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NUCLEAR MAGNETIC MOMENTS AND 
HYPERFINE ANOMALIES OF Re186, Re188 AND Am241, Am242 

Lloyd Armstrong, Jr • 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

ABSTRACT 

The method of triple resonance in an atomic beam has been used 

to measure the nuclear moments of two isotopes each of rhenium and 

americium. These moments were found to be 

p.
1
(Re

186
) = +1.728(0.003) nm 

p.
1

(Re 188) = +1. 777 (0.005) nm 

p.I(Am241 ) = +1.58(0.03) nm 

J-LI(Am242 ) = +0.3808(0.0015) nm. 

All values were corrected for diamagnetic shielding. These values of 

the moments lead to anomalies of 

186 /:).188 = +0.1(0.4)% 

for Re, and 

for Am. 

In addition, the hyperfine structures of Re and Am were calcu

lated relativistically. It was found that relativistic effects alone ex

plain the hyperfine structure of Re, but that both relativistic effects and 

core polarization are needed to explain the hyperfine structure of Am. 

The nuclear moments of Re and Arn were analyzed by means of 

the Nilsson model. Excellent agreement was found between theorical 

and experimental values with the use of quenched g factors. 
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I. INTRODUCTION 

This paper describes measurements of nuclear magnetic moments' 

made on two rhenium and two americium isotopes. These four isotopes 

have much in common: Both Re and Am have electronic ground states 

with zero orbital angular momentum, and all four isotopes lie in regions 

best described by the collective model. 

The measurements were all made by the method of triple reso

nance in an atomic beam. Prior to this work, this method had been 

used on stable isotopes only. These measurements showed that the 

technique was efficient enough to be used on beams of radioactive nuclei, 

which are generally very 1nuch less intense than beams of stable nuclei. 

This paper also describes in detail two r11ethods of calculating 

relativistic hyperfine structures. The part of this work concerning Re 

has already been published; 
1 

this Re paper was one of the first in which 

relativistic effects in heavy atoms were considered, and the importance 

of the effect was clearly shown. 
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II. THEORY 

A. Fine Structure 

The nonrelativistic Hamiltonian for a noninteracting atom in a 

field-free region is given to a good approximation by 

Je::: f [ pi2 

i=1 2m 

2 
- Ze t ~(r 0) P. 0 • s 0 t 

1 1 1 
ro 

1 

:2 ] + JChfs' 

1J 

(1} 

i > j 

In this expression, ro is the distance from a (point) nucleus to the ith 
1 

electron, r 0 o is the distance between the ith and jth electrons, and 
1J - -

~(r 0} l. 0 • s 0 is the interaction energy of the spin dipole moment of the 
1 1 1 

ith electron with the field produced by its own orbital motion. There 

are also contrjbutions to JC from the interaction of the orbital motions 

of two electrons, the interaction of the spins of two electrons, and 

interactions between the spin of one electron and the orbit of another; 

these contributions are small and are usually neglected. 

The expression in brackets represents the interaction of orbital 

electrons with a poh1.t nucleus, and gjves rise to the atomic fine struc

ture. The term JChfs, the hyper fine -structure Hamiltonian, contains 

the corrections necessary to explain the interaction of the orbital 

electrons with a nucleus having a finite volume. This term is much 

smaller than the fine-structure Hamiltonian and can be considered a 

perturbation. 

As the fine-structure Hamiltonian is itself too complicated to 

allow an exact solution, the usual procedure is to solve instead the 

equation 

JC' - [ 

i 

2 
po 

l 

2m 
+U(ro). 

l 
(2) 

Here U(r 0) is the spherically s yn1metric average of the other charges 
l 

at the position of the ith electron. For good choices of U(ri)' the 

remaining tern1 V = JC - JC' will be sn1all and can be treated by 

perturbation theory. Not only is JC' separable into parts containing 

only the coordinates of a single electron, but these parts are further 

separable into radial and angular parts. The wave function that is a J 
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solution to JC' l(J = E' l(J can therefore be given by a product of single

particle wave functions, each having the form 

P. 
l(J. = R. (ni) Y · ( IJ. <j>.) 

1 1 m 1 1 
(3) 

(but see Sec. II. D). 

For light atoms, e 2/r .. >> s(r.)l. • s., and the latter term can 
1J 1 1 1 

be considered a perturbation. We can define S = ~ s. and L = ::E £., 
i 1 i 1 

the total spin and orbital angular mornenta. Since e2j r .. does not 
1J 

depend on the particle spin coordinates, Sand e2jr .. obviously commute. 
lJ 2 

Consideration of the action of a typical component L on ~ e I r .. , 
. >. 1J 

e. g.' 

L 
X L 

i>j 

2 e /r .. = lJ 

= 

a 
a z. 

1 

i>j 

shows that L also commutes with 

1 J 

-, f 1 11/2 

?> ·l (x. - x . ) 2 + ( y. - y.) 2 + ( z. - z . ) 21 
1 J 1 .J 1 J 1 J j 

i>j 

( 4) 

2 . 
e I r .. , makmg both L and S 

lJ 
11 good 11 quantum nmnbers to a high degree of accuracy. Because 

is spherically symmetric, its eigenvalues r.annot depend on ML or M
5

, 

but only on L and S. The eigenvalues of ;JC are therefore 

{2£:+1){2s+1}-fold degenerate; the corresponding eigenstates comprise 

a term. The perturbing term :E s (r.} P.. • s. does not commute with 
i 1 1 1 

~ -+ ~ 

either L or S, but does with their vector sum J = L + S. This 

latter statement can be easily verified by looking at the commutator 

of any component of J with P.i • si' e. g., 
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[J ,£.•s.) 
X 1 1 

= 

~ 1 

j! s. + £. ' .£. s. + £. s. + £ . s. !!. = o. 
l. 1X 1X 1X 1X 1 y 1 y lZ 1 ZJ 

( 5) 

The perturbation t s(r i) £( si therefore splits a term into multiplets 

of degeneracy 2J+1 labeled by L, S, and J. This coupling scheme is 

called LS or Russell-Saunders coupling. 

At the opposite extreme, ~ s(r.) 1.. s. >> ~ e 
2 I r .. , and the 

1 1 1 1 i>. 1J 
£ and s values for each electron couple to a j valte, with the j 1 s 

...... ...... 
then coupling to J, i.e., J = ~ j.. This is called j-j coupling~ 

i 1 

In most actual situations, neither LS nor j-j coupling can' com-

plete! y explain the results. That is, neither e 
2 I r .. nor s (r. )1. • s. is 

1J 1 1 1 
overwhelmingly larger than the otL.er, and L, S, and j can no loi\lger 

\ 

commute with the Hamiltonian. J, however, is a good quantum number, 

s1nce it commutes with both perturbation terms. 

Addition of an external magnetic field destroys the spherical 

symmetry of the atomic environment, replacing it with a two-dimen

sional symmetry. The atomic states must therefore transform ac..: 

cording to R2, and be labeled by projection values along the directibn 

of the magnetic field (z direction). Because RZ has only one -dimen.sional 

representations, the degeneracy of the eigenvalues is completely lifted. 

The interaction of an atom with an external field is described 

by the Hamiltonian 

1 
The term JCext is not diagonal in the LSJMJ system, but is in the 

LMLSM
8 

system. ·For s1nall values of H, however, the spin-orbit 

interaction dominates (for the LS coupling case), and LandS still 

couple to J to a high degree of accuracy. In this case 

( 6) 
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.(LsJM I - (L + }H. ILsJM ) = - [J(J+1} + L(L+1}- s(s+1} 
J f-lo z gs z J f-Lo ZJ(J+1.) 

+ _g J(J+1} +S(S+1)- L(L+i)l 
S 2J(J+1} M JHz 

B. Hyperfine Structure 

1. Nonrelativistic Treatment 

(7} 

Thus far we have neglected the effects of the nucleus on the fine 

structure, i.e., J<;,fs· As mentioned above, these effects are due to 

the finite size of the nucleus. For instance, if the nucleus is not a 

point charge at the origin, we must express the Coulomb interaction 

between an electron and the nucleus as an integral over volume elements 

of the electron and the nucleus, i.e., 

(8} 

where p = - elj.J~:< (e) Lj;(e}, p = eLj;>:<(n} Lj;(n). If we assume that r > r , 
e n e n 

expand 1/r in terms of Legendre polynon1ials, and use the spherical 

harmonic addition theorem, this becomes 

n 

r 1 {4;' ! JZK+i 
1.. T e 

YK ( () cp ) d T ] 
m n n n 

l 
(() cp )dT ~ 

e e e 
1 

··' 

(9) 
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.or 

JCE = I K K 
Q (e)·F (n). ( 10) 

K 

K K . 
The terms Q and F are spherical tensor operators of rank K operating 

on the electronic and nuclear coordinates, respectively. Comparison of 

(9) and (10) shows that they are given by 

and 

K ,j 4TI 0 m = - 2Kt1 

F~= e~ 

e 
K+i 

yK (8 cj> ) 
m e e 

r 
e 

K 
r 

n 
YK (() cj> ). 

In n n 

If we consider only stationary nuclear and electric -current 

distributions, that is, 'i1 • j = 0, then we can write 

and 

c'V X M 
n n 

c'V X M 
e e 

Here M and M are, like B and H, pseudovectors. Ramsey has 

(11a) 

( 11b) 

(12a) 

(12b) 

e n 
shown that under these conditions we can write the magnetic interaction 

2 

as: 

'V ·M v •M 
e e n n 

jr -r I e n 

dT dT 
e n 

( 13) 

This has the same form as (8); by the sam.e procedure used in treating 

the Coulomb interaction we obtain 



·-

"" 

<,; 

-7-

JCM r K K 
:;:; M ( e} · :N: 4n) (14) 

K 

where 

jJi; MK 
'V • M 

yK (8 cp ) e e (15a} = 2K+1 Kt1 m m e e 
r 

e 

and 

J-NK - 4iT (7 • M ) K YK (8 <P ). (15b) 
- . 2K+1 

r 
rn n n n m n n 

The perturbing term J~fs = JCM + JCE does not commute with 

either J or I, the nuclear spin, but does with their vector sum F. This 

statement can be proved by considering the effect of any component of 

F on the term 

i. e. , 

F 
X 

m 

m 

( - 1} m YK ( 8 cp } YK ( 8 cp } 
m e e -m n n 

- (F+ + F_) \- (-1)m YK(8 cj>} YK (8 cj> ) L. m e e -m n n 
m 

= (J+ +I++ J_ + I_}I~ (-1}m, Y~(8ecpe} y~m(8ncj>n} 
m 

( 16) 

The 2J+1 degenerate fine-structure levels are therefore split into 

2I+ 1 or 2J+1 (whichever number is smaller} levels by the hyperfine

structure interaction. The new levels are 2F'+1 degenerate in the 

absenc~ of an external field. 
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The interaction of the nucleus with an eh.1:ernal field is given by 

JC!xt = -gif.lo I· H = -f.l( H. The total interaction of the atom with an 

external magnetic field is then given by JCext = JC!xt + :JC!xt = 
-gJf.lo J. H - g

1
f.1 0 I· H. This term does not commute with F, but as in 

the fine-structure case, F is an approximately good quantum number 

at low fields. Therefore, at low fields the effect of the magnetic field 

is to remove the 2F+1 degeneracy of the eigenvalues through the inter

action 

( 17) 

where 

= F(F+1) + J(J+1) - I(I+1) 
gJ . 2F(F+1) 

+ F(F+1) + I(I+1) - J(J+1) 
gl 2F(F+1) 

In the high-field region (nuclear Paschen-Back), F is no longer a good 

quantum number and eigenstates are best labeled by IMI'TMJ" 

Matrix elements of operators having the form of (10) and (14) 

are easily taken in a representation where I and J couple to 

F [ (IJFM) representation J: 

I ~JFM IQK; FKI I' J' F' M') = 
K 

\' I' +J+F 
L (- 1) °FF' 0MM' 
K 

(18) 

The 6j symbol shows that the series breaks off for either J + J' < K 

or I + I' < K. 

The total Han-:tiltonian J-Gr = :JC + 3Cext is invariant under 1T, the 

parity operator, and therefore the eigenvectors of JC must also be 

eigenvectors of 1T. In addition, ( Lj; I() I Lj;) m.ust have positive parity, 

since integrals over all space cannot depend on axis inversion. Be

cause Lj; has a definite parity, y/ will have positive parity; (:) must 

therefore have positive parity for ( Lj; I(:) I Lj;) to be nonzero. 
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0perators QK and FK both have the parity of YK, that is, (-i)K. 

Therefore, only K even values are allowed in the electric case. Since 

M (M ) is a pseudovector, \/. M ('V· M ) is a pseudoscalar having 
e n K K e n K K+1 

parity -1, and M and N have the parity of (-1)Y , or (-1) 

Therefore, only K odd values are allowed in the magnetic case. · 

The first allowed electric interaction is Q 
0 

• F
0

, which is exactly 

the Coulomb term given in (1). The second allowed term is Q
2

• F
2

, 

the electric quadrupole term. By defining 

Q = (2/e) (ujQ~ In) 

qJ = -(2/e) (JJ!F~ !JJ) 

and using (18), one obtains 

-e
2

q
3

Q [ 3K(K+1} - 4I(I+1)J(Jt1}] 

8IJ(2I-1}(2J -1} 

where K = F (F+1} - I(I+1) - J(J+1 }. 

The term Q is, of course, the nuclear quadrupole moment 

(19a) 

(19b) 

(20} 

(or ! Q 33 ), and qJ is the gradient of the z component of the electric 

field at the origin, + (a Ezj a z) . One generally defines 

2 
B = -e q

3
Q. (21) 

The first allowed magnetic interaction is M 
1

• N 
1

• Consideration 

of the classical interpretation of M
1 

and N
1 

shows that 

(22) 

(2 3) 
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Using (18), (22), and (23), we can then write 

(IJFMjM
1

· N
1

!IJFM) 
p.IBz 
-- I. J. 

IJ 
(24) 

One generally defines the magnetic dipole constant A as 

(2 5) 

An expression for the magnetic field at the nucleus can easily be 

derived for a single nonrelativistic electron in a central field. The 
-+ . -+ 

magnetic field due to an electron with position r, velocity v, and 
-+ 

angular momentum i., is 

= - e 
-+ -+ 
v X ( -r) 

3 
cr 

The field due to a dipole is 

1 (; -B ... -s- -~ 
r 

The total field is then 

-+ 
B = -

= etl 
me 

-; 7 
3 =-l P.o 3 
r r 

-+ - ;) 2.p.o 
[ s-3p. • r = -2- -3-

r I r 

The last term on the right can be further simplified into 

3(s• r)r 
2 

r 
~ 3(S·C

1)c 1 ~ -3-13 [(sC
1)0c 1r 

-+ -3s • r 
2 

r 

~ -3-13 I { i i ~} >ilk+{ .[3" [(c 1c 1)Ks11 
K 

-+ . ('"";"';;. 2 1 
= S - "' 10 (s C ) , 

where we have used in the last step 

-l 
r J . 

