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ABSTRACT

,'The relativistic phase-space integral over the sﬁﬁmanifold'
~ defined by total momentum zero and fixed totallenergy hgs been reduced ; ,
to a singlé contour integration. The number of particles involved | |

; and their masses are arbitrary. It is shown that the contour 1nt¢4

gration may be readily approximated by the saddle-point technique and

yields a result which is easily handled on a computer. In the nonQ
relativistic and extreme relativistic limits this method leads td
expressions for the phase space which may be obtained from the exact

. results for these cases by replacing gamma-function'factors by the

_ Stirling approximation.
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I. INTRODUCTION

NZf_:v-ﬁ_ Interest in. the evaluation of phase-space 1ntegrals involving
.the constraints of momentum and energy conservation arises from the
. study of multiple production of particles in high-energy nuclear '
.;iéollisions.. A knowledge of the phase-space factor for a particular
3 process allows the separation of the dynamical and kiﬁematical features
| peculiar'to the situation. For example, a knowledge of phése-spéce
factors can be lmportant for the determination of whether very-shorte
1i§ed perticles or "resonances" play a role in a particulai reaction.
. It haé been shown that the general relativistic phase-spéce
integrals are easily reduced to two ihtegrations.l 'This:néte shows -

how still anothef integration may be performed.
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II. REDUCTION OF THE INTEGRAL

The integral to be evaluated is

s, (E) =f5 E-Zwi 8221 .ﬁ_.ﬁ}.,‘,(;)

i=1 i=)

1/2

vhere ’ w, = (piz- + miz) . This is a lorentz-invariant quantity which

we shall evaluate in the center-of-mass frame., If we insert a Fourier

'.representa.tion of the & function we may write

) w-i€ n o
s (B) = "'“‘El f  da 1“Efd3x J(,a,m,)
n (20)* doo-1e ¢ "'-11;11 A

(2)

where

3 1(he | .
J(b)a)m) = "/‘9-(-1)-2 e ~g~au) o o (3)

The variable o has been given a small negative imaginary part to make

- the integration over momenta well defined. After the triviél angular -

integrations are performed we can write

or d ! : ‘
J(b,a,m) = "N I(n,a,m) , v . (%)
vhere - :
o) 1(Ap-aw) S ‘
. 4
I(n,a,m) = f -&E e . ' (5)
-Q0 . )
If we now let
p = msinh @ ,
W = mcosh o6,
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o
1/2
o = (ae-xe)/ cosh V¥ ,
~‘§nd'
- (ae_xe)l/e sinh ¥ ,
_ theng; .
' 1/2 . |
L I(N,a,m) = ‘jroo ae _exp[-im(a2 - xe) cosn(® - V)] (6)
Jom . : _
A 1l/2 : '
= -ix Ho(a)[m(a2 - ke) / ] . T ] (7
Therefore '_' o o . |
» > 2 2M2 (2) 5 2‘1/2 Sy
CI(pa,m). = 2n"im(o” - A7) Hy “[m(a® =A%) ] (8).
and A
' R co-1i€ ® , o . 2 .2 1/2
S,,(E) - [m-iem}[o A an e (o - A) ](,)
vhere n o
e 1 . .
e - T Pma) (20)
» = Z '

The sole role of € in this equation is to define the continuation of

t
the square root. If we had carried the analysis to this point using an

i

arbitrary Lorentz frame this expression would be & Fourier transformation
in a space with a timelike dimehsion. Thus the following steps seem to

be a generalization of a theorem of Bochner's on Fourier transformations

. of radial fUnct_ions.5 o . . . _ -
Weipha}l now replace the @ integration by an infegration over
5.‘-? l 2

o= (02 - KEB . This will necessitate a separate consideration of
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" different domains of integration. We write

) R , ’ w -
5.(E) = -}-5- f ar j da + f d)»f aas 221 pr(a? - A2)
R P l Y ¢y R C,

(1)

