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ABSTRACT
The inélastic scattering of nucleons and light nuclides from nuclei is

formulated in terms of a general central two-body interaction between the scat-
tered particle and the nucleons of the nucleus, whose motions are described by
detalled shell-model wa&e functions. Form factors based on this microscopic
description are obtained as closed expressions. The theory is applied to pro-
ton scattering from the even nickel isotopes.b The constructive coherence in
the transition to the collective 2+ state leads to a form factor having the
general shape of that used in the macroscopic description of colléctive motion.
Unenﬁanced transitions, in contrast, afe characterized by a'variety not present
in the macroscopic description. Nucleon scattering as here calculated is sen-
sitive to the details cdnstituting this variety, and therefore provides a means

of subjecting microscopic descriptions of nuclei to detailed tests.
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1. INTRODUCTION

The importance of inelastic scattering as a means of investigating
nuclear structure was recognized:long ago, and the theory for single-nucleon
transitions between shell-model states has been developed.l’2 However the im-
portant experimental discovery by Cohen'and Rubin5 that the same states that
are strongly coupled to the ground state by the electromagnetic field ére also
strongly excited by inelastic scattering has focused the attention of both ex-
pefimentalists and theorists.on collective states. Until recently tﬁe only
‘way of handling such states was through recoursé to the Bohr-Mottelson macro-
scopic description of collective motion. In thié picture, the incident particle
interacts with the nucleus in its surface region, exciting the vibrations or
rotations as thelcase may be through a one-body deformed optical potential.
The spherical part is fixéd by elastic scattering. Each multipole of the de-
formed part is specified by one {deformation) paramete?, Bh’ of ﬁhich there is
experimental evidence for quadrupoie and octupole parts; These two paramet§§s

' : + -
can be determined from the cross sections to the collective 2 and 51 states.

1
éross sections to all other states based on these multipoles is now fixed. The
information about nucléar levels that can be gained from such a treatment is
meagre. It includes the defofmation parameter and in some odd nuclei, the
parifieé and spins,df.those.levels connected with the 'one-phonon' states of
the core. In even nuclei the collective 2+ and 3- states are often already
known,'but one cén usuélly identify in addition the spins of several higher
states by alpha;séattering, especially if observations at several bombarding
energies are mgae. The present stéte of this approach has been reviewed re-

., 5

cently by Harvey. To deal successfully with the so-called iwo-phonon states

it has always been found necessary so far as we know, to introduce greater
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arbitrariness into the coupling strenghts than the model allows. Buck in

58

+ . .
treating the hl state of Ni had to enhance the direct coupling by a factor

. . i J 2
1.5. Dickens7 et al. in treating the 11 MeV proton scattering on Ni 7 were

obliged to take different quadrupole deformation parameters P for each of the

+ +

-+ . .
21 , O 2, levels instead of a common value. Even with 1ts shortcomings

27 72 _

v however, the macroscopic model has been fruitful,‘and since detailed structure
'calculations in £h¢ transition and deformed regions will not be forthcoming
for some time, it will continue to be useful.

Fortunately there has been séme.progress during the last few years in
describing even fairiy cémplex nuclel in térms of thé underlying.nucleon cor-
relations, starting from a Hamiltonian for a system of fermions interacting in
some‘average field.8' Much\of this activity centers around trying.fo reproduce
the energy level systematics and electromagnetié transition rates in spherical
nuclei, some of whose states exhibit collective proferties. The‘enérgy level
systematics is of course the easiest part of such a program because the Ham-
iitonian is stationary at the eigenétates. Electromagnetic transitions; in-
elastic scattering and se&eral—nucleon transfer probabilities each depend upon
certain correlétions among the nucleons.  As a result transition rates can vary
from strongly enﬁanced to stfongly hindered when compared to the rate calculated
for an uncorrelated state. These wide yariations ﬁut a structure calculation to
quite a severe test, much more so than the_energy‘level systematics. Moreover
reactions, sincg the kinematics are at the control of the experimentef,in prin-
ciple provide a more Veréatile tool than electromagnetic transitions in studying.

nuclear structure.
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Kissiinger9 was the first to give a microscopic description of in-
elastic scattering from collective states in spherical nuclei. He emphasized,
especialiy for the "two-ﬁhonon' states, that the particular shell—modelerbits
involved could influence very much the differential crosé-section, especially
for nucleons.

In_this péper we formulate the ¢alculation of inelastic scattering
based on a microscopic description'of nuclear states in abform that is conven-
ient for discussion and galculation.lo. The.virtue of such an approach is that
both the collective states about which the macroscopic model is concerned, and
the weaker non-collective and single-particle states are treated on the same |
féoting in terms of their detailed structure. One can hope to say something
through this approach aboutf the success or failﬁres of the existing microécopic
calculations of nuclear structure, and perhaps indicate the directions in which
imprévemehts 1ie¥ Buch a description certainly alléws a richer variety of phe-
nomenon than the rather restrictive phonén picture with its strict selecﬁion
rules.

 There are however ambiguities involved in this approach most important
of which concerns the interaction between scattered particle and the nucleons
of the nucleus. At high enough energies the impulse'apprqximation may be valid
and the free ﬁwo-body t-matrix can be used.ll Then if the/nuclear_structure
calculation includes the explicit participation of all the nuclepns tuat are
really involved ?n the collective motion, there should be no arbitrariness_in_
the choice of the inﬁéraction. If however it has been found that an effective .
charge must be .introduced to account for the observed electromagnetic transi-

tions rates, then this approach will underestimate the cross-section. Since



k- | | UCRL-16428

in practice, aside from the very light elements, nuclear structure calculations
‘are.pérformed in a truncated space involving the last-one or two majof shells,
the ambiguity concerhing tﬁe effective interaction will be present even at
high energies. 1In this ﬁéper we ére inferested in lower energies commonly
available on Van de Graaff and cyclotron.accelerators, so that i£ certainly
is present for us. We discuss it again in Seg. 3.2.

After the formulation of the problem found in Sec. 2 we apply the theory
to proton scattering on the even nickel isotopes in Sec. 3. We have already

1
reported some of our results for alpha scattering in the nickel region.

2. FORM FACTORS FROM A’MICROSCOPIC MODEL OF TﬁE NUCLEUS
2.1 Background
To describe ine;astic scattering from a nucleus, wé need to know the
matrix eiements of the interaction of the scattered rarticle with the nuéleus.
For the .form of the interaction between‘nuclebné‘we adopt the potential‘
~i il

) W

. - + .

