of such a function is in an oZ -~variant 
l 

germ ~eighborhood N . 
\ . g 

the domain of regularity since one is, by vit.tue of the folloWing 

All the points of t~is neighborhood are in 

, 1 lemma,': w:hich was .also proved in· the course of. proving Theorem 1. 
. i 

' . ,Lemma 10: 
. 'I . ' 

I i 1 
The image in a germ neighborhood of a continuous curve in 

its bas~ domain is a continuous curve in the germ space.. · , . 

. iThe converse·. of· this lemma i.s:. 
:. J 

. 'Lemma 
t 
I 

I 
I 

I 

10': The image K( g(t)) 

germ space is continuous. 

I i 

of a continuous curve g(t) in the 

Proof: ·A ~ontinuous function of a continuous function is continuous. 
•' 
;~ 

But ~(g) is continuous, since given any domain D containing 

K(g) .one.can take a germ neighborhood N containing 
g· 

g specified 

by a .d:unction element whose domain D' , '\orhich contains K( g) , is 
,. 
! 

contained in D •. Then for all g' € N , 
g 

K(g) € D • 

f 

Lemma 11: Let ·D be a real domain satisfying the condition of Le~~a 1 

that ·.points of D connected. by a real A € ;{; are connected. by 1i 
' l 

A ~ t . 'Let there be two converging sequences Ki ~ K0 and 

'.: ~ i:, 

' ·~·r; 
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Ki -+ K'0 whose limit points K0 .and [ 0 ar~ in 

Ki e i_ Ki • Then K0 e L K0 • 

D • And suppose 

Proof: The scalar and pseudoscalar invariants formed ·from corresponding 

vectors of Ki and Ki = Ai Ki are equal. Thus these points map 

into the same points in the space of.scalar and pseudcscalar invariants. 

As the mapping·from K. to the space of invariants is continuous~the 

converging sequences Ki -+ K0 and Ki -+ K0 map into converging 

sequences in the space of the invariants. Thus
1 

K0 and K
0 

have 

the same scalar and pseudoscalar invariants. 

In case r , the rank of'the Gram determinant of K
0 

or K0 , 

is greater than two it follows from a trivial generalization of 

·.lemma 2 of Hall and Wightman that K
0 

and K
0 

are corL"l.ected by 

a Lorentz transformation A e £.. j that the transformation is proper 

in the case r = 4 . follows from the invariance of the pseudoscalar . 

invariants, and for r = 3 there is sufficient freedom to allow A 

to be made proper. Thus the lemma is proved for the case r > 2 . 

Let n(K) be the number of linearly independent vectors in the 
' 

set /K • And let n = ~max(n(K0 ), .. n(K0)) The above argument 

works equally well for all the cases r = n • One constructs the 

the orthonormalized basis vectors ea(K0 ) and ea(K0) in the manner 

speGified in Lemma 1 above and obtains K0 = ~· K0 , ,.,here 
~ 

~ is the real A e L defined by ea(K0) = ~ ea(K0) . 
.. J' 

Thus~ K0 and K0 are connected by an element of J._., ,. This 

co~~letes the proof for the case r = n • 

r~·~ 
'/ : _:< 
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Because K
0 

and· K0 are real1 the_ only other cases are 

n = r + 1 < 4 • Suppose n(K
0

) =. r + 1 < 4 • Then, as 'in temma 1, 

one can construct a set e1 (K0 ), ···, er(K0), e0 fK0 ) + e
3

(K0 ) 1 ~hich 

spans the space of the vectors of K0 _. The combination e0(K0 ) + e3(K0 ) 

is chosen to be equal to some vector ro of zero length formed as a linear 

combination of vectors of K0 • Such a vector must exist in this case. 

If ill , the same linear combination of the co~responding vectors of 

K
0 

, is not zero then one can construct a set e
1 

(K
0

), • • •: er (K
0

), :: 

"t. ~0 (K0 ) :!." e
3

(K
0

) 1 by means of the same operations a~ before, but·.with the 

corresponding vectors 9f K0 • The two :!." signs are independent and 

will be specified.by the condition that the ~ defined by 

e
0

(K0 ) = 1\ e
0

(K0 ) is in L • For r(K0 ) < 2 the sign of . e
3 

(K0 ) is_ 

not determined·by this condition and it can, and will, be taken positive • 

The points K0, Ki 

-1 -quantities K0 = '\ K0 , 

, .and· ro can be represented by the transformed . 
-1 - ' -1 - . Ki = ~ K1 , and ro = ~ ro . . This, ~n 

effect, refers the barred points to the same coordinate system, e
0

(K0 ) , 

used for the unbarred points K 0 , Ki, and (J.) • In particular 

ro' = :!." e0 (K0 ) ~ e
3

(K0 ) 1 where th~ :!." signs are the same as the corresponding 
~ I ', ' 

ones in m • The vectors ID .(or m') are what is ·left after removing 

from some vector of K
0 

. (or the corresponding vector of K0) the ·_ 

parts along e1 (K0 ), ···, er(K0 ) • In this same way one constructs 

from the sets K0 = .[ koa -~ and K0 =:. [ kea ~ the sets of light-zone 

vectors {~a}= f~a ro1 and [~~ ~ = [a~ ro'1 by removing the parts 

along e1 (K0 ), • • •, er (K0 ) • 

! 
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I . 
:I . 

I . ' 
I 

' : 
1 

· Tha~ the vectors of these sets are collinear follows from the con-
I 
dition n = r'+ l < 4. In the special case that ro' = ro and 

·. I 
,•, 

:aa = a~ one has again ~ € L • But if 
I . 
'.or a .J. .a' ,· for some 
1 a'·· a · · 

Ko = ~ Ko with 
- and· a, then Kb K0 are not connected by a 

';-. € L . • However these cases cannot occur. This will now.be shown by an 
I - Cit,' 
examination of points in D near K0 and K0 • In the real 0 - 3 

l . 

plane consider a set of small circles f C((J.)a) J . drawn around the 

points [ ~ex 1 , and a set of small circles [ C((J.)~) 1 drawn around the 

points [~~} A set of points ~ith one in each C((J.)a) corresponds to 

a real point near K0 • And a set of points.with one in each C (ro') 
a 

corresponds to a real point near x0 • By taking the circles sufficiently 

- ' 

