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ABSTRACT

'! A theorem is proved that asserts, roughly, that a function

3

'tﬁat is real Lorentz covariant anywhere is compley Lorentz covariant

eﬁerywhere in its domain of regularity. It is also shown that the
'?Aglytic continuation of a scattering function from a.regularity
aomain in the physical_région of a given process along all paths
generated by complex Lorentz transformations leads to a function'
that is single-valued inithe neighborhood of all these paths..
Applications are discussed. The results derived constitute neces-

sary preliminaries to a discussion of the analytic structure of

scattering functions to be given in subsequent papers.



PROPERTIES OF IOE*NTZ COVARTANT ANALYTIC FUNCTIONS

The'requirement that transition probabilities be invariant
» ' AU B .
under physical Lorentz transformations implies™ thgt the scattering

-functions M(K) satisfy the Lorentz covariance condition

2,3

» MK) ' = A w(A™T x) g
C L -

for all real K corresponding to physical points and for A any

o o . .
,g}ement of the‘real proper orthochronous homogeneous';orentz EXYCUP.
:H%re K 1is fhe'set of variables
C K = {k;, m, £, . L

Do

where ki’ m. and ti are the momentum-energy, spin guantum number,
and particle type.of particle i , and AS‘ is an operator that applies
to each spin index m, a matrix transformation corresponding to A .
The specific form of As is given in Appendix A.
| In +this paper some consequences of assuming that M(XK) 1is also
regular analytic at some physical point will be examined. The main resul
to be established is thet if an M function is regular at some physical
point then the complete analitic extension of the funciion is defined
over a multisheeted manifold each sheet of which maps onto itself

undéer any é?oper complex Lorentz transformation. Furthermore, the

+

function defined (single valuedly) and regular over any sheet is

t




invariant under proper complex Lorentz transformations. Finally, if
M is regulaf at each point of some real domain containing only
physical points then the sheets described above can be chosen so
. ]

that all the points of this domain lie in a single sheet. These results
have some important consequences, which will be mentioned ét the end
of the paper.

The initial considerations will refer to a function F(K)
whoée domain of definition is not restricted by the mass shell and
conservation-law constraints. Also the type variables T = { T, }
will be considered fixed. Thus the argument of F(K) will be a set

of the type introduced above but with the mass constraints and type

variables removed.
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Let the following definitions be made:

’

Definition: L will denote the real proper orthochronous homogeneous

Lorentz group. It is continuously connected to the identity.

'z
Definition: _ will denote the complex proper homogeneous Lorentz

roup. It is continuously connected to the identity.
g Ny

Definition: A will represent a Lorentz transformation and

(A K)E{A k, mig'
(The . ti are temporarily

T

i

suppressed or eliminated.)

<) y

Definition: The point X represents the set of momentum-energy vectors

gki% , but a function at a poi

momentum-energy variables specified by the point X ; allﬁspin

[

. indices “.are - allowed.

Definition: Points K1 and Ké 'related.by ;Ki~= A X will be said

to be connected by A .

; .. 174
Definition: The set of points connected to X by some A ed(or L

int means the set of

functions having

1)

’

V‘{'.\Mi_s C)&;‘ '%o;’\{—

2

- A o
will be denoted by AK (or LK ).

g 2
T D b¥ some Aedfor L) w

Definition: The set of points connected
‘ :

31

i

1

Definition: A point X is real if and only if the four vectors i

.
\

to some element of the set

1 be denoted 5y £ (or L D) .
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Definition: A real set is a set of real points.

Definition: A'function’ F(K) is a (single-valued) mapping to the

complex numbers.

[ SRR

Definition: The spin indices of (K) will be presumed to have ,some

spinor index type Z@pet, and A F(K) will represent the result
22

of the action upon F(K) of the corresponding spinor transformations

associated with A , as discussed in Appendix A.

Lemma 1. If F(K) is defined (single valuedly) over & real set D
o : ali
and satisfies for all A € ¢2i andﬁ K such that K and A K
b v
: t

N ’ co
are elements of D the Zzmvariance condition

i
—~
=
pa—
i
>
=
N
>
@)

“x | o L

1. : -
KeD and A ¢ oL, defines a (single-valued)

then (6.2) with A
. . . J i ;'; . e e—m Ll . . )
function over ol D , provided any two points of D connected by

f g - : ;= . ~ -
a real element of ./, are also connected by an element of L .

-+

Proof: The prescription will uniquely define F(X) at K' of 2D

if for -any two points XK, and X, of D for which

1 2
K' = AL K, = A, K., with A, and :f has
= l \l - 2 2 2 W_Lt l Cad il A2 € “ One nao
rk) < A B(K 5
A, F(K]) Ay, F(K,) - (B<%)
- ., 2% N ademr 1 — -1 1 e [/ e "
But ?3 the group property K, = A, " A K, = A K, . Thus (6.2)
gives
s -1 “f e v/
L (K2) - AES Als x (Al) (5’1\‘ "')




b .

o -1 e - . : -
provided A = (A2 Al) € L . Hence it is sufficient to show that
A is an element of I . If the rank r(Ki) of the Gram determinant ¢
G QGéJ= ki . kj) at the point Kl is four, or equivalently if there
A )

are four linearly independent vectors among the vectors of K then

1 J

the rank is also four at K2 ; since inner products are unchanged,

and the same four vectors are also linearly independent at Ké . In

this case the linear transformation A is unique. Since K, and

‘ - "'D - 3 3
Ké are real, A 1is a real element of J. . By hypothesis it is then,

s - ——
by virtue cf its uniqueness, an element of L .- This completes the

3 the transformation

1]

proof for the case r(Kl) =L ., For r(Kl)
L '

A is still unique’ ~ and the same argument holds.

If r(Ki) < % then the transformation A 1is not always
ﬁnique;y defined by the equation K2.= A Ki. and it may not be real,
as required for.-the above argument. There are several cases. IT
the rank r(Kl) is egual to n(Ki) , the number of linearly independent
. ,
vectors of Kl , then the-spacg*separates in§o é mapifold M(Kl) of
Adimension n(Kl) = r(Kl) spanned by the set Ky and the orthogonal
manifold M- (Kl) . One can construct a set ofireal orthogonal basis
‘vectors ‘ep(Ki)) each.oﬁfiength plus or minuS one,

such that' the first  n' span m(Kl) and the last (4 - n) span

L i ' .
M (Kl) . (To construct such a basis one first takes ‘n(Kl) linearly S

"
‘

independent real vectors from the set K, - This set is augmented y

vy (4 - n(K1)> real vectors to give a complete set of real linearly. -
] ‘

independént vectors. Because the rank r(Ki) equsls n{(X,) the linear

equations arising in the construction of ,ep(Ki>' are soluble.. The

<
)
"Df‘

r
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e
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details have been given by Hall and W:’Lghtmar;.‘LL Since the original

vectors are, for us, real the coefficients in the linear equations are
. _ ‘ 5 |
real and hence the solutions can be taken to be real. A similar real

ba;is, ep(Ké) , can be constructed for L

2

Our interest is in the various Lorentz transformations A" .
satisfying K, =A"K , the K and X, being the fixed points of
o .
D connected by A € &; K. = A K% . The transformations

" A'! can be represented by the matrices ASG defined by

Megl) = %) My = e () 6THG) Ay (¥h5)

where a suwmztion convention is used. -The-labels. P, o, and 7

" specify the basis vectors, not components, and

il

o] T, ‘ap-. o A ca . ”
GP(KJ) e (r{j) e (Kj) = i85 for j=1,2 . - (F.6)

. . o/ i
For either value of j three of the vectors e (K.) have
fé_f J
length minus one and the other has length plus one. "That 211
four have length minus one is impossible because any vector Vv can be

expanded as

,.— ‘,‘ ” 5 — o | 4
Vs v, <&j}e () . | (K1)

VoK) = e (k) s v o= e fx) v, | - (k8)

" where u labels the component of the vector. Then



v - o1 .
vevEw, el vy = vp(Kj)_Gp (Kj) VG(KJ) . (%.9)

: 'If the negative sign were always to occur in (%.6) then all vectors

Irepresented by real vp(Kj) would have negative length. But the

|

kvector v with components VH = 5HO has reall;vbT“andipositive length
b v - o . ' C ‘
&Gp =,(¢, -1, -1, - l).j ; which is a contradiction. On the other

; ) ] ' ) - 1L . 2 .
hand if there were two real orthogonal vectors v° and v of length

plus one then

’ 2 2 ' 4 o .
1 1. 2 2 ! 5
(vp) -1y =1, (vo ) - Il =1, (B\10)
and
1 2 1 2 e
Vg Vo = X X . Bil)
From these it would follow. that
e 2 | B - 2 e e i 2 ‘
P = Qv ) @ IFDD), | (%12)
and hénqe that
. 5 .
1 2 ;1.2 -
(v o) > i - (&13)

o

which is not possible for real vectors. Thus there is, for each J .,
.' " ' - G k7 Pal 43 - Fal P P
precisely one vector e (Kj) of length plus one. Because of this

. : G - .. . .
the vectors e <Kj) can be generated from the original set of basis

vectors By real Lorentz transformations. The transformation Ab ‘con~

necting the two sets




and _ i

vf‘lAbeU(Kl) = eU(KQ)‘ o : (F.11)

will then 2lso be & real Lorentz transformation.

ES

The basis set ec(KE) is not completely specified,by this
“otructlon. Iw is possible to take the first n wvectors (vmiéh

may or may not include the one of positive length) to be given by
o o N N/
%) = & e%(x) o ={1, 2 -+, n) . (%15)

For, since Ké AKX , these wectors span the space M(Kb) . They
. o, . o
are orthogonal, since the e (Kl) are. and A e &, And they are

real, since A takes all the real vectors .of K1 into the real

vectors of X, , and hence by linearity all real vectors of M(Kl)

into real vectors of M(Ké) . Because n(Kl) < 4, one can by proper

> n(Kl) ma.ke

. w : Tr, .
choice of the sense of the vectors e (Kl) with
PR
Ab a real element of ot .
Wluh The basis vectors fis ea in this way it is clear that the

basis vector of positive lencth occurs either in the first n +vectors
A ” gy ;

i

of both sets eU(Kg) and ,/,e‘G(Kl) or in the last (L4 - n) vectors

of both sets. Also, with'this choice the first' n-by-n suvbmatrix

i . : .
of (A”), is Che n- ov—n unit maurlx. Since A!. takes a2ll vectors

'\
.
&

Fh

o M(Kl) \1nto vectors of M(X.) <the first n columnc of A" thave

2

Zeros exCept in the diagonsl positions. The ame DrODcruy hOldo also
s1 01 ,T..

E
for the first n  rows as a consequence of the relations N Ké Ki

)
1

—,
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1

1t \ n- . . \7/
(G A C-)pd (A )o | - - (Ka6)

which is the charac»cr tic property of Lorentz transformations. Tha

i

s . £y .
A" is a lorentz transformation follows from (fA5) and (H14); one

LS

obtains

1 . _ . nQg W >/
A, A ep(&l) = eU(Kl)A 0 A_;ep(Kl) (A7)

1t -1 -, . . R .
which shows that A = -Ab A . Since /\‘0 is real, the transformation .

A" will be real if A" is.
The conclusion from the above remarks is that for the case
. . R _— .
n(Kl) =.r(£l) all Lorentz transformations A ¢, satisfying
K2 = A’ Kl with Kl and K2,G D, and with X, = A Kl for some

A ecgf , can be represented in the form

A= A A ﬁfl o B 8 (5.28)

s
1 -~

with a fixed real A ccgf and & A € /. differ L 1z from the identity
)
o . " \‘ . N Y ) - vt o
. only in thé (L - n)-by-(k - n) subspace corresponding to M ul) .
Ly . T - PR e
iAna conversely, for all A ¢ <{ satisfying this property, wnich we call
- . N — 1" . .
P, the transformation A= Ab A is an elemupt of <, s& C z
o ]

i

B This' result is used in the following way: . The transformation

A" €7, satisfying P can be parameterized in such a way that the matrix

s -
' ' i L. - ~ - ’v
-elements ,(As) o dre analytic functions of these parameuers regular in
b . ' v
-a neighborhood N of the identity, and such that real parameters
i.‘ . -y . !d
Vo, o 1 . - , . . ot
. give there real A € 1L . Such a paramecteriz 1on has teen given b

| | -7

<

by Jost,  for the case with no constrzint P . The restriction to a




}

submatrix is accomplished by setting some of his parameters to zero.

NWow suppose first that Ab €L . Then the hypothesis of the lemma gives
- - -1 u . - N
q — T o = m . ’ Y 7
Fly) = AT = ATATEE) (5.19)

for 2all A" € L satisfying P . For then Ké = A* K, , with At e L,
the Kl and Ké being the fixed points of D connected by Ké = A Ki , with
A e vﬁ'. But the validity of this eguation for real values of the
parameters of A" , together with regularity in N , implies its validity
PR Lo i L el ‘“ —“0".:..'_0‘
throughout N . Thus (9\19) is true for A" € o satisfying P,
in a neighborhood of the identity. The restriction P . does not destroy
the group property, since products of mairices having this property will
alsc have it, and inverses of matrices having this property must also

; A y i
have it. Using the fact that the subgroups of'étl specified by the

-

constraints P are comnected, or more specifically, that any element

L
/ i . - ~ . . -
of o~ satisfying P can be expressed as & product of a finite number

of elements of (1: satisfying P from any fixed neighborhocd of the

7
54

. . o ) .
origin, one obtains the result that (B.19) is true for all A' e &

(=4

. . . . . e 2oy .
-satisfying A° Ki = K. . This ensures the validity of (b»h), from which

2

the lemma follows, for the case n(Ki) = r(Kl) , Drovided Ab is an
element of L ..