'in the first integral in EQ. (11), NSR . In this case, ve first distort
the original « contour so that 1t follows thé real axis except for an
'arc below the singular points at * A (see Fig. 1). For the variable p ,
there will be a corresponding contour traced out in the fp plane as o -
follows its contour (see Fig. 2). For convenience, we choose the arc in
the p plane as a half circle of radius R , so the «a traces out an
ar¢ which is similar to an ellipse, In the second integral, A 2R,
and here the o contour is distorted to follow the real axis except for
éeparate arcs under the singularities at a =t A (see Fig. 3). As
before, we have a corresponding path in p and we choose the. nonstraight
pértions to be circles of radius R (see Fig. 1&).h We shall denote the
"contributions to Sn from the Qarious pleces of the « contours simply'
by the labels as indicated 1in Figs. 1-4. The integrals can now all be
expressed in terms of a real independent variable, but we must treat
each one separafely, taking into account the analytic continuation in
the appropriately cut plane for the various functioné involved.

Iet us consider, for-example, the calculation of SI_:

1/2

2 .2 '
‘ 1o -(\“4R") : 1/2
;. - ‘l"sf d*f da‘xQeiaEf[(a2_>\2)/'_].
u@} R -0

1./2l ,
1.
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If ve now choose p- as the integration variable, and introduce the

varlable r , using

. 1/2
p = (-2 = r, for >0
~and -/' . . | (13)
' 1/2 » 1/2 ' '
a = (pa+}\.2)/ = (27
we'have
o -R -1/2 o 5 1/2
‘ b R -00 ' . o

(14)

* The phase of p 18 -n . If we now make the same change -of vafiable in .
;_ de » interchangé order of integration in both SI-‘and QJZ , and add

' the two, we have, in terms of the variable r = |(A/r)Z + 1|1/2 ,

-R co 1/2 o
5, + qu -k f ap f(p)p5f au(u? - 12 o tEr (15)
Yg -00 1 :

" We must now face the problem, which we ignored abové, that the u 4inte-
gration is divergent. However, it is a limiting case of é éonvérgent
integral, namely that in which r has a negative imaginary part. This
is because we are dealing with generalized functions (recall the Fourier
representation for the & function introduced into Eq. (2)). 'we shall
aefine this function and others to follow as the limit of the generalized
function as parameters approach their final value through values which

. make the ingggral convergent. These statements applied here to the u

4

integratioéjﬁctually refer to the method by which the originel K functioﬁ



- was represented., With this intepretation we now have

'and‘

- ylelds
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_ \ ~-R '
S + oé = —l:%)f dap £(p)p° [%; Hga)(Er)] .- {(16)
> G .

-
-

An exactl& analogous calculation, - this time using

5 2)1/2

p = (& -»n = r, for r>0,

1/2 1/2 )

a= (o2 +23) (n + 1)

i

)

’41(3 ;

sw+QJiI - (& wa' ap £(p)p? [EE% 1Y) (Er)] . (18)

Similar calculations using

1/2

p = (o? =123 -ir , for r>0,
(19)
1/2

1/2 2 . )Y

u
W

a (92 + h2)

~ (the minus sign for S 1 plus for SIII) , followed by introduction

I

. l
of the variable u = l‘(x/r)e -1 , glves

and

~-1i00 (0 | 1/2 .
1 j 3 2 . -1Eru
S = = ap £(p)p f du(u® + 1) e
Iy’ Jog 0 ‘ -
(20)
-1iR o : 1/2 o
1 f 3 2 -1Eru
) = — dp f(p)p f au(u® + 1) e .
‘_IH 1+rt3 -1 0
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'l Now,'“‘ in a manner consistent with our interpretation of the u integrals,
" we can deform the u contours through the convergent quadrant to the
o imaginary axis, avoilding the .branch pointé at ¥ in fhe appfopriate
manner. Then using the variable v = iu in S and v.= -iu in

IT

SIII we find that the contributions to the two integrals from the region

0S V<1l cancel, wvhile the remainder give

-ico" o0 1/2 :
Sy * Sprp = - —1—3— f dp £(p)p° f av(v? - 1) e 7ETY
ox”? J_1R 1 | .