· small these two points near x0 and x
0 

respectively will be constrained 

to lie in arbitrarily small real neighborhoods about K0 and K0 , and 

hence in D • 

The plan is to show that there is a real point arbitrarily close 
_/) 

to x0 connected to a point arbitrarily close to K0 by a real A e: J...., 

but not by a A € L • · The sets of points in the real . 0 ,.. 3 . plane 

connected by A € L lie on the various hyperbolas having the light-

cone lines as asymptotes. The circles. are centered on these light-

cone lines, the C (roc) lying ori the line with positive slope and the 

c(ro~) lying either on this line or on the other one, depending on the 

signs in':~{~'.= :!: e0 (K0) ± e
3

(K0 ) 

If C(w) and C(w') lie on the positively· and negatively ,;;: a a 
sloped :1~~ht-cone lines, respectively,· then there is always a A e: L [ 

~ 
l~·~\' 

cor~ecting some point of C(w) to some points of C(w') Moreover, a . a 
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there are then also points in these circles connected by any still 

\i.largerii .A ·~ L·.. The magnitude of' the Lorentz tr.ansf'or.ma.tion is measured 

by the quotient.of' the initial over the f'inal (Euclidean) distances of' 

the point from ·the negatively sloped light-cone line. From these f'acts 

it f'ollows that some set of points, one in.each of' a given set of circles 

alongthe positively .. sloped light-cone line, can be takeri into some 

set of points)one in each of any given set of' corresponding circles along 

the negatively. sloped. ·light-cone line, by a single Lorentz transformation 

·A €L Thus for the cases ill' 7· ! ( e0 (K0 ) - ~3 (K0
1)) one can find a 

A e: L :connecting some real point in any real neighborhood of K0 to 

some real point in any neighborhoo~ of K
0 

, even thoug}?.. the points 

·themselves cannot be so connected. 

The same conclusion holds if' one uses ihstead of A e: L the 

real A €
1
;[ obtained b;multiplying the . A € .L :·by a reflection through 

. the origirt in the 0 ..:.. · 3 plane. However, as will soon be shmm, the 
I I 

points connected in this way cannot be connected- by any . A € L • Since 

, j by taking the neighborhoods of' K
0 

and K
0 

sma.ll.enough the points 
. ; 
• 

1 
will be in D , one obtains a contradiction vtith: the assumed property of 

' D • Thu~ this case ill' = ± (e
0

(K0 ) - e
3

(K0 )) can, in fact, not occur. 
\ 

. To see that there would be points in D connected by real 
.I .· 

, i A € j_ but not by A e: L 1 consider f'irst the case· ill'= .-c0 (K0 ) + e
3

}K0 ) . 

A time-like point in the circle .C(ill) will be carried to a time-like 
•.(>.i-." 

' 'i . -f ·. 
point in 'the· corresponding c:ircle C(ill') by the real A € o-....,. • Since 

l '• 
i :·~·. 

•1 these t":? points are in the forward and backward light ·Cones respectively 
. ~·· 
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they cannot be connected by an A e L The other case, 

m' = e
0

(K
0

) - e
3

(K
0

) , occurs only if r = 2 , as previously mentioned. 

But nm.; a space-lilte point in C(m) is taken to a space-like point in 

. C(m') by the real A e~. However, transformations involving the first 

two vectors, e
1 

(K
0

) and e
2

(K
0

), are not allowed, because the components 
I 

of vectors of K
0 

and K
0 

in these subspaces are fixed and equal, and 

hence these two space-like vectors, which lie in the risht and left space 

cones, respectively~ cannot be connected by a A € L 

The remaining cases are m' = : m, or zero. If m' - : w and 

·r < 2 
I . 

then the construction used above again allows certain points near 

K 
0 

to be connected to correspondins points near One first uses 

a A e L in the 0 - 3 plane to take the points of' the C(':jo:) to points 

near the negatively sloped light-cone line, and then uses a rotation 

-through 1t · in·the 2- 3 plane to bring the points to the desired 

positions-in the 0 plane. and w' 
0: 

have 

the same ·sense, certain time-like vectors near mo: can be taken to time-

like vectors near If roo: and a>~ have opposite senses then 

·space-like vec.tors can be connected. Hovrever, if wet and w~ have the 

same (opposite) sense a space-like (time~like) _point near wo: can be 

carried to,a snace-like (time-like) point near 
"i'. ... 

by a real 

But these points cannot be connected by a A e L unless w = w' and 

! 
a = a 

0: . Ct 

lem:na. 

In that case and R0 = Ab K0 , as asserted by the 

, ~e next case is w' = w and r = 2 •. If w' = w and 

t ' ' -ao: = ao: ~or all et then K0 = K0 . and K0 = Ab K0 , which proves 

.· 

• 
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the lemma. If aCt ~ a~ for some et then 'K0 -and·. K0 are, in fact, 
J 

·not connected by a A € L. In any event it is'sufficient to show that 

ro' = ro and ·r =· 2 ·imply aCt = a~ for all a: • 

Th~ conditions Ki ~ K0 and K~ = Ai Ki ~ K~ are·now involved, 

for the first time. Let e1(K) , e2(K) , and ro(K) be the linear 

combinations of the vectors of K that become e
1 

(K
0

) , e
2

(K
0

) ·, and 

ro(K
0

) = ro -...rhen K. becomes K
0 

• The ei (K) are then generally not 

orthonormalized, and ro(K). is not a null vector. The Ai are specified 

by the conditions ·A
1

. € .;( and by the quantities e~(K1 ) :::: e
11 

, 

= e12 ; and ro(Ki) 

e1(K~) ~.e1(Ai Ki) = 

and 

A e (K ) ;:= 
i 1 i 

and ro~ =. Ai ro1 , at least for sufficiently large i , where the 

eil, e12 ., and ro1 are linearly independent. For these quantities 

give the effect of hi on three linearly independent vectors. But 

since it follows from 

Lemma 3 that A1 - 1 . .For Lermna 3 says that given any neighborhood 

N of the identity in ~ one can find a neighborhood· N' of 

(e1(K0)
1 

e2(K0), ro) such that any points in N' connected by a 

A € ;j_ are connected by a A € N • Since for the case of three 

linearly independent vectors the A € c( is uniquely defined.by these 

points one concluded that since the sets (e11, e12, 

(e~1, e~~' ro~) · both converge to (e1(K0 ), . e2(K0 ), 
'" 

A~ € ~ Jonnecting t.hem must· approach the identity. 
~ . 

cD
1

) and 

m) , the 

But if A -+· 1 
i 

.! . 
and K i.+, K 

i 1 0 
Thus R0 = Ab K0 , which proves the 

> 

' lemma for this--case. 
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If ro' = - ro a reflection through the.origin in the 0- 3 

plane takes one to the previous case ro'· = ro • Because of the condition 

on D this case is then ruled out) since 'K
0 

is connected to K
0 

b;l 

a real A € L but not by a . A € L • 

. · :.'Next:.- there is the· case ro' = 0 ~ If all of the ro' = 0 , a 
(i.e.) if n(K0 ) = r] , then this case is ruled out by the same argument 

that was used in the case ro' = -

D .connected by real' A € -i.. but not by A € L ~ (The possibility 

I 
all.spa.ce-like is also ruled 

out in this way, it might be added~)· If ro' = 0 but some p~ is a 

nonzero vector lying along_the negatively·slo:ped light-cone line-one may 
.cci:se 

again use ·the same argument as was us.ed for the~ ro '. = - e0 (K0 ) + e
3 

(K0 ) 

casej the C(ro 1 ) is s:im:ply centered at the origin instead of at its 

former position. 