(Here V. and V, may depend in turn on gﬁ‘ii') The interaction of a scattered

0

particle of mass number (a), and the nucleus (A) is therefore

a AA . :
Vgh) = = 2 viz,z) . | (2)
3=l i=1 J : , : '
‘We shall neglect exchange effedts which generally will be small as discussed

later. (They are implicitly neglected in the macroscopic description).
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Therefore, thé interaction, Bq. (2), is a sum‘of one-body operators on the
nuclear coordinates, r,. Hence, only components of the initial and final-wave
function that differ at most in the coofdinates of one nucleon can be connected
by the interaction. Any two statés that cannot be so connected are not directly
~ coupled by the scattered particle. Consequently any excitation of the nucleus
by the scattered particle consists at most of a superposition of eiementary
_(single-particle) transitions.  In the next section we recapitulate in a form
suitable for our purpeses, scattering by an odd nucleus in which the odd parti-
cle i1s excited. In terms of these results we will be able to express in a
straigﬁt—forward way the inelastic scatteriné between any two nuclear states
however complicated their structure, so long as their wave functions are known.
When dealing with a compositevscattered parti;le we will suppress its
structure and use a pseudo-interaction bgtween its center-of-mass and the
nucleons of the nucleus. Such a pseudo-potentiallcan of coﬁrse be related to
~the interaction between nucleons, if we assuﬁe that the scattered particle exists
6nly in its ground state. This is done in the appendix. Here we étate the re-

sult. Using a Gaussian Shape.for_the potential between nucleons
oz ox,) - exnl-plz,2,1%) )
Mj’mi m.J s~y '

and for the wave functions of the light nuclides, then the. pseudo-potential for

the interaction ﬁetween light nuclides and the nucleons of the nucleus is

M =

. t . ' 2

1}

v(a,a) =
; i
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where S is the spin operator of the nuclide (a) and R 1is its center of
mass coordinate. The constants V.', Vl', and B' are related to the corresponding
guantities in the nucleon-nucleon potential, the range being longer for the
pseudo-potential.

It is convenient to expand the potential Eq. (1) or (%) in multipoles
(Slater expansion). To treat both spin-dependent and iﬁdependent terms on the
same footing we define the one-body operétors: gb(k) is unity and gl(k) is
the spin vector operator of the k'th particle appearing in the potential. De-

fine then the tensors.

qiLSJ = L, &6y : - (5)

where the square bracket denotes vector coupling.12 Also let the Legendre

transform of the space part of the potehtial be:

VL(r,r')v 2L+l f g(r Y P (cos w) a coé ® - (6) 

We have then the expansion

V) = 2 (P ) Y () (1)
where ; - ' o
(r A) = - ; vy, (r r, J\ (r ) S (8)
Srsg 24T L7 LSJ

‘

To describe the scattering, one needs to know the métrix elements

. between the nuclear states of the interaction V and hence of . The
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reduced matrix elements of J are often called form factors in this context.
They are, so to speak, the way in which the nucleus appears to the scattering

particle. They appear in the coupling terms between the various open inelastic

channels when the Schroedinger equation is written as a set of coupled equations.

All of the nuclear infprmation enters the description of the scattering through
‘these quantities, and we shall discuss them in great deﬁail.

However, before doing so, we write down eXpressions for the differential
crossgsection. We shail calculate cross-sectioﬁs in the distorted wave approxi-
mation which is the solution of the scattering problem to first order in V. It
will be valid as long as the state we are interested in is not strongly coupled
to other excited states when compared to its coupling to the ground state. This
will-almqstvalwéys be true of the first 2+ level in the Vibrational regions.

. For the transition from the nuclear state o:lJl to 0éJ2 (where o denotes all
quantum nﬁmbers,additional to the.total‘spin and its Z-projection) we find for

the cross section for particles of spin Sy

do : 1 1.2 o
o (4T 20950 = (s *1)(27, 1) LZ sse1 Vs (syllZlls))” opgs (9)

SJ

~ where
Ko | ¥ \° M 2
o == SIB | (10)
LSJ  ky 27Th2 y LSJ

. 0,0 ‘* N (s
Bras = W J v (spox) UFLSJl(r)YLM (x) 1//( >(3§1’~r«) ar (1)

Here W( ) are distorted waves describing the motion of the scattered

!

particle under ' the influence of the optical potential whichéis assumed not to

i
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include a spin-orbit term.. This neglect 1s not serious, except possibly at
large angles, if we confine ourselves to calculating only cross-sections but
not polarizations. The sum on L and S is incoherent as long as this term is

absent. Otherwise there are cross terms. Also

v 580 : if sl = 0
. _ 1/2 1/2. , L .
<sligslsl> = (251+l) (aso+(es+1) | 681) if s = /2 (12)
1/2 ‘
(2s,+1) (6Svo+v\f2 By ) if s =1

which would hold for alpha particles, nucleons (or t and He5) and deuterons
respectively.
0T, 13 .
In the above, jf(r) denotes the form factor = or integral over the
nuclear coordinates of %, Eq. (8):
o 2% | .
2 2 - 11 o
For convenience, we shall refer to the form factor with S=0 as scalar since it
is the matrix element of a scalar in sﬁin Space, and to the three form factors

with S=1 (hence L=J or J*1) as vector form factors. The latter arise of course

from the spin-dependent part of the potential, Eq. (4).

The quantities L, S and J are respectively the orbital, intrinsic.and
total angular momentum: transferred between the nucleus and scattered particle.
Their possible values are limited by several obvious selection rules. Tirst J

must connect the spins of the two nuclear states . i

1t
: i
! ¢

lo-0,l <a<a, +3, ,L=L+8 . (14)
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Second, since the nuclear force conserves parity then

()" = mm )

‘ . ll;.
where 7 1is the parity of a nuclear state. We have used a central interaction

so that S can have only the values O and 1.

For scattering from an even nucleus we write 'separately the cross-
section for natural périﬁy.stateé, J, M= (-)J and for unnatural pariﬁy states.
The latter can be reached directly only through the spin—dependeﬁt part of the
interactions unless we include a spin-orbit term in the direct interaction,

which we doinot.' For spinless particles

. o) "
L0~ =v,S N o (16)

For spin 1/2 particles

do L\J ) 2 '

20 (e . - + ‘

(0= 3(=07) = V" opar ¥ VT g | | (17)
ao J+1 2

= - = +

g (0 =J(-)"7) = vy (o3.11,5° -0J+l,l,J) (18)

while fof spin 1 particles

%% (0 -3(-))=vZ s _+ % V.7 ogy . - (19)

do J+l, 2 \ '
—— . - = — . +
75 (0 23" ) =5 V)" (o) %541,1,5) (20)
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In these equations, VO and Vl are to be interpreted as the pseudo-potential

depths discussed in connection with Eq. (4) whenever the scattered.particle

1s composite.