(26) 

I ..-
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The .. z component of (26) then becomes 

_ 2 ~-Lo . [ • 2 1l_ 21-Lo 
B - - .-.,- P. - .JT0 (sC ) ,_ - ---., z .) z 01 .) 

r .) r 
N z 

The above discussion is valid only for the case of r > r ; 
2 e n 

however, s electrons have large values of Jy; J at the origin and 

(27) 

thereby violate this restriction. This density at the origin does not 

affect the electric quadrupole moment, since s electrons have 

spherically symmetric densities and therefore cannot contribute to the 

quadrupole interaction. Fermi 
3 

showed that in the magnetic dipole 

interaction there was a 11 contact 11 term due to the nonspherical nature 

of the s electron spin densities at the nucleus: 

for a single s electron. This term is derived in Sec. II. B. 2. When 

more than one s electron is involved, or when electrons of different 

/. 1 s also contribute to J, the proper form for (28) is 

A 
s 

2. Relativistic Treatment 

2 
f-Lo 
J s . 6 (r.) j J J) . 

Zl 1 
(28b) 

The Hamiltonian for a single relativistic electron in a central 

field is 
. . 2 

JC
0 

(R)tj; = (a• cp + f3mc - e V c) tj; = Elj;, (2 9) 

where 

a\ 
I' and a = Pauli spin matrices. 

0 j 

This is the relativistic equivalent of (2 ). Here tj; is a column 

matrix of four rows, and can be separated into 

tj; = { tj; ) 
\\ cj> ' (30) 

where in the nonrelativistic limit cj> goes to zero and tj; is the non-

relativistic wave function. Solutions to (29) are 
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(
l(J 1J·m ) 

l(J. = 
Jm cj> ljm .. · 

1 = J. ± 1 as j = 1 ± 1/2 

F(r) 
l(J 1 jm = r y J.jm ( 31) 

cj> £jm = 
iG(r) 

y .fjm' r 

where 

(,!j 
\ 

y1 1/2 ·r- 1 . ) 

Yr = \ 2 J ..J2Jt{ 
Jm L. ms m/ m xm 

1 s 
m 1 n'1.s 

Equations for F a~d G can be obtained by solving (29) using (31), and 

then using 

U• p = a [ p + i .1 
r r r(1 +a·L) 

where 

and (a·r)Yn· =-Y1 . 
A-Jm Jm 

(a•r)Yn. =-Yn· • 
..tJm .._Jm 

This gives 

(~ _ K)F = 
dr r 

(32) 

/ d K) 1 2 
\

-:or:-+ - G = - (me - E - e V.c )F, ur r 1 1ic 
•. 

where 

(1 + a·L)y1 = Kl(J, (1 + a·L)cj> = -Kcj>. 

We see from the above equations that t. is no longer a good quantum 

number for individual electrons, but that j is. 
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As in Sec. II. A, our perturbing Hamiltonian is given by 

2 ' ' 
JCT(R)-JC 0 (R) =(a.· (cp + eA) + !3mc - eV]- Je0 (R) = -e(V--Vc) +ea.· A. 

(33) 

We see that the electronic terms, those deriving from a scalar potential, 

have exactly the same form in (29) as in (1). We therefore would expect 

that the electric quadrupole operator is the same in the relativistic as 

in the nonrelativistic case. The interaction with a vector potential is, 

however, quite different, and we should expect the operators for the 

magnetic n10ments to be changed in going from the nonrelativistic to 

the relativistic. Schwartz 4 has shown that ea.· A can be expanded in a 

series of the same form as (14). The general derivation is rather 

complicated, but an expression can be derived for the particular case 

of the dipole term. 

We saw in the previous section that the nucleus has a magnetic 

dipole moment f-l-
1
; this produces an A given by 

Since a. ::: 

f-LI X r 
A = · 3 (34) 

r 

(~ ~) , we are interested in terms of the form e(J• A 

ea· A = ea· 
f-L1Xr 

3 
r 

rxa 
= ef-l • --3-

I 
r 

(3 5) 

We can equate this with the nonrelativistic dipole operators 

or 

(36) 

A typical matrix element of the dipole interaction will then be 
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/4;. ]ea.•Aj4; .. ) =~(F(r) y ... ·,/iG(r) 
\ Jm J 1 m 1

1 J I r .t Jm ~ r 

. (F:~ly ) _ 1·10 ea·A~-r-. .R.'j'm' 
Y1jm ea·A 0 1\iG' Y-

r P'j'm' 

X 

-~ ~ _ . i F(r) • G' (r) I -1, -. Y 0 • ]ea A]- Y;r, ., , j 
1 r .r; Jm r .r; J n1 . 

J . . J 

-ifl-G(r)y-. ] ea• A IF' (r) 
r .R.Jm r 

l 
y£' j'm' I dT 

J 

= + fl-r .f2 
rrxl 

e <.R. jm ] ( C 
1 a)~ j1' j 1 m ') J 

. )o 

. (~ 

+ ~I .f2 e(lim I (c 1 a)~ I~' j'm)j
0 

FG' 
-z 

r 
dr 

F'G -z
r 

dr 

= + ,..(2 ••
1
e(-1)J-m+.R.' {j 1 j' \1 (j 1 J_.'l.) ,f2J·-n VZT'J·' +1 

r \ -m 0 m'; -i 1 2, 

FG' 
-z 

r 

F'G -z-
r 

(37) 

As stated above, the electric quadrupole operator is the same 

in the rel?tivistic case as in the nonrelativistic. We therefore wish 

to evaluate 
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<~ljml! :3 C~~~'t'j'm') ~! (tin:lc~ll'j'm?Joo 

GG' 
-3 

r 
dr 

FF' dr 
-3 

r 

- ~ (-1)j-m+j' +3/2 (j 2 j' )(j 2 j'\ ._)2J"+1 .J2j' +1 
e . \ -m 0 m' -t 0 t) · 

(
FF' GG') ~ + -----:3" dr • 

r r 
(38) 

Many times eigenstates are expanded in terms of an £m
1

sms 

wave function. It is therefore of interest to calculate matrix elements 

in this scheme. Since £ is not a good quantum number, we must first 

wave functions in terms of .f:sjm. wave functions. 
J 

l£m£sms) = c 1 1£ j=£+ i m) + c 2 1t j=.f- im) , 

where. c
1 

and c 2 are Clebsch-Gordan coefficients. For simplicity, 

we restrict ourselves in what follows to configurations of particles 

having only one angular rnornentum, that is, the electronic properties 

of the atom arise from the configuration (i)N. Then 

(39) 

where + indicates the (j=.ft *> state, - the (j=£ -i) state. 

We can now combine (36), (37), (38), and (39) to get 



and 

-e(C
1
cr

2 
+ c

2
C'

1
) 

-16'" 

2m(£ + 1) 

2m£ 
F G 

2 
r 

-
[ _(£_+_m_+_~_)_(.e_• _-_m_+~i;_)_J -1/_2_ ioo 

(2£ + 1) 

(£ + 1 ) (£ + ~) - 3m2 
7: 2 

1 1 
(1 --) (£ +-) -

2 2 -100 
0 

3 r 

dr 

1 1 1/2 _oo 
12m[(£ t 2 + m)(£ t 2 - m)J J-

-(G1C12 + CzC'1) (2£ - 1) {21 + 1) (21' + 3) 
. 0 

dr 

r 

(40) 

dr 

r 

(41) 

In many cases, configurations may be too complicated to expand 

in determinantal product states. In such cases, one would prefer to 

have the relativistic term expressed in terms of tensor operators. 

That is, we want 

(jl!ea·A[[j') = L aKK (J[jw(KK)1j[Y) (42) 

KK 

where 

dr 

dr 

' " 
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w(KK)1 = (t"vK) 1 

( tJJ vK lit')= o (0.' ) ( K] 112 

(s JJtK JJ s') = o(ss') [ ~<] 11 2 • 

(jJJw(KK)111j') = ((j](j')3[K](K])112 

L;2 
l j 

and Eq. (37), we obtain 

£' . 112 ( j 
1 

j' )~~ FG' + F' G 
-fl

1
e(-1) (2(j][j']) 

-112 1. -112 r
2 

f l 

= L a,K(3[j)[j')[K)[K]1/2(-1)'+K+1 t1;2 

Then, multiplying both sides by 

we obtain 

~1 P. K' l 

L ) 1/2 1/2 , • l 
jj' l j' j 1 1 

1 

112 

j' 

(43) 

(44) 

dr 

Kl 

K ~ 
1 J 

( j' 1 . ) 
. ~""';" "+K+1 1' . 112 \ 1 ' J 

a.KK"'J (-1) = -flre(-1) (2[K](K]) L \ I I [j][j'] \-1 2 1 -1 2 .. 
jj' 

f £ ' 1 

~} 1 F.G., +F., G. 
X ~112 112 J J J J dr • . r l ., 

j l J 
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Expanding this leads to 

a 10 = -2 f'ne ~ [ (H1)
2 

P ++ + £(1+1)P +-+ £
2 

p _ _] 

a =+ ~ f(£+ 1 ) [4{1+1){21-1)P 
2JJ. e l;;_.....__~--

12 3 {21+1) 3(21+3)(2£.;.1) ++ 

- (U-1)(U+3)P+- + 4£(Z£t3)P _ _]. 

( 
We kno'-'1 that a KK = 0 for other values of K and K, and 

dr 

p -· - -. JF G 
. -- - rz dr 

p =1. F +G- + F _ G+ dr. 
+- 2 

r 

{45) 

(46) 

For a many-particle configuration, we need make only the substitution 
N 

W(KK)
1 = [ w\:~) 1 

in (42). We then find that 

and 

i~1 

X = 'L . A = w<10)1 + w<01)1 + w(12)1 (4 ?) 
} eia i a10 0.01 a12 
i 

1 
A= 

I 

(JIIxiiJ) 
(JIIJIIJ) 

(48) 
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We can further simplify this term by writing 

(01)1 - [ . . 3 . ] 1/ 2 
-+ 

W - 21 (1+1)(21 +I)" L 

(10)1 - . f 2 li/?.. .... w - [Zffi) s (49) 
.. . 

w(i2)i ~ - L [ 1&:N)\~~w) ) i/2 .JTO (<TC2): • 
i . 

and qy using S = (L + 2S) - J and L ::: 2J - (L + 25); Equation '(47) then 

becomes 

X = aS + !3L + y ~ (aC
2
)[ 1TQ 

1 . 

(50) 

Using (27) and (50), we then obtain 

A~[(<> - ~ + y)(-gJ - 2) +" + yPT(J1 f (51) 

where 

(JII ~ Nj IIJ) 
PT ( J) = --· -1 

---,--

(Ji!JIIJ) 

Cl :: a .Jz-rrm 10 · I .:.J · 

_. f (2£-1)(U+3) )1/2. 
y- a12L.t(.t+1)(U+1) ; 

The term fPT (J) is nearly equal to the nonrelativistic A valne. 

Thus the relativistic A value looks very much like the nonrelativistic 

A value, plus a part depending on gJ and a pa.rt constant within a 

configuration.· 

In a cornpletely analogous mannc~ 1· we find for the q11adn!poJe 

nwment 

c~llj') = L 1\K (jllw(~<K)2llj•) (52) 

I<K 



~zo .. 
where 

(4k)(l+ 1) 

( 2 5) (z~ + 1) 
3 ( -(£t2)R++ t 3Rt- + (i -1)R _ _] 

b = - {6(i:"1"){£)(Tti){i.t2}-- [ (2k~1)R + 4R - (21+3)R J 
13 :} (25)(2£' .. 1)(21+1) 3(21+3) ++ +- --

(53) 

b
02 

= r-u(m,--
3 

-- [ (2£ -1)(H2)R++ + 6R+ t (1-1)(2H3)R J • 
.JS(z.t-1)(2£+1) (2i+3) -

b K = 0 for othe~ 1< and K, where 
K 

R 

,.. 
' F F + G G 

Rt- =! _+_-.,.,3 __ +_-_ 
.) r 

(54) 

dr • 

The extension to the many-particle configuration proceeds as above, 

with 
N 

zz = L 1 c 2 (i) - 3 
i= 1 

r. 
1 (55) 

= b w{11 )2 + b w(13)2 + b w(02)2 
11 13 02 . 

and 

(56) 

In making relativistic calcuh~tions, it is ttseful to have the non

relativistic limits of the radial integrals so that one rna y at any time 

pass to the more familiar nonrelativistic equations as a check. As 

, 
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stated above, in the nonrelativistic limit, <P and therefore G goes to 

zero, and F becomes the nonrelativistic radial wave function R. In 

addition,. F + and F _, as well as G+ and G _, approach the same values, 

because i rather than j becomes more nearly a good quantum. 

number. Thus (41) and (56) can be easily reduced to their nonrelativistic 

limits. Reduction of the integral e J :~ dr, however, is more com

pl~cated and requires use of (32). 

ef r( F+) dr F+G+ ei'l , F + dF+ K 
---z- dr ::::; 

2mc) T dr - r r 

r 

F~) ei'l { (F+ d(F +/ r) l 
dr (57) = --t:rric) \-;:- dr r 

~ l'o { -1 ~/r3) - } [ (R/r)zj r~o} • 

2 2 
where in the first step we have set me + E + eV ::::; 2mc . Likewise, 

c 

e 

and 

I 
e I 

I 
j 

F G 

2 
r 

(58a) 

(58 b) 

Let us. now look at a diagonal element of (40) in the nonrelativistic 

limit for the case of a single s electron. In this case, c
1 

= 1, c
2 

= 0, 

and (B J) becomes 

Then 

A 
s 

as given in (28). 

(59) 
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There is another important correction caused by relativistic 

effects in atomic physics; although it properly belongs in the field of 

fine stn~cture, it fits most logically into the discussion at this point. 

This is the 11 Breit-Margenau" 
5 

correction to gJ" Calculation of this 

effect proceeds along the lines of the calculation of the ~ipole inter

action. One introduces a perturbation term A = - i r X H, where H 

is an externally applied field. Then 

ea.A = --
1

ea•rXI:J= 
1 

eH·aXr t· .JT H ( c 1
)1 

2 :-1 - 2 = 1 2 e • a r. (6 0) 

Comparison with (35) shows that this perturbation term is 

exactly {r
3 /2)(H/~1 ) times the operator for the dipole interaction. 

