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Thus far, our search for molecular carbonaceous remnants, specifically
indicative of biogenic processes, has been epitamized by the isolation and
identification of isoprenoid alkanes in a number of ancient sediments of
various geologic types ranging from several million to over two and a

1,2,3 We have felt that the isoprenoid alkanes

half billion years in age.
could serve as "biological markers" in our quest for evidence of life

among geologically well-characterized ancient shales and oils, and more
specifically in carbonaceous chondrites.

Earlier we reported preliminary studies on the oil shale from the
Green River Formation (Eocene Age, about 60 x 10 years) at Rifle, Colorado.
These results, which paralled those of Cunmings and Robinson,4 established
the biological history of this Cenozoic rock from the very uneven distri-
bution of the n-alkanes and fram the presence of large proportions of
isoprenoid alkanes [ClG-, ClB-isopmnoid; Clg-isoprqpid (pristane) ;

Coo-isoprenoid (phytane)].

1,2
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We wish to report now the isolation and identification of the Cyq=s
Cag™ @ Cyg
cyclic alkane fraction of the Green River Shale,

Separation of the branched-cyclic alkane fraction (extraction from
shale previously described in detail?) into its individual components
was achieved by an initial programmed gas-liquid chromatographic run to
300° (3% SE-30 on Gaschrom Z, 100-120 mesh, 10' x 1/4" s.s. colum,
program rate 4° per min,) in which peaks were oollected and in turn
rechromatographed isothermally at temperatures ranging from 260°-280°
(1% SE-30 on Gaschrom Z, 100-120 mesh, 10' x 1/4" s.s. colum)., Mass
spectra of these collected samples were determined in a direct inlet
system of a modified C.E.C. 21-103C mass spect::t:»met:er.5

A preliminary mass spectral examination of the fractions oollected
as indicated in Fig. 1 from a programmed run revealed the molecular

weights which are listed in Table 1 for the major camponents, Fram the

Table 1
Fraction a 372
b 386
c 386, 400
d 386, 400, 412
e 386, 400, 412
£ 400, 412

subsequent isothermal separations, a homologous series of compounds were

-steranes and a C30-penta-cyclic triterpane from the branched-

isolated which display mass spectral fragmentation pattems characteristic
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of the saturated, tetracyclic sterane carbon skeleton (I). The mass
spectra of the isolated S Yal C28- and ng- steranes are shown in Figs.

2, 3 and 4, respectlvely, together with the mass spectrum of authentic

52

sitostane (II) in Fig. 5. The intense peak of m/e 217, which is common
to these spectra is depicted as III and arises thmugh loss of the side
CHZ !
(+) ’
Ir

chain together with C-15, C-16 and C~17 of ring D and demonstrates that
rings A, B and C are saturated and unsubstituted. Another very favorable
mode of decamposition gives rise to the intense peak at m/e 149, as

illustrated mechanistically by the following sequence:

R

The small peak at m/e 259 embodies the tetracyclic moiety resulting fram
simple cleavage of the 17,20-bond. Thus, the substitution causing the
homology is present in the side chain. The mass spectrum of fraction d
is shown in Fig. 6. The molecular weight of 412 demands five degrees of




wmsaturation, therefore, a penta-cyclic carbon s)celebon.8 The relatively
large peak at m/e 369 (412—C3H7) in oconjunction with peaks at m/e 123,
137, 191, 205 and 231 is indicative of a penta-cyclic triterpane in the
lupeol series.9

The identification as a C3O-triterpane is corroborated by comparison
of its fragmentation pattern (Fig. 6) with that of authentic lupanéO(IV)

in Fig. 7.

L

The appearance of the C2 & and C, _-steranes in a number of different

29
glc fractions (as indicated in Table 1) suggests the presence of several
isamers of each homologue. Such a finding could be interpreted in terms
of abiogenic reduction of their precursors, e.g., ergostercl, etc.,
resulting in different ring junctures (A/B cis versus A/B trans, etc.)
and, therefore, isamers with different gas~chramatographic retention
times, alﬁhough a certain amount of overlap of glc peaks could account
for their multiple presence. Further study is in progress to ascertain
which stereoisomers are present in the Green River Shale,

The organic extract from shale of the Soudan Iron Formation of
Minnesota which is the oldest carbonaceous rock thus far known on the
North American continent and has been dated isotopically at greater than
two and a half billion years]lhas resulted in the isolation and identifi-

cation of a series of "molecular fossils", the isoprenoid alk:-.\n@s.3



Concurrently, an analogous investigation of the branched-cyclic
alkane fraction from the Soudan Shale (extraction procedures previously
described in detail?) was separated into "low boiling” and "high boiling”
(above 200°) cuts by an initial programmed gas-liquid chromatographic
rn to 300° (3% SE-30 on Gaschrom Z, 100-120 mesh, 10' x 1.4" s.s. colum,
program rate 4° per min.). During a separate chramatographic run, authentic
samples of cholestane and squalane were co-injected with both the branched=-
cyclic fraction (see Fig. 8) and the subsequent "high boiling" cut.