·For the case r < 2, ro' = 0, and ro' =a' ro \: o. for some a et 

a , the argument used in the case r < 2 , ro' = ± ro , goes through 

without any cl1..ange. 
\S 

Finally there/<the same case b~t with r = 2 • 
,\ 

Every ro and a 
ro~ iG either zero ·or on the positively. sloped light~cone line. For 

every a either 

case ro' ; = "!: ro • 

or ro' ·is zeroj other;.Tise it can be made i."lto the a 
And not every ro' . a is Zel~o; otherwise it is the 

·.~; 

previousiy considered case n(K0 ) = r • This means that the Ai ate 

such that the following conditions can be satisfied_; 
_, 

'· 
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( eil'. e12, illi) ~ (el (Ko), e
2 

(K0 ), ru) , 

Ai (eil1 ei21 rui) ~ ( el (Ko), e2 (Ko), o) ,' 

( " " Wn) --} ( el (Ko), e2(Ko), wl) eil' ei2' 1 . 
) 

and 
A-1·( II II ru") ---'> ( e

1 
(K

0
), e

2 
(K

0
), o) • i · eil1 ei2' i 

Here the double-primed quantities are a particular set of primed quantities, 

the wj_ being aY\. ru~(Ki) whose limit -is·. ro1 ~ 0 • 

These two conditions on tre set Ai are incompatible. The first 

two· equations i.'Ilply that, for sufficiently larg.e i .• the points Ai ro 

must lie in a narrow cone-like region. about the negatively· ·sloped light-

·cone line, whereas the second two imply that A. w must lie far from the 
~ 

origin in some narrow cone .. like:.region about the positively··sloped light-

cone line. The incompatibility of these conditions rules out this last 

possib~ity. 

The conreCJ).lences .for .the· A
1 

·ro asserted above follow from a detailed 

examination of the converging sequences. A general description of the 

argument should be sufficient. Since (eil' ei2 ) -:~ (e1 (K0 ), e
2

(K0 )) 
. . 

one can choose basis vectors 

the one spanrled by the (e11, 

(co (Ko)' e3 (I{o)) . . The ( eO:t' 

" parts of an orthonormal basis. 

e0i and e)i in the subspace orrthogonal to 

ei2 ) in such a Wa.y that (eOi' e31 ) "+ 

e)i) , unlike the. ( eil' ei2 ) are to be 
\ 

t 
A set (eOi' e:h) similarl.y related .to the 

Then Air is defined by 

and Air(e0i}e3i) = (eOi' e3{ . 
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. -...t._._...L---- _. ••. __ _J 

·,:: Since· (ei1} ei2, e
3
i, e0j_) and. (e:L1, e:L2, e31, 'eoi) both converge 

.I 

.·ito (e
1

(K0 ), ~2 (K0 ), ·e
3

(K0 ), e0 (K0 )) it folloi-rs that A/---7> 1, by Lemma..?, -
·'· 

. · r ( ) ( ) w ( r) -1 , SJ.nce Ai eil' e12 . = Ai eil' e12 it follows that A1 . = A1 Ai I . . 
jacts only in the (e01, e

3
i) subspace. Also since (e01, e

31
, .roj_)~ 

\(e
0

(K
0

), e
3

(K
0

), ro) , with ro =e
0

(K
0

) + e
3

(K0 ), one has roi -7 (e01 + e
31

). 
I 

. Since A
1
r ~ J. · and Ai = Air Airo the condition A

1 
w

1 
-'> 0 

· ' ~m:plies Airu w
1 

---7 0 Since Airo acts only in the (e01, e
3
i) sub-

space the :problem is reduced now to a problem in this two-dimensional 

space. The two conditions Aim m
1 
-7 0 and m1 -~ e0i + e

31 
imply 

·.-' :: the general Lorentz transformation in .. 
this two-dimensional space is represented by 

and 
(eOi + e3i) ~ (exp I\). (eOi + e3i) 

(eOi - e3i) -7 [exp ~ I'i ~ (eOi - e3i) ) . 

and hence one c~nnot ~rans~orm a. point n~_::::_ .· ... < e01 .. + e )i) · 

to a point near the origin. unless Re · r ' << 0~ But in i ... 

this case the point (e0i + e
3
i) is also brought close to the origin. 

Moreover any point is brought closer.to the line .X (e01 e
31

) Thus 

the point ill will be brought closer to the line X (e0i - e
3
i) . ·A~ i 

increase~ the lines X(e0i - e
3
i) are constrained to lie in smaller 

and small:er cones about the line X (~0 (K0 ) .. e
3 

(K
0

)) • Thus for 

· sufficie:qtly large i the :point ill must be taken by :.Ai closer· to a point 
. ·' 

near sd~~ small cone about ·x (e0 (K
0

) - e
3

(K
0
)), the cone becoming 

narrower with increasing 1 • Thus for sufficiently large i the 
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Ai m are constrained to lie in a cone-like region about the 

e
0

(K
0

) ·- e
3
(K0 ) axis. 

If, on the other hand, -1 ( " " ) A1 takes a point near the . e0i + e
3
i axis 

to a point near the origin then R~.I' i >> 0 • But then under 1\ all points· 

' " tr are moved further from the line ~(e0i - e31) and closer to the line 

" " /1.( e
0

i + e
31

) • Thus Ai m must for sufficiently large i be far from 

the origin in a narrow cone-like region about the line 
'; 

By taking · i large enough ..:these t~.,ro cones can be\ made arbitrarily narrov. 

Hence the allowed region~ will not overlap. This :·~ives the contradiction. 