That is 

1 
JCext 

3 
r 

= - T 
~ 

H 
(61) 

where the last term on the right is the nonrelativistic operator. We 

can therefore use the results of (51) with only minor changes. The 

radial integrals P ++' P __ , and P +- must be changed to F ++' F , and 

F +-' where 

F ++ = J r F +G+dr 

F =J r F _ G_ dr 

F +- =! r(F +G- + F _ G+)dr. 

(6 2) 

These three integrals can be rewritten to make the nonrelativistic limits 

more obvious. Using (32), we obtain 

and 
J rF G dr = 2

11- ( r2K G 
2 

dr - K - 1/2) ± ± ·me ) ± ± ± 

J r (F + G _ + G + F _}dr = - !c J F + F _ dr. 

With these forms of the integrals m (51), and multiplying by 

(H/2!-11)(-1/!-10H), we obtain 

(6 3) 

J 
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g J(rel) · = ag J(nrel) + bPT (J) + c (64) 

where 

a= _
1

_ ·[ 
4 

(2.£
3 

t 3.t
2

- 1)fG
2
dr- 41

2 
( ~1+1)JG2dr + ~l (£+1)1F F dr 

(2£+1)2 3 . . ·. + 3 ~ 3 + -

. l 
- 4 i 2 4 i + 1J 

3 3 

c = -

In the nonrelativistic limit, G± __..,. 0, F ± -->- R, and a = 1, b = c = 0. 

C. Second-Order Effects 

The perturbation terms (10) and (14) involving the orbital electrons 

and the nucleus are not spherically symTnetric, and therefore tend to 

break down both I and · J as good quantum numbers. These effects 

are generally srnall, and can easily be treated by second-order perturba

tion theory; they can, however, be very important in cases such as the 

measurement of anomalies, when very accurate values for A and g
1 

are 

required. 

Since excited I levels are typically of the order of a few hundred 

keV above the ground state, and excited J levels of the order of only a 
-1 . 

few hundred em , we need concern ourselves only with the breakdoWn 

of J. The effects of this breakdown can be divided into two groups: 

effects on terms wjth energy depending explicitly on the external field 

(g
1 

and gJ)' and effects on terms not depending explicitly on the field 

(A, B, etc. ). 

The .values of A, B, etc. are obtained experimentally primarily 

at low fields, where F is a good quanturn number. It is most reason

able, therefore, to look at second-order effects on the interactions· (10) 

and (14) where F is a good quantmn number. These effects will have 

the form 



We 

+ (-1)2I+2F+2J {I J' F }2 

J I k 2 

+ (-1) 2 . < 2I+2F+2J ~-I J' F ~~ r I J' F ~~ 
l J I . k 1 l J I 1(,2 

can write the general term 

{..: 1 )F+2I+2J {I J' F} jl J' Fl ,-· 
~ = L J I k1 t J I k2j K 

c K 

where 

k 2 Kqk1 

I IjlJ J 

(65) 

{: 
J :} I (66) 

Insertion of (66) into (65) shows that each of the above second-order 

perturbation tenns looks like a first-order term of rank K, where 

k 1 + k 2 ~ K ~ j k 1 - k 2 !. That is, the dipole term can give second

order effects that look like terms from dipoles and quadrupoles. 

As values of gi and gJ. are normally obtained from high-field 

measure1nents, corrections to these terms will be obtained in the· 

IMIJMJ system. 

is of the form 

The term linear in H in the second-order pertu;p·l:>atlon 
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1-MI I I 
::: ( -1) ( 

\-MI 

1 

0 

(67) 

Thus, for the transition 6. M
1 

::.. 0, 6. M J ::: ±1, the above term (67 ), 

which depends on M J' will give a contribution to the energy, thereby 

affecting the measured value of g J' A like argument shows the above 

expression will also affect the value of g
1 

inferred frorn a 6.MJ::: 0, 

6. M
1 

:: ±1 transition. In particular, the tern1 with K :.: 1 will have an 

M
1 

dependence exactly tl1e same as that of g1p.
0 

I· H. Because the 

111 J dependence, however, can never be the san1e as that of gJf-lo J· H, 

the possibility exists that by observation of transitions between different 

pairs of M J states, an i11dication of the amount of admixing might be 

obtained. 

D. Exchange JJolarization 

Many atorns in S states have been shown experimentally to have 

nonzero values of A, the dipole-interaction constant. 
6 

The S states, 

however, are s phericalJy s y1nrnetric and should have no hyperfine 

structure. These nonzero values of A ]1ave generally been explained 

by the rnechanis1n of exchange polarization, which causes contributions 

to t]l{~ Ferrni contact terrn frO.JTl closed shell, or core, electrons. 

The <:tpproxinJ.dte Han1iltonian (2.) has eigenftHtctions of the type 

of (3), which arc products of angnlar and radial parts, The radial 

equations obtained from (2) are dependent only on· n ~1nd £; this. 

dependence results in an R tlwt is equal for all electrons in a shell, 

reg a nlles s of their rn h or rn det)endence. The e2/r .. ·perturbation 
~ s . lJ 

term, however, rernoves thi::; equivalence through the exchange tern1 
2 . 

- (p1 (a)Lp2 (b)le /r 12 !4J1 (b)LfJ2 (a)) . Tl1is term is zero for electrons 

having diffe renf rn , and attractive for electrons of like rn • Therefore, 
s s 
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because core s electrons having the same value of m as the outer . s 
valence electrons will ~e drawn out from the nucleus, a nonzero value 

of ! ljJ t (0) J

2 
- jlJ;t (0) J

2 
for two core. s electrons in the same shell 

will result. (t refers to rns = + 1/2, ·t toms - - 1/2). 

Cohen, Goodings, and Heine 
7 

used a straightforward application 

of perturbation methods to calculate the changes in Li and Na of core 

s functions due to the exchange interaction. They found that when they 

used bound-state s functions for the terms in the perturbation ex

pansion, the calculated effect was an order of magnitude too small to 

explain the experimental results. Other calculations 8 have tended to 

confirm that the bound-state wavefunctions are not a sufficient set of 

functions for the perturbation problem., but rather that the continuum 

states m.ust also be considered (therefore providing a com.plete set). 

Altbough tbe necessity of including the continuum makes this 

approach impractical, the perturbation method is valuable in showing 

the general form of the solution. To second order, the change in A 

will be given by 

3Z1T fJ.NfJ-0 \- N 2. 1 \- 2 +1 \ 
t:,A= 3 - 1 - L (1 SL,s. S,SLJI.Il_szi6(ri}[j~NS1_L1_,ss' n S,S'L'J'; 

S, S I 

X 
1 

(E' - E ) 
s s 

The reduced matrix element above is just 

L+J' +S' 
( -1) J'l ([J][J'][S'] ~ 1/ 2 

(s!lsa(r)!ls') 
L S, \ [1/2)[1] ) \ 

1 

x o(L, L' )o(S, S' )o(n, 1). 

(68} 

\ 
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From this we see that only the triplet state of ss' is in1portant in second 

order. 

The matrix element of e
2 
/r .. with n = 1 can easily be obtained 

lJ 9 
from the work of Rajnak and Wybourne ; it is 

Combining these two expressions gives 

YJ s ( 0 }LJJ s I ( 0) i. 
(sLJ lis IISLJ') R (l:s', sf)o(L, L' )o(S' S)o(n, 1)o(n, 1) 

[ t J 

x o(J', .r
2

)o(S' ,s
2
)o(L', L

0
)o(L

2
L'

1
). 

If J :::: J' , we can write S = L + 2S - J, and 

n1aking 

(JIIsiiJ) = 
(.rll.ri!J) 

c. s s' 

-g - 1, J . 

(69) 

for all levels uf Lhe configurdliuu .eN. Highe!· urller terrn::; will not 

have this same dependence on L, S, and J, but should be much smaller. 

Then 

A ::: A
1 

+ c.A + B, (70) 

where A
1 

is given by (25), C.A by (69), and B includes the higher order 

terms. If B is negligibly small, we see that (70) has the same J 

dependence as (51). This 1neans that one cannot easily separate con

tributions to A from core polarization and relativity. 

An alternative approach to the proble1n of exchange polarization 

is offered by the spin-polarized Hartree .. Fock method. In this method, 

one solves two Hartree-Fock equations per shell, one for each ms 

projection. These equations will have slightly different potentials 
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because of the exchange term with the valence electron. 

This method should make it possible to predict all effects of 

prornoting core s electrons to higher s states, but does not include 

the effect of promoting s electrons to d states; this is a third-order 

effect and should usually be small, however. 

E. Hyperfine Anomalies 

According to (25); the A values of two isotopes of the same 

element should be related by 

(71) 

Here B J{ 1) = B J(2), because B J is a function of the electronic rather 

than the nuclear properties of the atom. Deviations from. {71) occur, 

however, and these deviations are expressed in terms of an anomaly 

. tJ. • , 
1 J 

(72) 

In the heavier elements, tJ. arises from errors associated with 

the assumption that p.I is a point dipole. The two largest corrections, 

the Bohr-Weisskopf10 and Breit-Rosenthal
11 

corrections, arise from 

finite -volume distributions of the nuclear magnetization and of the 

nuclear charge, respectively. 

In the Bohr-Weisskopf correction, we assume that the nucleus 

has a magnetic -dipole density w{R) associated with the nuclear spin S 
--+-

this density gives rise to an AS at the electron position r of 

r A
5

(r) = - J dr w(R)g S(n)X'V n s r 

where gs is the g factor of the spin. 

to A from the orbital momentun:t AL as 

1 r . A (r) = - ~J __ 
L c) jr Rj 

dr = 
n 

ze 
m c 

n 

1 

We can write the contribution 

--+-p 
dr 

n 
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We must then substitute the sum A = AL t AS for A as given in (34) 

into (33). 

Electrons s
1

; 2 and P 
1
; 2 are the only ones with nonzero densities 

near the nucleus; they are therefore the only ones that will be affected 

by the finite nuclear size. For s
1
; 2 and P 

1
; 2 electrons, we can make 

the simplification 

e J 4/a · AtjJdTe = ± ~ J dre :~ (A X ;)z , 

where+(-) refers to the s 1; 2 (P1; 2 ) state. This simplification is done 

by expanding the angular parts of Lj; into sums of tm1 sms wave

functions, operating with a· A= a A + a+A +a A+, and inte-
z z - -

grating over the spin coordinates. Then for the energy due to the spin 

moment, we write 

= ± 

FG 
-r 

r 

2e j' r 
4 1T 

dr w(R)g I dr 
n s J e 

FG 
-2 

r 

X r-; . S(n).l! ~ 
- r . J 

1 . l 
lr'-RI z 

Js (n)(-;· 
1 z r 
'· 

Because S 1; 2 and P 
1; 2 electrons have nonzero density at the origin, 

and thereby penetrate into the nucleus, we must make expansions of 

1 r _
1 

R 1 for both r > R and r < R. The problem is simplified because 

the nature of the integral over the electron coordinates shows that the 

only expansion term that can have a nonzero effect is that containing 
0 

Y
0 

(e cp ). Performing the indicated operations yields 
e e 

' 
~ r ("'? (R 

FG ~r] , ' ·ij dr w(R)g S (n}u 
FG r 

ws = ± -y dr - s 
Jo ~ n s z 

i R r R 
(7 3) 

where 

r. = 
f _.,.. 

a - 3(a • R)R l 
R 

2 J z 
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energy due to a point dipole would be 

f (00 

w~ = ~· dTnc.>(R)gsSz L FG 
-2 

r 

We can therefore write 

where 

(R ~+ ~ r ) FG dr 
K =Jo \rz 'R3 

s 

l
oo FG d 

2 r 
r 

0 

In a like manner we obtain 

FG 
L: 
r 

The energy in the point-dipole approximation is 

dr. 

r -;-3 

FG -z- dr, 
r 

leading to 

where 

JR ( 1\ · ~ + z-) FG dr 
K = 0 R r 

L ioo FG ---y dr 
0 r 

(74) 

(7 5) 

l 
FG dr J. 

(76) 

(77) 

(7 8) 

If as is the fraction of total-hyperfine-structure energy due to 

the spin moment, and nL is that due to the orbital moment, then 

... 
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w = W0(1- a.S~- a.LKL) 

(7 9) 

The effect of finite volume of nuclear charge is to change the 

values ofF and G within the nucleus from the values ofF 0 and G
0 

obtained for a point nucleus. This correction can be incorporated into 

the above corrections by writing 

and (80) 

where F, G are the true radial functions within the nucleus. 

Then 

= = (81) 

and from (72), we see that 

(82) 

F.. Collective Model of the Nucleus 

tn this model a long-range correlation between the nucleons 

causes a relatively long term stability in the nuclear shape; that is, 

the particles move in s01ne collective 1notion. We may view such 

correlation as being a result of coupling between particle and nuclear 
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surface. The particle moves in a nonspherically symmetric field 

caused by a distortion of the nuclear surface; because of its motion, 

the particle itself will then provide a nonspherically symmetric potential 

in: which the other particles move. 

The simplest deformed body to cons.ider is the ellipsoid, with 

R ~ R0 (1 + I amY;;., (8', ~·)] , (8 3a) 

m 

where 8 1 
• <j> 1 q.re angles with respect to the principle axes of the nucleus. 

The constants a can be written 
m 

ao ::: 13 cos y 

1 
13 sin (83b) a±2 

::: - y 
..]2 

a±i = 0 • 

In the laboratory system, the Hamiltonian of the ellipsoid ex

clusive of center -of-mass motion can be written 

JC = 1 \L B I... !2 + ~ \"' C jam 12 2 am · 2 L_ (84) 

m m 

if we assume a harmonic -oscillator-type potential. 

The a 1 s are the deformation parameters corresponding to the 
m . 

a 1 s obtained when R is expressed in terms of space -fixed axes. 
m 

where 

Manipulation of (84) then gives 

JC = JC (13y) 

3 
JC =: 

rot ~ 
K=1 

+ JC t • ro 

L2 
K 

2~ .K 

with ~K = 4BI3
2 

sin
2
(y- K 2

TT ). If ~ 1 = ~ 2 =~, JCrot is the 
3 

(85) 

(86) 

Hamiltonian for the symmetric top, with eigenfunctions of the type 
R 

I) ao (8 oi> 'Y). The rotational constants qf the collective nucleus are 
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2 

therefore L = R(R +1), Lz = a. (z is the space -fixed axis), and L
3 

= 6 

(3 is the body-symmetry axis). 