2.2. Single-Particle Transitions

Here we consider inelastié scattering from an odd»nucleus with closed -
shells plus one valence nucleon. The valence nucleon—is excited by the inter-
action. Let its state be described by ¥, with radial part ﬁa(r), where 'a’
stands for all quantum numbers n la’ ja except the projection ma. ‘The form

factor for a single-particle transition is analogous to the general form factor,

Eq. (15):

TLasl) = ¥y (2 Mgy (o Ty (1))

br B2, (r) (3, I8 g 03, o o (2)

Here RZb is a radial integral

2

Roy(r) = gir [ v, (=) vlmr ) wy(x)) w2 ar | (22)
and ' - .. .

G sy = (- 2/2[1,387% [Ja B %

Jal=yogtdel T 0T i_ i”.J 1/2 0 -1/2

(23)

| [
(gl = (=) ° }—_27{““—
j |

(@)
o
O
e SRS

ja-j-+L+S+J
= (=) (o 1885103,)
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where 3 = 23+1 and the order of coupling s and [ 1is, £ + s = J. There

are obvious seiection rules which restrict the multipolafity when the single-
particle-tfansiﬁion is known, or in the case of an even nucleus for which the
rules of Eq. (14), (i5) also hold, eliminate contributions from those elemen-

tary transitions which are not compatible with Eq. (1k4) and (15). They are:

+ + =
£a L lb even,
e, -l <, +oay (2k)
- N + 3
L3, - 3,0 T35, %5,

There are other sﬁecial selection rules which can be derived from those
'stéted and the properties ofvthé 3-j and 9-j symbols in Eq. (23). For example,
the transition involving only the recoupling of a group of equivalent particles,
(jn)o —>(jn)J; receives no contribution from the spin-dependent part of the
force (i.e., FJiJ = 0).

When the potential has a Gaussian shape, and harmonic oscillator wave
functions are used for the bound states, as is usual in'nuclear,structure cal-
culations, the integfal can be obtained és a pblynomial iﬁ r2 times_aﬁ exponen-

tial factor as was shown in earlier work. The result takes the form

2 m : '
L _=Yr L Br ,emtL
RBp(r) = e 30 e () . (25
m=0 v

- . /o o
where Vv = muyﬁ- is the oscillator parameter, B / is the force range of
CE4. (3), and vy = vB/(v+B). Also the range on the sum is quite small;

- 1 .

m =3 (Na * N, - L) where N = 2(n-1) + £ is the oscillator quantum number.

The coefficients G are rather complicated aﬁd are given in the appendix.
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The shape of a single-particle form'factor does not depend on S and i
- as shown by Eq. (21), (although its magnitude does). Qualitatively the shape
can be surmised easily since in the limit of a Zefo—range force it is Jjust pro-
portional to the product of the radial functions of the bound particle in its.

initial and final state

a

RS (r) ou (2 ug(e)fim - | (26)

Jorm factors for severél single-particle transitions of multipolarity
L=2 or rather their shape as given by Eq. (22); are shown in Fig. 1 for three
force ranges, including 1.85 F which is the range used in the nuclear structure
calculations. A'fihite;raﬁge potential witbout core‘is seen to wash out con- -
siderably the finer details. | | |
| It is perhaps wérth commenting on an objection often" raised in connec-
tion with the use of harmonic oscillator functions. It concerns their asymp-
- totic behavior; they vanish more rapidly at large distance than is expected.'
We grant this fact, but its effect on our results 1s rather small, especially
for collective states because their form factors are so lafge at their peak

near the surface that 1t dominates the distant tail that is small in any case.

2.5. Transitions between States in Even Spherical Nuclei
Consider now transitions between any nuclear states O’lJl and QIEJ2
(where 07 denotes all quantum numbers additional to JM needed to specify the

i

state). We want the form factor:
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O!Oé
F 2 ) - oy, (Wl

Spar (Mg, 5 (A)) | (27)
171
By virtue of the fact that the interaction between scattered particle and
nucleus is a one-body operator on the nuclear éoordinates, this form factor
can be written as some linear combination of the elementary form'faétors-con-
sldered in the last seétion. The particular linear combination depends of
course on the detailed structure‘of the twé nuclear states. Nuclei for which
detailed structure calculations have been done, lie iﬁ the single—closed-shell
regions. The following development is designed to make use of these wave
functions. Such nucléi have been treated by the BCS théory with the addition
of an interaction between'quasi—pérticles.- The wavevfunctions have the form
o) = 5 =z 100 A~ (ab)]0) S (28)
where the n's.are configurafion amplitudeé, lQ)»denotes the groﬁnd state,
which 1is here the vacuﬁm for quasi—particles of which a bair creation operator

is

(-)'a" (29)

+ ' +
Apgla,b) = Ap(b,a) = -lo ‘«

+ . . . .
with @ a quasi-particle creation operator. Define also the scattering
operator

..J’ +M

. J : ,
No(ep) = ()% P wo (ba) = - [ G )M -~ (30)
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where

~ ’ a a ' -
& = (-) a . . (31)
+ . +
The transformation connecting particles B and guasi-particles, O 1is
B, =U0 4V, & o (32)
Here U, V, are the coefficlents of the Begoliubov-Valatin transformation

found by solving the BCS eduations for the nucleus in question. The Condon-

Shortley phases are used with a consequence that

In addition they satisfy the normalization condition

v - | | o (3u)

Any one-body tensor operator TJ on the nuclear particles can be

written in terms of the gquasi-particles as

1
Ty =2 1/2 ab ~JO

a 2 23 +1 1/2
2 o) ( HEJHb>{Va (25,+1) Bap ©

+ + M-+
)J O, o N

v,V ) (a,p) + (=)

o+
Al

oy - (- 7u8,0)]

-5 W+ T 0 )T (a) + () AJ_M(a,b)l} (35)
, -

where ¢  1is defined by
J, 3,0

a *b

<8”TJ”b> =. (") . (b”TJ”8>.



