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The Multi-Viei-r FOG Program 
and its Application to Quality Control of FSD Data 

Shirley Buckman, Joan Franz, John Gotthelfsman, Dennis Hall, 
Vivian Morgan and Frank. Windorski 

I. Introduction 

One of the most difficult problems encountered in the reduction 

of Bubble Chamber data is· that of quality control. In particular, 

the problem of detecting FILTER errors is especia~ly difficult. This 

is due in part to the fact that FILTER errors, by definition, do not 

depart from the true orbit by more than a road width (at Berkeley, 

512 ~) and are usually smaller than half a road width. Hence, this 

kind .of error is by nature more subtle than analogous errors made 

by a Frankenstein operator or a faulty digitizer • 
.. 

For this reason, if we are to have any hope:~of detecting these 

errors, it is necessary to have an accurate model of the true orbit 

on the film. If the number of erroneous points is sufficiently small 

in relation to the total number of points measured, then a maximum 

-.. likelihood fit to such a _model will show erroneous points as signifi .. 

cantly displaced from their expected values. 

The tE;!rm "significantly displaced" means that the displacement 

is much larger than would be expected on the basis of an a priori 

error estimate. Hence, a second requirement for the detection of 

FILTER errors is that there exist predictable confidence intervals 

for all error sources. 

More precise]~, the following information is required: 

A. An accurate relationship which gives the FSD film 
coordinates ~t of a point X on the orbit as a function 
of the initial conditions for the particle and, say, 
the arc length s of X as measured along the orbit from 
the initial position of the particle. 

B. Predictable confidence intervals for all acceptable 
error sources. 



'-J 

.. ~ 

... 

----------------- ---------~ •·· ..........__ __ 

-2-

Multi-view FDG, an extension of the current 2-view FOG J?rogra.m, 

will J?rOvide a maximum likelihood estimate of the momentum and J?OSition 

vectors of a track near a vertex •. It will also J?rovide a reliable 

discrimination function which will seJ?arate good measurements from bad 

measurements on a statistical basis and will under certain conditions 

attemJ?t to remove bad J?Oints from a track. 

II. Mathematical Model 

Consider a J?article in a bubble chamber with initial position 

vector Xv and initial momentum vector Pv = J?vAv, where l?.v is the 

momentum scaler and Ay the unit tangent.vector at. the vertex •. The 

forces which significantly affect the J?Osition of the :Particle are the 

following: 

The magnetic field force, (qB) x (v/\), where B is the 
instantaneous magnetic field vector, v is the in
stantaneous velocity scaler, A is the instantaneous 
tangent vector, and q is the charge on the particle. 

Ionization energy loss, ~~/\ , where p is the instan
taneous momentum scaler. 

Elastic collisions with other particles. Because of the 
random nature of this force, it will be treated as one 
source of error. 

From the forces 1 and 2 on the particle it is possible to derive a 

functional relationshi:P between the instantaneous position vector X 

and the variables s, Pv and Xv• · (s =arc length from X to Xv)· 

In Appendix A, an a:PJ?r;ximation X(s) to the. true orbit X(:s) is 

·derived. 

where 

X(s) = Xi(u) = Xi + AiU + vi S(u) + wi c(u) 

; ' 
ih ~ s ~(i + 1) h 

u = s - ih 

X{ = x1_1 (h) i X0 =. Xy 

Ai = '5\i-1 (~) ,, 1\o = "Av 

v1 = (B1 x /\1)/ IBil 
wi = (Bi x Vi) / )Bij 

and s(u), c(u) are scaler functions of u • 

(1) 

(2) 

(3) 

(4) 
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Clearly, (4) is no-t particularly difficult to evaluate. The only 

differences between (4) and a circular helix are the functions S(u) 

and C(u). For circular helices, these functions are simple sines and 

cosines. For the approximation (4) they involve natural logarithms 

as well. Preliminary indications are that the evaluation of (4) 

together with all of its partial derevatives will require about one 

millisecond per point-on the IBM 7094-II. 

