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ABSTRACT 

The relativistic phase-space integral over the submanifold 

defined by total momentum zero and fixed total energy ru,.s been reduced 

to a single contour integration. The number of particles involved 

and their masses are arbitrary. It is shown that the contour inte-

gration may be readily approximated by the saddle-point technique and 

yields a result which is easilY handled on a computer. In the rion-

relativistic and extreme relativistic limits this method leads to 

expressions for the phase apace which may be obtained from the exact 

results for these cases by replacing gamma-function factors by the 

Stirling approximation. 
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I. INTRODUCTION 

I 

. ~ Interest in the evaluation of phase-space integrals ··involving 

the constraints of momentum and energy conservation arises from the 

study of multiple production of particles in high-energy nuclear 

collisions. A knowledge of the phase-space factor for a particular 

process allows the separation of the dynamical and kinematical features 

peculiar to the situation. For example, a knowledge of phase-space 

factors can be important for the determination of whethe;r very-short- ·· 

lived particles or "resonances" play a role in a particular reaction. 

It has been shown that the general relativistic phase-space 
. 1 

integrals are easily reduced to two integrations. This note shows 

how still another integration may be performed. 

~-. 
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II. REDUCTION OF THE INTEGRAL . 

The integral to be evaluated is 

S (E) 
n 

2 2 1/2 
where · roi := (£1 : mi ) • This is a Lorentz-invariant quantity which 

we shall evaluate in the center-of-mass frame. If we insert a Fourier 

.representation of the 5 function we may write 

where 

J d3 
J(~,a,m) = ~ 

- (J.) 
• ( 3) 

The variable a has been given a small negative imaginary part to make • 0 

· the integration over momenta well defined. After the trivial angular 

integrations are performed we can write 

J(~,a,m) 21r d 
I(~,a,m) , = -~ &: - (4) ·_, ... ' 

' 

where 

J: ~ i()..p-aro) 
I(~,a,m) = e • (J.) 

{5) 

If we now let 

p = m sinh e , 

(J) = m cosh e , 
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2 2 1/2 
a = (a - A ) · cosh w , 

1
00 2 2 1/2 . 

·.I(A,o:,m) =.-co de exp[-im(o: -A) cosp{e-t)] (6) 

( 7) 

Therefore 

. J(~o:,m). (8) . 

and 

S (E) n . 
1 100-i€ 100 2 1aE . 2 2 1/2 

= da 
0 

A dA e . f[ (ex - A ) ] 1 
4Jt3 -oo-i€ 

(9) 

where· 
n 

f( z) = IT (10) 
k=l 

The sole role of € in this equation is to define the continuation of 
r 

the square root. If we had carried the analysis to this point using an 

arbitrary Lorentz frame this expression would be a Fourier transformation 

in a space with a timelike dimension. Thus the following steps seem to 

be a generalization of a theorem of Bochner•.s on Fourier transf,ormations 

. of radial fUnctions. 3 • 

We.shall now replace the a integration.·by an integration over 
2 ~~\1/2 

p = (a - X 1 • This will necessitate a separate consideration of 
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· different domains of' integration. We write 

S (E) 1 
= 4n:3 

r (R 1' lJo dA cl aa + 100 CIA.1 da 2 i ,.Jr,l 2 2 1/2 . 
A. e \.41!. f'[(o: - A. ) ] • 

n R C 
2 

( 11) 

In the first integral in Eq. (11), }.. ~ R • In this case, we first distort 

the original o: contour so that it follows the real axis except for an 

arc below the singular points at r A. {see Fig. 1). For the variable p 1 

there will be a corresponding contour traced out in the 1 p plane as o: ' 

follows its contour (see Fig. 2). For convenience, we choose the arc in 

the p plane as a half' circle of radius R 1 so the o: traces out an 

arc which is similar to an ellipse. In the second integral, A. ~ R 1 

and here the 0: contour is distorted to follow the real axis except for 

separate arcs under the singularities at 0: = t A. (see Fig. 3). As 

before, we have a corresponding path in p and we choose the nonstraight 
4 

portions to be circles of radius R (see Fig. 4). vle shall denote the 

contributions to S from the various pieces of the o: contours simply 
n 

by the labels as indicate~ in Figs. 1-4. The integrals can now all be 

expressed in terms of a real independent variable, but we must treat 

each one separately, taking into account the analytic continuation in 

the appropriately cut plane for the various functions involved. 