In the above argument it was supposed that Ab was an element

of L ; then for A" € L it followed that A' e L, and (&2) vas

immediately applicable. Wow Ab‘ is by construction a real element of

-

I saristying A, K =X, . Thus, by virtue of the hypothesis of the

lemma, thére exists some A' € L such that A"Ki‘ =k - For this



EE . -

i : /i
| : . A1, . /
i A the transformation A" = Ab A% must be a real element of <L ,
| “ | )
' Thus it is either an element of L or it can be written in the form

A” = Ay Ai , where AI is an element of L and Ay is the PT (= .CPT): -

2

tl

transformaulon, which is & real element of o~ . ;Iarameterizing
l"i €L instéad of A" one can develop the same afgument as pefore and
‘prove, from the validity of (Su1k) for the A" e L just introduced,

| ; / . ;
-ti valiéitv for all AF € J_ satisfying At Ki = Ké . This again

1

validates (Ekh) and completes the proof of the lemma, for this case
l :

The‘remaining possibility is n(Ki) > r(Ki) <3 . For these
cases tké vecﬁofs of Ki are linear combigations of r\Kl) orthogonal
vectors of honzero-lencun and a ;ingle vector of zero length orthogonal
to these. The r(Ki) vectors of nonzero length are obtained by first
pilcking r(Kl) ~of the vectors of Klv such that the Grem determinant

of these r(Ki) vectors is nonvanishing. This is always possible.

H

f any one of these vectors has nonzero length then normzlize it o
plus or minus one, by multiplying by a real scalar, and let it

be the first vector of a real basis. If on the other hand. all these

vectors have zero lenoun then some real mult iple of a combination of the

form (ki,+ k,) must have length plus or minus one, :since the (Gram)
determina;t of the matrix <Gij) = (ri . }j) is nonvanishing. Sub~ ‘ :
tracting a real multiple of this normal zed vector from the other v

vectors, in the usual way, one gets a set of {r(X ) - 1) wvectors

orthogonal to it. ©Since the Gram determinant is still nonvanishing




the procéss can be repeated to give a real orthonormelized (i.e. to
~ | r(x)
%)) .

plus or minus oge) set of r(Ki) vectors (el (Ki) s e, @ N

‘This same construction was used (though not described) in the case

r(€) = (k) .

Since in the present casg n(Kl) > r(Ki) , there must be a

vector of Kl that is linearly independent of = these first r(Ki)
o Lt

vectors.. By subtracting from it multiples of the e (Ki) (o=1, ==+, r(Kl))

g

S

& linearly independent vector w orthogonal to them can be obtained.

Coa
Since the value of the Gram determinant is unaltered by adding linear

combinations of certain of the vectors to others the CGram determinant

of the first r(Ki) vectors together with w must vanish. 3But then
w must have zero length. The next step is to augment the set X
adding (& - r(Ki) } real vectors that together with the first. r(
basis vectors give four linearly independent vectors. Since n = L
N y \ o o . N
implies  r = 4 one can complete the construction of a complete set

o ' . . . of .
of real orthonormalized basis vectors e (Ki) , using the procedure
Just described.

The vector w is orthogonal to the first r(Kl) of the

- C - cr s - - . . - '
e (Ki)' and hence it is a linear combination of the remaining ones.

i
Av]

Se

Since it is real and of zero length it must, for the case r(Ki)

.

be of the form .- - w0
wo=a (e (x) te(x)) o (5.20)

. L . Oy e e
where "a % O is real and ‘e (hl) is the basis vector having positive



. . . Gy
length. That the coefficients of the e (X.) are real for real v
L]

follows from the existence of the real inverse of the real ILorentz
transformation generating the eU(Kl) from the original basis vectors. ,

The sign of e’ K in (6.20) depends on the sense of the

: 1 ¥ .
vector eD(Kl) .. However, only one sign is possible; if different
. . . - . . oz

vectors of Kl were to give w's having different signs in (}NZO),‘

7

then one would have n(K.) = r(Kl) + 2= L4, vhish is impossible since

1
n(Kl) = 4 implies r(K.) =k .

= 1 the vector w nmust be of the form
A 2 ) 5 1) :
v o= ale (‘l) + sin 8 e“(K + co5 6 e (Kl);’ , (FNQL)

.

6 real and a % O . Moreover, for this case all vectors

Qu

with a an

- . ; . - 1/- . s s .
of K, rmust, when the part along e (K is removed, give multiples

1

of this same vector w . To see this, note that the CGram determinant

,)

L o s vz .
of two véctors w and w' of the form (K21) is

2 o
Glw, w') = a a'(; - cos(e - 9'2) s ' (n22)

LYY

which is different from zero unless w' 1s a multiple of w . Thus

if two vectors  w and w' of the form (Jx21) can be obtained as

15 a

linear combinations of the vectors of (K.) , then either w
. -

> 2 . Thne second possibility contradicts the

assumption r(X.,) = 1 . The form‘(fLEI) can be brought to the form

;)
(B.20) by a redefinition of the basis vectors that leaves them real

and orthoriormalized.

oy

5
/]

)
;



In the case ,r(Ki) 0 all the vectors of Ki are of zero

i " . . ’
' length and they are mutually orthogonal. Ixpan dlﬁg them in terms of
| . .
H \ . , . . . - . . . 0- _ ) .
. vg}an arbitrary real orvhonormalized basis e (Ki) s each one has the
}form
i . ) = .
( 3 .
| 0,.. 3 ; ‘ <
i W o=a (e ( ) +a e (K;) +B e (Ké) ({3)) 5 Cb\gj)
" where a and (o, B, ¥) are real and
2 2 2 Ao
o+ BT+ Yy o= 1 . ‘ (B.2Lk)
If wX% O, then any vector w' of the same form for which
A o em
G(w, w') = O (25)
is, as before, a multiple of w . Thus for all the cases n(hk >r (nl)
one can construct a real orthonormalized basgsis e (Ki) such that the
vectors of K1 are real linear comblna ions of a zero-length vector
vo= x) e k) | (% 26)
1’ - ¢
and the vectors
O .’ oen < L Nt
e (1(1) : {o=1, , .r(K_J_) < 3). (Z27)
* : A similar basis can be constructed for Ké . The set Ké is
. related to the set nl by the relation Ké = A Ki s Aedo . Since
he ‘ .
' L - - . G- - Co. :
~ A is not necessarily real the vectors A e (Ki) need not bve real.

Hovever for ¢ =1, e+ , r(Ki) these vectors must be real; the basis
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. , ‘ S i . _
vectors e (Ki) can be expressed as real linear combinations of vectors

. . g/ o . N
of Ki and hence the A ¢ (Kl) will be the same linear combinaticn of

- the corresponding vectors A Kl oruﬁKé ; and hence also real. They

have a Gram determinant of rank 'r(Ké) = r(Kl) and are orthogonal
and of length minus one and hence they can be chosen to be the corres-

ponding eG(KE):

eG(KE) - A eﬁ(#i). (c - ‘1; oo r(Kl)> B C§;28)

. — o, g o e .
The entire set of real Vectors e (Ké) constructea in the same

manner as tke e (Ki) , and using (%.28) for 0 (x, -.., r(Kﬁ) )5

can be related to the set e (nl) by the eqpaulon

(x,) = A %) - (B.29)

where Ab is a real Lorentz transformation uniquely defined by this

G- .
eqpa“lo“, once e (hl) and (x?> are picked.

-%

+

A1l resl wectors of zerd length in M(Ki) , the manifold spsnned

by the vectors of Kl s are multiples of the single wvector

i) e°<xi> + -

oA N
since. any: real linear COW tion of the VeCuO[S of (3.27) is orthogonal to
W(K1> and of nonzero length unless Zero.
|
Lo y . .
-, vectors of: M(Ké) are multiples of -
i
i
"

ai) = L)+ S . S

'Similarly all real zero-length
¥

N

8]

7, <
:i 180
kN



o

Since w(Kl) is a linear combination of the vectors of Kl the vector

A AT (Kl) is in M(KZ) , The manifold spann‘ed‘by the vectors of K2 .
But then AW (1{1) is a real nonzero vector of zero length in M(X.) .

Hence it is a multiple x¢(1§2):

W(Kg) = chw(®) % O

) . ' 52 )
4 ( | B52)
The factor ¢ can be taken to be unity. This follows from the
fact that a real Lorentz transformation in the 1(0, 5) subspace gives
. - W N o 3 Moo,
simply a scale transformation of a vector of the form ({301):

cosh @ sinh.@ 1 \ . (Y. _
' . F3e 95)
sitha cosha| \1|
i
i }

1

cosh @ + sinh \
{
sinh @ + cosh o:/
t This Transformation preserves the reality and orthonormality properties

|of ‘the &Y K ) . Thus it

can, and will, be assumed tkat the basis
P R .
e (KE) is chosen so that

t

¥ ' c = 1 s - (2:{,328’.)
~jor equivalently, that
'i

.

e:vo(.Kz) s K) = A eo(Kl) 0 ) . T4 520)

) - .
Using (6.29) one obtains, then
i

L) k) = a0 +ve5'(1<1)} . - (Eosn)

2

. . - 4' “l I/
The general form of the lorentz transformation Ab A e A



satisfying (ELB&) is readily computed. If the rows and columns are placed

in the order (0, 3, 2, 1), the general transformation matrix (A”?gc .
defined by "
N ) = PN o ) .
. n‘ =g -1
and consistent with (6. QL) with A € o in place of the fixed Ay A,
can be writiten
i %
1+ a -~ a c £
a 1-a '; c f
(c cos & + £ sin 8) ~(c cos & + f sin 8) cos & sin ©
(f cos 6 - € sin 6) -(f cos & - ¢ sin 8) -sin 6 cos &
;
(B 362)
where ¢, T, and © are arbitrary coﬁplex numters and
se = @ + £° . o " (% 36b)
The condition (ﬁ;Bh) imposes the'constfaint that the first two colwms
are the negatives of each other, aside from the unit contributions on
the diagonal. This gives four conditions, only three of whi;h are
independent of Lorentz transformation condition (C.15).
Since.the relations (Hh.28) and (;;5&) are maintained if A is
replaced by any A satisf{ying A’Kl = K2 ;.of winich one is Ab ; the ;
general form of (A“)f}-EEE (A,—-l A"ou defined by (J435), with v
-

b
A’Kl = KQ;; is glveﬂ by (Fn36) with the last r(Kl) rows and columns
&

having unity in the -diagonal positicn and zeros elsevhere, provided

<z

g

-4
)l
=2

=)

7o\
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It can be assumed that A G-OZT" It r(Kl)'< 2 then %there

is freedom in the sign of at least one e (Kg), and A, can be made

v
()/

;.

a proper *transformation. Then Ab will be a real element of
X ol N O . . . s

For the other case, r(Kg) = 2 , the basisz e (Kg} is uniquely specified

by the conditions that have been imposed, and one cannot adjust Ab .

.

. cs : e " T . .
However, in this case the conditions on (A )p reguire it to be unity
: [ CRE) R f oy - b! o
even without the condition A € { , for one then has ¢ = =0 =0

for ¢ =(1, 2),and condition (5 34)

- s Gy
from the conditions on e (Kl)

then gives the unique solution A.D = A € QZ?.

i

To complete the argument for the case n(Kj) > r(Kl) one first

notes that Ab 1s a real element of ./ satisfying AbK1 = Kg" Thus
there must, by hypothesis, exist some A' ¢ L satisfying A'Kl = Kp . i
But then
A ,
. ' i _ N
K = A A ) FK N5
y 1 | - i.

is valid when A = Ay A' ‘corresponds to this A' € L . Since A, is
' 5 L o P . L . . =L, " .
a real element of ~{ either A is an element of 1L or AO A = Al .

1)

is, where f\o is the PT (= CPT) +transformation. Then A" for A
vhichever is in 1L , can be parameterized as in (>36), with the appropriate
constraints if r(Kl) >0 . For a neighborhcod of real values of the

parameters, subject to these constraints, one still has A’Kl = X,

with A" € L . But the spinor transformation

o= . A | ' . :
AL A , or (‘b A

LN
Qe
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.
A

i.is an analytic function of these parameters, regular in a neighborhood
o . ' : A ' L
ibf the origirn of the free variables of (c, £, ©) . Since (A37) is

N ' . . L . . K N . ) .
- true for real values of these variables 1t is also valid for complex
1 .

© values in this neighborhood. One sees by 1nspcctlon of C<.)6) that %he

set of A. satis? ying the conditions corresponding:to AX =X
. : . : 3 am oo o~ 4o . :‘/: ) PO
K el , is a connected set of iransformations in o2/ . Trom this it ¢
‘fpllows'that any element of the set can be expressed; as a product of

ia' finite number of elements of the seb lying within any neig ghborhood

of +the identity, and hence that (M~)7) is valid for 2ll A’ € .2/

é . Thls VallqabCu Q<.L) for uhi last case and
comn*ctes the proof oP Ip“wa 1. -

t
}

Lemma 1A. Real points comnecied by 2 Lorentz transformation

. £ . E ' L =
A €L are connected by some real A€ oL .

Proof: The transformation Ab' constructed in the course of the oc*

of Lemma 1 is the required real A € Lo .

Lemma 2. 1Let Kb be a set of n ~linearly independent vectors. Tor
. . v [ -. 9 .< . . - -
any neighborhood N o the 1 enuity in O{} there is a neighborhood

.

(m, Ko). of L such that any two polnts in. D(N, Kb) connected

D}

oy a Iorentz transformation are comnected by a lorentz transformaéion
3 : . ‘- S . : .

P

', One can arrange the vectors of KO

r
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such that the rank of theJGram determinant of the first r wvectors of the
the procedure discussed in Iemma 1 ., but without the

‘ :
n ot AT e it e ] Tym et a <rm [
a set of ,r orthomormal basis, vectors e, (¥ )y, = ()

nacnh o Incencanend

- . . - v B . . . I
FE) L - . - AN s e ey e e - N N PR 1
the addition of [+ - 2, nov veobors one con construct (4 - n) more

ivectors en*l(KO>;”"’ eh(KO> that are orthonormal, and orthogonal to the
1

first r of the basis vectors. For the case r =n this gives a com-

N A .

. plete set of basis vectors eG(KO) .