It is also shown in Appendix A that for every € there exists an 

h such that 

jx(s)- X(s)l ~ € whenever ih ~ s ~ (i + l)h 

In fact it is shown that (5) will 'be satisfied whenever. 

h ~ [c L ~ 1Bvl]
113 

10 Pv 
where L is the total length of measured track and 

(5) 

(6) 

C: ~· lEv'' I _ fiBv' 1)2 
+ .!?Jc"_ (Pv")

2 

TB;1 \!Bv I · Pv Pv (7) 

Thus, given an €, we can compute an h such that condition (5) 

is satisfied. By choosing € sufficiently small the correct model of 

the space orbit is obtained. 

The two dimensional analogue of (4) without condition (5) is 

derived by Solmitzl for the program TVGP. 

Table I gives h and N = ~ as a function of Pv and L for some 

typical cases using € = 30~ in space, the mass of a ~, and the 

magnetic field of the 72" Hydrogen Chamber. 

The chief advantage of this model is that it is self regulatory~·'. 

That is, even with large changes of field and long stopping tracks, 

constant accuracy will be maintained. Hence, this source of error is 

eliminated. 

As a consequence of this the program running time is ·improved, 

since most tracks will only require between 1 and 3 splice points. 

Now consider the relationship between a point X in space and its 
. \ 

image s on film. The approach taken in multi-view FOG is to assume 

an approximate model, and from this determine confidence intervals 

from fiducial measurements. Appendi·x B gives a derivatio.n for a 

simple optical model of the form: 
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TABLE OF IN'I'ERVAL SIZES FOR ORBIT MODEL 

10 em 30 em 90 em 

·~ 23-5 N == 1 h ~ 18.0 N= 2 h ~ 14.4 N= 

~ 15.6 N = 1 h • 12.82 I ~ = 3 h ~ 10.0 N= 

I 
--{- -

l I ~ 2.16 ' N= 5 h ~ l.c; N= 20 not __-possible i r-

h = maximum interval size 

N = number of intervals 

L = total length of measured track 

p = initial momentum 

E = 30 microns in space 

!Bv! = 17.5 kilogauss 

mass = .135 BeV 

h = € 

gJBvl 
pv 

r3 
2 " (·~v· ') + Pv _ 

Pv 

______ ....._. ___ _ 

7 

9 
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F1 (X, s) = 0 (8) 

This model is adequate for all chambers currently being processed at 

Berkeley. However, it is anticipated that some future chambers may be 

quite different in structure. Therefore, the program has been designed 

so that this module can be replaced easily. 

Equations (4) and (8) give, as a function of arc length s in space, 

a relationship between the initial conditions of a particle and the 

coordinates s of its image on the film. To complete requirement A 

it is necessary to obtain the relationship between film coordinates s 
and FSD coordinates s'• 

It is assumed that 

( ~ ) = (~ ~) (~:) + (~) 
That is, film coordinates differ from FSD coordinates by a 

translation, a rotation, a shear and an independent magnification 

in both s' and~'· The coefficients a, b, c, d, e and fare 

determined independently for each photograph by a least squares fit to 

the measured fiducials. From (4), (8), and (9) we have all of the 

information required for A. 

III. Error An~1ysis 

(9) 

The next problem is that of deternri.rd.rJg ronfidence intervals. The 

errors caused by the magnetic field and range-momentum models are in

significant for all chambers currently being processed at Berkeley. 

However, the procedure could easily be extended to include them should 

they be significant in some new chamber. Chamber turbulance is a slight 

problem, but we shall ignore it for the present. 

The following list enumerates all error sources presently being 

considered. 

a. Multiple scattering. 
b. Incorrect optical model. 
c. Film resolution and FSD accuracy. 
d. Incorrect fiducial measurement. 
e. Undetected FILTER errors or bit transmission 

error. 
f. Wrong mass hypothesis. 

Data containing errors from sources (a) through (c) are 

acceptable. Data cont:..ining errors from sources (d) through (f) 

(10) 
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are unacceptable; '·.~···;:·~,:~) It is therefore necessary to have a reliable· 

method for detecting their presence. 