-15- UCRL-16L28

'he form factor for transitions from the ground state to an excited

state are now esasily obtained as

Foss(e) = (g g (=0)l0) | , :

(S uv ) B0 () (36)

1. AT, .
-3 = (U v b'a’ ‘187

2 nab a b i
ab ! “

!

ab
where E}SJ is the form factor for the single-particle-transition b —a

which was discussed in the preceding section. Using Egs. (21, 25)_we,obtain

finally

2 m
Fras®) =" 2 §§£> B (37)

where the coefficients dm are given by

_ _ L, . . |
4 = dm(O!LSJ) = Z A Gm(a,b) , - (38)
a,b .
L+S C A |
= N = - + - i i .
Ay = A (0LST) en(U v, + ()77 v ) oy Gy (39)
The range on m 1is quite small since m = % max (Na + I\Tb - L) where N is

the oscillator quantum number.
The form factors connecting two excited states also has the simple
structure of Eg. {(37) but with coefficients d defined in a different way.
o ' form o
The explicit closed form for the/factors is exceedingly useful from a numeri-

cal point of view when c¢ross-sections are calculated in distorted wave approxi-

mation or in the solution of the coupled equations. It means that each form
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factor can be summarized by a half dozen constgnts or so as compared with a
large table as a function of r.

The scalar torm factor (S=0), which comes from the spin-independent
part of the interaction, alone is present in the scattering of spinless pro-
Jectiles. The vector form factors (8=1) arising from the spin-dependent part
of the interactioﬁ are associated with spin flip transitions of scattered
particles haviné spin. In the second case the UV factor of Eq. (3%6) is dif-
ferent for the scalar form factor than .for the vector so that one or other
may dominate for some nuclear levels. This can tell us which part of the
force played the most important role in defining the properties of the nuclear

16,17

state in question. In fact the structure calculation for. the nickel iso-
topes indicates that the spin-independent part.seems to be most important for

the lowest level of each spin while the spin dependent part often plays the

most important role in one .of the higher levels.

7

2.4, Transitions in 0dd-Nuclei

We considered earlier the case of a pure single-nucleon transition.
This is an idealization hardly realized in nature because of the internucleon
interactions. It would be best realized when the core is doubly closed. In
- most cases the Ferml surface is diffuse and this can have important effects
on those properties deriving from the odd-nucleon. Such effects can be most
conveniently tr?ated in the framework of the BCS theory aﬁd its extensions.

According to this theory the odd nuclel are described by wave functions con-

| o
taining an odd number of quasi particles. The lower levels could even be single
quasi-particle states. For transitions between such states we easily obtain

from Eq. (35)
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|

Frrgs(r) = (olioy 865 7o)

(-)""®

AN Fié}’(r) | | (ko)

(Uan -
That is, the form factor for a quasi—particlé transition is, to within the
factor shown, given by the corresponding particle form factor. The factor
does not exceed unity in absolute value and so, as could be anticipatedlon
intuitive grounds, the properties deriving from the odd nucleon tend to be
suppressedlby the residual interaction (exclusion principle). Note also that
except in the limit in which the quasi-particle is a particle (U2 = 1) the
multiplicative factor in Eq. (L40) is larger for spin-flip ﬁransitions (s5=1)
than for ordinary transitions. (Note that our form factors are defined for
unit potential depth, and that.ultimately the relative strengths of VO and

V, have to be considered in Eq. (17)-(20).)

5. PROTON SCATTERING ON NICKEL ISOTOPES

3.1, Structure of the Nickel Isotopes

We recall briefly the method used to calculate the nuclear wave func-

17

1 ' v
tions 6 which for these nuclei was performed by Arvieu, Salusti and Veneroni.
The doubly closed shells at 28 nucleons were regarded as inert, contributing .
only to the central field in which the outer neutrons move. A finlte-range

interaction was considered to act between the outer neutrons

' 2 o o
V = -26 o~(r/1.85) [Pep * % Pro) (MeV) i (k1)
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(where P is a projection operator for the singlet-even or triplet-odd state).
Its effects were taken into account in-two steps. TFirst the Bogoliubov-Valatin
transformation was calculated to extract the pairing effects of this interac-
tion. In the secoﬁd step, the residual interaction between the reéultant quasi-
particles ﬁas taken into account by diagonalizing the interaction in the trun- .
cated space of two quasi—pérticle configurations corresponding‘to the mgjor
unfilled neutron shell. In fact at the second étep the ﬁore complicated
eqﬁations of the random-phase-approximation (RPA) Wére also solved, but their
solutions did not differ significantly from the two quasi—particle diagonaliza-
tion. In other words the BCS vacuum is a very good representation of the ground
state. However by solving the RPA, including the sofcalled exchange terms, 6ne
is able to isolate the spurious O+‘staté introduced by the non-conservation of
particle’number. This separation turns out to be crucial for the O+ states,
since the spurilous state is completel& coherenﬁ for scattering.

I§ is worth nbting the difference between this treatment and that of
several other authors including Kisslinger.l8 The latter authors ﬁse the éuasi—
boson approximation to obtain a vibrational spectrum. The quasi-boson opera-
tor corresponds to the collective'2l state. Application of the operator twice
to the vacuum leads to the two-phonon triplet. These states are therefore a
linear combination of 4 quasi-particle configurations. The descripﬁion of the
2l collective state is similar in both approaches. The differences are in the
other states. In the work of Arvieu et al., which we use for the nickel iso-
topes, all excited states are combinations of two quasi-particle configurations.
Therefore our Oé, 22, Ml states have nothing to.do with twq-phonon states, as
far as theilr microscopic description_is concerned. On the ;ontrary the'O2 and

ul are each more analogous to a one-phonon state of multipolarity equal to its

spin.
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| The two quasi-particle description has been quite successful as far as
, . v »
the tin and lead isctopes are concerned.19 For the nickel isotopeé it is. not
so good evidently because the nucleons within ﬁhe closed shells pafticipate £o
a non-negligible extent. Unlike the tin isoﬁopes, Ni6o and N162 héve a vibra-
tion-like spectrum which is an indication of the participation of the core
particles. However the energies of thg 02, 22,'and Ml states are épproximatély
correct which suggests at any rate that these levels have large two-quasi-
particle admixtures. If the ground state éuasifparticle correlations are
really small, as suggested,l7 the four quasi-particle admixtures would not
contribute in the grQund state——éxcited state transition. Their présence-
.would only suppress the cross-section because of the_nérmélization.
In spite of the possible deficiencies of the nuclear structure calcula-
tion in the nickel isotopes we shall illustrate the theory of Sec. 2 by appli-

]

cation to these isotopes because pf the experimental activity in this region.