Let us now assume there are one or two unpaired particles of 
-+ 

total angular mornentum j outside the core. The total Hamiltonian 

will then become 

where 

JC = JC (f3"Y) t JC + JC rot p 

JC is the single -particle Hamiltonian. 
p 

The angular momentum of the last particles will couple to that 

of the core to give a total angular momentu1n: 
-+ -+ -+ 
j+R= I. Let us ex-

press (86) in terms of I: 
3 3 r R2 (IK- jK)Z :!12 

., 
:n2 

0 2 
JCrot \" K ;.· ! (I - j) 2 (I 0 ) 2 j + = ·z-,~--- = = 2;J 2;J 3 (I3- J3) L- 2'v 3- J3 J ~K ~K lo 

K=1. K=1 

Because of the axial symmetry of the core potential, JC will be diagonal 
p 

in J
3 

= Sl. The. total Harn.iltonian will be diagonal with respect to 

Iz = M, but not necessarily with respect to I
3 

= K. When these quantum 

numbers are used, (86) becomes 

JC = :!1
2 

fi(It1)- K 2 - s-2
2 1 + :!1

2 
(K-s-2) 2 

rot ~ l J 2~ 3 · 

(87) 

For low-lying states, ;J 3 is very small, and JC will be · rot 
1ninimmn for K :.:: Sl. The term l+j _ tends to break down K as a good 

quantum number, but when K = r.l, a perturbation calculation shows this 

breakdown is negligible. That is, states of different K correspond to 

different single-particle states, and the very large difference in single

particle energies in the den01ninator of the perturbation coefficient 

rnakes the coefficient go to zero. Since neither 

on K, K = n will also be a minimum for JC. 

Let us define 

JC(f3"Y) nor JC depend 
p 

( JCP + r: ]2
) x., = JCoXn = E .,X n· (88) 

Then an eigenfunction of (87) (neglecting the term in j+I_) invariant 

under rotations around the sym1netry axis is 
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. _ (2I + 1)1/2 [ I I+K+O I \- j '] 'li'(IMKQ) - --2 DMKXQ + (-1.) DM-K L' ( -1) C .0x .0 , 
16,. . .· J J 

J . (89) 

where we write X 0 = L C jOX jQ because j 3 and not / is a good 
j 

quantum number. 

We now take a diagonal element of (87), using (8 9) and letting 

r+l 1 l o d-1) 2 (It-)al. 0- 2 . 
?. J 

(90) 

Here a is the decoupling parameter 

a = :[ ( -1 )j+± (j + -}) I C H ! 2
• The last term on the right (90) is the 

j 

only nonzero diagonal term arising from the I+j _ term in (87 ). [In 

obtaining (90), one must remember that r
3 

refers to the component of 

a space -fixed vector along a moving axis, and (I1 , I2) = - ii3, etc.] 

We see from (90) tl:at when K j -}, the minimum value of EIK occurs for 

I=+IK!. 

We can now consider the term e K" One 1nust n1.ake son1e sort 

of assumption concerning the nature of the potential between the un-

. d 1 d h N"l 12 h d · · pa1re nuc eons an t e core. 1 sson as assume an 1sotrop1c 

harmonic oscillator potential, with a Ci • s term added to provide 
2 

agreement with the shell model near closed shells, and a Di term 

to n1ake the potential more like a square wei! for large values of i. 
2 2 2 2 2 4 2 

The harmonic oscillator has w1 = w2 = (1 + 3 o)w
0

, w
3 

= (1- 3o)w
0

, 

with o = J :t: f3 ~ f3. Then JC mixes in states with P. 1 = f.± 2, 
p 

and breaks down A and 2.~, t11e three projection_s of the particle 1 s 

angular 1no1nentum 1!. and spins. For very large deform.ations; A 

and n'2 (the hannonic -oscillator quantum numbers along the 3 axis) 
J 

becon~e good quantum num.bers. Nilsson therefore labels his states by 

their large deformation quantmn numbers !Nn
3
L\n). At intermediate 

deformations this can be expressed as 
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I Nn 3Ar2 ) = L a £n2: I NfAL:). 

£n2:: 

(91) 

This type of Hamiltonian gives equal energies for states of both 

+r2 and -r2. This equality causes problems in the determination of 

ground state I' s when there are two unpaired nucleons outside the core. 

That is, the states with r2a::: r21 + r22 and ~ = ln1 - n2 1 are degenerate, 

and K and therefore I can equal either. Gallagher and Moszkowski 
13 

have predicted that the spins of the two odd particles tend to align them

selves paral1el to each other, so that n = n1 + rt2 if n1 = A 1 ± t. 
st 2 = A z ± ~; n = I n1 - ozl if rt1 = A 1 ± * , o2 = A 1 + ~~· 

Using the above relations, we can now calculate the nuclear 

dipole and quadrupole moments. The magnetic dipole moment is given 

by 

~'1 " (gss z + g £l z + gRRz) MI =I" :+! [ (gR) (I· I) + (gs -g £) (s· I) +(grgR) 0· 9] 

I = 
I + 1 

for a single unpaired particle, and 

I = f.LI 
I+ 1 

r 
1'.n 

for two unpaired particles. 

r~-~ (91),one uses± for Q = r2 ± 0. H 0 = 0 
p n 11 

of the second and third terms rnust be made negative. 

and (91) hold only if K I 1/2, 

(92) 

(93) 

n ' then the signs 
p 

Equations· {90) 

The total quadrupole 1nornent is the sum of the single-particle 

and core mornents. In the range of validity of the Nils son model, the 

former is much srna.ller than the latter and can be neglected. We 

define Qs as the core quadrupole mom.ent as measured in the 
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laboratory system, and Q
0 

as the moment with respect to the nuclear 

axes. Then 

(fJ <j> )r
2

[ IMK) 
n n n 

q Y
2 

(fJ' <j> 1 )D
2 

(8 ci> w) [IMK) 
n m n n OM 

= JFi (rMK I D~ 0 [ IMK) (rMK I L qn Y~ (fJ~ <j>~)r~ [ IMK) 
. n 

= 3K
2 

- I(I+i) 
(I+1)(2r+3) Qo • (94) 

We see from (83) that for the 3 axis to be a symmetry axis, 
2 

y = 0°, and R = R
0 

[ 1 + I3Y
0 

(fJ<j>)]. Then if we assume p(r) equal to a 

constant, and J p(r)dy equal to Z, 

Q 0 =fr 2
(3 cos

2
fJ - i)p(r)dv 

(9 5) 

to first order in f3. 

.. 
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III. EXPERIMENTAL METHOD 

The atomic -beam method utilizes two regions of a large and 

inhomogeneous magnetic field and one of a constant magnetic field 

to measure atomic -energy differences arising from the hyperfine 

interactions, A beam machine of the "flop-in" design is shown in 

Fig 1; in this machine the two regions of inhomogeneous field 

(produced by the A and B magnets) have their gradients in the 

same direction. In these two regions, the atoms "feel" a force given 

a:JCext a H 
by F z = - a z ~ gJflOMJ a z . This latter equation is obtained by 

evaluating :JC t as defined above ( 17) in the Paschen-Back region 
ex 

and neglecting the term in gi, which is about 1/2000 of gr In 

order to be detected, an atom must have its deflection in the A 

region cancelled by its deflection in the B · region; this cancellation 

can occur if MJ(A) = -MJ(B). This condition requires that the .. 

atom undergo a transition in the C region. Transitions are induced 

by introducing into the C region a- small magnetic field oscillating 

at the Bohr frequency of the atom in the constant (and large relative 

to the oscillating field) C field. 

Exact transition probabilities, in general difficult to calculate, 

depend on such things as the relative strengths of the static and 

oscillating fields, the velocity spectrum of the beam, and the number 

of possible transitions occurring at frequencies near the Bohr 

frequency of the desired transition. Two common results should be 

noted, however. First is that (single quantum) transitions occur 

when the oscillating frequency is equal to the Bohr frequency of the 
E - E 

1 2 
atom, i.e., v =---h--. Second is that the probability will depend 

in some way on I (l\Jf I :JCpert jl\Ji) 1
2

, where, in this case, 

:JC = -gJfloJ· H' - gii..Loi· H'. Depending on the type of transition to 
pert . A 

b~ induced, H 1 is either H
0 

cos wti + H
0 

sin ,wtj or H 0 cos wtk.· 

In the first case JC t can be written (neglecting the term in gi) as 
. pe_r H . . 

floHo 1wt -1wt . I..Lo o 1wt -1wt 
-

2
- (J e + J +e ); m the second as - 2- J Z (e + e ) . 

The first term obviously connects states differing by ± 1 in mJ' 
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Fig. 1. Schematic arrangement and trajectory in an atomic
beam flop -in apparatus. 
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and the second is diagonal in mJ" Simple conservation-of -energy 

and -momentum considerations show that left-handed polarized photons 

(m~ = 1) will cause .6. M = ± 1 transitions if E > E 
1

, and right-
x m m-

handed polarized photons (m
1 

= -1) will do the same if E < E 
1

. 
m m-

If I(LPfl JCpertiLPi) 1
2 is taken in the low-field representation, 

the allowed transitions are .6. MF = 0, ± 1, and .6. F = 0, ± 1. If it is 

taken in the high -field representation, the allowed transitions are 

!::.. MJ = 0, ± 1; ;::, MI = ± 1, 0; or !::.. MJ = !::.. MI = 0. 

The limitations on observable transitions by the beam machine 

[MJ (A) = - M
1 

(B)] and by the transition probabilities for magnetic

dipole transitions means that only transitions labeled by Greek letters 

in Figs. 6, 7, and 8 can ordinarily be observed in a beam machine. 

These transitions can be described as one of two types: (a.) .6. F = 0, 

;::, MF = ± 1 in low field, and .6. M
1 

= ± 1, .6. MI = 0 in high field; or 

(b) .6. F = ± 1, ;::, MF = 0 in low field, and forbidden in high field. The 
. . [F(F+1)+J(J+1)-I(I+1) 

former has a low-f1eld held-dependent part f.L 0H_ 2 F(F+ 1) gJ 
F( F + 1 ) + I( I+ 1) - J ( J + 1) . . . 

+ 2F( F+ 1) giJ, and a h1gh-f1eld f1eld-dependent part 

f.L
0

HgJ" Because gi is about 1/2000 of g
1

, the low -field dependence 

on gi of this transition is almost undetectable in most beam machines. 

The latter transition is used to fix the constants A, B, and C 

because of its independence (to first order) of g
1
, ~J' and H. 

These two types of transitions are therefore relatively insensitive 

to gr 

Th . l h d 1.4 11 b . e tr1p e-re sonance ·met o a ows one to o serve trans1-

tions that are in the high -field limit .6. MI = ± 1, .6. MJ = 0. These 

transitions are labeled by numbers in Figs. 6, . 7, and 8. The 

field-dependent part of this transition is just g
1

f.L
0

H, which allows 

precise measurement of the value of gr This method consists of 

subjecting the atoms to the frequencies of, first, an ordinary 

resonance of the first type described above, then one of the .6.M
1

·= ± 1, 

!::..MJ = O.resonances, and finally to the first frequency again. The 

energy levels involved are shown schematically in Fig. 2. 

One can then calculate the signal strength for one, two, and 

three hairpins. If the probability of inducing a transition in the A 

hairpin is P A' then 
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MUB-8117 

Fig. 2. Triple -loop signal equations: 

SA = 2n P A lr· 

SAB = 2n(PA +PB- 2PAPB) 

SABC = 2n (P A+ PB - 2P APB + p APBPC) 
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SA= 2nP A' 

where we have assumed all hyperfine levels to be equally populated 

with n particles. Likewise 

S AB = 2nP A ( 1 - PB) + 2n( 1. - P A) PB 

and 

Thus if P A and PB are nonzero and constant, the signal strength 

will vary as PC. This relationship enables one to trace out a 

resonance with 6 M
1 

= ± 1, 6 MJ = 0, thus allowing g
1 

to be 

measured directly. 
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IV. APPARATUS 

The machine used for both experiments was essentially that 

described by White. 
15 

Consequently the only details discussed here 

are those in which the machine differs from this earlier description. 

The most important difference was the positioning of three 

hairpins, rather than just one, in the C -magnet region (Fig. 3). The 

individual hairpins were 3/4 -in. long in the beam direction and roughly 

1 in. apart. The two end hairpins, being nearer to the A and B 

magnets, respectively, were in much less homogeneous fields than 

was the center hairpin. Resonance line widths at high fields in the 

end hairpins were therefore 3 to 6 times as broad as those in the 

center hairpin. 

During these experiments the A and B magnets were driven 

in series by the B-magnet supply. The A-magnet supply, which had 

better regulation than the C-magnet supply, was modified to drive 

the C magnet. Although the resulting C -magnet power supply could 

drive the C magnet to only slightly above 700 G rather than to 

1000 G, as had the previous supply, regulation was much improved. 

The early work on Re was done with an oven loader like that 

described by Schlecht, 16 and the later Re work and all of the Am 

work was done with the oven loader shown in Fig. 4. Because this 

latter oven loader allowed the sample to be placed nearer the entrance 

to the A magnet than had the previous loader, signal intensities were 

increased. The radio-frequency equipment used is listed in Table I. 
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Fig. 3. Schematic of magnets and hairpins. 
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ZN-5189 

Fig. 4. Oven loader used f or Re and Am. 
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Table I. Radio -frequency equipment. 

Instrument 

Oscillators: 

Hewlett-Packard 608C 

Tektronix 190A 

General Radio 1208B 

General Radio 1209B 

General Radio 1218A 

Rohde and Schwarz SLRD 

Hewlett-Packard 540A transfer oscillator 

Amplifiers: 

IFI 500 wide -band amplifier 

IFI 510 wide -band amplifier 

Frequency -measuring instruments: 

Hewlett-Packard 524B electronic counter 

Hewlett-Packard 5245L electronic counter 

Hewlett-Packard 525A frequency converter 

Hewlett-Packard 525B frequency converter 

Hewlet.t-Packard 525C frequency converter 

Hewlett-Packard 5253B frequency converter 

Hewlett-Packard 5254A frequency converter 

Northeastern Engineering 14-26C frequency 

converter 

Frequency range 
(Me/sec} 

10.0 to 480.0 

0.35 to 50.0 

65.0 to 500.0 

250.0 to 920.0 

900.0 to 2000.0 

275.0 to 2750.0 

100.0 to 220.0 

0.5 to 240.0 

0.5 to 240.0 

· 0.0 to 10.0 

0.0 to 100.0 

0.0 to 100.0 

100.0 to 220.0 

1 0 0. 0 to 50 0. 0 

50.0 to 500.0 

300.0 to 3000.0 

200.0 to 1000.0 
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V. RHENIUM 

A, Introduction 

The research on rhenium was undertaken primarily for two 

reasons. First, the ground configuration of Re is a half-filled shell 

in the Hund' s rule ground state, which in this case is (Sd)
5

(6s)
2 6s 5;z· 

The spherical symmetry of such states indicates that at the nucleus 

there are no hyperfine fields caused by the electrons in the half-filled 

shell; other effects such as core polarization and relativity then be

come dominant and are more easily studied, Second, Re is in a state 

of intermediate deformation according to the Nilsson nuclear model, 

and it is of interest to see if the model is still valid in this region. 