L (a)

j N -1 - 3 [_Kl(Er) ] |
=33 \/iiR dp f(p)p el IR

To evaluate the loop integrals (Figs. 1 and 2) we let

2 216)1/2

@ = -(x2 +R e (22)

. in both LI and 1 and take © as the new variable. In both cases
8 ranges from O to +xt/2 . Ve may now add [.I and 04 , with the
. result that A ranges from zero to infinity. We can now go back to

p= Rej‘9 , and we set

‘ | -1R ® -1/2 1/2
LI.+°'4=Z-3('-3- "/:R dp pf(p)‘/;) dhxa().e-rpa)

expl18(0% + 0%) 1 0
(23)

In this expression the phase of the square root 1s to be chosen so that
it becémes.a negative real quantity as p becomes real and negative,

1% : -
Thus the f\ii;lction represented by the A integration is the analytic
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‘féon£inﬁat16n;of'thé correspoﬁding function in Sy + ﬁaz (sée'Eg.(lh)f
as p follows the circular arc.from -R to -iR . The corresponding

calculation for LII +-5¢?I yilelds the corresponding continuation of

. SIv +od 11 with the net result that the R limits ‘on the remaining
- p integration in both SI + zfi and SIv + QJ;I ~can be replaced by_
-i1R upon adding the contribution of the loop integrals.

The contour of the integral for SII + SIII:may be deformed, by
| Jordan's lemma, to go to infinity along the real aiis and mﬁy then be
| : combined with the other integrals. Upon replacing r  by p times an® ™ T

appropriate phase factor we have

- S ) . N '
S + aj7 + Iy +<§5? + ———————JEEE

2

o . A-1R - N
- A f ap o° £(p) -;-E’—‘-[Hga)(’r:pem) +H~:(,_2.) (ED)]

i -00

S.. +8 - : :
IT IIY
SIV+‘4I+LII+°ZII+' >

= i—; f :dp 62 £(p) "21’; [H(l)(Ep) + H(e)(Ep)} .

The sum of the Hankel functions ylelds -ail(Ep) in the first

- case and 231(Ep) in the second, so we have

,(8) = —x LR CEACO P ()

34
153
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where f(p) 1s given by Eq. (10). The p contour runs from . -co to

o] below.the origin. If this contour 1s chosen to be symmetric under
P e'iﬂ'p* , then it can be shown that the contribution from the left
‘«half of the contour is the negative complex conjugate of the contribution
from the right hﬁlf. Tﬁus the above expression for Sﬁ is real, as is

required.

We note that we may also write

) = = oo o iV, 1 )
(2) '

since the contour integral in which H replaces Hgl)’ vanishes

1

N

because the integrand is analytic in the entire lower half plane.. This

form is convenient for consideration of the nonrelativistic limit.
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IIY, EVALUATION OF THE INTEGRAL

The- integrand of the expression for § (Eq. (25)) is, apart

" from constant, real factors, .

“g(p) = -1e°7,(e) [ i | - (27)
k=1  -1p . ‘

"This function has a single saddle point on the negativeiimaginary axis

because it takes the form

n . :
1) = v ry(ey) kgl[% xl(mky)} ST O

Paths for constaﬂt phase in g(p) will generally conne§£ the consecutive
zeroes of Jl(Ep) , and there will be saddle points for each of these
segments, Since g(p) alternates in sign on different sections of these
portions of the contour, large cancellations are expected, and, furfher,
the integrand will have its largest value at the saddle point on the
négative imaginary axis. Thus the dominant contribution to the integral,

taken along a path of constant phase, comes from the neighborhood of the

saddle point on the negative imaginary axis. We may therefore approximate

Sn by the standard saddle-point technique., Thus 1f we let p= -1y ,

we find that the saddle point is located at the solution of

1.0, EL(EY) m Ko (my)
i 3y 6] " EAC (29)

let Yo be this rgot. Then
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; ~12a
) yo%l (Eyo) n (h”mﬁc ]
e o T
) _ ] 5 ?n L » 1-1/2
W {m-2, .2, Z 2 | FLo(Ey,) _.Z m Ko (M)
Yo = "k LE) | L Kmyg |- -
o (30)

Thé accuracy of this approximation can be judged by a comparison with the
. exact results for the nonrelativistic and extreme relati%istic'limits.
On examination of Eq. (28) one finds that the saddle point occurs
- 88 & result of a balance between the decreasing functioﬁs in the product
over k and the increasing term, szl(Ey) .' As the energy 1s reduced
the m;nimum is reached for iarger and larger y . Thus, to obtain the
‘T-'f't,ﬁ. ' exact nonrelativistic 1limit, the predominant contribution to tﬁe integral
| will arise from large values of p and we ﬁay use the aéymptotic expansions

for the Hankel functions in Eq. (26). After some rearrangement we £ind!