-, | y
’ T 43 1 LI ] ‘_O N

: For the case n =1 + 1 the subtraction from XK . of its

components along e

"! s
| A

(KOJ;@ve. er(KO) leaves a vector w. =w % O

i . ) :
which must be of zero length, since otherwise the rank r would be
i < y

.n ." For some .6 >n one must have eG(K

o>~

A

W 0., since otuerwvise

:wo' would be a zero-length vector orthogonal to three orthonormal vectors

. , )
in a four-dimensional (nondegenerate ) space and hence zero. Take this

- R, hal i 2 R A = {- T ) - e - i1 -.1\
vector eg(ho) to be eh(ﬂo) . Then JE?A(KO) - W (eh(§o),~ 7 ) !

is a vector of unit length orthogonal to eu(KO). and to el(KO),-~s,er(Ko)'.

J W - . A4 s .
€ oy (ite), i Eytice)  Fojlewnng  the stawdand S50,

.- . 1 - - A- - - . . - -\,i,‘-\,.u:‘na};-v‘ >
Take this to be the final basis vector e ¢"<KO) o amd eorthey 3¢
For the case r = n - 2 -the subtraction of components along
. (X)) (k)  from the vectors k° k0 must leave tw
el .{\O s ";. er £ O Ifrom Tthe vecctors “'r—f-]_ b "r+2 mustT Leave TWo.

linearly independent orthogonal vectors w_ and * w having zero

- length. Otherwise there would be fewer than n  linearly independent

n

v vectors, of the rank of the vectors of X, would be greater then r .

]

"y

The vectors w = w__ ., and w' = LA cannct both be orthogonal to
4 o

e (”b) for 211 o© > n , for then they wuld be orthogonal to two
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rthonormal vectors. This would provide two linearly independent zero-
length vectors in a two-dimensicnal space, which is impossible. One
can order the vectors of K, and of the eg(KO) , o >n, so that '
ST N B
W'eh(KO> 0. ?hen the vector i leA<KO> - W<?L<KO).V) is a )
vector of unit length orthogonal to the vectors el(KO)"'.’e“(KO) s
ES
and to e, (X . Let it be called e K . The vectors e (K ,
an % )4_( O) v r+l( \O> - O'( O) >

tandard

n

L> g > n , can then be reorthonormalized following the
procedure so that the e (KO) for o £ v+ 1 and g > n become an

, are appropriately

;

1

orthonormal set. If the original eg(KO) , o>
chosen the subtractions of the required wvectors will not give any

. zero-length vectors.

From the relation w': er+l<KO) = i<w’ . eA(KOX> it follows
Yoy Tl ) 7 o et - % o . ! = .
that [ 7 ?h(AO}<eh(KO) W er+l(KO)<?r+l(Kb) W >] = % is
a zero-length vector orthogonal .to eh(KO) , e, KO), . er+1(KO) .
It cannot vanish since w' 1is linearly independent of w whereas
3 % . et o ) 3 Co. et 2 e e R 9 & -
e&(KO><?h(KO) v > . 'er+l<?r+l(KO) ") is proportional to v .

v

For some vector eg(Kb) , G >n , one must have eg(KO) -wk 0.

cl

Otherwise w would be a zero-lengih vector orthogonal to the firs

r + 1 basis vectors and the last U4 - n basis vectors and hence

orthogonal to 4 - n'+ r + 1 = 3 orthonormal basis vectors. Let this

since it is not eL(KO) . - Then the vector

. v +

. ’ =/

i) ek W
[ 9(‘0}

orthogonal to all eo<Kb) with o r+1 or o2 3, where

1
=
o
(Y
ey
e
N
\fH
| I———
1

e is a vector of unit length .

these vectors are all orthonormal. This is impossible unless r = O, .

since a vector orxrthogonal to Tour orthonormal vec¢tors is zero.

.



!
|

-

o 5. . '. - .
n> r + 2 'is notv possible. S

Lot
oo

L

construct a basis er(K) following the procedure just des
| . v . . .

\

Thus one can set eg(KO) = ¢ .. This completes the construction of the

jorthonormal. basis eG(KO) for the case n=1r +2 . The case

i

For 'K in a sufficiently small nelguoornood of KO one can
;

er

ibed, except

; For the following changes: The (% - n) vectors that are added to the

'Fet X +to mske, linearly independent set will

'#o be

|
K in
]

set wi

‘can proceed with the comstruction; one constructs a set e (K) , g >n,

b4

for all K , be taken
.

the' fixed vectors. eG(KO) for ¢ > n , constructed above. For

a sufficiently small neighborhood D‘(KO) of *Kb the augmented

111 continue to have four linearly independent vectors, and one

o 2
by subtracting in the standard way the components along eG( K) , o<r,
ete. and normalizing. For K € D”(KO) C D’(KO) the vectors arising

in this procedure will have nonzero length, so that a uniform procedure

can be

followed for all K € D \K } . At the next stage the vectors

(X) [and e. (K)]- can be defined in the same way as above except
"‘ =1 r+2

That ad

For K-

iditional normalization factors 7 (and 'm ) must be supplied.

. - . e B It 1y,
in a sufficiently small neighborhood D ’(Kl) C D(X.) the

2 ~

various factors that are required to be nonvanishing will continue to be

nonvanishing, since they will depend continuously on the vectors of ¥ .
52 o

The only ambiguity in the procedure is in the choice of sign for the

normalization factors. This sign can be fixed by reguiring the normal-

ization Tactors to be contlnuoua LunCLLOﬁS of K . Thus in a sufficiently

small neighborhood D(Ko) of XK. a basis eg(K) can be defined so *hat

0

these basis vectors depend continuously on the vector K. Alsc, for the case

'1‘
1

[

0y
hS

v_“‘)i.?
ol /)1,:

/
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r =n.-1 the vector w obtained by sub{racting frém"kno 1
its components along eG(K) ¢ G=1eee, f_, will always have the
standard form W = (eh(K) + e (K)) (w . eh(K)> .; For the case .
r=n-2=0 this vector will have the form w = (eu(f) + 1n§l(K»'

(v - eh(K>)3 th the other vector, w , will have the standard form

(X)) .

For any two vectors Kl and Ké in D(Kb) a Lorentz trans%

W = (85(K) + iﬁgE(K}>(E < e

formation A (Ki, Ké) e L is defined by the equation .

fl

e, (K) = A (K, ) e (). &

Y
=
g

It Ki and Ké are connected by a Lorentz transformation then
T . s\ T X B - . P 2
Ki = A (Ki, hz)ﬁé ; Waere K is the set consisting of the first
r vectors of X . This is because the vectors eg(K) are constructed,
following a standardized procedure, as a linear combination of the vectors
o -.-—r 3 41 oW S + . L ot ot Fa &
of K , and the coefficients are .given as functions only of the inner
!
Kr =X and

- 4
products of the vectors of KX . For the case r =n

- thi

)]

transformation connects Kl to Ké . Since the transforma

he inverse image of

ch

A (Ki; Ké), is a continuous function of (Ki, Ké)

he identilty contains & neighborhocd of

ol

ny open set in N . containing ©

the point (XK., X This neighborhood must contain a neighborhood of

O) :

form X, e D(W, KO) ; By € D(N, I_o? , with D, X

o) < D(X This

O) g T
D(1, Kb) gatisfies the requirements of the lemme for the case r =n i
For the cases r <n any points K and K, € D(Kb) connected

by a Lorentz transformation are connected by a Lorentz transformation of
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W oot

52" | - (E.h0)

it

Cod . W . - - —
_ Ky A" A 0%3 ﬁé) K, = b
: W T T : '
vhere A Ki = K . For 'the subcase r =n - 1 the Kl and
a _ 1 ;
‘Ké differ only in the velue of the vector w , and both values, W

“and v} » lie in the :(ej(Kl); eM(K1>> subspace. But two vectors in

a subspace connected by a Lorentz transformetion are connected by a

Lemma 2

e

Lorentz transformation in the subspace. This is a consequence of

of Hall and Wightman. 5 . . LT I e s e e

e

The Lorentz Wwansformations in a two-dimensional subspace can be -
expressed as a product of possible inversions about the space or time

axis times a transformation
a.. = (exp ET) ax: = A (D) axl

where I' is a complex number and,the‘ a} are componénts along two

. orthogonal light-cone vectors. If two points are connected by a

transformation of‘the form . A(T) then this transformation is unigue.-
Ifitwo points are in a neighborhood of the point (g%, %5) = (1, 0)

that contains no poiﬁt with sy '= 0 then ir they are connected by any

Lorentz transformation they are also connected by & A (I') . This is

because Fér the case a. (0) ¥ O one can transform--using.a AT)--%0

.l<

-
T

a point wiere a, = I.a. . At such a point the reflections ?re eguivalenv
either to the identity or to the particular A (') given oy

exp I' = eﬁ;>$-f}= - 1 . As a conseguecnce of this any seguence of

N
\:i'./)"'

!

=)

Vx
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reflections and proper transformations can be reduced to a single trans-

“

formation A (I') , for this case, by the elimination of reflections.in pairs.
On the other hand if ai = O any product of reflections and A (T) .
‘takes ‘the point to a point with a_= 0, . which can be reached by

A (') alone, or to a point with a4+ = O , which by assumpt on is not

X > + : J b

in the original ‘domain. Thus with The neighborhood taken small enough
so that points a, = 0 are not included all points in the neighborhood °

connected by a-Lorentz transformation are connected by a unigue trans-

One can therefore define a unique

~—
-

formation of the form A (T

atisfies

[0}

‘Al(%f?%>=1WT>QKKVE%) tret
K= A &y KK .

This transformation is a uniquely defined and continuous function of the

is restricted to'a sufficiently

T Ged the - (% . K-
K, anq K, , provided bhe4‘(ml, {2)

small neighborhood .of '(KO,HKO) B T,

[

In case 'Ki and X

, Bare not connected by a Lorentz transformation

Eq.(6.41) can e modified, .. v v by the inclusion of a

scale factor AN defined by

The Al is still defined to be A (T) A‘\Ki, Ké) . This Al is again N
continuous in X. and K. . g
: T -2
Since A,(K,, K,) is conbinious one cen proceed Just as ver <
Since A (K, K,) is continuous one can proceed just as before,
and D(X, Kb) can be. taken to be any neighborhood of K, such that

D, KO)Q? D(W KO) is in the inverse image of any neighborhood of



v -

LT

the identity contained in N . Such a D(W, Kb) must exist since The
inverse image contains a neighborhood of (KO’ KO). The neighborhood.

D(N, K the condition that the vectors

O> is to be restricted also by

<

do not have a zero component along the w+ axis. This is possible since

- . a. . - Lo -, ] -~ . . .t
for KO this condition is satisfied (for this cage r =n - 1).

For the remaining case n =1 + 2 = 2 similar arguzents apply.
The vectors of K &are specified by the two vectors w and w . The

vectors w, and wé' both lie in the (eM(K1)5 eg(Kl)).'subspace and

the vectors w., and w. both lie in the (eB(K.); el(KO)> subspace -

1
Thus the transformation A will be a product of transformations in two
orthogonal subspaces. The problem sepmratbes then in

parts, each of which is treated in the same way as A  for the r = n- 1 case.

Lemma 5. Let KO be an arbitrary set of vectors. ILet the first n vectors

of KO be linearly independent. For any neighborhood N of the

//' | - l- - ) :
identity incii.there is a neighborhood D(N, Kb) of KO such that

if any two points K., and X. in D(IN, K. ) are connected by a

1 2 0]
it

- , . . I o} . . .
Loren“z transformation then K. = A K. with A € N, where K is
=

the set consisting of the first n vectors of K .

)

Proof: This is a trivial extension of the preceding lemma. The neighbor-

hood D(N, KO) can be the intersection of any (full) neighborhood of
i n,. .. n , e s ; - i
Kb with D (N, 0 ), the neighborhood in the subspace associated with

the K specified by Lerma 2.

Definition: " A simple point K is & point for which the number of linearly

independent vectors, n, is egual to three or four or to r,, the rank of

L 4

gram determinant.

Lemma k. Let K/ be any simple point and D(KO) be any neighbornood of Xj.
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gl

Then of

there is a neighoorhood D

5

are connected by

%o

in DO(KO,

o\*o)

and K2

a continuous path K(t)

; contained in D(X

such that any two points connected by

X s

such *hat A (t) € L and

L
a A e JA_

F
[%]

= A (%)

e

v

!

be the number o KO

Arrange the vectors

linearly independent vectors of

the rank of ‘their

so that the Tirst

the

the Gram determinant of r . Then.

according

Ry o

Lemma 3 . there is, for

¥
identity in <.,

any arbitrary neighborhood N of the
a nel ghborhoed D(N, KO) . of KO swall enougn

& ) and are connected by

a

£ o
tn—; there is a A

©
=

N

Bl

ox

such th

‘_J

are the subsetis Xy and

ectors. The neighborhood N
e.rcdnnected) and hence 2’ path At)
h A(O) =1,

10
_]__- .
2

can evidently be chosen small enouvugh

E

and A (t) e N for 0Lt

AU K, with A' €N and X, ¢ DO(KO) are in ‘any preassigned

neighborhood

1
]

Dl(KO) ch(KO) .

irst the case

i
Ti r = n . The neighborhood

taken small enough so that for all K ¢ Dl(KO)

of the G&ram determinant

r(X)

remains egual to

the first r

vectors of

T Then

.A\.D(

sty
.

any , . can be wniguely

o)

et

can

<

.
O
R
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deconposed. into a sum of two terms, K =K + 7V,
K? are in the subspace spanned by the first =

the vectors of V 1lie

=

b

(Note that X  is not theé same as in Lemma 2 )

n the subspace orthogonal to those r

3

“vectors of X, and

‘where the vectors of

vectors.