Theorem 2. ~t D 
1: 

be a real domain satisfying th~ conditions of Le!l'.ma l. 

( ( ) 
(.:o 

· ! Let F K) be define~ single valuedly and· L-l:!'lvariant over D , 

I : 
. i and be r~gular at poi.nts of D 1 in the ( vreak) . sense that for any 

... ,. I 

.I 

I . 

point K', € D there is a domain D(K') 
I 

containing K' , · ana. a 

function .I,F(K, K') that is regular at points K € D(K') and which 

coincides with F(K) at points D (K'), some reeJ. domain contained 
r 

: i in D n D(K') and containing K' • Let C · be any closed, bounded 

subset of D • Then there is an £-:fi?variant germ neighborhood whose 

base domain B = ;{ B contains C and vrhose characteristic function 

coincides with F(K) for K € C • 

~etnar~ : Global properties of D would permit the weak form of analytiCity 

used above to· be replaced by a stronger form, and the proof corres~ondingly 

simplified. It is aesthetically more neat, and it slightly sL~~lifies 

the pr9of of theorem 1~, to continue to use only local topological 
~ 

cons±Cl~rations. 

be a polysphere of Proof: Let·K0 be any point of C • Let 

radius p centered at K0 • Let 

set of radii converging to zero. 
pi ~ 0 be a monotonically decreasing 

And let the first pi be small 



.': 

'. 

. ' 

-58-

enough so that C(K0,. pi)~ D(K0 ) , for. all i • Suppose Ki is an 

infinite sequence· of points in { C such that Ki € C(K0, pi). and. such 

that F(Kp K0 ) ~ F'(Ki), ·where F'(Ki) is the (single-value~) i_ .. f:Rvariant 

extension of F(K) to { D , which. accordi~ to. L.emma 1 exists. For each 
. (} 

point Ki € {c . there is a point Ki € c n ;[ Ki • Since c is closed 

and bounded the Ki have a:·.limit point ~O € C.. And one can find a 

· sub'sequence Ki ~ K0 € C • 

The point . K0 cannot be on fK . 
0 • If it were there wo~d, 

according to Lemma lA .' and the property of D , be a I A € r~ such that 

i<
0 

€ A K
0 

· • This A 1 would map the real domain Dr (K0 ) . containing K0 

into. some real domain containing i<
0 

€ C • The· i..11tersection of th:i.s 

domain A Dr(K0 ) wit~ D contains a re~l domain n;Ci<0 ) containing 

K
0 

• At points of n;(K0 ) the value of F(K) is given in terms of 

F(K) at points of n;C:K0 ) by the L~g_'variance condition. Now according 

to !,emma 8 t~ere is an -f-~variant germ neig~borhood, with a base 

domain {n0 (K0 ) '· having a chara:c~eristic functi'on that·. coincides 

with F(K; -K0 ) for K € D0 (K0 ) C D(K~) • The value of J?(K) at points,. 

of' n;.(K0 ) n {n0 (K0 ) must ~oincide wit~~=lue of the characteristic 

function at these points, s~nce both are ··given in :terms of' F(K) at 

. K € Dr (K0 ) :by the L-gvariance condition. But then · F' (K) must coincide 

with this ~ha:racteristic function for all points o:l ;i D' (Ko) n Lno<Ko) 
\ . : r 

~erefore FI.(Ki) = F(Ki, K0 ) ~or all Ki € -!.n~{'K0 ) n D0(~~·f 
I 

Tfl.is precl~des the possibility that a subsequence of the 
, ·I •. . . 

cbnverge Jtc5' K0 ·• Thus the limit point 'K
0 

cannot1 ~ie on 

' '' ~ ' : \ 

;. I 
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But according to temma.ll the point K0 must lie on d K0 , 

since Ki -7 Ko, Ki ~ Ko J Ka and Ko are in_ l?J. and : Ki € ,;[;. Ki • 

Thus there can be no infinite sequence of Ki with the specified properties. 

In particular for some Po > 0 there can be no points K1 € (C(K0, p 0 ) n J C) 

with F'(Ki) ~ F(Ki, K0)" · .':·.: ·:- i' C 

Take some Po with Po.> Po> 0 ·.such that C(Ko, Po) c: Do(Ko) 

Then the restriction of the .-;;/_ -~variant germ neighborhood over 

J . ~ ~0 . ~ 
·d-..- n

0
(K0 ) to the J-....-·:tnvariant germ neighborhood over :;;c C(K

0
, p0) 

is an ~~~~variant germ neighb?rhood_whose chaiacteristic function 

coincides with F' (K). for K € ( j_ C n ic(K0, p0)) .. 
The point K

0 
·was an arbitra,ry point of C • This construction 

·can be carried through for every point K' E.C. Let the radius 

corresponding to p0 1 but for the general K' € C , be denoted by 

p(K') • One can take p(K') <A , some positive upper bou."1d. 

L~t r
1 

--7 0 be an infinite sequence of positive numbers that 

decrease monotonically to zero. Let KQ be an arbitrary point of C 

and let C(KQ.' r (.r<:
0

)) be a polysphere of radius r(K0 ) about the point 

K0 : Let, r i (K,) > 0 be less than · p (K,) and less than r i • Let 

Ki be a new set of points such that for each Ki 

such that Ki € c(KO' ri (Ko)) n Lc(K~, ri (Kj_)) 

there is a K! € C 
J.. 

and. such that the 

characte~.istic functions construc~ed above for· K0 and K:i_ fail to 

·coincide 'at K = .Ki • Either a,n infinite sequEmce.of Ki can be fobnd 

or there,_,is some~ a(K0 ) · such that for ri <: a(K0 ) · no such K
1 

exists·. 

,1. •• 

. ~ . 

: · .. , t·· .. , . ' 
. ·' ' - .-

• c ,•, 
.I t.· . •' .. :..., 

.. ~ . . . ~ 
. . . ~ .. 
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.... 