After knowing these retention times for cholestane and squalane, the
high boiling cut was re-chromatographed isothermally at 225° and the
samples collected for mass spectrametric analysis. Fraction 20 corres=-
ponded in retention time to that of cholestane (see Fig. 8) and yielded'
upon mass spectrometric analysis the mass spectrum depicted in Fiq. 9.

The mass spectral fragmentation pattern (Fig. 9) of fraction 20
has molecular ions at m/e 372, 386 and 400 indicative of the presence of
C27-, Cog™ and C29- saturated, tetracyclic hydrocarbons. This spectrum
displays various features which are characteristic of the carbon skeletons
(I) of a hamologous series of three saturated steranes., Each of these
molecular ions displays equally large fragments at NFCH3; e.d., m/e 357,
371 and 385. The intense groups of peaks at m/e 217, 218 and 219 arise
from the major mode of fragmentation in the steroid hydrocarbons having
side chains attached to C-17, vide supra. It should be mentioned that
there are several minor conponents of higher molecular weight, e.g., 410,
412, 414, 416 and 418, which contribute peaks to the fragmentation pattern
of fraction 20. Many of these are peaks known to occur in the mass spectra

of various triterpanes, e.q., 123, 137, 163, 177, 191, 231, etc., and
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consideration of the relative intensities of the appropriate peaks in

fraction 20 is reminiscent of the mass spectrum of authentic friedelane (V).

Y
Further work is in progress on the isolation and identification of C

30
carpounds in the triterpane series.

It is interesting to note the striking predominance of the sterane,
penta-~cyclic triterpane constituents in the branched-cyclic alkane fraction
of the non-marine Green River Shale, particularly of those derived from
the parent plant sterols. This contrasts with the much lower relative
abundance of these compound classes in the Soudan Shale, which is of
marine origin and much greater age. It is noteworthy that the probable
diagenetic precursors of geologic steranes and triterpanes, e.g.,
ergosterol, sitosterol, lupeol, etc., occur in nature as allylic alcohols
requiring 'geologic or bacterial reduction in a fashion analogous to that
suggested for the conversion of phytol to phytane under geologic oorxditions.l2
Oxidizing conditions would yield keto steroids, but diagenesis involving
sequential formation of a carboxylic acid and decarboxylation analogous
to that presented for conversion of phytol to prist.:ane and the ClB-
isoprenoid alkane would be prevented in much the same manner that the

formation of the Cl -isoprenoid alkane from phytol would be prevented,

7
-isoprenoid alkane has not been isolated from ancient carbonaceous
3,13

The Cl?

sediments thus far,
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Barton and co~workersld have identified oxyallobétul-z-enc, a
derivative of a plant triterpenoid, from petroleum. In a series of
papers Sorm and co—-workers15 have isolated and identified oxyallobetulone
and several other triterpenoids fram North Bohemian Brown Coal, the age
of which is estimated to be tens of millions of years based on geoloqical
strata. Several reports have suggested the probable presence of steroid-

16,17 and recent sediments.18 Meinschein

type hydrocarbons in petroleum
has indicated the presence of a Cyy-sterane in the Nonesuch Shale on
the basis of large peaks at 372, 218, 217 and 149 in the mass spectrum
of a carbon tetrachloride eluant fraction from an alumina column.19
The greatly decreased solubility properties of steranes and triter-
panes compared to the isoprenoid alkanes lends further support to cvi- t
dence for the indigenous nature of these sedimental alkanes, rather than
migration since sediment deposition.3
The occurrence of steranes (and probably penta-cyclic triterpanes)
in the Soudan Shale provides further evidence for the presence of life
processes sufficiently cxxmplexvto require an enzymatic template and in
vivo polyisbgnvnnid cyclizations at the two billion vear mark in terrestrial

chronology.
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Fig. 1. Gas chramatogram of Colorado Green River Shale branched-cyclic alkane fraction
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Pig., 8. Gas chramatogram of Soudan Shale branched-cyclic fraction
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