3.2. The Direct Interéction

. We need to knowvthe interaction between the scattered proton and the
extra-core neutrons of the nickél isotopes.  Unfortunately it is not cleér what
this interaction is. If one.had a complete theory of the nucleus and the réac-
tion mechanism, and if in addition one knéﬁ th;t the meson cloud surrounding
each nucleon was not distorted by the proximity of others, then the wvacuum
interaction would be used (if it were known). But this is rot the case in
practice; - Nuclear structure qalculatibns aré pérformed in‘a highly truﬁcated
pseudo-Hartree-Fock space. It is believed that‘many of the important correla-

ticns caused by the mutual interactions of the nucleons are nontheless reproduced.
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But it is recognized that the residual interéétion appropriate in such a model
may be different from the vaéuum force. It can in fact be more complicated
than the vacuum interaction, depending for example on the local density of
nucleons. Moreover, one must anticipate that the residual interacfion will

be different in different parts of the periodic table, just because the trunca-
tion involves different shells.

Perhaps wé can guess one modification introduced by the truncation.

It is known that electromagnetic transition rates of somé states in the nickel
isotopes are enhanced over single-particle rates. In thé nuclear model calcu-
lation outlined in Sec. 3.1, onlyAneutrons participéte»in the excitations. The
core therefore does play an important role in thé correlations and motions: of
the extra-core neutrons. This participation of the core,.for elééfromagnetic
transitions, can be accounted for approximafely by epdowing all nucleons with
an additional effective -charge. We anticipéte therefdre that the direct inter-
action in our calculations should be stronger than_the vacuum interaction ?o
simulate the participation of the core nucleons'in the.excitation:

As a first orientation however, we shall use é force Suégested by fhe
two-body problem as a gﬁide in our calculation;‘and then see by how much it
‘must be augmented to reproduce the experimentaliy observed cross-sections.
It is known forrexample.that tﬁe singlet to triplefxsirength in the even
states.is about 0.6 and thaf the force is-weék.and possibly repdlsive in odd
siates. Let us assume therefore that thgre 1s no interaction‘iﬁ odd states and
in even states that |

~(r/1.85)°

V(r) = -52 e [Pg + 0.6 Pep]  (MeV) o (42)

TE
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' : 2
This potential approximately reproduces the low energy neutron-proton data. 0

[ . . R ' . _ .
For! the reaction calculation it is more convenient to use a different param-
o

2
eterization, namely

) = 4 . + + . .
W) = oo * Vor 't * (Vo * ¥y 3vmp) g78) 8l ()

For the present case of protons scattered from bound neutrons, the two con-
stants V, and V, of Eg. (1) are given by

Vo = Yoo Vo1

it

(3 TE + 3 TO + SE + S0) (L)

V. = Y (TE + TO - SE - S0)

1 Vlo' 11

1

o~ ol

(where TE stands for the triplet-even strength, ete). Corrésponding there-

fore to the potential, Eq. (42) we have

V. = -23 MeV, ‘Vl = -2.6 MeV  (for p-n) } (43)

For completeness we add that for nucleon scattering from like nucleons,

the constants are

il

o = VooVo1 5 (8B + 5 T0) | - (L6)

; 1 '
= +V u -
vy Vit T (TE - 80)

'

it

which, corresponding to Eq. (42), have the values

Vo = -7.8 Mev, v, = =13 MeV (for n-n or P-p) (47)
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We remark parenthetically that if the potential, Eg. (k2),-can indeed
be used as a guide, then proton and neutron scattering will often excite the
same level guite differently. For example, to the extent that the neutrons
are responsible for the correlations present in the low states of the nickel
isotopes proton scattering will hardly involve spin-flip transitions, while

neutron scattering will (cf. Eq. (45) and (k7)).

5.3. Concerning the Approximations Used in the

Calculations of Cross-Sections

We have made two principal approximations thaf déserve comment. We
neglect possible exchange scattering. (This is done implicitiy in the mécro-
scopic treatmentl) The usual Justification advanced for this involves an
overlap.argumant_which indicatgs thaf the exchange integral should be smaller
than the direct when bound and’scattering functions are involved fogether.?
Eresumably this approximation becomes better at energiles sufficientl} hiéh
that the wave length of the scattered particle,win the region of overlap with»
the nucleus, is small compared to tﬁe nuclear radius.

Quite independent of the overlap argumeﬁt,‘the exchange cohtribution
to excitation of collective states must be small. The reason is that the direcf
intégrals ail interfere construcéively (in Eq. (36)) for such states. The cor-
responding exchange integrals do not neéessarily‘carry the same sign as the
direct, and moreover4the sign is a function of bombarding energy. $So we are
guaranteed by the constructivé interference of the direct bart that the ex-

change part will not be constructive.
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The .second approximation concerns the @se Qf the distorted wave -
method. We have no a priori way of expecting this apprbximation to be valid,
except for the collective skates. The weaker states quite possibly can be fed
by double excitation through a collective state in competition with their. direct
excitation from the ground. "The only réliablg way of handling such a situation
involves solving the coupled equations and a program for this is in preparation.
In v%éﬁ/of this the cross-sections reportea here for the ﬁoh-collective levels
are not quantitatively reliable. However we believe we can draw valid quali-

tative conclusions which are discussed in the next section.

3.4, Form Factors and Cross-Sections

We have computed the form factors and cross-sections for many levels

6 W
of all the stable even nickel isotopes. The results for Ni 0 and Ni62 are "
reported here as being typical of what was encountered. As previously noteé5
two form factors -in general are needed to describe the scattering of nucleoné
from natural parity states of an even nucleus. These are the scalar and vector
. ‘ a5 |
form factors j&OJ

to spin-flip transitions. Although both havejthe same shape for a single-par-

-

and.@%iJ, (cf. Eq..(l7)). The vector form factor gives rise

ticle transition this is not true for a configuration mixed- state. .Conse-'
quently for the states of Ni we show both. We remark in paésing that there
is no precise counterpart of the vector form factor in the macroscopié model
although if thefspin—orbit term of thelopticai botential were assumed also to
be deformed, a spin—flipvmechanismvwéuld thus be introduqed,

We have already emphasized that the fofm factor of %py state, however

complicated, must be asuperposition of elementary form factors. Those that
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contribute to the first 2+ state of Ni6o are shown in Fig. 2 multiplied by the
phases and magnitudes dictated by Eq. (56)'for the scalar form factor. Each
contributes constructively to the nuclear form factor yielding the large single
peaked function shown. This is roughly analogoﬁs to, but broader than, the
form factor of the macroscopic model whiéh is compared in Fig. 3. (In the
latter case, 1t is proportional to the first derivative of.the.optical poten-
tial). On the other hand the vector form factor of this éollective state 1is
Smaller by a factor of about 5. These observations correspond ﬁo the fact that
- for the low-lying collective states of a nucleus the spin-independent part of
the force is most important in building up the correlations: The Vértex in the
diagram corresponding to scattering'of nuclear éarticles by a free particle may
be different in details 'but is qualitatively similar.to that entering the struc-
ture calcglatiOn.