The proof w*ll be completed, for this case, if a continuous -

A (£) for % t g1, with A (%)=A

N

and A (1) K,

= Ki 3 caﬁ

The neighbtorhood Dl(KO) can be specified by conditions of the
-form ll K - Kér ]i < P.. and [[ v ]l <p, with p and o, >0,
since this is an arbitrarilylsmall open set contaiﬁing Kb = Kor . One’
can use here for instahce the FEuclidien norms; e.g.,
J— }
Uil =, 1w B = 0, 1M (o)

be found that adts only in the space orthogonal to the space spanned
the set K" and keeps || VI <o
by the set K1 and keeps vV i <o,
The Lorentz transformation A = (l) A € lzawnlch takes the
'J.,}-l- = A N A Ty - 1 - T - J..~ .,,\,"',_~>
point A (§>Ké = A, Ké to A (1 K, = K;,cen, a8 any A e Jo; be expressed
. Py N

in the formS

A = Rexp A,

where R is & wiimodular real ort thogonal (hence unitary) tm nsfor

and A . is Hermitian and imaginary:
* T
A="’A =Aa

(Lne m@trl tensor G has been converted to the unit matrix by the

H

introduction of the appr.priate imaginary units.)

The reguired '

N
?-'\‘
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transformation A (t) for %~< t €1 can be taken to be. defined by

| "exp[)}(‘t - %) .@ for él-gt "\<% |
O A(t)'/\;l = '

‘R(t) exp A for %stsl . (5.16)

" where R(t) for %.g t

€1 1s any continuous curve from the identity
E-to R in the éonnected‘spacé‘of real unimodular orthogonal matrices.

The Fuclidean norm fi v(t) || of v(t)= gA (£) Vig 1s

1
the square root of ‘ ,* ‘ I

Be) = ) My, F= ) vi ot (6) A (8) v
| - | o

i

t

E<AT.(‘[:-)A(“C)>_‘.., g

is constant because of the
|

{

A!','In the interval % t <1 the HV(t)H
j,unitarity of.‘ R(t):

1

, R’L({c} R(t) = R(t) R(%) A.= E . (&58)
j"_ On the other hand, in the interval %< t < 'iI one ha.s, since A=Al
S ‘

- d22 Re) -

o dt
’:"i‘ . L = 6l <A (t) AT A/\(t)> > 0. (Ko
O |

Bazuse'the second derivatlve of IIV t)]l2 is non-negative its maximum
end

value must be assumed at an end point. As thq/p01nts are in D (K )

N

(/5
e
- .\-d



' Dl(.KO) is not needed for this case.
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they satisfy ||V(t)]] <p . Thus for all O <t <1 this condition

15 satisfied. Consequently all points X(t) = :A(t) K2 are in

-Dl(KO) c:D(KO) . This completes the proof for the case that r , the

rank of the Gram determinant of Ko , is equal to n , the number of

linearly independent vectors of Ko .

In the case r < n the first part of the transformation,
0Lt L 5 can be performed as before. For n 23 this already com-
pletes the proof,. since the coincidence of three linearly independent

_ o l
vectors ensures the coincidence of all vectors. The special form of

N
|
!

h

P
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. L

\

' Definition: 1A function F(X) will be said to be regular at e point X
} S

if and only if the various functions of X coﬁresponding to the various
combinations of the spin indices are all regular analytic functions

o of the camponents of the four vectors é-ki g at the point X .
= o : . g _

o A : sl o
 Lemma 5. Let A be a fixed Lorentz transformation.. Let FA(K)' be

‘ definéd by

!

5l _ =1 7

sy -

Ir F(K) 4is regular at the point XK = A™% X' then FA(K) is

{1

|

/—::5
[Secx]
]

3/F



regular at the point X = Xt

Proof:  Thils is an Immediate consequence of the theorem in several com-
plex variables that an analytic function of an enalytic function is

-
analytic. This well-known theorem is easily provedﬁﬁsing the Cau.chy-
: 4

Riemann equations.

Corollary A. Let F, (K) be defined by (¥.50), where A is fixed.

Then F,(K) is regular at X = k' if and only if F(A™T /) s

_regular at X = ATl L !

Proof: The first part of the corollary is Just fhe-lemma. To prove

the converse apply the lemma to the function

. . -l ’ B l .v
1" = A
F'(K) =" AT, (A K)
to show that F'' (K) d4s regular at X if -F___A(A X) 1is regular at
KX . But F*(K) is just F(X) . The substitution K = AKX’

gives the desired result. The fact that the inverses A ana

A;l exist is essential to the proof.

. - Corollary B. The property of being regular at a point does not depend
. { . on the choice of  coordinate system relative té which the components

, Lo , he

- of the vectors Xk are measured, provided/components in the two
v“ : systéms'are related by a Lorentz transformation.

“'Proof: THe proof is the same as for the lemma.
',' | |

3

(S
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Definition: A domain in an arcwise connected open set.

~ Definition: A reél domain 1s an afcwise connected real set open with

' .. o .
Lemme 6. TLet F(X) satisfy the imvariance condition

réspect to the set of real points.

F(x) = A F(ATNK) - (%53)
for A €L, and K and AL K in a real domain D Tontaining the
point KO . Suppose F(K) is defined (single valuedly) in»a domain
D(KO) containing 'KO and is regular at all pdints of D(KO) . v
Then for each point K in D(KO) Eq. (B\53) is satisfied for
Ae Nr(K) , where 'Nr(K) is some neighborhood of the identity

in L.

Proof: Let K, be a fixed arbitrary point of D(KO) . Since D(KO)

is a domaiﬁ there exlsts a continuous curve K(t) , 0L+t <1,

from Ko to Kl , all points of which are in D(KO) . t the

distance between two points be defined as meximum of the absolute
valuqslbf the differences of the components of the vectors %]£i§ . ThenA
the distance of a point K in D(KO) to the bouﬁdary of D(KC)

will be definéd as thé‘maximum (reai) number A(K) such that every
poiné whose distence from K is less than A(K) is inside D(KO) .

Sinceé D(K,) 1s a domain A(K) >0 for all X e D(K;) . Nore-

ove#j A(K (t)) 3 a>0, for 0 .. For if there were no .

y : -
positive lower bound a > 0 of A(K (£)) one could find a sequence

X
A

i

g
::":&3
N
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o ¥ | ) |
T, 0Kt <1 with (K (1)) <2 R, These t_iwould have to have

an accumilation point T, 0<t <1 . But A(K (t)) = 5>0. Hence

'! ._
:for all % such that the distance between K(t) and K(t) 15 less

| f,:than b/2 one would have A(K (t)) > b/2 by the ‘t*'iangle inequality.
'Since K(t) 'is a continuous curve the inyerse map of the open set .
'}[K(t) - X < b/zl contains an open interval At sabout T . But
since A(K (t)) >b/2 for t ¢ At only a finite nﬁmber of the t

o -
.éan be in: At . Hence % cannot be an accumulation point. This is a

1
i
i

‘ contradiction.' Thus there 13 a positive lower bound&)a .

|
{

, ‘Let the maximum value of |[K(t)|| for 0<'tg1 ve A . ILet
-1' vy
-.N(K ) be a nelghborhooa of the identity in 05 such that 1f A ", e N(X ),

- ,»I'\V . v
then |[(A l)ﬁ3 - ;] < (a/BA). Then, for A 1 N(K ), it follows that

[1A~ -t K(t) —lK(u)ll < a, and the {continuous) curve X (t) = A'lK(t)

remains inside of I( Xq ) forall 0Ltgl.,

Iet Nr be a neighborhood of the ldentity in L such that A lK €D

for A-l € Nr' The existence of such a ne;ghborhood fol;ows irmediately
rom the contiﬁuity of A"le in A at the‘idgntity.A Fo:lgny“fixed

A-'l €N, N 'N(i{l) = Nr(K'l) there is a real domain D(A, Kl) - :D , with

Ky € (A, K,) , such that for ell K e D(A, X)) ‘the points K and

AT K arein D ) D(KO).f The éxisténce of such a D(A, K } follows
from the fact that X, end .A'l-KO are in D N D(X, ) , in conjunction
.wi‘ch the wgontinui“cy of A "% as a function.of XK. Thus (X.53) is valid

for any fixcd At e Nr./j N(Kl) for all K e D(A, Kl). - The validiﬁy of

(2&55), mr fixed A" e Nrf)N(Kl), for all K in the real domain D(A, Ki),
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together with the anaiyticify‘of both sides of the eqﬁation, as functions

. of K ,.(LemmaIS), implies the validity also at the point K, , since

one can analytically continue along K(t) with the argument of +the
function on the right tracing simultaneously the curve KA(t) , vhich

remains inside the domain of regularity D(KO) .

Lemma 6A. Lemma 6 modified by the substitution of CZZ for L and of

a (full complex) domain D, for the real domain D is also valid.

Proof: Makes these substitutions throughout the proof of Lemma 6.

Terma 7. Let F(K) satisfy the Savariance céndition (E§53) for A el
. and XK and. A"l K in a real domain D coptaining the point KO .

" Suppose F(Kj is defined (single valuedly) in a domain D(KO) :
containing X, -and is regular at all points of D(KO). . Then (}5’\53)'

is also valid for all X € DﬁKo) and A €.Z such that there is

| a continuous path Att) e L, Ols t s_l/,'with A(0) = E and

A{1) = A, such that _‘K(t') = A M) K e D(K,) for 0<t<1.
N S : ¢
Proof: The assumptions'offthe lemma are the same as those of Lemma 6.

Thus the conclusions of Lemma 6 may be'used; (A53) is valid for

éver§ point K € D(KO) for At e Nr(K) ,‘é neighborhood of the

L

3
)

N
'
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. ) T )
identity in L . Following Hall and Wightman, and Jost,zg the Lorentz
transformations A in a neighborhocod N ‘of the ldentity in ii can be
parameterized by a continuous one-to-one mapping A(kj) in such a way

that the representations of A.l and As are regular analytic functions-

of the xj for Atew ; and such that for At e N () L the xj
are real; and such that the 6rigin in xj maps into :the, identity in
xx 1

A ., Such a parameterization has been giéen by Jost.

Considered as a function of the A, the right-hand side of (}u53)

J
is an analytic function regwlar at all points for,wﬁich A-; e N and

At x e D(K,) . But for A" in the real neighbofhood of the origin
N_(K) the right-hand side of the equation.is, by lemma 6,equa;‘to thd
left-~hand side, which is indépendent'of. xi . Thus the right side must

be equal to the left for all A= A (t) such that A'l(t') €N aﬁd

AB') X € D(Kb) for 0 t' £t , since one can analytically céntinue

to this point, the fight-hand side remaininé regular,. If for all

0< t <1 the A'l(t) are nbt contained in N . tlen the continuation |

can be carried out stepwise by expanding A~ (t ,'in the manner specified.
.above, about a finite sequence of 1qtermediate points, tn ; end by,using‘
the gn)up propertles The i;variance eouatlon is in this way: velidated
for all pomnts X, A lK connected by a continuoits path A(t)K tmmt
remains always inside the domain of regularity D(Kb) . That only a

finite number of tn are required follows from the Heine-Borel.Covering

Pt
Theoren. -

-l
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Lemma, 8.
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2 Lemma 7A. Lemma 7 is also true if the real D a‘rﬁd.» L are replaced by

cOmple}é_, Dc and, cﬁ .

o
i
P

. :'Proof: Make these substitutions throughout the px"obf '§f Terma T.-

i
1

Let F(K) be defined (single valuedly) end regular for points
in a domain D(KO) containing X, . And suppose

15(1{) = A F(A™L ) (Bsh)

. - 1 ‘
for A el and. A and A 1 K in & resl domain D containing

Ky » Then for every point X e _D(Ko') there is a domain DO(&_L)

containing K1 such that the equation

I}

F(K; Do(xl))

A AT ) (55)

end A € £ .
. -1 o : )
with A" K e DO(KTL)/ defines a (single valued) function F(X; DO(L)>

‘over the points X e i DO(K_L) . This function. is regular throughout

1ts domain of definition and coincides with F(X) in the domain
Dy(K ) < D(X,) .

Proof: The assumptions are the same as those of lemma 7 . Thus the

Cfgvariance equation (?31.5’4) holds for all X and A"l X connected

by a path A(t) X,. 0<t< 1, that is everywhere in (x,) -

- Consifer an arbitrary point X e D(Ko) : According toLomma k4, i

therd is a domain Do(X;) containing Ky such that the points of évery pair

Y
u

poiﬁ’%s in DO(K_L) connected by a Lorentz transformetion are conneéted

o

'L

e
)
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by a continuous path A (t) K, 0L t<1, that is everyﬁhefe in
co ' '
D(Kb) . Lemms 7 then ensures that the favariance equation 045k 1s
valid for all X, At xe DO(Kl) . This in turn ensures that (‘6555)
defines & (single valued) function F(K; DO(Ki)) . To show this
S - -
suppose for some X € J\,DO(Kl) the points AllKIand AelK are both

in DO(Ki) . Téen one: can write:

0
-
o .
>

F, (K D;)(Kl)) Lo FTt K)o - %56) |

and
: e AN ~1 , _" -
Fo(K; Dy (K)) = Ay F(AZT X) . A (B.57)
That these are equal follows from'Eq.(B5k) expressed in the form
- T R '
E(All K) = A A F((ASHA )AlK) . | (Fa58)

vhich is true because both arguments are in- D (Ki)
Since F(X; D (Kl ) is 1ndependent of the particular A used
on the right of (5155), so long as At keD (Ki) , the values of
“F(K; D (Ki)) in some neighborhood of any X e d D (Ki) can be generatedv

from a fixed A s as a consequence of the con*inulty of A -1 K as a function

“! of K', for fixed A That is, the inverse map.of the open set D (Ki)

Cof AT K'« is an open set D A (&) of K's . éut for fixed A the

fj regularity of the left-hand side of (¥55) is ensured by Lemma 5,,s nce
Atk ed (K.l) < D(K,) . Finally, that F(X3D (Kl) ) coincides with

ﬁL'P(K %d? K e D (Ki) is true by virtue of (E{SS) w1th A=1.
o

i ' +

, : ,
! ’ S
\ ‘ :

|
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9 L
Remark: P. Minkowski and D. Williams ~ have shown that Lemma 8 can be

proved without the restriction to simple points. This restriction
will therefore be henceforth omitted. ILemma 4, on the other hand, is

not true for nonsimple points, as shown by a counter example of Jost

9 :

generalized by R. Seiler.