Let us consider, for example, the calculation of SI : 

2 2 1/2 
1,, 1oo CIA. !-(}... +R } 

SI = 4~'3 R -oo 
-,4 

I.' 
1~. 

2 i --.'1:' . 2 2 1/2 
da A. e ~ f[ (a: .. ).. } . ] 

(12) 
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If we now choose p as the integration variable, and introduce the 

variable r.' using 

(cl 
2 1/2 

p = - f.. ) = -:r ' for r>o ' . 

and (13) 

( p2 + f.. 2) 1/2 2 2 1/2 
a = = -( r + f.. ) ' 

we baye 

dp pt.. (A. + r ) exp[ -1E(t.. + r ) ]f( p) J-R 2 2 2 -1/2 2 2 1/2 

-00 . . !" . .... 

(14) 

The phase of p is -~ If we now make the same change·of variable in 

~ , int;rchange order of integration in both SI and ~ , and add 

the two, we have, in terms of the variable r = !(t../r)2 + 1! 1/ 2 , 

(} 1 J-R 3!,00 
n l/2 iEru SI + ~~ =--- dp f(p)p du(u~ - 1) e-

I 4~3 -oo 1 
(15) 

We must now face the problem, which we ignored above, t~t the u inte-

gration is divergent. However, it is a limiting case of a convergent 

integral, namely that in which r has a negative imaginary part. This 

is because we are dealing with generalized functions (r~call·the Fourier 

representation for the 8 function introduced into Eq. (2)). We shall 

define this function and others to follow as the limit of the generalized 

function as parameters approach their final ~lue through values which 

make the integral convergent. 
·~ ·~ ·-.:.. 

These statements applied here to the u 
·~. ,, 

i ~? 

integratiort .:!lctually refer to 
r !t! 

the method by whiqh the original 8 functioh 
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· was represented. With this intepretation we now have5. 

and· 

and 

SI + 4 = ( ~3) ~=dp f(p)p
3 [:r H~2)(Er)1 

,. 

An exactlY analogous calculation,·this time using 

2 2 1/2 
p = (a - ~ ) = r , 

a = 
2 2 1/2 

(p + ~ ) 
. 2 1/2 

= (~ + r ) 

Similar calculations using 

2 2 1/2 
p = (a - ~ } = -ir , 

for r > 0 1 

for r > 0 1 

2 2 1/2 
(p + ~ ) 

. 2 2 l/2 
= :;.(~ - r ) . a = 

. ( 16) 

(17) 

(18) 

(19) 

· (the minus sign for SII , plus for SIII)' followed by introduction 
2 1/2 

of the variable u = 1(~/r) - 1 I 1 gives 

and 

1 j -ioo .3 1 CD 2 1/2 1E . 
= ~ dp f(p)p du(u + 1) e- ru 1 

~' -ffi 0 . 

1 8III = ~ 
4n"" 

.. 
. 'c-· 

' :·: ~ 

(20) 

f -iR 100 . 1/2 
dp f(p)p3 du(u2 + 1) e-1Eru • 

-ioo 0 
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. . 
Now1 in a manner consistent with our interpretat~on of the u integrals, 

we can deform the u contours through the convergent quadrant to the 

· imaginary axis, avoiding the ·oranch points at ti in the appropriate 

manner. Then using the variable · v = iu in SII and v = -iu in 

SIII we find that. the contributions to the two integrals f~om the region 

o·~ v ~ 1 cancel, while the remainder give6 

1 
= - 21t3 

1 
= 2lt3 

1-ioo · ],oo 
dp f( p)p3. 

-1R 1 

2 1/2 E 
dv(v - 1) e- rv 

(21)' 

To evaluate the loop integrals (Figs. 1 and 2) we let 

(22) 

. in both L_r and ~ , and take e as the new variable. _In both cases 

. e ranges from 0 to +J(/2 • v1e may now add L_r and ~ , with the 

. result that A. ranges from zero to infinity. We can now go back to 

i9 
p = Re , and we set 

' 

-f' . 1 J-1R 1'00 2 2 2 -1/2 . 2 2 1/2 Lr· + o'-J: = 3 dp pf(p) dA )I; (A. + p ) exp[iE(A. + p ) ] 
4~ -R 0 · 

(23) 

In this expression the phase of the square root is to be chosen so that 

it becomes_a negative real quantity as p becomes real and negative. 
r !}· 

Thus the rJijction represented by the A. integration is the analytic 
. . . . ~; . 