The starting point is the work of Schlecht, White, and McColm, 
17 

who measured to high precision gJ and the hyperfine constants A and B 

for both Re 
186 

and Re 
188

. The interpretation of our results was greatly 

aided by Trees' 
18 

analysis of the optical spectrum of Re, which included 

the effects of both breakdown of LS coupling and configuration mixing. 

B •. Experimental Method and Results 

Beams of Re \yere obtained by electron bombardment of 20-mil 

Re w1res. In this method, the Re wire is placed near a W wire that 

has sufficient current passing through it to produce large emission 

currents. The Re wire is then made to act as a collector by being biased 

to a positive voltage. The Re wires were of natural Re that had been 
14 

bombarded at a flux of 10 neutrons/ em-sec for either 4 hours (to 
188 186 

produce Re ) or 3 days (to produce Re ). A detailed description 

of the irradiation procedures and the oven loaders used for electron 

bombardment of wires is given by Schlecht. 
16 

As indicated in Sec. III, in our experiment the A and B hair

pins were set on the ,6.F = 0, ,6.1vfF = ±1 transition and the signal from 

each hairpin was 1naxi1nized separately. This then led to a minimum 

signal for A and B together. In practice a signal-to-noise ratio of 

about 10:1 could be obtained in each hairpin separately, and the two

hairpin signal was only slightly above background. This low level 

indicated that both P A and PB were near unity. The C -hairpin frequency 

was then varied, and signal-to-noise ratios of about 8: 1 or 9: 1 could 
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be obtained with the triple-loop resonance. At the C fields used (200 

to 500 G), the line widths in the A and B hairpins were 300 to 400 kc/ sec. 

This meant that the C field could drift about 60 kc/ sec without signifi

cantly affecting either P A or PB. Triple-resonance lines at these fields 

were approximately 25 kc/sec wide. Some observed triple-resonance 

lines are shown in Fig. 5. 

Figure 6 is a schematic of the hyperfine levels of both Re 

isotopes. The A and B hairpins were set on the resonance 13, 
(5/2, +1/2) -<---+ (5/2, -1/2). The triple resonances observed are 

numbered 1, 3, and 4. Resonance nurn.ber 2 was not observed, probably 

because the right power was not used in the C hairpin. The C-hairpin 

resonances were very power sensitive, and the power required for us 

to observe the different transitions at one field setting varied consider

ably, son1etimes by a factor of 100. 

The data obtained by the triple-resonance method were combined 

with that of Schlecht et al. 
12 

for purposes of data reduction. The com

bined observations were fitted to a Hamiltonian of the forrn 

11_,., =AI· J + B[ 3(1· J)
2 + 3/2(1· J) - I(I+1)J(J+1)] 

u\.; 2IJ(2I-1)(2J-1) - gJJ-LoJ· H- grJ-Lol· H 

(96) 

by means of the IBM 7 090 program HYPERFINE 4. Values of A, B, gJ' 

and g
1 

were all varied. Tlle final results are (Table II): 

Re186 

A=± 78.3060(10) Me/sec 

B = l 8.3595(16) Me/sec 

gJ::: - 1.951988(39) 

g
1

=+ 9.34(Z)x1o- 4 

Re188 

A = ± 80.4326 (8) Me/ sec 

B = t 7.7463(11) Me/sec 

gJ = - 1..952072(60) 

g
1 

= + 9.61(3) X 10-
4 

17 
The values of gJ' A, and B are essentially those of Schlecht et al. 

The triple resonances fix the value of g
1 

only. 
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Fig. 6. Breit-Rabi diagram for Re 186 and Re 188 

I = 1, J = 5/: _ 
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Table II. Re data fit. 

Re 
186 

Data Fit 

A = - 78.306Q(.0010) Me/sec 

B = + 8.3595(16) Me/sec 

Transition 

MF M' H 
F F' F (gauss) --

7/2 1/2 +-~ 5/2 -1/2 199.9229 

3/2 -3/2 +-~ 5/2 -1/2 299.8773 

3/2 -1/2 ~~ 5/2 1/2 299.9612 

.. , ;-· I .;. 1/2 ~~ 5/2 -1/2 299.8598 

3/2 -1/2 ~- 5/2 1/2 399.7824 

3/2 -3/2 .,. _ _.. 5/2 -1/2 399.7974 

7/2 1/2 .__.. 5/2 -1/2 399.8003 

3/2 -1/2 ~- 5/2 1/2 499.8241 

3/2 -3/2 +--- 5/2 . -1/2 499.8241 

R 188 D F. e ata 1t 

A= - 80.4326(8) Me/sec 

B=+ 7.7463(11) Me/sec 

Transition 

M' H 
F MF F' F (gauss) --

7/2 1/2 -- 5/2 -1/2 99.9675 

3/2 -1/2 -- 5/2 1/2 299.8fJ39 

3/2 -3/2 -- 5/2 -1/2 299.8819 

7/2 1/2 .__... 5/2 -1/2 299.8714 

3/2 -3/2 -- 5/2 -1/2 399.7780 

gJ = - 1.951988(39) 
4 g

1
X 10 = 9.341{23) 

Frequency Residual 
(Me/sec) {Me/ sec) 

24.735{5) 0. 0002 

16.647{6) 0.002 

59.380(5) 0.008 

3.169{:4) - 0. 003 

54.343 (4) - 0.001 

22. 334{4) - 0. 004 

6.936{4) - 0. 003 

51.064(3) - 0. 002 

26.026(3) 0.001 

gJ = - 1.952072{60) 
4 

g
1

X10 = 9.607(.029) 

Frequency Residual 
{Me/sec) (Me/sec) 

92.755{3) - 0. 0004 

61.835(1) 0. 0003 

15.895(2) 0.001 

3.938(1) 0. 00008 

21.837{2) 0. 0002 

Fit to the observed triple resonances according to the Hamiltonian 

Co 
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The magnetic moment of Re 18 5 has been m_easured to be 

1-Lr = +3.144 nm, 19 and the dipole constant has been measured to be 

A(18 5) = -7 2 (24) Me/ sec. 
20 

These two measurements, in conjunction 

with our measurement showing that 1-1
1

(186) and jJ-
1

(188} are positive, 

unambiguously determine the sign of both A(186) and A(188} to be 

negative. 

The hyperfine anomaly is given by 

186 188 
D. = 

A 186/ A 188 

186; 188 
gl gl 

- 1 = 0.1(0.4}o/o. 

h 1 f h ld b d f d . . h' ld' 21 
T e va ues o g

1 
s ou e correcte or 1amagnetlc s 1e 1ng, 

measured 1. 
gi = gi -r=-a 

We can use 1./(1- a)= 1.00714, the value for Z = 64. Then 

g
1

(186) = 9.41(2} X 10-
4 

~-Lr( 186) = 1. 7 28(3) nm 

gl(188) = 9.68(3) X 10-4 

!-1
1

(188) = 1. 7 7 7 ( 5) nm. 

A weighted mean of the two values of gJ is 

6 
gJ( s 5/ 2 ) = -1.952021(33). 

C. Second-Order Effects 

i. e. , 

There are two types of second-order effects, caused by mixing 

in of higher J states, which can affect the results of this experiment. 

These types are corrections to g
1

, which directly affect our results, 

and corrections to A, which affect the measured anomaly. 

It is possible to obtain an approximate upper limit for the effect 

without embarking on the detailed analysis outlined in Sec. II. C. Thus 

for corrections to g
1
, we can evaluate 

2W W 
hfs mag 

EJ- EJ 
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where W hfs is the energy due to terms linear in A and B (evaluated in 

the IMIJM J representation) of a t.MI = ± 1, t.M J = 0 transition 

Whfs = AMJ + 
B[3M~- J(J+1)] 3(M~(1) - M~ (2)] 

4(J)(2J-1)(I)(2I-1) 

Here W mag is just g JJ-LOHM J' and gl is the spurious gi term. The first 

excited J state in the ground configuration of Re lies approximately 
-1 22 

14,000 em above the ground level. Then 

g' ~ (2)(80)(2)t '><: 10
6 

I 4.2 X 1014 
-7 

~ 4X 10 , 

which is an order of magnitude smaller than the uncertainty in gr At 

500 G, this would correspond to a shift in frequency of 0. 3 kc, which 

would be completely undetectable. 

In like manner, we can obtain an order-of-magnitude estimate 

of the error in A: 

. A' ~ 

4(80· 80) X 1.0
6 

-5 I 
~ ~ 6.0 X 10 Me sec. 

4.2x1o
14 

This, of course, is also negligibly small. 

Another possible source of error in our measurement arises 

from the well-known Bloch-Seigert
23

• 
2 

effect. When two oscillating 

frequencies are present simultaneously, as they are in this experiment, 

resonance frequencies are shifted by an amount 

t.w = 

where w
0 

is the frequency of the transition being observed, and w
1 

is the other frequency. In this case w
0 

corresponds to the C transition, 

typically of the order of 50 Me/ sec;. and w
1 

is the A or B transition 

frequency, typically of the order of 1000 Me/ sec. Then 

·-
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-s I = 5X10 Me sec, 

which is 1/ 500th a C resonance line width. 

D. Hyperfine Fields 

18 6 
Trees has shown that in Re the s 5/ 2 ground state is not pure 

but contains components due both to the breakdown of L and S and to 

admixing of the configuration (5d)
6

(6s) into the ground configuration 
5 2 . 18 

(5d) (6s) . Trees gives as the ground-state wavefunct10n 

w(J = 5/2) = 

The calculation of the magnetic field at the nucleus B 
z 

2
f-l0 L [ 2 1 ) -r t.. _.no (ac ). 

r . . 1z 1 0 
1 

and the gradient of the electric field at the nucleus qJ 

q = 
J 

1 '\"' . 2 
~ L (3 cos e - 1\ 

r 
i 

can be carried out by expanding the wavefunctions above into sums of 

deterrninantal product states. This method is straightforward and is 

de~cribed in detail in Condon and Shortley. 
24 

The important terms in 

the evaluation of Bz and q
1

, when 'lf(5/2) is used, will, because of the 

size of the coeffiCients in 'li'(5/2), obviously arise from elements 

diagonal in !6s) and \
4 P) and from off-diagonal elements depending 

on !6s). However, Bz and qJ can only connect states \vith t.L = 0, ± 1,. 

± 2, t.S = 0, ± 1. These criteria mean that only the first four states in 

'li'(5/2) will be irnportant. The first three of these are given by 
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1

6s sj2\ (2t1+0+-1+-2+) 
sj2 I = 

[ rJ2/7 (A+~ B - J6 C-D) + 
1 {~(E + F + G) 

,_j14 

where 

A= 2+1+0+0--2+ 

B = 2+1+0+ -1+ -1-

C = 2+2-o+ -1+ ~2+ 

D = 2 + 1 + 1- -1 + -2 + 

E = 2- 1 + 1- 0 + -2 + 

F=2+1+1-0--2+ 

G=2.+1+1-0+-2-

t 2 (H + I t J t K + L + M)}] 

H=Z-1+0+0--1+ 

I= 2+1-0+0--1+ 

J = 2 + 1 + 0 + 0- -1 -

K= 2+2-1- -1+ -2+ 

L=2+2-1+-1--2+ 

M = 2 + 2 - 1 + - (~ - 2 -

The fourthterm_ J(4
3

P)
4
P) is inthe configuration (5d)

6
6s. The 

six d electrons couple to a 
3

P state of seniority 4, which then couples 

to the s electron to form a 4p state. The J4 
3
P) state is most easily 

formed by first constructing a J d
4 3

P) state of seniority 4 and then 

multiplying it by a Jd
2 1s) state. The resulting sum will naturally 

have many states that must be dropped because they are forbidden by 

the Pauli principle, and many that are not in standard order as defined 
24 

by Condon and Shortley. The result is that 

1 

where 
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A' - 2+ 2- 1+ o+ -2+ -2- E' = 2+ 1+ 1- o+ -1- -2+ 

B' ::::: 2+ 2- o+ o- -1+ -2+ F' = 2+ 1+ co- -1+ -2+ 

C' ::::: 2+ 2-1+ -1+ -1- -2+ G' ::::: 2-1+1-0+ -1+ -2+ 

D' = 2+ 1+ 1- 0+ -1+ -2- H' = 2+ 1+0+0- -1+ -1-

Then I(4
3
P)

4
P 5; 2 5/2) = J4

3
P 2 2) J

2s 1; 2 1/2) • This state is, of 

course, in'lportant because of its contribution to A due to its unpaired 

s electron [ Eq. (28)]. 

The states constructed in this manner are unique to within a 

phase factor. That is, when constructing a state orthogonal to ljJa' 

one can use either +ljJb or -lpb. In order to assure that our phase con

vention is consistent with that of Trees, 
18 

we have evaluated the 

coefficients in '\1!(5/2) according to perturbation theory. The perturbing 

term that breaks down LandS as good quantum numbers is L adl.· s., 
i 1 1 

where ad > 0. Then 

1 
< 0 • 

E 6 -E 
s 4p 

showing that I 4 P 
5

/ 2 ) has been constructed to agree with Trees 1 

notation. Second-order theory is required for the j
4

D 
5
;

2
) term, 

since \' i... • s. can change L by only ± 1. L 1 1 

(E - E ) (E6 - E4 ) 
6s 4D s p 

,rrs-
> 0, = 

5(E6 - E4· )(E6 - E ) 
s p s 4D 

confirming the phase assignment of 
4n 5; 2• The final term I (4

3
P)

4
P 5; 2 ) 

is important only in diagonal matrix elen'lents, so the phase is of no 

real importance. 
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'''c~ .. 

In ord<er to
3

>evaluate Bl z and

12

qJ one nee~; to know the two radial 

parameters 1/r Sd and 111(0) 6 s. Cohen has calculated Hartree 

solutions to the Dirac equation for the ground states of tungsten (Z = 74) 

and platinum (Z = 78). Utilizing the discussion of Sec. II. B, one can 

write 

f FG 
-z 
r 

dr. 

dr 

These equations were evaluated for W and Pt, and a linear interpolation 

was made to Re(Z = 7 5). T;hese values are given in Table III. 