Lemma 8A. The lemma remains valid.if the real D and L are replaced by

a complex D and éz9.

Some concepts from the'theofy of functlons of several complex

variables will now be introduced. 10

<
: f
Definition: A regular function element e 1s a triple tKé; De; Fe(K)E

consisting of a base. point Ke ;, @ domain D_  containing Ke’ and an

associated function Fe(K) defined (single valuedly) and regular in D,-

Definition: Two regular function‘elements_will be called equivalent if
~and only if they have the same base point and their functions coincide

in some neighborhood of this point.

Definition: A germ is a set of regular'functionxélements such that
(1) any two elements of the set are equlvalent,
and ' ' '

(2) any regular function element equivalent to an element of the

sét is also in the set.

Definition: A germ neighborhood N(D,, FN(K)) is the set of all germs

containing a regular functions element {K; DN; FN(K)] + The domain o

K
-

DN ani;the function FN(K) are, called the base domain and the characteristic

-

functiﬁn of the germ neighbdrhood, respectively. : ¢ -
i l . . . . .

H

Definitionl The topological (Hausdorff) space with germs as points ani¥
L L } #

)

\8
3

7o
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germ neighborhoods as neighborhoods will be called the'germ space.

Definition: The domain of regularity of a functioh F(X) defined

(single valuedly) and regular in a domain 'D 1s the set of all
germs connected to any germ of N(D, F(X)) by a continuous curve

in the germ space.

Definition: The unique germ' g [e] contéining e i;~called the germ

specified by e . (Uniqueness is easily proved.)

J

Definition: The base point K(g) of a germ g is the common base
§

point. of the e € g .

: Def,;tnition: Flg) = Fe(K(g)) , with e é g C‘}‘F“(g) is independent of

the choice of & eg . )

Definition: Let N = N(DN,. FN(K))' be a germ neighborhood. Then, for

K e Dy, define g(K) = g [] , vhere e - [K;:‘DN; FN(K)]‘

Remark: gN(K) is the wnigue .g € N such that K(gN(K')) = X' .
Résta#ed, gN(K) is the unique inverse of X(g) , subject to the

 condition that g e N .

Lemma, 9.‘ If the characteristic functions of two germ nelghborhoods
N add N' coincide in'a domain . QZ~C§:(DN‘{3 DN;)jlﬁhen‘-“

gN(K}’= gN,(K) , for KeD.
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Proof: The assoclated function of any element e: Qf gN(K) coincides
with FN(K) for X in some neighborhood N(X) of KeD . Thus  °
"1t must coincidé with FN,(K) in N(X) /) D and hence in some
neighborhood of K . Thus e - is in gN,(x) . Conversely every

e € g, (K) isin gN<x<)~_.""*'

Some terminology associated with Lorentz’ invariant analytic
functions will now be introduced.

Definition: A function/will be called c;Zi(or L)-ggvariant over a set
‘ i

of po%nts S if and only if it satisfies V |

Ve

1

F(Ié) /\Si«“(/\_'l X)

for eny K and A such that A 1s in Zf(of L) and both X

1

and AJ K are in S .

'fDefinition: An orbit is a set‘of points K  all cohnected to a single

point by & lorentz transformation A € o7, .

-befinitioﬁ; A regular orbit is a set of germs whosé_base‘points cover
exactiy once the points of an orbit, and such that the imagé in the-
germfspace of any continuous curve in the orbit is a continuous

curve in the germ space.

Definitioﬁ: Iet g(K) for K €¢2f’KO‘, K(g(K')) = K' , be the germs

of, &'regular orbit. - This regular orbit will be called
o - o ‘ , : - o
“#avariant if and only if the function F(K) = TI(g(X)) is

/e



-43-

o ' o
5Zf -;avariant over the orbit.czf Kb ‘

Definition: A domain of regularity will_be'cglled‘cZ?—§£§ariant if and

only if it is a union of c[f-££%ariant regular orbits.
. : ' i

Theorem 1. A function defined (single valuedly) and regular in a domain
containing a point and L-éﬁvariant over a real domain containing

the point has an. ;Z?~fﬁbariant domain of regularity.

Proof: Let Kb be the point in the real domain andllet the functi%ﬁ;be
P ‘g

celled F(K) . There is a domain D(Ko) containing K, on which
. ‘,_,'Z‘M )

k3

- F(X) 1is defined and regular. Thus thexset ey = [Kb; D(KO);*%(Q)]

14

constiﬁutes a‘regular function element. Let &y be the germ
speéified vy éo . This g, isin N = ND(K,), F(X)) . I.m:
8 an@ 32 be any two gerﬁs in N . Then there is a continuéés
curve in the gefm space connecting .gl and 8y ; In particuléé,
if X(t) 1is a continuous curve in D(KO) connecting K(él) and K(ge)
then gN(K(t)) wili be a continuous curve in the germ space éonnecting
gy ghd g, » For cohéider.any germ neighborhood N' = N(D', F'(X))
- that}containé a germ gN(K (to)),'where tb 1s some fixed value of
4, 0<t<1l. Iet D' bea dc;maﬁin in D () D(K,) containing
K(to).. Any germ of N' with base point in D" is identical to the

germ of N with the same base point. For D" 1s a domain and hence

iy
L3

B
R0

/2
S EX]
-
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the function F'(K) must be identicel with _F(:Ki"for K eD' . This

1s true because F(X) and F'(X) are,both.regular ever the domain D"

| and they coincide over some neighborheod of K(to)ﬂe D", since g(X (to))
rcdntains.both [K(to); D; F} and {K(tb);D‘;.F'J . Since the functions
F'(X) and F(X) are identical for X € D"~ the éerms of N' and N
with base points in D" must be identical, by virtue of Lemma, 9

" Because 'K(to) is in the domain p , and K(t) is a continuous curve,
A'the inverse image of the points K(t) e D" conta}ns'an interval At

0
The germs g (K(t) ) with %t 1in the interval At are all in the

that contains t. and is open with respect to the sdt 0<t<l ..

. arbitrary nelghborhood N' containing gN(K(t )7 Thus, - this curve

' By H((t»__ g(t) is continuous. Hence any two germs\in N cen be comnnected

by a continuous.curve. This means that the word "any in the definition
t.bf domain ofgregularity can be replaced by "every" _with no change in
~the meaning.A(That two continuous curves Joined at! their end points give

5ﬁé continuouslcurve follows easily.)

i ! Conslder now an arbitrary germ g in the dpmain of regularity

.of F(X) . It is connected to gy by 5 continuous curve g(t) 1n the
?éerm space. Since g(t) 1s continuous the inverse image of any germ !

geighborhdod cohtaining a germ g(* contains an interval At 'contaiﬁing
\ ) .

'tb that is open with respect to the set 0Lt K1 .E'By the Heine-

Bérel theorem,the closed bounded set 0t 1 .is covered by a flnlté

i . ",

number of“these intervals, Aﬁ > with 1 =1, 2,¢vs, n . Associated wit h .

these intervals are corresponding germ neighborhoods N

i’Wlth l‘=‘l,-2,. *y )
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such that for t ¢ A& g(t) e N,

so that g(t } 1s in both N, and Ni a1

The assumptions of the theorem are a pargphrasing of the .

. And tlere is then s seque.nce {ti}

assumptions of Temma 8 . Thus for each point K1 of D(KO) there
is a domain DO(Kl) . D(Kb) containing X, = such that F(X) is

f-%veriant in DX ) . The first N, can be taken to be N =,

‘Take K = K(t;) . Then K, will also lie in the domain D. , in which

L 27
lie the base points of the germs of N2 . The germ neighborhood N2
is characterized by the‘requirement that each of it$ germs has an element

having the domain D2 and’the funcfion_ Fé(K),. Also, N, contains the

'germ g(t ) which is also In Nl N , and which therefore has the

element [‘{(t ) 3 D(K ) 3 F(K)] . But then Fé(K) and F(X) = 7, (x)
must coincide.with each other in some neighborhood. of Ki . But'since
- F(X) is ZE,-%gvariant in D (Ki)"the function FQ(K) 1s L -Evarient

- in some domain containing K . Thus the conditions for ' - v

‘!

Lemma, EAere satisfied for Fé(K) .. Hence for any point X, 1in D,

there is a domain containing X, such that FZ(K) is Jf,-%gﬁariant
in this démain’ Take- K, = K(t ) . The argument may then be repeated to

give ;£~£é}ariance in a domain about X, = K(t ) for 1 =3, and by

1
I
‘iteration, for i=n-~1. In partlcular, there 1s a point, Kn-l
of the démain D , in which lle the base points of N_ , such that

Fn(K) ;i§ g fnvariant in some domain containing X Lemma 8A

; -1
now shdws, that there is a domain Dn(Kg) contalining Ké , the base pd&ht
of the.germ g , such that there is a function ‘Fg(K) defined (singls;én

¢ .
/

7;;]
=V



i
}

46—

l

H . .

l . ' '
. . v . v

‘ .

I

| . . : e
-valuedly) over o{ D (K ) , where i‘t is regular and QZ mvavlant

and ‘which coincides with Fn(K) in Dn.n ZDn g .‘,.whn..ch contains
. Kg . The germ neighborhood Ng = N(of Dn(Kg) , F'g(K)) contains g,
by ﬁi’rtqe of Lerma 9, since Fg(K) Qoincides with Fn(K) ‘in a neighbor-
- hood of Kg . |
The set of germs g' ¢ Ng with K(g') s:‘-.,.’Z,Kg constitute an

of.-%f_variant regular orbit containing g . - Let alk(g')) = g' for

g' e I\Tg . Thé‘t any. continuous K(t) e,-,.Zp Kg has a continuous image

g(K(t)) follows from the argument given earlier, since g(K(t)) e Ng .
.(See Lemma 10.) Thej -Hvariance of the set g € Ng with K(g) ol Kg
oZ D (X ) ozfxg

Thus each germ g in the domain of regularity’ of F('K) 1s on an

follows from the r\Zd -ﬁcfvariance of Fg(K) - over

_-;f-ze’:?w'ariant regular o;rbi‘c.‘ ‘Since all pints of this orbit are connected
‘co_ g by & continuous path they a_re‘ élsd contained in the domain of
regularity of F(K) . Thus .each germ g in the domain of regularity
“of F(XK) 41s a member of an .of—fgvariant z;egular orbit each of whose
members is also in ‘bhe”d.cﬁmain of regularity of F(X) . This is what was

to be proved.

Theorem lA Theorenm l 1s also true if "L mvariant" is replaced by

"f &varlant' , and the real domaln is replaced by a (comnlex) do*qain.

£

Defini uion A germ nelghborhood will be sald to bej-é‘r?variant if and

only iJ. its base domain 1s of the form 'ofD end its characteristic

func @ion is Oﬁ -:mvariant over 7D .

A

/P

8
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Theorem 1': The domain of regulgfity of a.fuhction-satisfying the
conditions of Theorem 1 is-a union.of Cizﬂ-éﬁxariant germ

neighborhoods;

5

Proof': .In‘the course ofvpf;ving Theorem 1 1t waé shown that each g .
~ in the domain of rééularity of such a function is in an oza-éﬁbariant _,
germ neighborhood ﬁg . All the points ofﬁtgié neighborhood are in
i the ddmain of regu;arity since one is, by vigtue of the following
‘E .v;emma,iwhiéh wés.also proved in the course‘offproving Theorem 1.

_ e
. Lemma 10; The imege in a germ neighborhood of a cantinuous curve in

i 1its basé domain is a continuous curve in the germ space.

N . o . L RPN
. The converse of this lemma is:
e . .

"ff,;emma 10': The image X(g(t)) of a continuous curve g(t) 1in the

germ space is continuous.

4

|

ﬁroof: A %oﬁtinuous function of a continuous functipn is continuous.

But %(g) is continubus; sin;e given any domain D containing
K(g)']one.cah take a germ neigﬁborhood Ng. containing g specified

by a;&unction element whose domain D' , which contains X(g) , is

i

_contained in D . - Then for all g' e Ng , K(g) eD.

| ]
"Lermma 11: Let ‘D be a real domain satisfying the condition of Lemma 1

thatipoints of D connected by a real A € to are connected by a

&

A.é @ . 'let there bve two converging sequences Ki i 'Kb and

!

!

2

_(,..A
N
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Ki - ib whose 1limit points Kb and fb are In D . And suppose

| K, € Ji K, . Then fo e Ji,Kb .

Proof:.The scalar and pseudoscaler invariants‘formed from corresponding

~vectors of K, eand K,

into the same points in the space of scalar and pseudcscalar invariants.

= K; K, are equal. Thus these points map

As the mapping from XK. to the space of inverients is continuous,the
converging sequences Ki - Kb and ﬁa - R% map Into converging

sequences in the space of the invariants. Thusl'KO and Kb have
. the same scalar end pseudoscalar invariants. .
In case r , tHe rank of the Gram determinant of KO or ib ,
1s greater.than two it follows from a trivial genefaliZation of
. Lemma 2 of Hall and Wightman that Kb and Kb are connected by
a Lorentz.tyansformation Ae ii} that the transformation is proper
in the case r = 4 _f6110WS from the inveriance of the pseudoscalar
: invariants, ahd»for r = 3 there 1s sufficlent freedom to allow A
to be made proper. Thus the lemme is proved for thé case r > 2 .
Lét n(X) be the number of linearly independent vectors in the
set ;K . And let n =Tmax(n(Ko),tn(ib))‘. The above arfument
'worké equéily well for all the cases r = n . One cénstructs the
the orthonormalized basis vectors eg(Kb) and ec(fo) in the manner
specified in Lemma 1 above and obtains Eb = Ab.Kb , where v
A, Es the real A e L defined by ec(ﬁb) = A ec(Ko) . ' ' ;
Thus: ﬁb and X, are connected by an element of ‘j; . This

i g '
completes the proof for the case r =n .
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Because KO and KO are real, the only other cases are
n=r+1<Y4%., Suppose n(KO) =r +1 < 4 . Then, as in Lemma 1,

‘ . | e (
oneAcan.cox‘nstruct a set el(Ko), s er(KO)_’ e, Ko) + e5(KO) s vhich

spans the space of the vectors of Ky « The combination eO(KO) + e'j(Ko)

'is chosen to be equal-ﬁo some vector ® of zero length formed as a linear

combination of vectors of KO . Such a vector must exist in thié case.