The first problem is that of multiple scattering. Rossi2 

gives the following approximation to the average error (d) due to 

neglecting (3). 

where 

Xo = radiation length in em. 

t3 "= PJE 

E = energy = VP2 + (mass)2 

(11) 

The projection of d onto the xy plane will be g d on the average and 
1( 

hence on the film the average deviation df.m is given by 

df.m = ~ /G(p,Z) (
s \3/2/ · 

= .15 XoJ Pt3·G(p,Z) 
The second error source is the optical model. This problem is 

quite chamber dependent, and it is hard to give a general procedure 

for determining the error. The procedure to be employed for all 

chambers current~ being processed is the following: 

(12) 

TO determine the coefficients .of .the optical model, all of the 

fiducials in a picture will be measured several times and a least 

squares fit to the optical coefficients will be performed. This 

procedure yields residuals for each fiducial. If these residuals are 

random~ distributed about zero at each fiducial, and if they.have a 

magnitude comparable to the r.ms error of the measuring device, the 

optical model is "exact"· and this source of error can be eliminated. 

If, on the other hand_, the residuals are not randomly distributed 

about zero, there is.an error in the optical model. This source of 

error must be accounted for either by improving the model, or by 

giving up and admitting that the er!or on a point on the film is 

actual~ greater than the maximUJr.· accuracy of the measuring machine. 

If the latter approach is trucen, a good estimate for this error source 

is obtained by computing the ave~age deviation efi for each fiducial 

i· Since the residuals were obtained as least squares fits, 

m 

e ~:rir E e ""' 0 where ef. = (e . (13) i=l fi ~ , s:r 
i 

,·-: 
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The third error source is the resolution of the film and the rms 

scatter of the FSD itself. Fbr the present time this is assumed to be 

constant, although in the future it may be desirable to add a re

finement which would allow for the variation due to the angle the 

track makes with the scan line. Now, each master point is the 

average of one or more individual digitizing.· Hence we have: 

2 
(J =-

!; 
(15) 

where Ms = number of points averaged in the master point. This 

relation is ~uite important in performing least.s~uares fits, since 

the more accurate points are given a smaller error, and hence a higher 

weight. 

This completes the task of assigning confidence intervals to.all 

acceptable error sources. We now turn to the problem of dealing with 

the remaining errors. 

The fourth error source is that of incorrect fiducial measurements. 

The coefficients of 9 are determined by performing a least s~uares fit. 

Since an a priori estimate of the error in fiduc.ial measurements is 

known (for the Berkeley FSD, · aFID = (1.5fJ., l.5fJ.)T ) it is possible to 

compute a x2 value for the fit. 

Fbllowing Mood3:we can test whether or not the measurement is 

consistent with the known standard deviation. Most bad f~ducial 

measurements'can be detected in this manner. Furthermore, .since an 

a priori density function for the amount of shear and stretch for any 

particular film base,. is also known, bounds may be placed on these 

parameters as well. This procedure will virtualzy guarantee every 

fiducial measurement. 

It is worth noting that this test is much more powerful if the 

effects of an erroneous optical model are removed. Thus, if Sf. is 
~ 

the cordinate of the fiducial predicted by the optical model, then 
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the least squares fit should be performed on the variable Sf· + ef.• 
~ J.. 

All of the acceptable error sources can be included at the 

discresion of the experimenter .:i.n the weighting matrix for the 

maximum likelihood fit. Thus there will be terms for multiple 

scattering, the number of individual digitizings used in the 

master point, and the optical model. 

The multiple scattering term is of particular significance in 

heavy liquids and in long chambers. The optics term and the number 

of digitizings term are useful in the detection of FILTER errors. 

IV. Constraints 

Conditions A and B have now been satisfied •. Hence a maximum 

likelihood determination of the initial conditions can be performed. 

(See APpendix c). This procedure will give a x2 value for the fit, 

which can be used to discriminate between bad measurements and good 

measurements. This process will introduce two -types of errors. 