For the Higher lying sﬁates the vectog form factor becomes relatively
more important (cf. Fig. 5) and in some cases (nét shown) significantly larger
than the scalar part. This suggests the interesting speculation'whether there
might exist at higher excitation a new type of collective state whose correla-
tions are built up by tﬁe spin—depeﬁdent'part of the residual intefactioﬁ. The
importance of the vector part in scattering is in our example very minor be-

: » _ X
cause the spin part of the direct interaction is weak for protons scattered
on neutrons (¢f. Eq. (45), and last paragraph of that éecticﬁ). If there were
such a state it seems that neutron scattering with measurement of the polariza-

¢

tion or subsequent VY radiation with suitable geometry would be markedly different
from the low lying collective state. Similar states, if they exist, in nuclei B

whose excited state correlations depend considerably on the protons could be

detected in the same fashion by proton scattering.
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It is characteristic that the form factor of the collective 2+ state
in all the nickel (and tin) isotopes possesses one broad maximum near the -
nuclear surface as above. This is in contrast with.ﬁhe form factors of the
higher 2+ sfates which exhibit great variety as shown in Figs. 5 and 6 (where
we have plotted the logarithm because of the wide range of magnitudes). The
other 2+ form factors are of course made up from the same elementary excitations
as the collective state discussed above, but with different proportions and |
- phases. It is to be expected therefore that the non-collective form factors
will be characterized by variety rather than unifqrmity, in contrast with the
predictions of the macroscopié model for the two phdnon states. Probably this
accounts for the arbitrary juggling of coupling constants typically required to
obtain agreement with experiment whén higher excited states aré analyzed in
terms of the macroscopic model.

As an example Qf a non-cbllective transition we show in Fig. U4 the
contributing elementary form fgctors for the 02+ state of Niéo (first excited
O+). 1In this éase the interference,is desfructive yielding the small form
factor shown. TFor such an incoherent transition, the detailed shape of the
form factor is of course very sensitive to the configuration mixing amplitudes.
For this reason it is less certain'thaﬁ in the case of coherent transitions.
The vector form factor vanishes ildentically for O+ states in anbeyen nucleus.

The form‘factoré for several O+, 2+, and L+ staﬁes of Ni6o and Ni
are showﬂ in Figs. 5-10 together with the corresponding proton.cross-sections
at 11 and 4O MeV. ' The cross-secfions were chputeduin the distorted wave ap-
proximationgl and the oétical modei ﬁarameters, taken from %he literature,7’22

are shown in Table I. . z
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Table I. Optical model parameters for protons + nickel used in the
cross-section calculation. The parametrization is detailed in Ref. 22.

W W r r.' a a' T

E, v D 0 0 c
11 50.8k 0 10.21 1.25 1.25 0.65 0.47 1.25
Lo L, 7 0 9.9 1.184 1.056 0.707 0.653 1.2

It is inﬁeresting to note that the characters of the two higher non-
collective 2+ states are interchanged in these twd nuclei, according.to the
structure calculation, as revealed through their form factofs. It 1s important
to noticé that these differences are indeed reflected in the proton cross-
sections, especially at the higher energy. This is of course in contrast Qith
alpha crgss—sections which are insensitive tohdetails inside the nucleus as our
earlier investigation indicated.l

We have acknowledged earlier that the distorted wave apprpximation ﬁay
not be valid for all of the weakly excited states. Hoﬁever the differences in
nuclear structure which lead to the different form factors connecting the ex-
cited states to the ground state will also leaa to différént couplings to in-
termediate states, sb that differences are likely to be further emphasized, not
diminished by inclusion of higher order effects.

We turn»now to the interesting question of the magnitude of the cross-

23

sections. To achieve the agreement with the 40 MeV data”™ shown in Fig. 5 we

had to use a value for VO of 41 MeV compared to the value_of 23 MeV corresponding

to a simple force which fits the low energy n-p data. In view of our earlier

discussion it is not surprising that we have had to use a mdre attractive poteni

1,2,2h

tial. This has also been the case in earlier works. With regard to the
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work of Funsten et él. we remark that it seems not to have been fully appre-" -
ciated that they have used a potential that is about three or’four times stronger
fhan the "vacuum" force. The enhancement of 1.8 that we have had to use seems

at least plausible in view of our'earlier discussion on this point. It will be
interesting,when structure calculations that take into account the core as well
as the cloud nucleons have been performed, to see by how much this factor is
reduced. | -

With respect to the 11 MeV data7

we require a potential VO = 72 MeV or
three times stronger than our assumed "vacuum' force in contrast to the situation
above. Quite likely the residual intefaction should be momentum as well as
density dependent. The second dependence would act in such a way as to reduce
this disqrepancy but we don't know about the first. However, part of the dis-
crepancy may be due to the optical model parameters. Their differences (es-
pecially the geometry,:see Table I) suggest that-theyldon't evolve one into the
other as a function of energy and if this so, a spurious energy dependence of

the inelastic cross-sectlion would be introduced.

The'data for the collective 2+ state have also been analyzed using the
macroscopic model.7’22 The agreement as far as the angular distributions are
concerned are of ‘the same quality as shown b& the microscopic description in
Fig.‘5 and 6, which reflects the similarity of the form factors. The greatest
difference between the %wo desériptions of the nucleus are expected in the ex-
ciﬁed states. These, we emphasize, are characterized by variety of coupling
form factors in, the microscopic description, as contrasted:with the macroscopic
model where the couplings are all interrelated énd the samé for one nucleus as |

for another, aside from their overall strength. That the variety exists in



28 UCRL_16u28

nature is attested by the fact that the existant analyses on the basis of the
macroscopic model require that almost every level have a different quadrupole
parameter B. |

Although the mic:oscopic description ofythe collective 21+ states
seems to be sétisfactory, we cgnnot’make any such statement, at the moment,
cpncerning the description qf the weaker states, since their proper analysis
requirés in general‘the solution of the coupled equations fof scattering. These
have not yet been solved with the microscopiq form factors. Mdreover, there is
very little data available on nucleon scattering from.the higher lying states

of single-closed-shell nuclei.