. x
s = (aur)(3n R e ofe z (GINEN)]
=0

(em)*

oc <o n

SR | . (1,3,) ((50-5)/2]~¢-23, 1Tp
| o Z Z il T 1 ".fd"e |
B | o g0 U (o) | | ‘
[~(3n-2)/2]-¢-%} '
x o /21ty . ()
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. We have used the abbreviation P for the produét'of'the ﬁasses and °
."will use M for their sum. The kinetic energy 18 T (=E ~-M) . Now

the term in braces is simply -

2n.2
Tzn 2*?’*231:

F(% n -

. (%)

oo

+ 4+ Z3.)
) x Kk

3‘,‘Thus we have obtained an asymptotic expansion of 'Sn ‘iﬁ powers of T

" (1f the inverse powers of E are so expanded). The first term of this

!

- expansion is

SR 2,()(31{-5)/’2 RV q(80-5)/2

) o TmowEr o )

This agrees with the nonrelativistic phase space computed'by more
élementary methods,

In this limit we can examine the accuracy of the saddle-point

approximation. The saddle point is located at

oo = - 2iln- 1)/t ) B

" Application of the saddle-point method to the integrél yields the above

result with the T' function replaced by Stirling's approximation to it.

~ For n =2 +this approximation is in error by about 6%, and the error

decreases as n increases. We note that this estimate applies only

when Ep and m Py are all large, that 1s,

0

LS T o (35)
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~otherwise the saddle point of the original integral would not.occur in

'- .n:the ésymptotic region of the Hankel functions.

We can also easily determine the asymptotic value of the phase

[ - space in the ektreme relativistic case. In this case, we expect that

will be very small. Thus we can expand the ng)(mkp) for small

use the asymptotic form of Hgl)(E) , we then deduce that

oo - -ien-3p)E. )
. ) :

A'Thus Epo- will be large only if 2n - 5/? >> 1 . On the other hand,

"~ we can carry out the integration in Eq. (25) without expanding Jl(pE),

and we find

1

= P on-h | g :
n T moDim-af b 5 (37)

" This result agrees with the saddle-point approximation'again to the
‘eitent that the factorials are replaced by the Stirlihg approxihation.'_
- In this case the Stirling approximation is not as gbod as before, and

- .an 11% error is found for n = 3 . The ratio of the approximate to the

exact result approaches 1 with reasonable rapidity as n increases.

This is to be expected, for as n increases the saddle point of this
f;' integral moves into the asymptotic region of Jl where the saddle point

‘method was applied to find Sn .
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IV. APPLICATIONS AND VARIATIONS -
" Extensive numerical calculations have been made with the phase-’

space or "statistical" model by use of this approximation.ef Numerous

"comparisons with the'exact two- and three-body phase space have cenfirmed-

- the error estimates presented in Section III,

. The noncovariant form of the phase- space integral may be treated .

s by'similar methods to those used for the covariant form, The noncovariant-

form is . ',: - N

4

e L5 20 Ee

© This has previously been reduced to*

n A2 :> | '
='———f ie daf d}u\a R LB ] z’”"ka 5(22). ”‘k(a _‘2)1/2) .

- ~1co k=1 |« A

(39)

,The only essential difference between this and Eq. (9) is the factor a" .

These integrals define generalized functions; hence we may replace this

- factor by n-fold differentiation with respect to the energy. Then,

+ using the results of the covariant calculation, we may write

n J. (Ep) o
s (E) = -(-—2-3—5 fdp 02£(p) (;%3) lp ) , (40)

© where
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=16~
n 2“2mk e b -
; (2) . ;
= ———H . h1) -:
£(p) k];[l 2 (mp) | | (k1)

J'Althbugh-the saddle-point method is in principle applicable to this
-iintegrai it is not. convenient for numerical approximation because the"

: '_form of the integrand depends upon n .
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