I. Rejection of good measurements 

II. Acceptance of bad measurements 

Let PI equal the probability of type I error and PII equal the 

probability of type II error. PI can be determined by integrating 

the x2 distribution. Again following Mood3, the discrimination 

function consists of rejecting all events with PI ~A and accepting , 

all events with PI ~A, where A is ~~ arbitrary constant assigned by 

the experimenter. r' 

The trouble with this test is that it is not possible to 

minimize both error types simultaneously. Furthermore, the more 

PI is decreased the greater PII becomes··. Making PI extremely small _ 

is therefore undesirable from the standpoint of accuracy. On the 

other hand, the smaller PII becomes, the larger PI becomes. Hence 

the number of unnecessary remeasurements increases. Making PII 

extremely small 'is therefore undesirable from the standpoint of 

economics. 

Consider a track which has PI ~ A for all mass hypotheses • 

Four possibilities exist. 

a. The event is actually good. 
b. There was an undetected fiducial error. 
c. 

d. 

There i·ras an undetected track measurement error. 
The correct mass hypotheses was not 
attempted.. . 

(16) 



Our experience indicates that such occurrances are most probably due 

to 16c errors. For this reason the program will attempt to decide 

whether this condition is likely. If it is, the program will have 

the option'of deleting the bad points and repeating the fit, provided 

this can be done without serious loss of accuracy and information. 

In this w~, the frequency of type I errors can be substantially 

reduced. 

In order to determine a good test for the existence of an 

undetected measurement error we must first describe its characteristics. 

This is a very difficult task, requiring the acquisition of considerable 

additional experience with the residual distributions. This point has 

been emphasized by Paul Hough4 and others. For this reason, the 

program will display the residuals for each track as a function of 

view, if requested. It will also display on request the weighted 

residuals so that probability tests can be made-. 

There is one final error source which cannot be detected by 

considering the point distribution. That is the problem of finding 

a vertex point. If the point of arc length zero, is incorrect then 

the initial conditions determined will not represent the true state 

of the particle at the vertex. 

The actual computation of a vertex point will be done in CLOUDY ' 

as follows: Fbr each track j at a 

vertex we have an orbit function xj(s). 

The point X in space which is closest 

to all of the functions will be tru~en 

as the true vertex point. The point 

Xj on each orbit which is closest to 

X will be taken as the vertex point 

for that track. See figure. 

Let ~j be the tangent vecto~ of the orbit at the point Xj• 

~en the distance 8j from a point.X'to this line is given by: 

8. = (~j)T (X'- Xj) 
J 

'The point x'satisfies the condition 
2 40 j = minimum 

J 

(17) 

(18) 
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PROGRAM 140 

MULTI-VIEW FOG 

GENERAL FIDW CH.ART 

I READ ONE EVENT . I-

I 
COMPUTE VERTEX POINTS ON 
FILM IN EACH VIEW 

FROM THE MEASURED FIDUCIAI.S 

DETERMINE THE COEFFICIENTS 

OF THE TRANSFORMATION 

FROM FSD '10 FII.M 

COORDINATES 

I 

CHECK THE VALIDITY OF EACH 

VIEW 0 F THIS TRACK 

.. 
I 

COMPUTE THE ORBIT X(Si) AND 

THE PARTIAL DERIVATIVES OF ' 

X(S1) W.R. T. ALL · 

UNKNOWNS 

EVALUATE F(h , X(Si) AND 

. GqMPUTE THE. PARTIAL 

DERIVATIVES OFF W.R.T. 

ALL UNKNOWNS 

I 

COMPUTE IMPROVED ESTJNATES 

FOR ALL UNKNOWNS USING 

THE STANDARD LAGRANGIAN 

CONSTRAINTS PROCEDURE 

TRANSFORM MEASURED TRACK 

POINTS TO FILM COORDINATES 

f 
j~L~--NO--.-· <L~ 

COMPUTE A FIRST GUESS FOR 

THE INITIAL CONDITIONS BY ; 
CALLING .. THE TWO-VIEVl FOG SUB 
PROGRAM 

·- r-------JI"-------~ 
COMPUTE A FIRST GUESS FOR. 

THE ARC LENGTH Si OF EACH 

POINT IN EACH VIEW 

THE FIRST GUESS FOR s i IS , 

THE MEASURED VALUE ~Mi 

J. 
I . 

I PICK A MASS I 
I .,. 