)

L. SUMMARY
Tﬁe scattering of light nuclides from'nuclei has been formulated in

terms of the two-nucleon interaction and the detailed shell-model wave funcﬁions
of the nucleus. The theory was applied in an earlier work t§ alpha particlel
scatteringlo from the nickel isotppes,some of whose levels are collective.
In tﬁe present ﬁork ﬁe have applied it to proton scattering. We have used the
nuclear structure calculations of Arvieu, Salusti and Veneroni for these iso-
topes.17 In their work; all levels,including the collective ones, are treated
in terms of their underlying nucleon s£ruc£ure. The constructive coherence in

the transition to the 2

N . .
, state of all the nickel (and tin) isotopes leads to a

scalar form factor having the general shape used in the macroscopic description
of collective motion. The vector form factor is much smaller,reflecting the

‘dominant role of the spin-independent part of the nuclear fdrce in inducing the-
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collective motion in the lowest collective states. We have speculated.on the
existence of states at higher energy for which enhanced transitions proceed
-thfough correlations induced by the spin-dependent part.

| In .contrast to the qualitativé agreement between the form factors
predicted by the micrqscopic and macroscopic descriptions of the collective
motion in the 21+ state, the microscopic model prediéts:a much greater variety
in shape and magnitude of the form factors for the unenhanced transitions. The
détails constituting this variety are reflected in the calculated cross-sections
for nucleon scattering but not for compoéite particle scattering.

Concerning comparisons with experiment, we find.that the microscopic
17

. + :
description given by Arvieu, et al. for the collective 21 states yilelds good

agreement with the differential cross-sectlons for proton scattering. As has

been obsérved by us, and by Madson and Tobocman;lo the calculated differential
cross-section for alpha scattering is shifted by several degrees to smaller;
angles.cémparéd to experiment. This suggests that. the slope, or the positigg
of the form factor outside the nucleus 1s somewhat in erfor. Presumably a
small error here would not effect the proton écattering s0 much since the
interior contributes an important fraction of the cross-section. In.any case
there do not seem to.be any fundamental difficulﬁies either with the descrip-
tion of the nucleus or the scattering process. It would however be interesting
to have structure calculations iﬁ which the inner nucleons play a part in the
correiations so that one aspect of the‘ambiguity connected with the effective
direct interaction could be removed. |
Now we summarize our impression of the uses of the éeveral pypes of
projectilés employed in inelastic scattering experiments, 'The discussion of

course divides into two parts dealing with strongly and moderately alisorbed

particles,
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Composite particles like deuterons and alphas are strongly absorbed.
Therefore direct reactions involving them take place predominantly in the
nuclear surface. Yor an ideal surface reactlon involving only one L-transfer
it can be proveng that the angular distributionvcorresponding to the direct
excitation from the ground state doés not depend upon the mechanism by which
the transfer is effected. It is independent of the nuclear structure or the
4 nature of the direct interaction. 1In practic§ the transfer may take place
throughout the surface region, but even then the anguiar distribution is -
largely insensitive to the details mentioned. The theorem does not épply to
levels fed principally through some other excited state (double excitation).
We therefore divide levels into two types, those whose direct coupling to
the ground state dominates over the coqpling through an intermediate level and
those for;which the two‘couplings are competitive or for which the indirect
route dominates.

Levels of type I are the enhanced collective state; like the 21+ ané
51° as well possibly as some weak levels. Levels of type II include sucb

+ '
higher excited 2 states for which the direct E, transition to ground is weak

2

éompared to the stopover transitions to the 21 .

The consequences of these statements are the following. For a level
of Type I, the angular distribution isva simple meter of its spin and it can
be déduced by applications of any convenient means of calculating a surface
transfer of angular momentum. The Blair-Drozdov model and its moré éophisti—
cated variants would be suitable for thié purpose, or any‘distorted wave
calculation employing a surface-peaked form factor. We re-émphésiie that suc-

y

cess in making spin éssignments for this type of level does hot reflect on the

1

merits of the nuclear model.
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For levels of type II which are fed through an intermediate levelvas
well as, or instead of, the direct tranéition, no general statement can be made.
The relative importance of the two couplings is a nuclear property which may
change frdm level to level and from nﬁcleus to nucleus. The details of these
couplings are of course interesting nuclear properties.

Since one does not know in advance to.which category a level belongs
(except for the strongly enhanced levels) it will be necessary to determine
this before reliable spin and parity assignments can be made. Since the
direct and indirect foutes to an excited state very likely have probabilities
that vary with energy in different manners, é>study of the phase of the angu-
‘lar distribution as a function of energy as compared with a known direct excita-

25

+ .
tion such as the 2, , may reveal to which category it belongs.

1
" Turning now to the scatteiing of nucleons, the situation is gquite 4if-
férent from that described abo&e. Because they are not so strongly absorbed,
the differential cross-section reflects details of the nuclear structure well
within the nuclear radius. Compare for example the form factors and their
corresponding differential cross-seétions of the O+ states shown in TFig. 8.
Just because of this sensitivity they are noﬁ as useful‘infdetermining spins
and parities as alpha particleé. But they do afford quite a good glimpse of
thé interior, which the alphas do not. For this reason nucleon scattering

should provide a valuable means of putting microscopic descriptions of nuclear

structure to very detailed tests.
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APPENDICES
A, Convéntions

A shell model calculation involves a choice of phases and conventions
which are not ;tandard and must bé specified 1f the wave functions are subse-
quently used to calculate other propertiés. For the calculations reported
here the following conventions hold:

1) Condon-Shortley phases for spherical harmonics.

2) Order of spin-orbit coupling is f + s = j.

3) Radial functions have positive slope at origin.

L) Conventions above and the way in which the éuasi-particle and

particles are connected Eq. (32) imply that the lowest energy solu-

tion of the BCS method is such that UV(-)? is positive.

B. Explicit Expression of Form Factor

The integral defining the form factors, Eq. (22), can be evaluated as
a closed expression,2 having the structure éhown in Eq. (25), when the potential
shape is Gaussian and hafmdnic oscillator functions are uséd for the radial
functions of the bound single-particle state; We give here tﬁe relevant for-
mulaé which are convenienﬂ for computer caléﬁlationvor by hand. The harmonic

oscillator functions are

nf

(Agl _ {2F(F+i+1ge)§}/2 r(71%7§7 ,n=1,2 ... - (m2)

o
a0 =0, P ot 2 ) pasee®) ()



“55- UCRL-16428

SV 2
The function F above is the confluent hypergeometric function 6 and
(z+l) = 2I'(z), T(1/2) = ﬂl/g. The product of two such radial functions

appears in'the‘integral and we write it

2 n4n'-1l

. ' . _ . 5/2 AT Covr 2,m-1
spiae g ALy A PP e = o () (23)
where 1 (n+2—l/2> (n'+£'-l/2)
a = (nﬂ'n' l') = (—)‘m-l Z n"k."l n|+k‘-‘m . l (BLI-)
m - Tm\ o n+z-17é) Kn'+£'—l/2) k! (m-k-1)*
a n-1 n'-1 v
Then the coefficients G in .Eq.(25) are
b7 Jn /' L+3/2
Ea,) =YZH M, (o fpr) 2/
' m B+v k-m :
x oz o (a,0)B0em, (2 G
k-g+l , v '
) k=max(g,m) ,
for m<m
and are zero for m > m° where
em = N+ N, - L and  2g = £+ £, - L o ' (B6)

~ As mentioned earlier in connection with Eq. (25) N 4is the oscillator quantum
B : number.