Ir ® , the same linear combination of the corresponding vectors of

0 ! is pot zero then_ one can construct a set el<KO)’ “‘-:'er(Ko), ;

. _ _ | ’ ‘
‘.’:go(Ko) + ej(KO) ; by means of the same operations as before, but with the

correspénding vectors of I-{'O . The two * signs are independent and
will be specified by the condition that the I\b defined by
eo(Kb) = A, eo(Kb)‘ is in L . For r(Kb) <2 the sign of .eB(Ko) ;g

not determined by this condition and it can, and will, be taken positive.

The points KO,

wl ]l = .
| - [R— L - o0 $
quantities KO = 1\) KO . Ki = A‘o Ki , and o' = l\b . .This, in

R-i , and. ® can be represented by the {transformed

effect, refers the bar.red points to the same coordinate system, eO(KO) y
‘used for the unbarred points Xy, XK, and @ . In particular

‘w{ -+ eO(KO) + e (KO) , where the ¥ signs are the same as the corresponding
ones in ® . The vectors w ,(;)r 'm') "a.re what is~left after removing

from some vector of KO ) (dr the correspoﬁding vector of Ko') the *

pérts along él(KO), "ty e, (KO) . In this same way one construt:ts:

0 (007

from the sets X, = {kOa z and K(S = gk' g the sets of light-zone »
. _ V ¢’ - {5 | a ' - 1t N a
vectors ¢ a, 3_- {a w% and ((w a% gaa w g - by removing fche. parts

- ,
along el(Ko Yyeee, e. (Ko) .

g
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R . That the vectors of these sets arercdlinedf follows from the con-

f|dition n=r+1<4%, In the special case that ©' = ® and

S '— ' . ’ l"' = .;. t
ey =8, one has ageln K Ab_Kb with A el 2 But if o' # o
lor e, 4”3& | for some « , then Rb and Kb arelnot connected by a

% € L . However these cases cannot occur. This will now be shown by an

.Examination of points in D near Ko and Kb .éﬁhlthe real 0 -3
|

z; plane consider a set of small circles 5'0041)3 drawvn sround the
: éoints g‘é}% ; and & set of small circlés {c&g&)z drawn eround the'
~ points é1%;3' A set of points with one in each C(wu) cdrrespond; to
& real point near Ky . And a set of points with one in each C(w&)

corresponds to a real ﬁoint nesx Rb . By taking the circles sufficlently

" small these two points near Kb and KO respectively-will be constrained

to lie in arbitrarily small real neighborhoods: about KO and Kb , and
hence in D .,

The plan 1s to show that there is a real point arbiﬁrarily clése
to K, comnected to a point arbitrerily close fo Kb by & real A e ji,
but not.by a A el . -The sets of points in tﬁe real 0 - 3 plane

connected by A E‘L lie on the various hyperbolas having the‘lightu
| cone lines as asymptotes. The circles are centered on these light~
cone lines, the C(QJ) lying on the line with positive slope and the
CO%&) lyg?g elither on this line or on the other one, depending on thé
signs iniéw'f= + eo(Kb) ? e5(Kb) .

i& C(qa) and 00%;) lie on the positively and negativély-;
sloped light-cone lines, respectively, then there is always a A e L:
B

commecting some point of C(QJ) to some points of C(Q&) . Moreover,

!

r:.

$IpY

9



there are then olso points in these circles connected By any still |
Wiargér“ A elL.. The mognitude of the Lorentz transformétion is measured
by'the quo*l;ient.of the initial over the final (Buclidean) distances of
the poiot ffom‘the negatively sloped light;cooe line., ZFrom these facts
1t follows that some sot of poihts,:one in,eéoh of a gilven set of circles
along the fositivoiy~sloped light—cone'line, can be token into some

set of points)one,in each of any given sot of corresponding circles along’
the negatively~slopedliight-cone‘1ine, by & single Lorentz transformation

A €L . Thus for the cases =¥ (eO(KO) - eﬁ(Kbb) one can find a

© A €L connecting some real poiﬁt in any real‘heighborhood of X, to

0
some real point in any neighﬁbrhooq of ib » even though +the points

‘themselves cannot be so connected.,
The same conclusion holds if oné uses ihstead of Ael the

real A eﬂi?obtained b& multiplying the A € L ‘by a reflection through °

i

. the origiq in the 0-4'5 plane, However, as will soon be shown, the

¢ points connected in this way cannot be connected»by any A € L . Since

by taking ‘the neighborhoods of KO and Kb amall ‘enough the points

will be in D., one obtalns & contradiction withfthe assumed property of
D . Thus this case ' =% (eo(K ) -'e (K )) cdn, in fact, not occur.
{ ,

To see that there would be points in D connected by real

;,;A € Jﬁ- but not by A € L, consider first the case' ®'= -c (K ) + e (& ) .

‘<|A time-like point in the circle C(w) will be carried to a time- llxé

; A

|point 1n-the'corresponding circle C(w') by the real Ae J . gince

{ N N
\these ﬁwé points are in the forward and backward light‘cones respectively

N
|

SRSTS SR A e e
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they cannot be connected by an A € L . The other case,
w' = eO(KO) - eB(KO) , occurs only if r = 2 , as previously mentioned.
But now a space~like point in Clw) is taken to & space-like point in s
'C(w;) by the real A eoze. However, transformations involving the first
two vectors,' eltKo) and ez(Kb), are not allowed, because the components
of vectors of Ko and Ké in these subspaces are fixed and equal, and
hence these two space-liké vectors, which lie in the right and left‘space
cones, respectively, cannot be connected by a A el .

The remaining cases are o' = T &, or zero, If o' =*w and
r <2 tﬁeh the construction used aﬁove again allows' certain pointsAnear
-KO ‘to be connected to corresponaing poin%s near. Ké . One first ﬁses
a Ael in the O - 3 plane to take ‘the points of the AC(wa) to points
near the negdtively sloped light-cone line, and then uses é rotatidn

. through = -inthe 2 - 3 plane to bfing the points to the desired

positions in the O - 3 plane. In perticular if w, and w& have

the same'sensg, certain time-like vectors near wa' can be taken to time-
like vectors near w& . If <q¥ and ug:vhave opposite senses then
-épace-like vectors can be connected. However, if @y and <g§ have the
same (opposite)'sense a space-like (time-like) point near @, can be
carried to,a space-like (time-like) point néar d& by & real A € aZf.

But these points cannot be connected by & A € L unless o = o' and

a, = a& . In that case K. = K. and K, = Ab Ko , as asserted by the

(04 0 8] 0
lemma. % . . .
‘Tée next case is w''=w and r=2. If w' = eand ¢
VR ‘ ’
LI - ) ¢ = -
&y, = B, for all « then K, = K, and Ky = A, Ky » vhich proves

0" "o,
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. . . 1 4 .
tbg lemma. If a, kraa for some <« then Ko and’ Kb are1 in fact,
"not connected by a A € L. In any event it is sufficient to show that

o'=w and r= 2 -imply 8y = a& for all < .

1 L
The con@itions Ki - Ko and Ki = Ai Ki -+ Ko

" for the first time. Let el(K) s eg(K) , and o(K) be the linear

are now involved,

combinations of the vectors of X that become _el(KO) s e2(KO)', and

w(Kb) = ® vhen K becomes X, . The ei(K) are then generally not

orthonormalized, and 'w(K). is not a null vector. The A, are specified

1
by the conditions A, eng and by the quantities ei(Ki) =€,
'eg(Ki) = e, ; and w(Ki) = o ; end
e = ! == - = = ! =
ein = oK) = oAy Kp)om A oK) = Ay s o=y egp
and wi = Ao, ‘at least for sufficlently large 1 , where the

eii'; €in s and w, are linearly independent. For these quantities

glve the effect of A, on three linearly independent vectors. But

L

1 t

since eil - eil , €

Lemma 3 that A

and wf - 0 1t follows from

127 %12 1%
Pl 1l . For Lemma 3 says that given any neighborhood
N of the identity in 5{: one can find a neighborhood N' of
(el(K'o)j ez(Ko), ®w) such that any points in N' connected by a

A e(;f are connected by a A € N . BSince fér the case 5f three
linearly independent.vectors the Ale d( is uniquely defined,by these
points oni concluded that since the sets (eil’ €, ) wi) and

(eil, eié, w;)‘ both converge to (el(KO), ,eQ(Kb), w) , +the

Ai € gf éonnecting ‘them must‘approgch the identity. But if Ai -+ 1
and Ki iéKb then Ai‘Ki - Kb . Thus Kb = Ab Kb ; which proveé the

lemma for‘thiswcase.
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If o' = -(ﬁ a reflection throuéh the.origin in the 0 - 3
plane tekes one to the previous case w" =w . Because of the condition .
on D #his case is then ruled out, Since fb is connected to KO by
a real A e J{, ‘bu’cnc‘a'tb&a,.A.eL .

) ’..'.Né)é‘b_;.' thgre 1s the case ' =0 . If all of the a)(; =0,
[i.e., if n(i-fo) = i‘] , then this case is ruled out‘by the same argun{ent
that was used in the case ' = - eé(KO) + é5(KO) ; there are points of
D .connected by real A € L. but not by AelL . (The possibility
n(Ko) = h(ﬁb) =r with el(KO),"°, er(Kb) ail{space-like.is also ruled
out in this vay, it might be added,) If ' =0 but some @ L 1sa
nonzero vector lying along the negatively-sloped ii@h£~cone line one may
‘again use the same argument as was used for théXﬁi?i=é eO(KO) + 85(KO)
case; the C(w') is simply centergd at the origin instead of at its |

former position.

‘For the c_:asé r<2, o =0, and ‘wo'l = a&w ¥ 0. for somé
04 , the argument used in the case r < 2, "= to, 'goes through
withbu’c any change.,

Finally there;?;he seme case but with r =2 . Every w, end

@) ‘15 either zero or on the positively sloped light-cone line. For

every o elther « or «) 'is zero; otherwise it cen be made into the

~case ®':= T w . And not every @l 1is zero; otherwise it is the
previously considered case n(KO) =r . This means that the A

L are
such that the following conditions can be satisfied:
i

£l
¢
2.
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gy egpr 0p) =5 (g (KD, (), @)

Ay (egyr egp ) — (o) (K ep(Kp), 0)

1"

(eil) eie) wi) —""')'(el(Ko)) ee(Ko)) w]_)
and. ' ‘ :

=l 1" 1" 11
ATelys e o) = (oK), (K 0)

ﬁere the double~primed quantities are a particular set of primed quantities,
the w; being awcg&CKi) whose limit.is. @ % O . !
These two conditions on the set Ai are inéompatible. Thé first
two'eqpations imply that, for sufficiéntly lgrge 1 , the points Ai w
_'must lie in & narrow cone-like region. about the negatively~sloped light«
"“cone line, whereas the second two imply that Aﬁ @ must lie far from the
drigin in some narrow cone-like . region about the positively sloped lightw
cone line. The'incompatibility of these conditions rules out this last
possiblity. |
 The consequences .Afor. 'tﬁe' Ai ® asserted above follow from a detalled -
. examination of the converging sequences, A general desbription of the

arguuent should be sufficient. Since (eil’ eiz) "> Cgl(Kb),_ee(Ko)}

one can choose basis vectors ey and €54 in the subspace orthogonal to

“the one spann?d by the (eil’ eiE) in such a way that (eOi’ eBi> >

(GO(Kb>’ 63(K5)> . -The (eOi; eji) s unlike tﬁe, ) are to be

(41 e4p

parts of an érthonormal basis. A set (eéi, eéi) similarly related to %he
t t ﬁ@. . . r _
(eil’ 612)5¥: Ai(eil’ eie) is constructed. Then A, dis defined by

. 3 r | Y = ‘ . T = ! f
the conditiods A, (eil’ eia) Ai(eil’ eia) and A, <e01’e§i) (eOi’ e52 .o

{

=

pX=2
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. implies Ai ®, —> 0 . Since A°

space. The two conditions A

. and

e ———— )

. ) i ..

b .56- o |
' . § |

. i .

e e )

o - - ,
* Since (eil’ €07 €345 eOi) and (e! YOy e}i’ eOi) both converge

. l L
o {el(xb),‘e2(x ), e (K ) eo(Xy )) it follows that A
o - v

1
. N ry~1
ngce A 17 ©4p ) = A (e 1 © ) it follows that Ai = (Ai ) hy

subspage, Also sincgl (eOi’ e}i’-wi>,“§

i(i
gacts only in ‘the (eOi’ e3i)

‘<e (Ky)s e5(K,), @) , with = (K) + e, (K,), one ‘has wy > (eg; +

3
' : r, o
1 Since Ai —> 1 and A, = Ai Ai. the condition Ay @ = 0

" . Ay acts only in the (eOi’ e31> SUb~
space the problém is reducéd now to a problem in this two-dimensional
' » o

5 wi——> 0. and a)i — eOi + e,),i

that A%(e., + e,,)— O ; .’ :: the general Lorentz transformetion in
Ay gy t ey ;

imply

this two-dimenslonal space is represented by
(egy + e5q) —> (exp Ty). (eg, + ey,)
(egq = o5) = [ b ) (e - 05

and hence one cannot transform a. point hear (eOi + e51)~

JRRUREPONI

to a point near the origin-unless Re<Pi;‘<<(L ‘ :But in
this case the point (eoi + e}i) is also brought elose to the origin.
Moreover any point is brought closer.po the line A (eoi - eBi) . Thus

the point w will be brought closer to the line N (e ) . ‘A§ i

o1 = %31

increases;the lines K(e ) are constrained to lie in smallef

o1
and smaller cones about the line A (eO(KO) - eB(Kb)) . Thus for

'sufficieqtly large 1 the point o must be taken by ;Ai closer to a point

" near ééﬁ%:small cone about A (eo(KO) - es(Ko)) , the cone becoming

narrower with increasing 1 . Thus for sufficiently large 1 the

a1 s by lemma 2.

e}i)-'
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Ai'w are constrained to lie in a cone-like reglon about the

eO(KO)-- eB(KO) axis.