/ ·' 

Suppose there is an- infinite sequence of K1 · • For each K1 there is 

a Ki e: ·;(Ki that is in C(K;_·, ri(K~)). Since the union of the 

c'(K') p(K')), K' e: C 1 i_s·a bounded set the K;i. must J::ave an accumulation 

point K0 • This point .4~st be in C , since the r i (Ki) ->" 0 .• This 
. \ 

.point : Ko is a limit point for a subsequence or·, the Ki • . The other -

Ki can b~ omitted.• nrls l~it point ~ust, accor~ing to Lemma ll lie on 

i_ K
0 

• Bi virtue of the property of D there ~ust then be a A e: 'L 

such that \R
0

. = A K
0 

·• Thus K0 is in -i_c(K0> p(K0 )) •. But since · · 
. . - - I. I 

:, 
1 

Ki --7 K0 ~nd Kj_ "-7 Ki , also K:!.-'> .Ka , and t11e Kj_ e: C must be 

·,-.::• in J..c (Kd:>, p'(K0 )} .. , except for a finite few w~ich can be omi~ted .. 
i Then also the. C (Ki ·, r i (Kj_)) will be completely inside !_ c( K0, p (K0 )) , 
' 

: ~ except for. a finite fewJ which can be omitted. But then the characteristic 

functions over -J__ C (K0 , p (K0 )) . and · ·;/_ C { Ki , p (Kj_)) must coincide 

1
at the points in C(Ki , r i (Kj_)) since they coincide over points of C 

\contained in this polysphere, whose intersection wit~ -;/_ C(K
0 

, p(K
0

)) 

fs a domain, C(Ki, ri(K:l)) •. But then the two characteristic functions 

must coincide a.t Ki' and hence also.at poinisof -;;[Ki, and hence at 

Ki • This contradicts the assumption concern~ng the Ki • Thus there 

'cannot be an infinite sequence of Ki satisfying. those conditions, and 

~nee there is an a(K0 ) such that for ri < a(K
0

) the characteristic 

function over ~C(K0 ~ p(K0)) coincides with the characteristic 

·function bver 1.., C(K' , p(K' )) for all K' e: C , at all points 

K e: C(Ko~~~ r i (Ko)) n . L C(K'' r i (K:~.') and hence at all points 

K e:. k d1K0, r ~~(K0 )) () -;{_ c(K', ri (K~,) ), . w!!ere · r i (X) < min (r ij p(:K- H 
· .. ~e point K0 was an arbitrary point of C Thus ·Ghere is 

for every K'. :e: c a characteristic radius a(K') > 0 • If there is no 

' 
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lower bound- a> 0 such that a(K') ~a> 0 for all K' e C then 

.... · one can find a sequence of Ki e C such that. a(Ki) -7 0 These Ki 

must have an accumulation point K e C 1 though· a(K} > 0 But such an 

· abrupt jump in a(K) at K = K is not possible, for. if .. · 

b (K) · = min f, a (K) , p (K) 1 then certaixD.y a (K) ? 5 b (K) > . 0 · ·for· 

K € C(K, ~_b(K)) n c,·: ~ince··fcr these K all points of C(K, ~ b(K)) are 

· 'in C (K,· b (K) ~ , where· the various characteristic functias coincide 

even·with the weaker limit a(K) on the r
1

, and hence certainly for 
. i - .. i 
ri < 3 b(K~ • Thus there must be an a>. 0. such that a(K') >a 
for ali : :K' € C • Thus the union of the £-:~variant germ neighborhoods 

overthebase'domains £c(K', b'(K')), with K' e C and 

. b' (K') = min (a, p(K' )), satisfies the .r.eq_uired conditions;_ its base domain 

/! 0 
contains all points K' e C -, it has an ~-knvariant characteristic 

. function defined (single -valuedly) over :its base domain B = f.__B , 

and this. characteristic function coincides with F' (K) . for K e B f) ;G C 

.. 
Definition: An enlargement of a germ neighborhood N is a germ neighborhood 

' containing N but not contained in N • 

Definition: A germ neighborhood N will be called maximal if and 

only if no enlargement of N exists. 

'Lemma. 12. • Every germ neighborhoOd .is contained in a maximal ger.m 

neighborhood. 

v_~~-oo ,.r 
·'· 'iJ'.~ ! ... -
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Proof': Let N . be an arbitrary germ neighborhood. A maximal germ 

neighborhood ~. ";::) N can be constructed as. follows: Let 

[ Ki~ ·be a. denUmerable sequence of points that is everywhere 

dense in the ··space· · . in which lie the base points of . the germs of 

the germ space. Let the Ki b~ enumerated. If a point K1 is 

· reached that is in the base domain of an enlargement of N then 

replace N by this enlargement (probably one of many possible 

enlargements) and proceed iteratively with the enumeration of the 

points of the sequence 
. I 

•. Because the union of a (finite 
I 

or infinite) set of open sets is an open set the result of this 

denumerable sequence of' operations is a germ neighborhood -~a, 

since the base domain D is certainly connected and the function a 

F (K) is defined (singlE: vaiuedly) over D and is regular at any a a 

point in D 
a 

·'•, 

Let ~ be the set of ac~umulation points of the points Ki € Da 

No enlargement of . Na can contain a point whose base point K is not 

in p .. 
a 
.I 

points 

For any such p~int . K . must be an· accuinula tion point of 

not in D •. Hence a.ny enlargement containing a point 
a· .' . 

with such a· ·base point K would also contain a point with base 
' . . 

' point: K not in '.b 
· i a This is impossible;·. foc ·if there were such 

. I 
, -·a Kj,f \ 'then when this :Ki was reached ~ th~: e~umera tion . it coult 

have been included in the ·base domain of an enlargement of the th!!m 
~- ~-
,~ . .: 

curr~~~ germ neighborhood, since enlargements.:. of enlargements are 
' . I 

them~~lves also enlargements. But the const~uction was such that 
I 
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if. any Ki can be included in the base. domain. of any enlargement of the .. 

then~current ·germ neighborhood then it is in fact included in the enlarge­

ment associated :nth this Ki • Thus this Ki 
1
WOuld be in Da • Thus 

no Ki not in Da .1 and no accumulation point K of these K1 .• can 

be the basepoint of a point in any enlargement of Na; the base points 

of all points of every enlargement of Na are in. ~ 

If a point with base point K € D is in an enlargement.of N a a 
' ' 

then·.the value of the characteristic :function of the enlargement at 
I 

K = K '.is unique; it is the same "for any enlargement. For in order that 
I 

a point with base .point.· K € D a-'' be in an· enlargement of Na ·.the 

. corresponding characteristic function must be defined . (single ·vaiuedly) 

. ,'., . and-reguiar in a neighborhq~ N(K) of K 1 and it must coincide with 
; 

Thus it must coindide with F (K) at a 
. \. 

the points ~i € Da n 'N(K) 1 which are de~se in' ,a neighborhood. of K 
r . . 

at these poi~ts then det~rmines the fm1ction 

' -. l at· K = K by virtue of the continuity requirement implied by the 

' j regularity,'~t K of the characteristic :function of the enlargement. 
. i 

. : Let DM be the subset of. Da consisting
1 
of all the points of 

.' 'j 

·.: .' 'D C. D and of all the base points of· the points of any enlargement of 
· ·.:• a a 1 · . . • · 