The value of 1111(0) 1
2 

can be obtained from Cohen' s functions by 

means of the equation 

lw(o) 12 =- _1_ J( F~ dr 
Traa 0 r 

which can be obtained from (59). This equation was also evaluated for 

W and Pt and a linear interpolation made; results are shown in Table 

III. 

A check on this last value can be obtained by looking at the 

optical data of Schuler and Korsching
26 

on Re 
187

. They have measured 

the hyperfine structures of the states 
8

P 7 / 2 and 
8

P 
5

/ 2 in the configuration 

d
5

sp, obtaining A(
8

P 7/ 2 ) = 113.46 mK and A(
8

P
5
; 2 ) = 109.96 mK. 

Assuming that d
5 

couples to 
6s 5; 2 , which then couples to the s 

2s 1; 2 
and the p 

2
P 3; 2 to form a 1

8
P

9
; 2 9/2) state, we can write 

1
8

P 7; 2 7/2) = 1/.f9{1;,JI[.J5]5/2 3/2) 11/2 1/2) 13/2 3/2) 

+ ls/2 5/2)11/2- 1/2) 13/2 3/2)]- tJ6I5/2 5/2)11/2 1/2)'\3/2 1/2)} .. 

and ' 

18
P 5/2 5/ir 1/60.J6(iT7 { .J3o 15/2 1/2) 11/2 1/2 > 13/2 3/2) 

+ m !5/2 3/2) 11/2 - 1/2) \3/2· 3/2) - s.fSjs/2 3/2) \1/2 1/2) J3/2 1/2) 

- 515/2 5/2) 11/2- 1/2) 13/2 1/2) + 1515/25/2) 11/2 1/2) 13/2 - 1/2)}' 



Table III. 

f~ F _ G_ 
e . 2 dr 

o r 

f F+G+ 
dr e 2 

r 

f~ F+G- + 
e 

2 
0 r 

foro F= r+3 G= 

G2 

-'57-

-3 
Re numerical parameters (in units of a ). 

0 

F_G+ 
dr 

dr 

4. 7 

5.1 

19.7 

14.0 J.L 
0 

5.1 

10.0 

11.1 

24.7 

29.7 },l 
0 

- 16.0 J-L 
0 

8.6 IJ-
0 

11.1 

1~ F! + + dr 3 8.3 
0 r 

f~ F+F- + G+G-
dr 

0 r 
9.0 

6.0 

6.6 

20.9 

17.9 J.l 
0 

- 9.6 !-'" 
0 

5.2 J.l 
0 

6.6 

5.0 

5.4. 

a. These are evaluated from Cohen's wave functions of W and Pt. 

b. The values for Re are obtained by linear interpolation. 
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where we have written 16s 5; 2 m) as 15/2 m) , etc. The. measured 

A value-s in this configuration _will be alrnost totally due to the un

paired s electron;- assuming that this is the total contribution, one 

obtains 

8 8 a6s 
A( p7/2) - CJ -, 

8 17 a 6s 
A( p5/2) = 15 r-

where a
6 

is given by Eq. (28). The disagreement between the ratio 
' s 

of these two A values with the ratio of the experimental values indicates 

that the simple coupling scheme is not completely correct. However, 

the calculated values, like the experimental values, are nearly the. 

san1e. Other cpuplin.g schen1e::; also lead to val11es of approximately 

a 6s/7 for both J states. Assuming that A(
8

P 7/ 2 ):.: A(
8

P 5/ 2 ) = a 6s/7, 

we obtain a 6 ~ 0.8 rnK, to be compa;red with a value of a
6
- = 0. 7 mK 

s ' 2 . s 
that would be obtained u::>ing I \1! 0 I as given by Cohen' s data. 

Evalnation of Bz. and qJ th·~n proceeds in a straightforward 

1nanner, and one obL:tins 

A - + 44.8 f-l·r Me/ sec - f 78.4 Me/ sec 

B = -1- 33~0 Q Me/ ::>ec. 

The contributions to these quantities from the various matrix elements 

are shown in Table IV. 

The 1nagnitude of A is correct, but apparently the sign is wrong. 

We therefore n1ust consider relativiotic effects. Since the non

l~elativistic treatn1ent is in terrns of detern1inantal wave functions, we 

shall use the first method discu::>::;ed in Sec. II. B. 2. 

The integrals J (F _ G j r 2 )dr and f (F; + G~/ r 3)dr have been 

evaluated for both W and Pt by mean::; of Cohen's wavefunctions and 

linear interpolations made to Re. The values of F+ and G+ have not been 

calculated for W, ::>ince the ground state of tungsten has no 5d 5/ 2 
electrons. The Re integrals containing F+ and G+ were therefore ob=

tained by scaling down the Pt integrals by the same factor as was used 

for the integrals in F and G • 
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Table IV. Nonrelativistic matrix elements in rhenium. 

Dipole elements 

:;: 0 

Quadrupole ele1nents 

(
4 2 4 .> 

PS/Z 5/2/3 cos e - 1/ DS/Z 5/2 

~ . 2 4 
\ P 5 I 2 s 12 /3 co s e -1 I P 5 I 2 s 1 2) :;: 0 
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One then obtains a relativistic correction to the nonrelativistic 

values of 

A= - 83.5 1-LI Me/sec= - 146.1 Me/sec 

B = - 28.0 Q Me/sec, 

giving for the total calculated values 

A = - 38.7 1-LI Me/ sec = - 67.7 Me/ sec 

B = 4.7 Q Me/sec. 

The relativistic matrix elements are shown in Table V, and the various 

contributions to A and B are collected in Table VI. 

The agreement between calculated and experimental values is 

now fairly good. It is impossible to determine whether the difference 

between the measured and calculated A values is due to uncertainties 

in the relativistic parameters o:r to core polarization. 

Cornparison of measured and calculated values for B shows that 

Q = 1. 7 barns. This implies that Q
0

, the nuclear quadrupole moment 

with respect to the symmetry axis of the nucleus, is Q
0 

= 10 Q = 17 barns. 

If we assume a deformation parameter of 6 = 0.2 (see Sec. V. E) for Re, 

then 
4 2 

Q 0 = 5 ZR
0
o = 6.0 barns, 

which is considerably smaller than the above prediction. This discrep

ancy could arise either from uncertainties in radial integrals or from 

quadrupole shielding. Sternheimer
27 

has calculated an antishielding 

factor of R = -0.51 for the configuration (5d)
4 

in tungsten. If this 

number applies to Re, then 

Q = 1. 7 = Q 1 
( 1 - R) 

Ql = 1. 7 1 1 1.5 - . ' 

and Q
0 

would become 11 barns. In any case, in the region of Re the 

antishielding factors are of the right sign to bring the two values of Q 0 
closer together. 

An alternate method of calculating relativistic radial integrals 

. . l f tl C . . 28 . f Ch . 1nvo ves use o 1.e as1m1r correctlon actors. oos1ng 

Zeff = Z - 11 = 64, and using the (1/r
3

) values used in the non

relativistic calculations, we obtain relativistic corrections a quarter 

the size of our previous result. This result, in direct contrast to the 
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Table V. Relativistic matrix elements in rhenium. 

(~ 6 
5 5; 2 5/2j;Hz I 5 5; 2 5/2) 

( 4 I 14 , \ 
p 5/2 5/2 • Hz p 5/2 5/2/ 

/6 4 \ 
\ 5 5/2 5/2j Hz I p 5/2 5/2/ 

/6 I . I 4 \ 
\ S 5/2 5/2 t Hz' D 5/2 5/2,; 

(65 5/2 1(3cos28-1) 16s 5jz\ 
5/2 · 3 5/2 I 

r 

. 2 
/\4P 5/2j(3cos 8-1)14P 5/2\ 

5/2 . 3 . 5/2 I 
r 

<4P 5/ 2 1 (3 cos2e- 1) I4D 5; 2\ 
5/2 l 3 5/2 l 

r 

. 2 (65 5/ 2 i(3cos e-1)l4p_ 5; 2\ 
· 5/2 . · >:J/2 I 

.r 

Dipole elements 

eP++ :eP 

420/175 80/75 

11088/5250 1392/2250 

0 0 

-168/17 5 ·.JTZ749 -112/75.JT2749 

Quadrupole elements 

R++ R 

0 0 

0 0 

624/ 1225(1/tJT5) 42/17 5(1ffl) 

112/17 5( 1.J'S) -4/25(1.J5) 

" .. , 

!=P +-

40/25 

.576/750 

0 

R+-

0 

0 

3546/367 5(1/ffl) 

-252/525(1./rJS) 

'-

~ 

0' 

'""" I 
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Table VI. Contribution to the hyperfine constants 

A and B in rhenium. 

Source 

Breakdown of LS coupling 

within (5d) 5 (6s)
2 

Configuration mixing 

(5d)
6

(6s) 

Relativistic corrections 

Total calculated 

Total experimental 

a. p.
1 

in nm. 

b. Q in barns. 

Magnitude. 

A (Me/sec) 

33.6 llr 
a 

11.2 llr 

83.5 p.
1 

- 38.7 p.
1 

- 46.0 ~I 

B (Me/sec) 

+ 33.0 Qb 

0.3 Q 

28.0 Q 

4.7 Q 

8.0 
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earlier one, is insufficient to explain the experi1nental results. For 

this reason, we believe the Casimir factors are only a quarter as big 

as they should be for d electrons. This result is not surprising, since 

Schwartz
29 

showed that the Casimir factors were accurate, but fortui-
30 

tously so, for p electrons; and Sandars has shown them to be only a 

tenth as big as they should be for f electrons. 

E. Nuclear Structure 

Mottelson and Nilsson 
31 

have. calculated equilibrium values of 

the deformation parameter o for odd A nuclei in the region 151 <A< 195, 

using the collective model with a harmonic -oscillator single-particle 

potential. Experimental values of a were then obtained from values of 

Q
0 

based on observed E2 transition probabilities. Agreement between 

calculated and measured 6 1 s for both odd-A and even-even nuclei is 

good over most of the region, particularly for 74 W and 76 Os. 

The predicted value of 6 for 7 5
Re is 0.19, which agrees favorably 

with the value 0.22 obtained from the measured quadrupole moment of 

Re 
185

• This o and the measured ground-state spins of 5/2+ for both 

Re 
18 5 and Re 

187 
led to the assignment of [ 402] 5/2 to the 75th proton. 

186 188 
Because both Re andRe have I= 1-, the 111th and 113th 

neutrons have been assigned to the [ 512] 3/2 state. This assignment 

fits the Mottelson-Nilsson energy-level diagram exactly if a
186 

> 0.22, 

and 0.19 < o 
188 

< 0.22. The ordering a
188 

< o 
186 

is supported by the 

results of our experiment. The quadrupole constants B are a measure 

of the deformation, and B 
188 

< B 186 implies that o 
188 

< 6
186

• For the 

proposed state assignrnents, anincreasing nuclear moment implies 

smaller deformation (see Table VII). Therefore, the results 

f-Lr(188) > p.
1

(186) supports the conclusion o188 < o186 • 

The magnetic moment p.
1 

has been calculated with these state 

assignments and the wave functions of Nilsson and Mottelson. We 

calculated this moment for various positive values of o, with both free 

nucleon g factors and the quenched g factors (g = 4.0, g = - 2.4) 
32 sp sn 

suggested by Chiao. The results are shown in Table VII. The value 

Z/ A was used for the core g factor, gR. Chiao has suggested, on the 

basis of different pairing energies for neutrons and protons, that gR 
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Table VII. Nuclear moments calculated with 

Nils son wave functions. a 

Free -nucleon g factors 

Quenched-nucleon g factors 

2 

2.11 

1.89 

4 

1. 92 

1. 77 

a. Proton state [402t] (5/2+). Neutron state [512t] (3/2-). 

6 

1.84 

1. 72 
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for odd-odd nuclei .should be gR = 3/4 zj A. If this value were used, 

each of the results in Table VII would be lowered by 0. 0_5 nm. 

Table VII shows that when quenched g factors are used, f-!
1

(188) 

is predicted very well by a deformation of 0.2., and f-!
1

(186) by a 

deformation of slightly less than 0.3. This is in good agreement with 

the deformations assumed. 
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VI. AMERICIUM 

A. Introduction 

Tl~e research on americium, like that on rhenium, was under

taken primarily for two reasons. First, americium, like rhenium, 

has an L = 0 ground state arising from a half -filled shell; in this 

ca~e, the ground state is (5f) 7 (6s) 2 8s
712

. ·Second, because the two 

isotopes studied, Am241 and Am242 , have very different nuclear 

structures according to the Nilsson model, it is interesting to study 

the effects caused by such a difference. 

Marrus, Nierenberg anq Winocur 33 have 1neasured gJ' A, 
241 242 and B of both Am and Am . They also found that there was 

a breal<down of LS coupling in the ground state of Am, and obtained 

a wavefunction for this state, 

B. Experimental Methods and Results 

Americium-241 in an HCL oolution was obtained from the 

stockpile of the Lawrence Radiation Laboratory group headed by 

Burris Cunningham. Americium oxide was made from the solution 

by ad,ding NH
4 

OH and heating the precipitate (Am( OH)
3

] in a furnace 

until oxidation occurred, 

The atomic -beam oven used was ot Ta, with a Ta inner 

liner. The an1ericium oxide, together with an excess of lanthanum 

metal, was placed in the oven. When the oven was heatec;i to approxi

mately 1000°C, the lanthanum reduced the Am2o 3 to Am metal. 

The reduction proceeded very slowly, however, requiring several 

hours. Despite several efforts, we never observed the rapid reduc

tion in a molybdenum oven described by Winocur
34

. ·The difference 

in results was assumed to be caused by differences in impurities in 

the samples used. 