1" 1"

If, on the other hand, Ai 1 takes a point near the ( i Bi) axis

to a point near the origin then Rgcfi >> 0 . But then under Ai all peoints
are moved furfher from the line -X(egi - egi) gna;closer to the line

x(égi + egi) . Thus Ai o ﬁugflfor sufficiently;large 1 Dbe far from

the origin in a narrow conej}ike régién about thefline K(go(Eo) + e5(K ).
By taking - 1 large enoughjihese‘two cones can be%made arbitrarily narrowv.

 Hence the allowed regioné?will not overlap. Thisigives the contradiction.
_ B 4 'ﬂ
.. Theorem 2. &et D be a real domain satisfying uhe conditions of Lemma 1.
| Let “(K) be defined (sinple valuedly) and: L-xnvariant over D ,

!
“i and be regular at points of D, in the (weak) " sense that for any
,J,ﬁ " point K' e D there is a domain D(X') contaiping K' , and a
TJ function |F(X, Kﬁ) that is regular at points K e D(K') and which
3 B coincides with F(K) at points Dr(K'), some red) domain contained

in D (} D(K') and containing X' . Iet C- be ény closed, bounded

subset of D . Then there is an Oflfﬁbariant gefm neighborhood whose

base domain B = CZTB contains C and vhose chafacteristic function

! coincides with F(K) for K e C .

i :
Eeﬁark;- Global properties of D would permit the weak form of analyulcity
used above to be replaced by a stronger form, and the proof correspondlngny
simplified. It is aesthetically more neat and it slightly simblwfies
the proof of theorem 4, to continue to use only Jocal topological

considérations
§,

Proof: Le%‘KO be any point of C . lLet C(KO, p) be & polysphere of

radius p centered at KO . Let pi =+ 0 be a monotonically decreasing
set of radil converging to zero. And let the first py be small




, Infinite sequence of points in ic such that X

-58-

enough so that C(Ko, pi) c D(K ) , for.all i . Suppose K, is en

;€ C(KO, oy ) end such

. that F(I’i, Ko) X F' (K ), where F'(K ) is the (single»valued) i $variant

extension of F(K) to iD 5 which according to Lemma 1 exisixs. For each

point K € :f,C there is a point Ti €C ﬂ iK . Since C 1is closed

-~ and bounded the K have a limit point K € C.. And one can find a

1. 0

" subsequence X, --> K. € C .

i 0 :
The point -IEO cannot be on 5(11(0 . If it were there would,

according to Lemms 1A . and the property of D, be a"' A €L such that

Ky € A Xy . This A/ would map the real domain br(xo) containing X,

into some real domain containing KO €eC. Thcl' Intersection of this

domain A D (K ) x«ith D contains a real domain D'(K ) containing

K. . At points of Dr(KO) the value of F(X) 1s given in terms of

0
F(X) at points of D, (K ) by the L-ffvariance condition. Now according

to temms, 8 there 1s an 'J{, %‘?va.riant germ neighborhood, with a base

domain Zf_D (K ) » having a characteristic :E\mction that'. coincides

" _with F(K;-K ) for X eD (K ) < D(K } . The value of F(K) at points.

the
of D'(K Y N iD (K ) must coincide with/value of the characteristic

4 function at these points, since both are’given in terms of F(X) at
‘K €D, (K ) Dby the L-:mva.riance condition. But then ‘F'(X) must coincide
with this characteris‘cic function for all points of’ iD'(K ) N iD (K ) .

l
'..Therefore r*(K ) = F(K K) for all X, € iD'(K) N » (K)

’I'his preclﬂdes the possibility that a subsequence of the K

converge *Eo -ZO ‘s« Thus the 1limit point KO cannot, lie on of/ K .

a . T
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Al

But according to Lemma 11 the point fb must lie on 516 KO s

since Ki-4> Kb, K&-=7 Kb ’ Kb and KO are in  Qr'and; Ki GQQfAKi .

In particular for some fo > 0 there can be no pointsKic(C(Kb, po)fw i‘C)

with F’(Ki) 5<.F_(Ki, KO) R woT e oo

Take some pl With o) > pl >0 . such that c(Xy pg) < DylK,) -

Then the restriction of the vgf.-§§3ariant germ neighborhood over

'Zii.Do(Ko) to the gi.»ﬁgvarianﬁ germ neighborhood over ﬁi.C(KO, pé)

'is an Zﬁ,-§ﬁ§ariant germ neighborhood whose charackteristic function

. ‘coincides with F'(K) for X e (:Z,c /) ic(xo, p(')).) .

The point Kb “was an arbitrary point of C . This ébnstruction

can be carried through for every point X' € C . Let the radius
corresponding to pé ; but for the general X' ¢ C , be denoted by

o(K') . One can take p(K') < A, some positive upper bound.

- Let Ty

— 0 .be an infinite sequence of positive numbers that
decrease monotonically to zero. Let KO be an arbitrary pdint cf C

and let C(Kb, r(xb)) be a polysphere of radius r(Kb) about the point
X

0.
X, be e new set of points such that for each K£ there is a Kj ecC

. Let r,(X) >0 beless then p(K ) and less than r, . Let

‘such that K, € C(KO, ri(KO)) N ic(x}.{, ri(Ki)) and such that the

1
characteéistic functions constructed sbove for' Kb and K{ fail to;

1
or theré is some,‘a(Kb)' such. that for r

'coincidéfat K = K, . Either an infinite sequence of X, can be £ound

g < a(Kb)' no ;uch X, ex;sts.

P s

' Thus there can be no infinite sequence of Ki with the specified properties.

|
|

{/

)

f

r

\
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Suppose there is an. infinite sequence of Ki - For each Ki there is

e X ¢ JZK that 1s in c( ; r,(€/)) . Since the wnion of the

C( (K')) , KlecC, is & bounded set the Ki must Mave en accumulation
point I—(O . This point must be in C , since the r, (K') ~—> 0 . This

point If{-o"; is & limit point for a subsequence o:t‘ the Ki . The other

can ’bq omitted- 'I’his limit point must, according to Lemma 11 1ie on

A
. 1 {_ KO . By virtue of ‘che property of D there must thenbea A€l
l such that KO = A Ko Thus K, 1s in ic( o p(Ky)) . But since

k'i—-,» k‘ end K] — Ki , also K'—)KO, and tl'ie ! eC must be
<Z0_c {Kb’ p(K )) , except for & finite few Wh.s.ch cen be o'uteed,
i'v‘u Then also the- C(K ,r (T{' ) will be completely inside iCkKO, o(X ))
| except for. a flnite few, which can be omitted. But' _then the characteristic
'functions over OZ,C O , p(K )} and ic( , 0 (Ki)) must coincide
.l.iat the points in C(Kj'. s ri(Kj'_)) since they coinci_de over points of C
lvilco'ntained in this polysphere{ whose intersection wi-fﬁ iC(KO s p(Ko))
!;.s a demain; C(K s T (K')) .. But tﬁen the two characteristic functions
: must. coincide at K » and hence s.lso at poims of iK ’ and hence at
L Ki . 'I‘his contradicts the assumption concerpipg the Ki . Thus there
-"cannof -be ‘an infinite 'sequence of K satisfying those conditions, and
mnce there is an a(K ) such that for ri < a(K } the characterlstlc
- function over o'{,C Ky p(K )) coincides with the characteristic
.function bver, iC(K’ , p(X')) for all K' e C , at all points
X ¢ C(K *‘“ﬂ r (K )) N 'a{,C(K', r (K')) and hence at all points
311_ % " r (K )) N iC(K', r; (x! )) . where ri(;K') < nin (rij p(K)) .
: :I‘ﬁe point K, was an arbitrary point of C . Thus there is

far every Kte ¢ a characteristic radius a(X') > 0 . If there is no

L3
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" lower bound. a>0 such that a(X')>a>0 for all X' € C then
| A one can find.a- sequence of K, €C such ’cha.‘o a;(;{i)'-—a 0 . These Ki
" must vho.'ve an accumula.t..ion. point Kec y ‘t;houghr ' é.i('K) >0 . But such an
- abrupt Jump in a.(K) at X =X dis not possible, for. if

b(f‘:-)'= min { a(K) , p(K)} then certainly a(K) 2 %‘-b(f{') >0 for

X e C(K, = b(K )ﬂc, since ‘far these K all points of C(K, 5 b(X)) are

“oodn oK v(X)) where ‘the various characteristic functicns coincide

even with the weaker limit a(K) on the r 17 end hence certainly for

<% b(K) Thus there must be an 2 > O such tha’c a(X!') > &

for all 'K' € C . Thus the union of the J'{ ffvariant germ neighborhoods

. over the base domains E{LC(K' b'(X")) , vith X' ¢ C and

‘: b'(X') = min (&, p(.K'_)), satisfies the .r_equired conditions; 1ts base domain
o oontains all po_ints K' eC, itv ha.s an _?\/),-f:g‘varia.nt characteristic

- function defined (s_ingle veluedly) over -its base domein B = ﬁ«B ,

 and this characteristic function coincides with F'(K) for X e BNL C .

Definition: An enlargement of a germ‘neilghborhood N 1s a germ neighborhood

contaiihing N but not contained in W .

; Definition' A germ neighborhood N will be called maxima.l 1f and

only if no enlargement of N exists.

‘Lemme, 12, . Every germ neighborhood is contained in a maxima.l germ

neighborhood. :

I

e :
~
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Iroof' Let N be an arbitrary germ neighborhood. A maximel germ

neighborhood F&I D N can be constructed as follows Let

E Ki; be a. denumerable sequence of points that 1s everywhere

- dense in the *space'h in which lie the base points of .the germs of

the germ space. Let the K be enumerated. If a point K is

" reached that is 4in the base domain of an enlargement of N then

replace N by this enlargement (probably one of many possible

enlargements) and proceed iteratively with the enumeration of the

points of the sequence» ( Ki

) -

Because the wnion of a (finite

- or infinité) set of open sets is an open.set the result of this

~

denumerable sequence of operations is a germ neighborhood N

a 2

since the base domain Da is certainly connected and the function

Fa(K) is defined (single-valuedly) over D, end is regular at any

- point‘in D, -

Let D be the set of accumulation points of the ooints X, € D

No enlargement of N - can contain & point whose base point X is not

/

i

f'_ in Da . For any such point K must be an- accumulation point of

points K not in D ;;' Hence any enlargement containing a point

© with such a- base p01nt K would also contain a point with base

point Ki not in D . This is impossible, fo“ if there were such

‘ a Ki \then when this K we.s reached in the enumeration it could

have been included in the base domain of an enlargemenu of the then

s\

.\f

curreﬁt germ neighborhood, since enlargements .of enlargements are

themBélves also enlargements.

But the construction was such that

r:

kﬂg@
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;f'any X, ‘can be included in'the base domain of eny enlargement of the..
L then-current germ neighborhood then 1t is in fact included in the enlarge-'
"ment associated with this Kﬁ Thus this Ki /would be in Da . ”nus
"no X, not in Da ,  and no accunulation poinﬁ K of'these X, + can

1 1

be the base point of a point in any enlargement of Na ; the base peints
bfvall‘neints of every enlergement of N, are in 5; .

: If a point‘with'baee‘point K e 5; is in an enlargement.of N,
vthenifhe value of the characteristic function of the enlargement at
K=X “is unlque; it is the same fer any enlargeﬁené. For in order that
a pointeﬁith bese"poinr' K‘e ﬁ f?be in enienlargement of Na ‘the _
'corresponding characteristic function must be defined (singie-vaiuedly)
“and.- regular in a neighborhood N(K) of X, and. it must 001ncide with
F, (K) for X e D, N N(K) Thus it must coincide with F, (X) at

4
But’ “the va}ue of T, (X) at these points then determines the function

m"-‘the points X, € D /\ N(K) , which are dense- in a neighborhood of X.

SR ‘at K=X by virtue of the continuity requirement implied by the

: regularityrat K of the’ characteristic function of the enlargement.

*E o Let DM be the subset of . Da eonsistlng of all the points of

i

1':Da c Da an% of ell the base points of ‘the points of eny enlargement of

3‘}Ng,. Since the D is a union of domains each of which has a noint

CT 'in common with D the set DM is a domain. Since the value of the
;
.|characteristic function of any enlargement of N is uwniquely defined

\ : -
Tor every K ¢ D, one may denote 1t by F, (K) This function is = :

regular? % every - K €- DM because it 1is defined forle € DM' by an

f;enlargemé%t of N .~ Thus ore may define a germ neighborhood
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o iomingr

,- NM-—_-—' N(DM, FM) . This germ neighborhood contains Na. and hence N. .

NM would also be an eniargément of N_.. But no enlargement of N,

b4

Moreover, this germ neighborhood NM is maximal, For any enlergement of -

exlists that is also an enlargement of N,, because N, contains every

M . M

' point of e\}ery enlargemen‘c of Na. .

'Lémma 12A . Every i-é&’varian’c germ neighborhood is contained in &

meximal germ neighborhood that is ‘éﬁ-ér?varien’c. o
. l ) . .

CProof. Let N =1N(D, F) be an L -£lvariant germ neighborhood. If

an enlargemeht of N exists .then an i-f—r?veriant eniargement also
exists. To prove this, ‘note first that any enlargemeﬁt of N | is a
'domaiﬁ containing a point of N and some point not in N . By
connecting these with a cAontinuous curve one can, by a.. simple constrﬁc-
tion, fin,d,.in-the enlarge’ineht, a peint 1.150 ne‘c in N. such the.t any
'neighb’orheod of Po contains a point of N . Let the base point
~of Po';: be K .
domair! D (K ) containing K- such that the function de‘fin.ed in

According to the Corollary to lemma 8 there is a

D (K ) as the characteristic function of the enlargement of N can

be extended to a function F'(X) that io.,f fvariant - througnout.,fD (K ) and
' and regula.r there., It must coincide with the characte*:.stlc function

of the original i fvariant germ nelghborhood, wherever both are

defined, since both functions ere i :;z?variant over theixr doms,i*i*- -

of de?inition and they coincide in Dy (K )()D which contains a poln‘b

1«"

“#
of ev&ry orbit common to both domains. Thus the union of the orloflnal

:c‘!.‘ o
afiv
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‘ i %variant given neigh‘borhood N with the i ﬁ?varian‘b germ neigh-

| borhood. Nt = N( iD ') constitutes an enlargement of the original
V"one, and “this enlargement is {,-ﬁfvaria.nt.-‘ Thus if an Z-&varisnt

| gern neigh’borhood haé an enlérgement‘ it has an 'f;%t%ariant enlargement.