IF x2 IS TOO LARGE, BECAUSE 

OF A FILTER ERROR, ATI'EMPT 

TO DELETE BAD POINTS AND 

REPEAT FIT 

l 
COMPUTE ERROR MATRJJC AND 

OUTPUT TRACK 

0 
YES ORE 

YES 

TRACKS 

0 
0 

VENTS 

NO 
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If it is assumed that X was actually determined from condition (18) 

and that the only source of error on X is due to'errors on Xj, an 

error matrix for X is determined. (See Appendix D). 
2f) TJ -1 

Ex = a L~ Aj 7\j 

In particular, for the case of two tracks, the error is 

minimized when the tracks are orthogonal, and becomes infinite when ' 

.the tracks are parallel. This result is of particular significance 

for neutrab connecting tracks where an estimate of vertex points 

accuracy is needed in order to determine the errors on the direction 

of the line of flight. 

Sunnnary 

The multi-view FOG program will produce maximum likelihood 

estimates for the momentum and position vectors at a vertex. These 

estimates will be as accurate as the resolution of the particular 

chamber being used. The program.will also provide a discrimination 

function which will reliably separate good measurements from bad 

measurements. It will also attempt to detect and repair measurement 

errors so that the overall output ~f the FSD - HAZE system will be 

substantially improved. 

Finally, multi-view FOG will be available for use with the 

Franckenstein system and the DAPR system as ·well, since all of the 
I 

features are directly applicable.: 

(19) 
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Appendix A 

Derivation of an approximation X(s) to the 
true orbit X(s) of a particle in a bubble 
chamber. 

Qnly magnetic field force, and momentum loss due.to ionization 

.will be considered. 

From Newton's first law: 

d(:PAL dn d'A dn = ~ 'A + p -- = q(B x v'A) + ~ A dt dt dt dt 

where X = Xv' p = pv' A = Av at t = 0. 

Thus 

: d'A d'A ds d'A 
p - = p - - = p - v = q(B X v'A) dt ds dt ds 

Hence 

d'A -= ds 
q (B X AL 

p 

Define matrices M and Q, as follows: 

Then 

Hence 

' 0 

M= ..... 

.... -

dA = Q.A 
ds 

B .. z 
B y 

- B B z y 
0 -B . 

X 
) 

B 0 
X 

'A = ~(s) = EXP ( f 
6 
Q,dt)<A Vro ·\v. 

\ . . 

Q,= iM 
p 

(1) 

-·-. ·. "' 

(2) 

(4) .. 

(5) 

(6) 

·~· 
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But 

. dX "=ds 

Hence 

-J3-

(7) 

The integration of "A is impossible to carry out except for very 

special for.ms of Q. Most geometry programs take the approach of assum-

ing some simple integrable for.m Q for Q and calling the result the 
-.- - 1 

orbit. One such for.m is that suggested by Solmit~Day and Johnson. 

(8) 

when t = arc length em: 

Then (6) becomes 

li(s) ~ EXP l~ ln (l ~ kvs0 }y 
. v 'J 

''IB I ca: v ·where K = ; 
v Pv 

( ) -1 . ' ( :: ,. )' 
t s = ~ ln, 1 -· k~9 

,._y 

'I' :• 

., •, ~ ''' 

,: .. 
' . 

•,'!. 

' ' 
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And integrating (7) 

(Q) ' ,0)2 - v _, , ~ -
· X(s) = Xv + 'Avs + K S(s) + \"K C(s) 

v v 

8(~) • fo 5 

sin Kv'il(t)dt 

• Gv• + (J.- k'!s)(J.- cos Kvjr(s)) - kv(\: kvs) ~·1;, K)i~D + !> . 

c(s) =1 s (1 - cos K 'lf(t) )dt:·. (lo)* 
0 v 

[ 

~v(l - kvs) · . . · · ·~ 
= - K s + (1- cos K 'lf(s)) + (1- k s) sink ~(s) + ~~ v K v . v v v . . 

* One could derive (10) by noting that 

-'\ 
- ·, k 
'A(s) j (1 - kvs) v 'Av 

Thus 

· · ~<·l -x;~[ I- ~TJ.I ( (J.- vl- ~I;~-~ 
. : ) . 