The experimental method used was identical to that used on 

rhenium. Signal-to -noise ratios of 3; 1 were optainable with the 

hairpins singly and also with all tlnee hairpins together. The 
. 241 ( I . 242 hyperfme levels of Am I = 5 2) and Am (I = 1) are shown 

schematic~lly in Figs. 7 and 8, respectively. The A and B 

J 

-
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m mr mJ 

..-------6 
7 Hfs schematic ..-5 

-4 2 
J=~ !=2. ---3 

~2 2, 2 
I 

__...----5 
..---4 5 -3 
-2 2 
::::I 

E 0 
4 

6 :::::::3 3 ..---2 
-I 2 -o 
------1 

5 3 5/2 
~2 3/2 j_ :;.....-- I I I 2 -o -112 2 

4 -I -3/2 
--2 -:5/2 

-3 -5/2 
/-2 -3/2 I 3 ::::::-1 -1/2 
-0 1/2 2 
-I 3/2 
............ 2 5/2 

2 . -4 
/-3 3 ::::::-2 
--1 2 -o ........_, 

-5 
/-6 _2 
:::::--5 2 --4 

!L 
--3 
"-c_2 

7 
2 

Field 

MU-19610 

Fig. 7. Breit-Rabi diagram for Am
241

. I= 5/2, J = 7/2. 
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-I I 
0 -12 

' 
-512 -I 

3 -3/2 0 -:12 -112 I 

-712 _, 
5 -5/2 0 - 12 

-3/2 

-912 _, 
7 -712 0 - 12 -512 I 

Fig. 8. Breit-llabi diagram for f6 -h Am 242• r o f, J " 7/2. 
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hairpins were set on the resonances labeled a, the C hairpin on 

the resonances labeled by Arabic numerals. Some observed triple

resonance·lines are shown in Fig. 9. 
242 

The Am data, which consist of one high-field single -hairpin 

transition and six triple -loop transitions, were combined with that 
33 of Marrus et al. for the purpose of data reduction. The data were' 

fitted to a Hamiltonian of the form of Eq. (96), and A, B, gJ' and 

g
1 

were varied. 

We encountered difficulty in observing high-field a transitions 

· A 241 h f . d. d h b . f h 1 f 1n m at t e requenc1es pre 1cte on t e as1s o t e resu ts o 

Marrus et al. 
33 

Observation of a low-field direct transition confirmed 

Marrus 's value of A and B. When these values of A and B, and 

gJ of Am
242 

were used to predict resonance frequencies, high-field 

a . transitions were observed. The data obtained in this experiment, 

one direct transition and six triple -loop transitions, were combined 

with Marrus 's direct-transition data for data reduction. These com

bined data were also fitted to a Hamiltonian of the form of Eq. (96), 

but this time only ·A, B, and g
1 

were ~aried, with gJ fixed at the 

value of gJ found in Am
242 

Final results were (Table VIII): 

A=± 17. 1437 (0. 0028) Me/sec l 
B = + 123.8477(0.0323) Me/sec> 

g1 = + 3.42 (0.06) X 10-4 j 

A = ± 10.1282 (0.0014) Me/sec) 

B = ± 69.6339 (0.0013) Me/sec I I 

gJ ::: - 1.937884 (0. 000067) ( 
I 

I 
gi - + 2.059 (0.008) X 1Q-4 ) 

This leads to a hyperfine anomaly of 

241 242 
A =1.7(2,0)%. 

Am 242 
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30 

c 

E 
............ 

~ 20 
c 
:I 
0 
u 

10 

(c) 

11=41.636 (0.002) 

41.640 

Mcjsec 
41.680 

Fig. 9. Some observed triple-resonance lines in Am. 

(a} Am 
242 

H = 700G, ( 2.5, - 0.5}- (3.5, 0.5}; 
' 

( b} Am 241 
H = 180G, ( 3. 0, 1.0)- (4.0, 0.0}; 

' 
(c) Am 

242 
H = 700G, ( 2.5' 0.5}- (4.5,-0.5}. 

' 

·. 

MUB-8119 
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Table VIII. Americium-data fit. 

A=± 17.1437(28) Me/sec 

B = .p23.8477(323) Me/sec 

Transition 

F MF F' 
M' 

F ---- ·--···-

6/2 2/2 ._._ 8/2 0/2 

10/2 - 2/2 ---- 8/2 0/2 

6/2 2/2 ---- 8/2 0/2 

10/2 - 2/2 ---- 8/2 0/2 

6/2 2/2 ---- 8/2 0/2 

10/2 - 2/2 --- 8/2 0/2 

10/2 - 2/2 ..__ 8/2 - 2/2 

A = ± 10.1282(14) Me/ sec 

B = ± 69.6339(13) Me/sec 

Transition 

F MF F' 
M' 

F --
5/2 1/2 ---- 5/2 - 1/2 

5/2 1/2 ---- 7/2 3/2 

5/2 1/2 ---- 9/2 - 1/2 

5/2 1/2 ~-:- 9/2 - 1/2 

5/2 1/2 ..___ 'l /2 3/2 

5/2 - 1/2 ..___ 7/2 1/2 

5/2 - 1/2 ..___ 9/2 - 3/2 

241 
Am 

H 
(gaU:s s) 

7:.5736 

71.5'736 

179.9427 

179.9473 

449.8825 

449.8677 

2. 7993 

Am 
242 

H 
(ga2:~ _ _) 

300.0164 

299.9033 

299.8955 

699.8325 

699.8162 

699.8180 

699.8144 

4 
g1X 10 = 3.425(57) 

Frequency Residual 
(Me/sec) (Me/ sec) 

4.870(15) - 0. 00233 

14. 520(25) - 0.01042 

7 .220(6) - 0. 00322 

8.225(7) 0. 00240 

7.827(6) 0. 00204 

6. 290(6) 0. 00008 

81.491(7) 0. 00007 

gJ = - 1.937884(67) 
4 

g1X 10 = 2.059(8) 

Frequency Residual 
(Me/sec) {Me/sec) 

815.2.45(3:0) -0.00241 

35.704(5) 0. 00034 

40. 934(3) - 0.00153 

41.636(2) 0.00011 

33.932(2) - 0. 00054 

43.032(3) 0. 00111 

30.487(2) 0. 00037 
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Correcting the values of g
1 

for diamagnetic shielding and using the 

value of cr corresponding to Z = 65 gives 

gi ( 241) = + 3.45 ( 0.06) X 10-4 

f.Lr(241) = + 1.58 (0.03) 

g
1

(242) = +2.074 (0.008) X 10-4 

f.l-1 (242) = +0.3808 (o.oo15). 

Because both measured f.Lr's have the same sign, both values of A 

must also have the same sign. 

C. Second-Order Effects 

An upper limit to the second-order corrections to g
1 

and A 

can be obtained as in Sec. V. C. The first excited states of Am lie 
. -1 . 35 

more than 15, 000 em above the ground state. Then 

Because this is of the same order as the uncertainty in g
1

, 

a more thorough analysis is called for. Equation (67) shows, however, 

that there are no second-order corrections to g
1 

if the ground state 

is pure 
8s 7 / 2 . This is so because, due to T l i + 2si, the perturba

tion term is diagonal in L and S; the admixed J state, J ', must 

therefore be formed by coupling 8s to a J other than 7/2- -this is 

impossible·. As we shall see in Sec. VI. D. the ground state is not 

pure 8s
712

, but has small amounts of 6p
7

/
2

. and 6 n
7

/
2 

mixed in. 

An important feature of the half -filled shell is that all diagonal matrix 

elements of the quadrupole operator are zero. This feature, plus the 

fact that the perturbation term is diagonal in L and S, means that 

the large quadrupole -interaction constant can have no second -order 

effects even in an impure ground state. The dipole interaction, 

however, can produce second-order effects in an impure ground 

state, and an estimate of the upper limit to this effect is given by 
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1 6 
g'::::: (0. 3) 2· 17· 2· 2X 10 ::::: 2 X 10 -8, 

I 4.5 X 1014 

6 
where 0. 3 is the fraction of the ground state composed of P and 
6n. This number is less than a tenth the uncertainty in gi' and 

shows that second-order perturbations do not measurably influence 

the value of gr 

An upper limit to the error in A will be 

( 90) 2 X 106 
10 -5 

- ~ 2 X Me/sec. 
4.5X10 14 

This, too, is negligibly small. 

D. Hyperfine Fields 

Marrus et al. 33 have shown that there is a breakdown of LS 

coupling in Am. The wavefunction they give for the ground state is 

where the phases have been fixed to agree with Racah 1 s 36 conventions. 

On the basis of this wavefunction, they calculated the nonrelativistic 
241 values of A and B: They found for Am 

A = + 16.6 Me/ sec 

B = + 145 Me/sec. 

These numbers agree in magnitude with the measured values, but 

the sign of the ratio B/ A is wrong. As with the case of Re, the 

next step was to consider relativistic corrections to A and B. 

For calculations in Am, we used the second method discussed 

in Sec. II. B. 2. Then, from Eq. (51), 
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A= - (0.064) (a - j3 + y) +a +y(0 ·~ 58 ). 

. 1 33 
Here 0.558/7 is· -(Hz/2Jp.

03
), with Hz asgiven by Marrus et al. 

·r 

An error in this paper, gives Hz = - 0.41 p.0 (1/r
3

) rather than the 

correct value of -· 0.558 1-lo (1/r
3

) . The relativistic Am wave- . 

functions of Lieberman, Waber, and Cromer
37 

were used to evaluate 

the radial integrals appearing in a - j3 + y, a, and y. These 

integrals are given in Table IX. Then 

(a - j3 + y) = 2.353 ~1-l~ 
Ia0 

a. = - 0.14 7 1-lrP.~ 
ra

0 

y = 18.286 P.rP.~ 
Ia0 

Using these values, we obtain 

giving 

A = 1.16o 1-lrP.~ 
Ia0 

A(241) = 34.5 Me/sec 

A ( 242) = 20.8 Me/ sec. 

If we assume that core polarization is responsible for the discrepancy 

between these numbers and the measured numbers, then 

t::..A (241) ~- 17, -51 Me/sec 

t::..A (242) ~- 11, - 31 Me/sec, 

where the first number above holds if the measured A's are 

positive, the second if the A's are negative. It is of value at this 

point to obtain an estimate of the uncertainty in the radial integrals 



• 

Table IX. 

-7 5-

-3 
Am and Pu relativistic radial integrals (in units of a ). 

0 

= 

Am 

. - 23.5 f.l· 
0 

Pu 

a 
21.3 f-l-

o 

F G 

e J rz - dr = 28.6 jJ. 
0 

= 

= 

= 

= 

a. Obtained by scaling . 

60 7 fl 
0 

7.6 

8.6 

8.2 

a 
6.1 f-l-

o 

7.6 
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used. One parameter closely related to these integrals is ~. the 

spin-orbit coupling constant, since all are proportional to (1/r 3) ·. 

The difference in energy eigenvalues for f
7 

/
2 

and f
5 

/
2 

electrons 

should be just ~ ~; the wavefunctions used then give ~ (Am) = 3020 em - 1• 

Blume, Freeman, and Watson38 showed that, in the rare earths, ~ 
obtained from a Hartree -Fock calculation is decreased by about 10o/o 

if two-body interactions such as spin-other-orbit are considered, If 

such a factor holds for Am, then the value of ~ given by these wave

functions would be lowered to approximately 2 700 em - 1 The correct 

value of ~ (Am) is approximately 2400 em - 1. An ~ calculated £:rom 

these wavefunctions would then be about 12% too large. 

Foglio, and Pryce~9 from an investigation based on the Thomas

Fermi model, found that in the region of Pu and Am, ~/ (1/r
3

) 

~ 3 70 em - 1/ Au, or (1/r
3
) = 6.5 a

0
- 3. We can also calculate (1/r 3) 

( 3> J F 2 + G2 · ( 3 > -3 from 1/r = r 3 dr, obtaining .1/r . ::::: 8.1 a 0 . This is 

20% higher than that obtained from the relationship suggested by 

Foglio and Pryce. 

Although there is, unfortunately, no way of estimating whether 

the ratios of the various radial integrals are in error, it appears that 

the magnitudes of these integrals may be too high by about 15%. If 

such is the case, the numbers above for A should be decreased by 

15%, with corresponding decreases in D. A. 

We can estimate the amount of core polarization involved in 

Am by looking at core polarization in Pu. Bauche and Judd8 

investigated core polarization in Pu in the six J levels of 7F. 

These levels all have values of gJ lying between - 1.495 and- 1.424, 

which means, according to ( 69}, that the core polarization should be 

approximately a constant for all six levels. Then for all levels, 

AJ(meas) = AJ (calc) + D. A. ( 9 7) 

Bauche and Judd treated f.!r• in addition to D. A, as an 

unknown, so that there were two adjustable parameters in the above 

equation. With six J states, the parameters were overdetermined. 

If the various equations of Eq. (97) were consistent, then the straight 

lines that they define should meet in a point. They found that 

• 
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D.A = -15 ± 9 Me/sec 

iJ.r = 0.17 ( 0.04) nm. 

Because their work was done nonrelativistically, D.A must 

include both core polarization and relativistic effects. In an effort to 

separate these effects, we repeated their work calculating A rel'ativ

istically and using the relativistic Pu wavefunctions of Lieberman 

et al. 3 7 Their Pu calculations do not include wavefunctions for an 

f
7 

/
2 

electron 
3 7

; integrals for f
7 

/
2 

electrons were obtained by scaling 

down the Am integrals by the ratio of the Pu f
5

/
2 

integral to the 

Am f
5

/
2 

integral. This is equivalent to scaling down the factors 

a - ~ + -y, etc. by the same factor, giving 

::: 2.015 ~~0 

Ia
0 

a = -0.133 f-Lr~o 
la

0 

f-Lrf-Lo 
'I::: 16.570--3. 

la
0 

The resulting calculated values for A are given in Table X, together 

with the measured values of A. The measured values of A for J 

from 2 to 6 have an uncertainty of 15 Me/sec; the magnitude of A 

for J = 1 is known to 5 kc/sec, but the sign of A is unknown. The 

nearly horizontal broken lines in Fig. 10 represent this uncertainty 

in sign for J = 1. 

The equation plotted in Fig. 10 is 

· A (meas) ='In+ D.A, 

where 'I =[A( calc) a 0
3

I]/(f-Lrf-Lo) and n = (f-Ll f-Lo/la 0
3

) F. [F is the· 

scaling factor that varies the magnitude of the radial integrals used 

in A(calc)]. From the discussion concerning the Am integrals, we 

would expect F to be less than one. 

Comparison of Fig. 10 with the corresponding figure given by 

Bauche and Judd8 shows that the lines in our graph meet no more 



-78-

50 
0 
Q) 
en 

........ 
0 

~ 

<( 
0 <l ---- ------ ------+---

-50 

0 5 10 15 20 

n (Me/sec) 

MUB-8118 

" 
Fig. 10. Plot of A(meas) = 'IQ + D.A for Pu. 
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Table X. 
239 

A values of Pu . 