By virtue af“.thi’s', one may proceed -,j'ust as. in I.emma 12. , -uéing vhowe'ver

only ;’f_— varient enlargements. After running through the denumerable’

. set K . one has an i-é‘{variant germ neighborhood N, = . M(D o? Fo ) .

4Now, no point not in D can be the base point of an _i-%variant

' '_‘enlargement The set Dy C'. 5 is defined"by' using only o -£fvariant.

' enla.rgements.p Thus NM N( w F ) 1is a germ domain that is maximal

with respeo+ to o‘v-ﬁvariant enlargements.  But then according to the first
. ‘;paragraph N 1s a.lso maximal, Thus it is e maximal germ neighborhood

that is i.»‘ﬁz’;variant.' ' . S

Definition: The base domain of a maximal germ neighborhood will be

- called a sheet.

Theorems 1A and 2, in conjunc’ti_,on with Lemma 12A)are summarized in

Theorem 3.. Let F(K) 'be a function defined (single--valuedly) over a
real domain D . For every A in the real proper orthochronous
. homogéneous Lorentz group L and cvery K such that X and A K

are ﬂn D let F(K) satisfy the Lorentz %fvariance condition
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If F(K) is regular at some point K €D then the analytic continuation
of F(K) f:rom the neighborhood of :this poin’c is defined over a manifold
. covered by e set of sheets each of which maps on'to itself under any ,

._ ‘}i‘; , element of ‘dhe proper homogeneous complex Lorentz group Zi * And for
' e.ny sheet the associated function defined (single valuedly) and. reguler ’

x i
Co et all points of this shee’c satisfies the Lorentz %variance condition

SR “for all’ A e ;{

l, Moreover, if every point of D isa regular point of F(XK) and

' D ‘has the property, specified in Lemma 1, that- any | points of D

connected by a real A€ i are connected by a A €L, then any closed
bounded. subset C of D can be com:ple’cel;r contained in k) single i*mvariant

‘sheet, with F(K) coineiding with the function defined over that
'sheet for X €C .

Definition' The restricted mass shell is the subset’ W in the space

_ of polnts K= { Kyt K } that satisfy the n mass constraints

,kf‘f Z‘k;“) R R

B

' ‘the four conservation laws R

z kih‘p', -0 - A | / w.o= 0, 1, 2, 3 , .

AN
ug?l

- and ‘&he condition that the set X € W have more than one linearly.:

Ls. -

'inde;pgndent vector. The m, - are fixed positive numbers end n >l

i

N <



s

- " The sét of i“unctions" 2(K, X) - are analytic functions (in fact linear

. ba Ckiﬁ
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" Lemma, 13 . The restricted ma.ss shell W is a . (Bn - ) comp‘Lex..v A

dimensional manifold. _

" Proof: Consider any point KeW. Let the ki Be ordered so that the .

" last two are linea.rly independent. Let A (K) be & Lorentz trans-

formation u":at is such -that the energy components of. the vectors of -

X ; K (K) = A (X) K ~are all nonzero. Such & A(K) surely exists
since the K are a finite se‘t of nonzero vectors. Let the components
'

"1, 2, 3, be numbered so that k /‘ n‘° x K Bl/k . This is

possible because X and -1; are linearly independent. By a -

n-l

, o _.'small change in ‘A .(K) that’ does not upse’c the above inequalities

= ) g ,
one can also ensure that (k 1t O ) # (k + Xk 5) » since

"..k +kn+00

N1 . . : S -
. With A(K)" . fixed in this way the set of vectors K"(K, K)

1s defined by X'(K, X) = A (K) K . The set z(X, X) s then
'_defined as the set of (3n - lL) complex veriables consisting of the
three space components of the first (n - 2) vectors of K'(K, K)

-~ and tne first two components of th_e . (n - l)_s_‘_lg vector of K'(K, K)

i

;" funct’ions) of the vectors of . X . . They define a set of mappings

D of X space onto - Z  space.

‘\.

.oy v;rtue of the conditions tpat have oeen 1mposed on the

vectoi's of K' the inverse transformation, K'(K z), tha‘c maps YA

r&‘bo K'eW is uniquely defined for Z € U(K), a domain

&
k-

coritaining Z = Z(K, K),. and isan ana.ly'tic function of Z there.
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T"zis follows from simple alge’ora or from the implicit function theorem; -

11

" the conditions of which are easily verified.

The set W can be made into a topological (Hausdorff) space by

' space to W

o

Kew contained in U (f{-)

o : defining the open sets in W to be the restriction of open sets in X

. The topology in K space and Z space will be taken as

" of'a point Z e U(K) maps into a

K(K Z) ,since it maps into W .

" restriction to W also maps into this neighbofhood.

- the usual one induced by the Euclidian_j norm. With the topology of W
L _-"defined‘ in this way the continuity of the functions X(K; z) ~and

L Z(K;' X), consldered as mappings between - KX space and Z space, which

| meppings between U(X) and its image UW(K)C_ W', For if a nelghborhood
. K-space neighborhood of its imege |
K\K Z) then it must also map into a W-space neighborhood of

-And conversely, if a nelghborhocd

of K ¢ W' in X -space maps into a neighborhood : .in ..Z - space,then its

h x(X; z) defines & one-to-one. continuou's‘mapping of neighborhoods of
onto neighborhoods of Z contained in

u(X). . Since the inverse is also’ continuous the tre.nsformation is,

by def‘initlon, a homeomorphism and the" Open sets in U (K) and U(K)

are homeomorphic images of each other.

sets of 6(3

_iz
manifold §

n-4)

,; &nd hence W is _'a

Since K was an arbltrary roint

_of W the: set W has an open covering by sets homeomorphic with open,

(3n-4) ‘(‘c'omplex') -dimensional

follows from their analy‘ticity, Amplies that these m'appings ere continuous

Thus the transformation .

&
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~

Definition' The functions K(K, Z) and Z(K K) will denote thé
- functions introduced in the proof of I.emma 13. 'I'he function *

Z(K K) 1is defined for - Kew end. for all X, and for cach
K e W it is an analytic function of K . The funo;c,ion i((f; Z)
is defined for KeWw and Z ¢ U(K) ;& domain containing
| =_Z(K, K), ; and for each K ¢ W it is en analytic function of

| Z for Z e U(K) .‘ The function K(f{-, Z) maps points % e U(K)
“into Uw(-K') <V . Tts reciprocal is Z(K, X) in the sense-thot

© 2K k(K 2') =2' for 2' eUX). ana k(K z(K; k') = x' for

' :::'. | sK.' ';'e'izﬁw(i) c W,

Remark: The set U, (K), as a homeomorphic image of the domain'U(K), is a domair

Definition: The mapping - ¢)(-K-) is & mapping of . K ¢ Uw('ﬁ) to-

'z € U(K) defined by P(K) K = 2(K; K) for K e W and K 'e ULK)..

' Definition: The restricted mess shell W togei;her‘with the ooinpleﬁc

structure induced by the collection - {UW(K) g ‘b(f{-)}, X eW, is

called the complex . analytic manifold Woof W

- Definition A' A function M(X) defin—ed on a'restricted mAss shell W

i1l be called regular at K ¢ W if and only if u(d™H(®) z) =

(Mo¢ (K)) Z isa regular function of 'Z at 7 = <b(K) K.

3 ;
wiil ‘oe called regular at K e W if and only i1f Mo ¢'l is regular

o,



l'l

at 2 = @ K for every one-to-one mapping ¢ , such that ¢

© K(Z) e W is'an analytic functiop at 2z =¢K.

'Lemme 14, Definitions A and A' are equivalent.

":Proof: if‘ M(K)  is regular (A') at Kje W it is certainly regular (A)~
- at - K ¢ W since ¢(K) is a particular o . If M(K) 1s regular (A)
at KeWend ¢ -is a one-to-one mapping such that ¢ = K(2) e ¥
is an analytic function at Z = § ¥ , then (MO ¢ Lz = wﬁ(K("z)) =
B M(¢'1(K) z(X; k(2))). But Me ¢ (K) is an andlytic function of
“its argument Z for Z ;_Z(E;_K), and . Z(X; K;vis an analytic
-~ function of X ffor K=K, and K(Z) is en analytic.function at
- K. Thus M'o bi; is an analytic function of Z at O ¥,
" since iﬁ is an analytic fuhct;on of an anaiytiorfunction of an.'

analytic function.

‘Theorem h,-'Thevpreoeding theorems'and lemmas remain valid if F(X)
is replaced by M(K) defined on a restricted mass shell W, and

‘a1l domains are iaken to be domains relative to VW .

;
-Proof: The mass shell contains ail‘poipts having the same scalar invariants
as any poinﬁ on it, and in.partioﬁlar all points on any orbit inter-
secting it. This is the only global property of the K space that

was used‘in anj of -the above proofs.< For local prOperties'one

repiaces the topology of K space Yy the t0pology of W sﬁace.@

K e W one has _n‘= T .
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'ﬁﬁinemark 1. Any real domain of L satisfies the condition of Lemma l,
'_;ﬁ;i'.. two real points of W connected by a real A e éZf that is not a
'Dﬁ{t N A €L must have opposite energy components and hence they cannot

‘ 6:,,‘”(70»«3 . M)
" both be in a real domain in W ;. The AEKA_functions have been shown

A
- to satisfy the L-énvariance condition at regular physical pointsf')
-fvThus if D, is 8 real (physical) domain of regularity of M
" (defined over W) then, by Theorem'3, any closed bounded set C CZ D
is contained in a sheet S that maps onto, itself under any A 602§ s
»and'the function -%a» has a single-valued analytic continuation;
' throughout S , and is czi rnvariant there.. B

Remark 2. One consequence of the above remark is a slight weakening of

the assumptions needed for the S-matrix proof of CPT invariance

3

" In the original proof the postulate of minimal ‘analyticity re i

the existence of a physical sheet that was bounded by cuts defined
by equations involving only scalar invariants. This condition on
 the boundary wes imposed specifically to eliminate problems -

associated with a possible multivaluedness in the continuation to
. Ly
the qPT image point However,Aconsequence of Theorem 5 dravn in

the Pbove remark is the existences of the single-valued - -%nvariant

: 13
" continuation to the CPT-image point.  The proof of CPT invariance
i

in this way is similar to the field theoretic proof of Jost; 7 that
' proof rested heavily on Lemma 1 of Hall and Wightman; which is

f rather analogous to Theorem 3 : ’ o o %

7% e
Remark Biu In the construction of the decomposition of the analytic ;h%?

fﬁnctions into analytic functions of scalar invariants time stanaard

b

!
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at physical pOints established in £

if72" pl‘_i'
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. 4,15 -
. (polynomial) %gvariants,'1 2~ the 5Z?fhvariance of the donains

‘{'of regularity is a basic ingredient. - A fundamental result that

YEXLYtre & owne.
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'w‘domain of regularity of Mﬁ containing a physical point is

cj?-éﬁvariant. Since .Mﬁ is defined by analytic continuation

- from physical points, any domain of regularity of M, is.

&
ozf ﬁﬁ%ariant.
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fcan be drawn from this paper (Theorems 1 and 3, and the L—xnvariance
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APPENDIX' A. CENERALIZED SPINOR CALCULUS

The Lorentz transformations . Au (A, B) are defined by the

v‘eqpation

; = g AM S R )
Ach__ o, Ny(A, B, T - ()

‘where ou = (ao,-g)' are the usual Pauli matfices, and’ A and B are
‘unimodular two-by-two matrices. The unimodular two-by-two natrices
-form a group. The canonical irreducible representations of this group

of dimension (2a. + 1) are generated by the recurSion relation

(a)\\a, L BN vy (v)ee (C).-.f‘;\')’}"
A ,’(\1._11 '= 'Cbc,(a."a: 3)7) Cbc(a)a;-v B',7 ) A /';I é"\" A /"i 7’;“’ ’

-

where the coeffieients C are the usual ClebscH-Gordan coefficients. .

me al1/2) 4 iden‘cified with A .
Generalized spinor indices ‘of order (2a + 1) are introduced.

They can be elther upper or lower and either dotted or undotted. The

distincﬁioﬁ between indices of £hese various types is with respect to

the effeci upon them of the operator As‘. The action of this operator

is defined as follows:

Ah 8y = A(i.j*?;‘?{,l §a, |
A;s & L §cz' @ ( )>-la'3‘
- As gé, ='v @(a))’-l\&é\&\vg&' '. 3 | . (A'.B) '

|

<
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..on each in the manner given by (A.§);'

vectors. et AV = i'Avl"'f’Avn} _where -

- : N co : 5
is, by virtue of the conventlons adopted, ag imvariant spinor functibn.

Here 'B(a) 1s defined by the analog of (A.2) with B's in place of

: A's. If a function has'séveral_spinorfindices then' A, acts individually'

FO\“ vv.ea,] [_oy-u..-b 'ffﬂmsyovwm&uus :B:

let f£(V) Dbe a function of a set V = { votervy % of four-

3

T L oY P R R (a.1)

If: f(V) carries spinor indices and_éatisfieé the equation

Ag (V) = 'f(AV) ! (A.é)

L Y e CO . . . . L. . . T :
Then £ will be called as invarlant spinor functlon. The Pauli mat¥rices

' : o < “s ‘ @f
Gu will be considered to have matrix elements cu&é.. ?hsn‘the fungtion

elv) = av R | o (Aé)

I

i
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