• XV+ r"'- kAl r (J.- kvs)};(s) - ~ 
' ' -" ... '. 

The disadvantage to this equation is that as k ~ o,x(s) becomes 
indeterminate. . . / v · . 
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The multi-view FOG program uses spliced functions of the form ~ 

over intervals short enough to guarantee that the maximum error over the 

entire track is less than a specified constant €. · 
' . 

One can derive ~ good estimate for the error introduced in one 

splice interval as follows: 

Let e represent the angle between the tangent vector and the 

projection of the X axis onto the osculating plane. Then 

dEl ~ 1 - g,IBI "" g,\Bo \ (1 + as + bs2) • 
ds ' p p p

0 
· 

· I :861 Po 
. where a = I BO { - Po .. · 

I I ·2 II I ,:2 II· . f 2 · 

b =·((:ol _(Po')~ +-:(l:ol ~r~ol\·)+ {Po_(~)) 
l ol Po 1-o\ W! Po Po 

For the Solmitz approximation·we have 

... ) 

~f we choose k
0 

·~ a, then 

d\e-e( g,{Bol 2 
.;;;..::.;;..___:;;~ ,.,. - Cs 

ds Po 

· II I 2 II I 2 
· 2 l Bo \ (I Bo I ) Po (Po\ 

where c = b - ko = l Bo \ - I Bo I .:.. + Po - Po) 

Clearly 

(11) 

(12) 

(13) 
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Hence 

(14) 

E~uation A-14 gives a good estimate of the departure of the true orbit 

from the Solmitz approximation in the osculating plane. The other com-

ponent of error is normal to this plane. 

An xyz coordinate system is chosen so that the·xy plane coincides 

with the osculating plane at s = 0~ 

Let 

~ be the dip angle in this system 

e be the azimuth angle in this system. 

From the differential equation A-5 we have: 

. ', d z d d.x \ 2 - . ]" 
'-= .9.LB 9:1._ B·· ds2 p x ds y ds 

Now. 

Bx = l B \ sin cpB cos eB . 

BY ~ - lB \ s.in ~B sin eB 

dx -=cos e ds 

.91:. = - sin e ds 

TherE~fore 

.; 
X 

.A----. y 
i ' ' 

\. ... ~lz -zl 

d
2

z __ · _gj_Jll [- 1 
ds2 p sin cpB cos eB sin e + sin cpB sin cpB cos ~ 

.d
2

z = - sW. sin sin (e- e ) 
ds2 p cpB B 

-. 

-~J~ ......... -..... 
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. ' 

The total error E for a segment of length h is given by 

E = \x- x\ + (z ... z\ = q\Bo\C \1 + g\Bj sin cp_s h h
4
4
l 

. . . . :P0 L :P0 o 5 3 • j 

< .1 q\Bo\ Ch4 
:Po 

for most tracks. 

The error introduced in N such segments is· 

NE = :1Nq\B01 Ch
4 

< € 

:Po 

· L L 
If the track has length L. in space and we want h = N or N = h 

'· 

': . f 

.I 

., 

'' .. 
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Appendix B 

Derivation of a Simple Optical Model for the 

Projection of Space to Film 

The following assumptions are made: 

.f s 

1. All material interfaces are perpendicular to the lens axis. 

2. There are~+ 1 such interfaces. 

3· The Z axis is chosen parallel to the optic axis. 

4. The lens properties·can be approximated by a pinhole on the back 

of a refractive material of constant thickness . 

N,. N,... 

In the diagram, the optical path of a ray joining X and f' is shown. -

The following points are identified: 

x· 
1 is the point at which the light ray passes through interface i. 

R· 1 is the radial distance of xi from the optic axis. 

N· 1 
is the index of refraction of material i. 

f is the focal length of the lens. 

p is the radial distance from !·:1. to the optic axis. 

e_f is the angle the ray makes with the normal at interface i. 

Clearly 

R1 = tane0 (z1 ~) 

R2 - R1 = tane1 (z2 - z1 ) 

.-: 
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R - R = tane (Z - z ) . n . n .n. 

Thus 

where 

z = z . n+l . 