: iNa • Since the DM is a union of domains each of .. which has a point: 

;: ~in ~common with Da the set DM is a domain. Since ·the value of the 
1
1 :i .. · ~ 
!cha.racter:;Lstic function of any enlargement of Na is uniquely de~ined 

~or eve~j': K € DM one ma~ denote it by FM(K) 
I J,~ ~. ' 

regula.zi .~~ every-- K-e-DM because it is defined for K € DM by an " 

This function is 

i ., '·' 
enlargem~ of N •· Thus one may define a germ neighborhood , . a 

. ! . 
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. ~ = N(~, FM) • This germ neighborhood contains Na and hence N • 

Moreover, this germ neighborhood NM is maximal. For any enlargement of 

· . ~ would also be ·an enlargement of N a· • But no enlargement of N 
a 

exists that is also an enlargement of NM because NM contains every 

point of every enlargement of N 
a 

Lemma 12A Every L-ffiva:riant germ n~ighborho~ is contained in a 

maximal germ neighborhood that is -1_-fiiva:riant. 

Proof. Let N = N(D, F) be an ;[-£8variant germ neighborhood. If 

.• 

... 

. an enlargement of ·N exists then an 1_-flivariant enlargement also 

exists. To prove this, note first that any enlargement of N i's a 

domain containing a point of. N and s?me point not in N • By 

connecting these with a continuous curve one can, by a simple construe-

tion, find, in the enlargeine:nt, a point :.P
0 

not in N .such that any 

·neighborhood of P
0 

contains a point of N • Let the base point 

of According to the Corollary to !emma 8 there is a 

domairy n0 (K0 ) containing K0 such that the function defined in 
I 

D0 (K
0

) as .the characteristic function of the enlargement of N can 

be e~tended to a function F.'{Kl" the:t is;C-f£variant-throughout.i ?0(K0). and 

and regular trere. It must coincide with the characteristic function 

of tH~ original ~-~variant germ neighborhood, wherever both are 

defi~~d, since both functions are ~·-~va;iant over their domai~~ 
of dJ~inition and they coincide in D0 (K0 )() D, which contains a ~~int 

., \~ 

of }v~y orbit common to both domains. Thus the union of the original 
... 

;~H~l .. 

:''.' 
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;(-~variant given neighborhood N with the -:L-5:8.varia~t germ neigh ... 

borhood_. N' ~ N(/..D(? F') constitutes an enlargement of the original· 

one, and .. this enlargement is £-:fi?va.ril;mt •. ,Thus if an -i_ .. fllvariant 

germ neighborhood has an enlargement it has an £ ~~riant enlargement. 

By :virtue af'. this~ one may :proceed just as in !emma 12 1 using however 

only L-~variant enlargements. . After r~ning through the denumerable · 

set Ki . one has an i_ -~lf8Xiant germ neighborhood N = N·(D , F ) a a a 

Now, no :point not in Da can be ~he base :point of an ~-~iant 
·enlargement. The set DM C. Da is defined. by· :using only J... -:b?variant .. 

enlargements •. Thus ~ :== N(DM' FM) is a germ domain that is maximal 
. ..P c..O. . 

with res:pe~+. to J-._ -~iant enlargem~nts •.. But then according to the first 

··.-:· .:pa.ra~a:ph NM is also maximal. 

that is £-~variant.· 

Thus it is a maximal germ neighborhood 

l . 

Definition: The base domain of a maximal germ neighborhood will be 

called a sheet. · 

Theorems lA and 2 .1 · in conjunction with Iemma 12A.>are summarized. in 

Theorem 3. ·. Let F(K) ·. be. a function defined (single ·valuedly) over a 
·. 

real domain D • For every A in the real :proper orthochronous 
~ \ 

homog~neous Lorentz group. L and every .K such that K and A. K 
' 

are ·:Lh D 
~.;;.(~J 

:: FiK) 
.. 

let F(K) satisfy.the Lorentz ~variance condition 

= A-l F (AK) 
s 

-~ 
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, I 

. ~ . 

. .. ,. 

'! If F(K) . ~s regular-at 'some point K e: D then the analytic continuation 
'·: j' 
.•. i of F(K) from the neighborhood of.' :. this point is defined over a manifold 

I· 
,· 'i \ 

.. i covered by a· set of sheets each of.' which maps ·onto itself.' under any 
.• 'I . 1 

, : ·~ element of.' 'till~ proper homogeneous complex Lorentz .group . -;/_ · And for 

· iany sheet the'associated function defined (single.·Valuedly) and regular 
. i 

·.;· !at all points of this sheet satisfies the Lorentz ~variance condition 
. I . _;. 
· if or. all· A e: . ;;J._ • '\ . . . ·. . :. 

· .1! 'Moreover, if every point of.' D . is a regula.t' point of.' F(K). and 
I 

:b · has :the property, specified in Lemma 1, that any)points of D 

~onnected by a real .A € · :1, are connecte~ by a A e; L , th~n any closed 

bounded subset C of D can be completely contained in ·a single. J..:-:f«variant 

she~t, with F(K) coinciding with the function defined over that 

· sheet for K € C • 

Definition: The restricted mass shell is .the subset W in the space 

of poirits K=[ ~~ · · ·, kn ~ that satisfy the n mass constraints 
. . 

-~2 2· 
(k ··· ·; = m. 

i .. ~ 

l.l. 

the four conservation laws 

\ k 'l.l. ·= 0. 
. L i·· .· 

,;;~ i 
l.if:k~ 
\~; ·~ 

1 •.. 
' ' 

n) . 
-' 

(i = 

I. \ 
\, l.l. .. = o, 1, 2, 3.-' .': . 

and ·-titie condition that the set K e W have more than one linearl1\ 
~1\ 

ind~pindent vector. 
. . : . 