!. 
I 
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continuation' of. the corresponding function in SI + ·J; (see ·Eq. (14)). 

as p follows the circular arc from -R to -iR • The corresponding 

calculation for lri +~I yields the corre~ponding continuation of 

·. SIV +~I with the net result tha~ the R limits ·on the ·remaining 

p integr~tion in both s
1 

+ rtlr and SIV + e{
1 

can be replac~d by· 

-iR upon adding the contribution of the loop integrals. 

The contour of the integral for SII + s111 .may be defo~ed, by 

Jordan's lemma, to go to infinity along the real axis and may then be 

combined with the other integrals. Upon replacing :t by p times an· ' ·· 

appropriate phase factor ¥~ have 

and 

SI + ~ + Ix + ~ + SII + SIII . 
2 

= ~.~ 1: dp p2 f( p) { ~ H 2) ( Epei") + Hi 2) (Ep)]} 

4 s + s 
SIV + + L_ + ~1' + II III 

I ~I ~I . 2 

= 13 loo dp p2 f{ p) { i~ [H~l)(Ep). + H~2)(Ep)] 
~ -iR . 

{24)' 

The sum of the Hankel functions yields -~1{Ep) in the first 

case and 2J1(Ep) in the second, eo we have . 

s {E) = -i~ J dp P
2 

f( p) Jl{Ep) I 
.n ( 2rc) 

: -~;· .. 
~~· n . ;, 

(25) 
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where f(p) is given by Eq. (10). The p contour runs from . -co to 

co below the origin. If this contour is chosen to be symmetric under 

· p -+ e -iJC · p* , then it can be shovm that the contribution from the le:ft 

-half of the contour is the negative complex conjugate of the contribution 

from the right half. Thus the above expression :for Sn is real, as is 

required. 

We note that we may also write 

S (E) = 
n 

-i Jdp p2 f( p) Hl( 1). (Ep)' 
2( 2Jr )~ 

since the contour integral in which Hi2) replaces 

(26) 

vanishes 

because the integrand is analytic in the entire lower half plane.. This 

form is convenient for consideration of the .nonrelativistic limit. 

' ., 

' I .. 
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III. EVAWATION OF THE INTEGRAL 

The·integrand of the expression for Sn (Eq. (25)) is, apart 

from constant, real factors, 

n 

. g( p) = -ip2J 1 (Ep) n 
k=l 

• (27) 

This function has a single saddle point on the negat.ive· ·imaginary axis 

because it takes the form 

(28) 

Paths for constant phase in g(p) will generally connect the consecutive 

zeroes of J 1(Ep) , and there "ri.ll be· saddle points for each of these 

segments. Since g(p) alternates in sign on different sections of these 

portions of the contour, large cancellations are expected, and, further, 

the integrand will: have its largest value at the saddle point on the . 

negative i~aginary axis. Thus the dominant contribution to the integral, 

' 

taken along a path of constant phase, comes from the neighborhood of the 

saddle point on the negative imaginary axis. We may therefore approximate 

S by the standard saddle-point technique. Thus if we let p = -iy 1 n . 

we find that the saddle point is located at the solution of 

1 ... 2n 
y 

EI0(Ey) 

+ r.l (Ey} 

Let y0 . be this root. Then 

n 

I = 0 

k=l 

(29) 

'. 



. . . ;. '~ ·-·~ ...... -. :-:. ~ . 

-··.· . ' · .. 
• ~ • I • ' 

:. ~.\ · .. t -~ : .. ~ . 

'.:. •.:.4 •, .···· 
• I : ·.' .. . : . 

•" I, 

:. 
~ • .,. t 

, .. 
' . ' 

·-.. , 

· .. ' 

,· 

'. 

.. ' 
... "':' 

•' 
-.· ,' 

UCRL-16522 

-12-

n 

IT 
k=l 

-1/2 . 2 

r~KO(~yo)J 
LKl(~Yo) . 