But 

tanec = pjf 

Hence ,. 
R = .e. ..-:::- · tanei (Z _ z ) 

f ~ tanec i+l i 

From Snell' s Law .. 

Hence 

Define 

= N sine n n 

., 

----------~. ----.. ~--·------

. ·, .. 

1. Note that all terms for a given refractive material can be grouped. 
Thus it is only necessary to have .one term.for each distinct refractive 
material. 

2. Fo2 all chambers cur~ently being processed, gi(P) can be truncated after.· 
ri • 
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Define 

Then 

Now 

Hence 

R = pG(p1 Z). 

X -XL= Rcost..J 

· y - YL = Rsin w 

X - ~ = pCOSNG(p,Z) 

Y~~ Y1 = psinwG(p,Z) 

--- -----.:liot·-···-
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Eut since the optical path lies in a plane containing X and s and the optic 

, ..... 

. ..,.,, 

axis we can write 

Hence 

f = p cos to 

T) = p sin w 

X - XL = ·s G ( p ~ Z) 
y ~ YL '= -·~G ( p I z) 

Fbr each view L we define a 2 component vector function F1 (X, s) as 

follows: 

FL (X, s) = [F11(X,O~ \ = [X-Xy, + OG(p,Z~ 
. F21(X,s)j Y-Y1 + T)G(p,Z)J 

B.r setting F1(X,s) = 0 we have the desired relationship between 

space coordinates X and i'ilm coordinates. s· 

• 

·-~. . 

i 
I 
i 
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Appendix C 

Application of Lagrangian Constraints 

Let 

From the error analysis, an a priori estimate for the variance on each 

point is known. 

Let 

2 2 
0 0 O'll 0'12 ... • ...... 

'2. 2 
0 0 0'21 0'22 ..... • ..... 

- E = 0 0 
2 2 

0'33 0'34 ......... 

10 
0 

2 2 
0'43 0'44 ......... 

I : 

l 
be the variance-c_ovariance matrix of ~M. 

One wishes to find a value for ~ such that 

(s - sM)T E-l (s - sM) = minimum 

subject to the constraint 

(1) 

·.··· (2) 



., .. 

Define 

s = 

a·= 

( s s ••• )T 
'1 2 

* (p a ~ X Y Z )T · . 
v v v v v v 
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Then F can be expanded in a Taylor's series 

F(~, s, a) = F0 + (M) ~~ + (¥s) ~ + (~) &. 
. 0 0 0 

Let r represent the Lagrangian multipliers of F and let A be any non-• · 

singular matrix of rank equal to the dimension of r. 

Define 

Conditions (1) and (2) will be satisfied provided 

M = (~~ .i- ~0 - ~M) T E-1 (~s + so - sM) + 2 rH +(dH) ~s· +("H) ~ to· di ·· ds' 0 . 0 

+ (~)0 toa J ~ r = ¢n 

. (3) 

* . It is not possible to determine all of the variables. X , Y 1 Z simul-
taneous~. One of them must be specified. We choose ¥o s~eci¥,r the 
co~onent of (Xv Y ZY) corresponding to the largest co~onent of Av· 
We use the value o¥ tnis component determined by 2-view FOG. ~is 
will cause the :resulting :POint of zero e.r.c length::.'~ to be quite close 
to the true vertex point in most cases. The final value of the ver
tex point is determined in ClOUDY·• 
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A necessary and sufficient condition for (3) i.s 

·• ( ) dM -1 ( . AI! ) (dH ) T 
a dl.( 2E ~o + '-'S ... ~M + 2 (if I o i' = 0 _· 

· dM (dH)T 
(b) dl.s= ds o i' = 0 (4) 

dM (dH)~ 
(c) dl.a= da i' = 0 . . . 

(d)~= [Ho + (~L~ +(~) o A~ +(~t ""· = o 

From (4a) 

~ = ~M- ~o.- E(~) o" .(5) 

Substituting this result in (4d) gives 

'·. 