:!:. 

i.,, 

The mi · are fixed· positive numbers and n ~ 4 

.• 
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Lemma 1) • The restricted. mass shell W is a (3n 4) complex..;; 

dimensional: manifold • 

Proof: Consider any point K € W Let the K be ordered so that the 
i 

· last two are linearly independent. Let· A (K) be a Lorentz trans-
'- . ' ·. . ·. 

formation that is such -that the. energy components· of the .vectors of · 

i(i (K) = A (K) K are all nonzero. Such a A(K) surely exists 

since the K are a finite set of nonzero vectors. Let the components 

1, 2, )
1 

be- numbered so that k'' 0
1
· /k.',O··· ~ k'',0

1
.)k';!}/. This is 

n- n . n- n 
! 

possible because kn-l and kn are linearly independent. By a 

small change in · A,_.(K) that· does not upset the above inequalities .. 
,1(1 •· ;.0 / 2 i.-:t. ,',-:t. 2 

one can also ensure that (k ·,yl·· . +. k . ..' ) 7..1., (k vl· + k l.l) , since 
n- n n- n 

·:.k~.,.1 + kn f _o • . . 
. W~"t~ !\(K_):" . fixed in this vray the set of vectors K'· (K, K) 

is defined by K' (K, K) ==: A· (K) K • 
. '· 

The set Z(K, K) is then 

.. defined as the set of (3n - 4) complex variables consisting of the 

three sp3.ce components of the first (n- 2) vectors of K'(K, K) 
. . 

and the first two components of the . (n - l)st· vector of K' (K, K). 
I 

· The s~t of :functions . Z(K, Kf · are analytic functions (in fact linear 
! 

func-thons) of the vectors of . K ·They define a set of mappings 
! 

of K space onto Z space. 
. ~ . . . 
Bt vir~ue of the conditions that have been imposed on the , 

, vect~s of K' 
jf':7: 

the inverse transformation~ K' (K; Z) _1 that ~p3 Z 

back.t~lto K' € W is uniquely defined for · Z € .U(K), ·a domain 
. ··~ . ~ ~; ' . . . ' 

7~ ~ 

corl_ta..~ning Z :=!! Z(K, K),, and is ·an analytic function _of Z th~r·~: 
v.:; /,. ~~;, 

\:~~~, /.- 1 
,!\, 

l.~_l . _________ ., ... 

------- . 

,. 
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- ,. 

' 11. 
This follows from simple algebra or from the implicit function theorem; · 

. ' 

the conditions of which are easily verified • 

The set W can be made into a topological {Hausdo;rff)" space by 

defining the open sets in W ~to be the restriction. of open sets in K 

space to W • The topology in K space and Z space will be taken as 

the usual one induced by the Euclidian norm. With the topology of W 
'· 

-defined in this way the continuity of t~e furictions _K(K; z) ·and 

·. ·. Z(K; K), considered as mappings between K sp3.ce and Z space, which 
' . . . 

•• ·# ···: 

. I 
follows from their analyticity, _implies that these mappings are continuous 

. mappings between U(K) and its· image UW (K) C. W ··. • For if a neighborhood 

of a point Z · e: U(K) maps into a K-space neighborhood of its image 

K = K(K; z) then it must also map into a W-space neighborhood of 

K = K(K; Z) ,since it maps into W. And conversely, if a neighborhocd 

of K e: W · iri K·spa.ce maps in~o a neighborhood ; in . -Z · spa.ce,.then its 

restriction to W also maps into this neighborhood. Thus the transformation. 

K(K; Z) defines a one-to-one continuous mapping of neighborhoods of 

K e: W conyained in UW(K) . onto neighb-orhoods of Z contained in 
' 

U(K) • Si'hce the inverse is also·continuous the transformation is, 

by definition, a homeomorphism and the ·-:op.en sets in UW(K) and U(K) 

are homeomorphic images of each other. Since K was an arbitrary point 

" I . . 

. of W thEf set W has -an open covering by sets homeomor.phic with open. 

- ·s(3ri-4) 
sets of ~ .. , 1 : and hence W is a (3n-4)_ {complex)~dimensional 

,: ) 
!~z j 

manifold~.,;, 1 

!!. f:. .;,:· 

.' ;f~\~-

'(' 

~I 

.. :..: 
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Definition: The functions K(K; z) and. z(K-:; K) will denote th~ 
functions introd:uc.ed in the proof of lemma 13. · The functio:n 

Z(K; K) is defined for. K € w and·· r"or all K ·,, and for each 

K € W it is an analytic function ·of K .• The tunction K(K; Z) 

is defined: for K € W and Z € U(K) 1 a domain contairiing · 
. . 

z = Z(K, K) ,·and for each' K € w it is an analytic function of 

. Z for. Z € U(K) • The· function K(K;. Z) maps points f € U(K) 
. . 

into Uw(K) <==W • Its recipr.ocal is Z(K, K) . in the sense that 

Z(K; K(K; Z 1 )) = Z 1 for Z 1 .€ U(K). and. K(~; Z(K; K.~)) = K1 for 

... I ;K 1 _€: Vw(K) c w. 

Remark: The set Uw(K),. as a homeomorphic image of the:,.:d.omain, U(K), is a domair. 

Definition: The mapp~ng ·. ~(K) is a mappirig of .... :·· K € Uw(K) to 

· z: € U(K) defined 'by ~(K) K = Z(K; K) for K € W and K ·€,U\.;(K) .• 

·Definition: The restricted mass shell .W toge~her with the complex 

structtn-e· induced by the coliectiori . [ uw(K) ·, ¢CK') r K € w, is 

called. the complex. analytic manifold W ·of W .. 
~.!.. . i •.• ' •• ' • ' j ... . ' . :' : .. . . :.. . ~ '; 

. :· . ......... "' 

. Definition A: A function M(K) defined on a restricted ~ass shell W 

will ~be call~ regular at K € w' if and only if M(Q.1 (K) z) = . 

I r·l . . (M.!' ~-1 '(K')'t Z is a ~egular function of · Z . at Z = ¢(K)' K . 
1\ I ~ . . . '' . . ;j· 

.,,..., , \ t ,_, L .. -r- .. -...... : .... ~- , , ·~~ .. ~ . 
<> (,,." ;,,: . · Defini~i~ A 1 ~ A function M(K) defined on a restricted mass shell fow . t. t (.I . ;I •. 

i ·:~ e 
will.be called regular at K € W if a~d only if Mf ~·l is re~ular 
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for every'one-to-one mapping <P ,·such that 

k(z) E W is· an analytic function at Z =:= <P K 

A.-1 . 
\j' z "::." 

Lemma 14·. Definitions A and A' are equivalent. 