(30) 

The accuracy of this approximation can be judged by a comparison with the 

exact results for the nonrelativistic and extreme relati~istic limits. ' 

On examination of E·q. (28) one finds that the saddle point occurs 

· as a result of a balance between the decreasing functions in the product 

2 over k and the increasing term, y I 1(Ey) • As the energy is reduced 

the minimum is reached for larger and larger y • Thus, to obtain the 

exact nonrelativistic limit, the predominant contribution to the integral 

w~ll arise from large values of p and we may use the asymptotic expansions 

for the Hankel functions in Eq. (26). After some r~arrangement we find7 

. .. 
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We have used the abbreviation P for the product of the masses and · 

·will use M for their sum. The kinetic energy i~ T (= E - M) o Now 

the term in braces is simply · 

3 5 2 n. - 2 + t + Ejk 
T . (32) 

.. ·Thus we have obtained an asymptotic expansion of Sn ·in );lOWers of T 

. (if the inverse powers of E are so expanded). The first term of this 
l :-. 

expansion is 

NR s = n r[ ( 3n - 3)/2] 
.. 

This agrees with the nonrelat1vist1c phase space computed by more 

elementary methods. 

( 33) 

In this limit we can examine the accuracy of the saddle-point 

approximation •. The saddle point is located at 

Po = - ~ i(n - 1)jr o (34) 

Application of the saddle-point method to the integral yields the above 

result with the r function replaced by Stirling's approximation to it. 

For n = 2 this approximation is in error by about 6~ 1 and the error 

decreases as n increases. We note that this es~imate applies only 

-.· · '\lhen E and ~Po are all large, that ia, 
Po 

3n- 3 ~ 
2 T 

>> 1; (35) 
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. otherwise the saddle point of the original integral would not.occur in 

.... the asymptotic region of the Hankel functions. 

We can also easily determine the asymptotic value of the phase 

space in the extreme relativistic case. In this case, we expect that 

p
0 

will be very sma·11. Th~s we can exp~nd the H~ 2 ) ( ~P) for small 

values of the argument. If we assume that E is large, however, and 

use the asymptotic form of H(l)(E) , we then deduce that 
1 

Po = -1( 2n - 3/~)/E 

Thus Ep
0 

will be large only if 2n - 3/2 >> 1 • On the other hand, 

we can carry 9ut the integration in Eq. (25) without expanding J 1{pE), 

and "re firid 

SER = 
n 

n-1 
2 E2n-4 

(n- l)!(n- 2)! • 
(:~7) 

This result agrees with the sa>ddle-poin~ approximation again to the 

extent that the factorials are replaced by the Stirling approximation. 

In this case the Stirling approximation is not as ~ood as before, and 

. ·an 11$ error is found for n = 3 • The ratio of the approximate to the 

exact result approaches 1 With reasonable rapidity as n· increases. 

This is to be expected, for as n increases the saddle point of this 

integral moves into the asymptotic region of J 1 where the saddle point 

·method was applied to find Sn • 



I 
I. 
I . • • 

I I. 

I. 
! 

! • 

' : ·• 

',' .... 

\. 

... 

.. 

' 

. ' 

'. UCRL-16522 

-15-

IV. APPLICATIONS AND VARIATIONS 

. ' . Extensive numerical calculations have been made with the phase-· 
. . 8 

space or "statistical" model by use of this approx:lm.lition. .· Numerous 

comparisons with the exact two- and three-body phase space have confirmed 

the error estimates presented in Section III. 

· The noncovariant form of ·the phase-space integral may be treated 

by similar methods to those used for the covariant form. The noncovariant· 

form is 

S (E) 
n 

. 1' 
.This has previously been reduced to 

. . l . JCD-iE 
s = 3 da 

n 41f -co -ico 

1. 

(38) 

. The only essential difference between this and Eq. (9) is the factor an • 

These integrals define generalized functions; hence we may replace this 

· factor by n-fol~ differentiation with respect to the energy. Then, 

using the results of the covariant calculation, we may write 

(40) 

where 

(,. 

' 

. ' 
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n 

. f( p) = II (41) .. 
k=l .. 

. : ·Although the saddle-point method is in principle applicable to this 

integral it is not.convenient for numerical approximation because the 

form of the integrand depends upon n • 

• J • 

. ·' 

' 
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', ' FIGURE CAPTIONS 

.. 
Fi~·- 1; -Integration contour in the a plane for ~<R • 

Fig. 2. Integration contour in the p plane for ~<R 

Fig. ;;. Integration contour in the a plane for -~ >-R_ • • 
Fig. 4. Integration contour in the p plane for ~>R 
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p plane 
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