' '.' 
_We choose A such that . . -. , 

(dH\ E (dH\T = A(dFJ. E(dF\T AT= I 
(if ) 0 .\d'f) 0 (if 0 (if) 0 

. ' 
'• ! '·'· 

Hence 

i' = H0 .+ (¥s) 
0 

6s +(~) 
0 

6a+{M) 
0 
(~M- ~0 ) (6) 

Substituting this result in .'(4b) and (4c) gives . 
T · T T 

(~}J!)o""' + (!)J!t"" =- (!L (Ho +(~) o<sM ~ <~l 
· T T T 

( dHJ @H) &. + (dH) (dH) 6a = .. (dH) (H +(dH) (£ .. ·g ) 'da
0

\d'S
0 

'da:
0

'da: 'de: 
0 

o dr 
0 

M. o 

from which the following equations can be deduced: · .. 

.... ' 
D~fine 

f ,'i 

.... 

. •. 
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::>,~· ' 
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. ·.;~;.~~~;:- J. 

, .. r..-

. e • 

•. 

-24-

'lhen 

. computed as follows: . 

(a) Compute 

(b) Compute A so that 
. T 

A(dF) E (oF) AT= I d1" 0 di 0' 

(c) Co:m:pute H
0 

= AF 
0 

(~1 = .~M)o. 

(~)o = A(~t ' 

(~l = A(~)o 
(d) Compute 6a from (7) 

'(e) Co:m:pute ~from (8) 

. (f) Compute' r from -(6) . 

(g) Compute 6s ·from (5) 

'· . ' 

(See (10) :·below.). 

There are an infinite number· of matrices A which satisfy'(b). Since·. 

(~)0 Earr 
. has the following block diagonal form, 

all. al2 0 0 • •• 

(~)o E~) T al2 a22 0 0 • 1!1 • 

= 
0 0 a33a34 

.. 
' ' ' 
I 0 .o ~4 a44 • • 

(9) 

/ 



'•' 

A particularzy simple solution is 

A = 

1 

-a 
12 

o· 

-25- . 

.,·· 

o. 0 0 ••• 

0 ••• 

0 0 0. 
1 

'fB.44 ••• 

. . .. 
' _) 

· Clearzy some of the matric~s in the above procedure are quite large. 

For example, for a track with. 20 points in each new (M)o E(Wf/ . would 

contain 120 x ·120 or 14,400 elements. Fortunately, nearly all of the 

elements. are ze.ro. In fact, for this exaJ!lple, only 240 of the elements are 

non zero. 

In general, all of the large matrices are in block diagonal form where 

the individual blocks are made up of (1 x 1), (1 x 2), or (2 x 2) matrices. 
. . 

This simply means that special block diagonal matrix routines must be used 

in carrying out the iterative·procedure. 

. . . J . 

. .. 



,• 
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Appendix D 

Derivation of a Simple Error Expression for Vertex Points 

For each track j .at a vertex there. is an orbit function· Xj (s). The 

point X in space which is the closest to all of these functions is taken 

to be the vertex point .• 

Let 

Specifically, th~ points sj are found such that 

~ \X. - X ( s j ) \ 
2 = minimum 

J 

xj = xj (sj) 

A. = Xj (s.) 
J J 

(See Appendix A for definitions of X an·d X.) 

(1) 

(2) 

The distance oj of a point X from the line passing through Xj with direction 

cosines Aj is given by 

The requirement· of 

·implies 

Hence 

Assume 

Then 

oJ = AT 
j (X - X.) 

L: 02 
j 

j 

~· = ,' .. J 

. J 

= minimum 

2 ' 
I and~ = 0 

j 

(3) 

·, 

(4) 

'.·· 

(5) 
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As an example, consider the SL~ple case of two tracks in the x y 

plane. 

·Let 

.clearly 

and 

Thus, in this case; 

'A
1 

=(cos 8
1
,:sin 8

1
)T 

T 'A2 = (cos 82, sin 82 ) 

ExJ • (o 2 o2) 

JSc-> .2 I as 182 - 81\ 

EX behaves as would be 

-(cos 81 sin 81 + cos e2 sin 82) 

cos 8
2 

sin 8
2

) . sin2 8 + sin2 
8 1 . 2 

--) T(b 
2 

expected. 

..... ' 

·.··. 
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