Proof: If M(K) . is regular (A') at K E vl it is .certainly regular (A) 

at K E I·T since Q(i{) is a particular ~ . If M(K). is regular (A) 

at K € w and ¢ .. is a one-to-on~ mapping such that ¢~1 z -= K( Z) •'€ H 

is an analytic function at , Z ~ ¢ K' 1 then (M o cy- 1)z =: N(K(z)) = 
M(¢-1(K) Z(K; K(Z))). But M o q-1(K) is an analytic ~unction of 

1 
its argument z for . z = Z(K; K)' and . Z(K; K) is an analytic 

·.·function of K for K = K, and K(Z) is e.n analytic function at 

z = ¢ K • Thus M o ~-l is an analytic function of z at ¢ K , 

since it is an analytic function of an analytic function of an. 

e.milytic function. 

'Theorem 4. · The preceding theorems and lemmas remain valid if F(K) 

is replaced by M(K) defined' on a restricted mass shell Y1 ) and 

all domains are taken to be domains re la ti ve to Vl 

Proof: The mass shell contains all'poi?ts having the same scalar invariants 

as any point on it, and in .particular all points on any orbit inter-

secting ·it. This is the only global property of the K space that 

was used' in any of·the above proofs. For local properties one 
~1 • 

repiaces the topology. of K space '6y the topology of H space.:!" 
·"\, 

,,~:&H: . 
Soml!i•: of the proofs become vastly simplified because for real 

·~ ' . .-.. :~~ 
\~ : :-1~ f 

K. E ?1 one has n = r • 

'. i 
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· ··Remark 1. A~y·real domain of W satisfies.the condition of Lemma 1; 
I, 

. ,:.1. 

tWo real.points of W ·connected by a·real 11.'€ ;/_that is not a 

A <:: L must have opposite energy components arid hence they cannot 
S L"o tJ t 'I' • """.l M 'I<' ) 

.. 

i. 
' ' . 

I 

I 

both be in ?- real domain in ~ ; . The "~\A funct~ons;\have been .shown 

to s~tisfy the L-:fivariance condition at regula~ physical points.('> 

Thus if Dr· · is a real.· ( physicai) domain of reg\llari ty of M . c 

(defined over W) then, by Theorem·;;, any closed bounded set C CD 
r 

is contained in a sheet 5 that maps onto, itself under any A <:: ;£, , 
and the function M~ has a single-valued analytic continuation 

! 
throughout 5 , and is £ gvariant there. . 

Remark 2. 
:.~ 

One consequence of the above remark is a slight weakening'· la)f 
. . 0 

the assumptions needed for the 5-matri:x: proof of CPT invariance !·;· 

. In the original proof3 the postulate of minimal. analyticity req~·~r~d 
the· 'existence of a physical sheet· that was bounded by cuts defiJ~a 

·by equations involving only scalar invariants. This condition on 

the bo~ndary was imposed specifically to eliminate. problems 

associated with a possible multivalued.ness in the continuation to 
. ·\~ 

·~ 

the gPT image point. However,Aconsequence of Theorem 3 drawn in· 
j 

..P c_o 
the fibove remark is the existences of the single-valued · ;;/"" -:ewariant 

1.3 
continuation to the CPT-image point. The proof of CPT invariance 

i 
:7 ' 

in this way is similar to the field-theoretic proof of Josti that 

proof rested heavily on Lemma 1 of Hall and ''i-Tightman;; .vhich is . . . 

ra t~e.r analogous to Theorem 3. 
.. ·~ 

-~ 
Remark \,?·~,i, .. In the .construction ~f the decomposition of the analytic ;·i>l4o-

~·~ ~ . 
. fJnctions into analytic functions of scalar invariants time starldard 
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;, .... 
! .., ... _ 

: (polynomi~l) · ~variants~~·::t:~ 1·
5
-:the c{.;.~vari~n~e .of the domains 

of regula;ity is' a·basic :!.n~edient. ·A ·fundamental result. that 

· .. can be drawn from this paper (T'.neorems 1 and· 3, and the 
· . · · . -rt~t:.,..~c. e- C"·"e. 

at physical points established in ~us=s~s) is 

c.o 
L-~variance 

that any· 

.... domain of regularity of Mp containing· a physical point is 

..IJ c.o 
~-xnvariant. Since 'Mh is defined by analytic continuation 

· from physlcal points,· any domain of regularity of MoO- is · 

;f., ~1:8variant. 
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. APPENDIX A. GENERALIZED SPINOR CALCUWS 

The Lorentz transformations. A~v(A, B) are defined by the 

·equation 

A a B = a. A~ (A, B) , 
v . ~ v . (A.l) 

where a~ = (a0, ~) are the usual Pauli matrices, and A and B are 

' unimodular two-by-two matrices. The unimodular two~by-two matrices 
1 

form a group. ·The canonical irreducible representations of this. group 

of dimension (2a. + 1) are generated by the recursi.on relo.tion 

(a)\aJ 
A .. \\f 

/ "''·, I V.. -. 

( c).\-y1 
A :·\\.,/ / r\. , 

(A.2) 

where the coefficients C are. the usual Clebsch-Gordan coefficients. 

The is identified with A • 

Generalized spinor indices ·of order ·(2a + 1) are introduced. 

They can be either upper or lower and either dotted or undotted. The 

distinctiorl. between .indices of these various types is with respect to 

the effec~ upon them of the operator A s 

is defined as follows: 

(a)\a/ 0 

= A :",\· s ·· 
/a, a' 

1: • I .sa 
, ( \ o I I . 

aJ(:t.it\ · 
B \:':' .\ 

0 '.' Q\ 
.:' \, 

. 1 . / 
( - '; Q/ 0 a)J .. \'y'. 

. tel''· ... 

The action of this operator 

.· 

(A.3) 

. (' 
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Here is defined by the analog of (A. 2) with B' s in place of 

A's. If a function has several spinor indices then As acts individually 

. on each in the mariner given by (A.j). · Fo·r -re~l Lev-""'~ 1 """"' 5 ~""""YV>~'~"'.s JJ= 1 

Let f(V) . be a function of a set v = {. "' .• ;v } 
. . n of four-

vectors. Let AV = { Av1, · • ., Avn} where · 

(Av)~ = ·A~ (A, B) vv v . 

I 

(A.4) 

If· f(V) carries spinor indices and satisfies the equation 

As f(V) - f(AV) 

·CO . 
Then f '-till be called a~ i;nvariant spinor function. The Pauli mattices 

a will be considered to have matrix elements a · ·• 
~ .. . ~Cil3 • 

~\oi\S .:.~"·.f 
~ the function 

. g(v) =· 

co 
is, by virtue of the conventions adopted, a~ ~variant spinor funct~bn. 

____ ., --------~-----·--- ····-· ------·-·-·- -------------- _ _. ___ ·--------------~-- -----·. ---··-··· ··- ~---·-·. 
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