J 
A(meas) A(calc): 
(Me/sec) (Me/ sec) 

"' 
f.LifJ-

6 111.0 9.97-0 

Ia
3 
0 

5 93.0 8.27 II 

4 81.0 6.94 II 

3 60.0 5.04 II 

2 27.6 2.84 II 

1 ± 5.13 0.48 II 
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nearly in a poin.t than they do in the earlier graph. This is of no real 

importance because, due to the uncertainty in A for J = 2 to 6, 

any such meeting would be accidental. The important lines are those 

corresponding to J = 1, because they have essentially no uncertainty 

in the ~::,.A and f2 intercepts. In the relativistic work, these lines 

slope less than in the nonrelativistic work. 

A recent measurement of p. I ( Pu 
239

) by Faust, Marrus, and 

Nierenberg 
40 

shows that p.I = 0.20 nm. A vertical broken line in 

Fig. 10 represents the value of Q for this p. I and F = 1. If all A 

values were raised by the full 15 Me/ sec uncertainty, the lines could 

cross at the intercept of this line with the J = 1. line for A< 0. 

However, the method used to obtain these ·A values should make the 

A 1s for the lower J values much more accurate than those of higher 

J values (the uncertainty in A for low J might be no more than 

10o/o ). Thus, it seems likely that the lines should meet in the region 

of Q = 14 or Q = 10, depending on whether A is less or greater 

than zero. Such a meeting would correspond to multiplying the 

relativistic radial integrals by F = 0. 74 or· 0.55 for n = 14 and 10, 

respectively. The ratio of (1/r 3 ) obtained from the spin-orbit 

constant to the relativistic (1/r
3

) is 0, 76, which agrees well with 

the former number (0,04). If our assumption that the A's for 

J = 2, 3, 4 are well known is correct, this would seem to indicate 

that A(Pu) is less than zero; if it is incorrect, there is still reason 

to believe that F = 0, 75 could be the intersection point. Because of 

the slight slope of the· J = 1 line, however, the amount of core 

polarization does not vary much between the values of Q correspond

ing to F = 0. 75 and F = 1.0. The value is approximately 

~::,. A(Pu) = - 2, - 12 Me/ sec, 

depending on whether A(Pu) is positive or negative. Defining the 

crossing point in the graph given by Bauche and Judd8 as the point 

on the J = 1 line corresponding to f-Lt = 0,20 nm, one obtains 

t:,.A = - 14, -28 Me/sec. 

From Eq. (69), we see that, assuming that the energy levels 

of the 5f, 7s, and s 1 electrons and the eigenfunctions ljl
78

( 0) and 
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ljJs,(O) are the same for Pu and Am, 

D. A(Am) _ (gJ (Am) + 1) 1-lr(Am) I(Pu) 

D. A(Pu} - (gJ (Pur + 1) f-Lr(Pu) I(Am) 

D.A(Am241) = 3.2 D. A( Pu) 

D. A(Am242) = 1.9 D. A(Pu) 

or 

D. A(Am241) = -6. 5, - 39 Me/ sec 

D. A(Am242) = -4, -23 Me/sec, 

the choice depending on the sign of A for the J = 1 state of Pu. 

These numbers are consistent with those obtained above for D.A if 

the A's of Am and Pu both have the same sign. 
• 

The value of B is calculated on the basis of Eq. (56). The 

angular matrix elements are given in Table XI. The following 9 -j 

symbols were required in the calculation: 

r2 5/2 :1 2 :: 

7/2 7/2 2 J 

r2 5/2 

~} 2 :: 

7/2 7/2 

The radial integrals are given in Table 

butions to z2 in Table XII. The final 

2 
B=0.12oep 

ao 

1 "-'375 -2--
2 • 3· 7 

19 .J3l5 
22· 32.72 

VIII and the various c ontri-

result is 

( 98) 

= 2 8 . 2 Q Me/sec . 
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Table XI. Angular matrix elements of quadrupole interaction. 

(£7 6P:~Iw1311£7 6n) = 3 ,rz. 

(£7 6PIIwo211£7 6n) = '\}45/14 

(£7 6P llw1111£7 6n) = -9/2(.f273)' 

V7 8
S llw 11 ll£7 6P) = 2' Nb 



'i:. 
~ ~ 

~s7 ;zll z 
2

11
6

P7 ;z) 

(
6

P 7 ; 2 11 z 
2 11 6n, ;z) 

Table XII. Matrix elements of z 2
• 

R++ Rt- R 

8/49{ffl) 24/245{m) - 16/245{-Jis) 

- 250/3· 7
3

(.J677) -1784/3·5·7
3

("-16/7) - 396/3· 5· 7
3 

('\} 6/7) 

I 
00 
w 
I 
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Since the measured quadrupole moment of Am
241 

is 
.. 41 

+4.9 barns, B(241) is predicted positive, which forces A(241) 

to be negative. As positive B and negative A are consistent with 

all of the above results, we believe that this is a true representation 

of their signs. If it is, then both A( 242) and B ( 242) are negative. 

Contributions to A and B from relativistic and other effects 

are tabulated'in Table.XIII. 

Comparison of Eq. ( 98) with the measured B. values would 

then give 

Q(241) = 4.4 barns 

Q(242) =-2.5 barns. 

E. Nuclear Structure 

Fred and Tomkins, 42 on the basi~ of spectrum analysis, 

determined the spin of Am
241 

to be I = 5/2. After investigating 
241 237 43 

the a. decay of Am to Np , Stephens, Asaro, and Perlman 

concluded that the unpa1red 95th proton must be in the Nilsson orbital 

5/2- (523]. This assignment fits the Nilsson energy-level diagram 

exactly if 0.21 < 6 < 0.28. One can also obtain a value for the 

deformation from the optically measured quadrupole moment 

Q = 4.9 barns, 41 using Eqs. (94) and (95); the derived value of 

6 = 0.21 supports the proposed orbital assignment of protons. 
241 

The magnetic moment 1-ir of Am has been calculated on 

the basis of the Nilsson wavefunctions. Table XIV shows the results 

of this calculation, which was performed for several positive values 

of 6 with both free nucleon g factors and quenched g factors. 32 

The value gR = Z/ A was used. We see that, when free nucleon g 

factors are used, the measured 1noment is predicted for 6 ~ 0.15; 

with quenched g factors, 6 is predicted for slightly greater than 

0.2. Because the result with quenched g factors is consistent with 

that previously obtained, we believe that the use of quenched g 

factors in calculations concerning Am241 is justified. 

In Am
242

, the odd neutron is probably in the Nilsson orbit 

5/2 + [622]. This assignment, which corresponds to 0.22 < 6 < 0.26, 

is also made for the odd neutron in the ground states of the isotones 
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Table XIII. Contributions to the hype rfine constants 

A and B in americium. 

Magnitude 

A (Me/sec) B {Me/sec) 

Breakdown of LS coupling 

within (Sf) 
7 

(7 s )
2 

Relativistic corrections 

Core polarization 

Total calculated 

Total measured 

a. p.
1 

in nm. 

b. Q in barns. 

a 
P.I 

26.4 T 

P.I 
28.5 T 

~I 
- 81.6 T 

f.lr 
- 26.7 T 

f.lr 
- 26.7 T 

0,-3 Q 

0 

28.2 Q 

25.3 Q 
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Table XIV. 
241 

Am nuclear moments calculated 

with Nilsson wavefunctions. a 

Free -nucleon g factors 

Quenched g factors 

a. Proton state 5/2 - [523]. 

2 

1.89 

1.95 

4 

1.32 

1.58 

6 .. 

1.07 

1.41 

' . 
... 
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241 .d 243· u . h l" Pu . an Cm • s1ng t e coup 1ng rules of Gallagher and 
13 . 

Moszkowski, we then have .K = Qp - nN = 0 for Am 
242 

For a K = 0 nucleus, ~-Lr = gRI; if we accept the proposed value of 
< ' • ' 

K, we then have a direct measurement of the core g factor, The 
' 

measured value of gR' · or IJ-r is 0.381, to be cornpared to the 

usually used value of gR = Z/ A = 0.392. 

Because K = 0, we have 

Using the Q obtained in the preceding section, we have ·a
0 

= 12.5 

barns. This is of the proper sign and magnitude [6
0 

( 241) = 13.5 barns] 

for a nuclide in this region. 



-88-

ACKNOWLEDGMENTS 

I thank the many people involved in bringing this research to a 

successful conclusion, especially: 

·Professor William A. Nierenberg for his support, 

Professor Richard Marrus for his constant help and 

encouragement, 

Eldred Calhoon of the Health Chemistry monitors for his 

valuable aid in handling radioactive samples, 

Douglas B. Macdonald for his engineering aid, 

Miss Christina Frank for typing the original version of the 

manuscript, and 

My psychologist. 

This research was suppoi'ted by the U. S. Atomic Energy 

Gorrunis sion. 

, ... 



-89-

REFERENCES 

1. Lloyd Armstrong, Jr., and Richard Marrus, Phys. Rev. 138, 

B310 ( 1965 ). 

2. N. F. Ramsey, Molecular Beams (Oxford University Press, 

London, 1956). 

3. E. Fermi, Z. Physik ~~. 320 ( 1930). 

4. C. Schwartz, Phys. Rev. ~?__, 380 ( 1955). 

5. G. Breit, Nature 122, 649 ( 1928); H. Margenau, Phys. Rev. 57, 

383 ( 1940). 

6. P. G. H. Sandars and G. K. Woodgate, Proc. Roy. Soc. (London) 

A257, 269 ( 1960); V. Heine, Phys. Rev. 107, 1002 ( 1957). 

7. M. Cohen, D. A. Goodings, and V. Heine, Proc. Phys. Soc. 

(London) 73, 811 ( 1959). 

8. J. Bauche and B. R. Judd, Proc. Phys. Soc. (London) 83, 145 

( 1964). 

9. K. Rajnak and B. G. Wybourne, Phys. Rev. 132, 280 ( 1963). 

10. A. Bohr and V. F. Weisskopf, Phys. Rev. 77, 94 ( 1950). 

11. J. E. Rosenthal and G. Breit, Phys. Rev. 41, 429 ( 1932). 

12. S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat-Fys. 

Medd. 29, No. 16 ( 1955 ). 

13. C. J. Gallagher, Jr., and S. A. Moszkowski, Phys. Rev. 111, 

1282 ( 1958). 

14. W. A. Nierenberg and G. 0. Brink, J. Phys. Radium 19, 816 

(1958); P. G. H. Sandars and G. K. Woodgate, Nature 181, 

1395 ( 1958). 

15. M. B. White, Hyperfine Structures and Nuclear Moments of 

Lu 
176

m, Br
80

, Br
80

m, and r132 
(Ph. D. Thesis), UCRL-10321, 

September 1962. 

16. R. G. Schlecht, Hyperfine Structures and Anomaly of Li6 and 

Li 
7 

and the Hyperfine Structures of Re 
186 

andRe 
188 

(Ph. D. 

Thesis), UCRL-11047, October 1963. 

17. R. G. Schlecht, M. B. White, D. W. McColm, Phys. Rev. 138, 

B306 ( 1965 ). 



-90-

18. R. H. Trees, Phys. Rev. 112, 165 ( 1958). 

19. D. Strominger, J. M. Hollander, and G. T. Seaborg, Rev. Mod. 

20. 

21. 

Phys. 30, 585 ( 1958). 

R. Winkler, Naturwissenschaften 10, 236 ( 1964). 

Hans Kopferman, Nuclear Moments, English version by 

E. E. Schneider (Academic Press, New York, 1958). 

22. Charlotte E. Moore, Atomic Energy Levels {National Bureau of 

Standards, Washington, D. C., 195 8), Vol. III, NBS -46 7. 

23. F. Bloch and A. Siegert, Phys. Rev. 57, 522 ( 1940). 

24. E. U. Condon and G. H. Shortley, Theory of Atomic Structure 

(Cambridge University Press, Cambridge, England, 1957). 

25. Stanley Cohen, Relativistic Self -Consistent Calculation for the 

Normal Tungsten Atom, UCRL-8634, 1959; Relativistic Self

Consistent Calculation for the Normal Platinum Atom, UCRL..:.8635, 

1959. 

26. H. Schuler and H. Korsching, Z. Physik 105, 168 ( 1937). 

27. R. M. Sternheimer, Phys. Rev. 80, 102 ( 1950); 84, 244 ( 1951); 

95, 736 ( 1954); 105, 158 ( 195 7). 

28. H. B. G. Casimir, On the Interaction Between Atomic Nuclei 

and Electrons { Teyler 1s Tweede Genootschap, Haarlem, 1936). 

29. C. Schwartz, Phys. Rev. _!_05, 173 (1957). 

30. Quoted by B. Bleaney as private communication from 

P. G. H. Sandars ( 1964). 

31. B. R. Mott~lson and S. G. Nilsson, Kgl. Danske Videnskab. 

Selskab, Mat,-Fys. Skrifter _!_, No. 8 ( 1959). 

32. J. 0. Rasmussen and L. W. Chiao, in Proceedings of the 

International Conference on Nuclear Structure, Kingston, 

33. 

34. 

edited by D. A. Bromley and E. W. Vogt (University of Toronto 

Press, Toronto, Cana<;la,. 1960), p. 646; Lung-wen Chiao, 

The Magnetic Properties of Deformed Nuclei, UCRL-9648, 1961. 

R. Marrus, W. A. Nierenberg, and J. Winocur, Phys. Rev. 

120, 1429 ( 1960). 

Joseph Winocur, Some Nuclear and Electronic Ground-State 
. 233 241 242 . 

Propertles of Pa , Am , and 16-hr Am (Ph. D. Thes1s), 

UCRL-9174, April 1963. 

l 



r' ' 

i 

-91-

35. M. Fred and F. S. Tomkins, J. Opt. Soc. Am. 4 7, 1076 ( 195 7). 

36. G. Racah, Phys. Rev. 62, 438 ( 1942); 63, 367 ( 1943); 76, 1352 

( 1949). 

3 7. D. Lieberman, J. T. Waber, and D. T. Cromer, (Los Alamos 

Scientific Laboratory, 1965) private communication. 

38. M. Blume, A. J. Freeman, and R. E. Watson, Phys. Rev. 134, 

A320 ( 1964). 

39. M. E. Foglio and M~ H. L. Pryce, Mol. Phys. i_, 287 ( 1961). 

40. J. Faust, R. Marrus, and W. A. Nierenberg, Phys. Letters 16, 

71(1965). 

41. T. E. Manning, M. Fred, F. S. Tomkins, Phys. Rev. 102, 1108 

( 1956). 

42. M. Fred and F. S. Tomkins, Phys. Rev. 89, 318 ( 195 3). 

43. F. S. Stephens, Frank Asaro, and I. Perlman, Phys. Rev. 113, 

212 ( 1959). 

' 



• 

This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor . 



··~ 