Finally the coefficients B above are given by

8(0,5,1) = (v/B+)®* o - (57)
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_(eL+3)!

B(p,s,L) = )T (V/5+V)25

1Y
© S\, S+m-p (s-1)!
x 2 (l_amobps)(p-%( il ) s+m-p-1)!
m=0 .
~2m (2T-Zm3)T
1 .
X\ 7T o m =2
2
m-L 4
(") (Em"QL"5)' , m > L2

22(m-i) (m-L-3)!

C. Effective Po£¢ﬁtial foeromposite Scattered Particles
Our results are derived in terms of a direct interéction between the
nucleons of the ﬁugleus and the center of mass of the scattered particle. The
form of the interaction is given by Eq. (h) which»implies that for scattered
nucleons, the expectation value with respecf;to i-spin of the full interaction,
Eg. (hB), has been taken. We want now to rélate the parameter of Eq. (L) to -
those of the nucleén—nucleon‘potential of Eq. (h}),:when the scattered varti-

" cle is a light nuclide. -For this purpose we use a very simple wave function

for the nuclide, with radial part

. 2 2
u = exp(-n = rij) » ' - (cu)

where the sum is over the relative distances betWeen-nucléons in the nuclide.

This will at least give us a rough guide in selecting the pgraméters of

Eq. (4).

¢
H t



-35- ' UCRL-16428

a) Deuteron.

The space part according to Eq. (Cl) is

- 2 3/h4 22 :
uld(Qﬂgrg).= (E%ﬁ))/ e T - (c2)
and thé spin and i-spin parts are respectively triplet and singlet. We
want the expectation'value,with respect to the i—spin vrart and the internal
coordinate of the deuteron, of the interaction between the deuteron and some
other nucleon whose coordinates arélzﬁ,gi.... This expectation value is our
pseudo-potential which is a function of spins and fhe distancé between the

center of mass of the deuteron R, and the nucleon. Denote this distance

vector by k = B;gi. Then we have

1 ; '
. = + .
vi(e,89) = (Voo*V 5 909, ) T.(e)

| (c3)
* (Voo*Vap %8y ) T(E) |
where
2 _pletr/2 -
1(e) = [ udy e PR gy | (ch)

The integrals are equal to each other and can be evaluated by use of

A 2 . v 2 . 2 ’
[ag O TRE _(@p/Rg e | o (e5)
O .

We find in this way that the parameters of Eq. (4) are reléted to those of

$

the nucleon-nucleon potential Eq. (43) by
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1 5 2 LI 2 ! .
Vo =2 & Voor V1'® 22 Vigr B = xB, 8 = (g,%g,)/2 (c6)
where
2
8

x = — (c7)

On +p
b) Alpha

A convenient coordinate system consists of the centers of mass of the
alpha and of the two neutrons and two protons, which we denote by R, 2 and Lo’
gnd the distance between the last two, p = 21 - Lo (the Jacobian of the trans-
formation from the nucleon coordinates to these is unity). The function Eq. (C1)

in terms of these is
L2 2 2 2 22
u o=y (Mney ) ulo(”n‘pg ) uyq (8n707) | (c8)

again the integrals involved in evaluating the pseudo-potential are of the

form Eq. (C5). We find

2

i) = v | 6 | zer® /7 -pe
. 00 2 2 % e o
{160 +B 32n.+ﬁd ©(c9)
{ . - __) .
51 = B él— B B }

L l6n2+5 52n2fBJ

In terms of the assumed vacuum interaction, Eq. (L42) this potential for nucleon-

“alpha interaction is

: : o : '
Vo= 32 e’(r/2'33) (MeV) ' . (c10)
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where for the alpha size parameter we used n = 0.233, consistent with electron
scattering. That is, the alpha-nucleon interaction has a range considerably
larger than the nucleon-nucleon interaction, but a well depth of only about

twice the VOO' part of the latter interaction. .
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Fig, 1. Shapes of quadrupole single-particle form factors for
several transition are shown for three values of the force range.
The oscillator parameter v = mw/h has the value 0,25 F~° for
the nickel isotopes.
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Fig. 2. The quadrupole single-particle form factors that contribute

to the 2+ states of Ni0 are shown with the magnitudes and signs
appropriate to the collective state showing how they all contribute
constructively to the collective form factor,.
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Fig. 3. The form factor of the collective 2+ state of N160 computed

from the microscopic model is compared with the derivative
form factor of the macroscopic model., They are normalized

to. give the same integrated cross section., The second derivative
form factor of the latter model is also shown, Form factors are
here plotted on a logarithmic scale and changes in sign are

shown by (-). We include the factor rl (from the volume element)
in our figures as should be done to show the weighting given the
distorted waves,
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Fig, 4, The monopole single-particle form factors that contribute

to the 0+ states of NifU are shown with magnitudes and signs
appropriate to the first excited 0+ state labelled 0_., Here they
interfere destructively to give the small form factor for the
nuclear state shown by the heavy line,
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Fig, 5, The form factors for three 2+ states in Ni60 together with

the corresponding cross-sections for 11 and 40 MeV protons,
Scalar form factors are shown by solid lines and vector form
factors by dashed lines, Changes in sign are indicated by (-)
since the absolute values of form factors are plotted.
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Fig. 6. The form factors for three 2+ states in N162 together with
the corresponding cross-sections for 41 and 40 MeV protons,
Scalar form factors are shown by solid lines and vector form e

factors by dashed lines. Changes in sign are indicated by (-)
since the absolute values of form factors are plotted. Compare

the 2, and 24 form factors with those of Niéo, Fig. 5. o
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Fig. 7. Form factors for three 0+ states in Ni6,O together with
corresponding cross-sections for 11 and 40 MeV protons, The
form factors oscillate and changes in sign are shown %y (-).
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Form factors for three 0+ states in Ni62 together with
The

form factors oscillate and changes in sign are shown by (-).
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with corresponding cross-sections for protons.
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Fig. 10, Form factors for two 4+ states of Ni62 and corresponding

cross-sections for 11 and 40 MeV protons, Scalar and vector
form factors are shown by solid and dashed lines respectively. P
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