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ABSTRACT 

It is shown that in a symmetric two-level model~ a sudden transition 

from configuration-mixing to non-configuration-mixing state at a critical 

strength G is an artificial feature of the theory arising mainly from 
c 

the number fluctuation in the wave function. The variational method 

taking the components of the BCS wave function with correct particle 

number shows that such a sudden transition should not occur. The effect 

of a 4-quasi-particle component in the number-conserving method is to 

improve higher order amplitudes of the wave function, to necessitate a 

reduction of 6, and to modify the roles of the u and v parameters. The 

absence of a sudden transition is expected to have some bearing on the 

question of whether a discontinuous "Mottelson-Valatin effect" in the 

nuclear rotational s~ectra does exist in nature. 
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I. INTRODUCTION 

1 Dietrich) Mang and Pradal developed a variational method in the 

pairing model which should give the best possible solutions of the BCS 

form with projectio~ of terms of proper particle number. This method 

. (designated F.BCS) was applied extensively to the actinide proton and 

2 
neutron systems by Mang) Poggenburg, and Rasmussen • The FBCS method 

consists of performing the variation on the u1 and vi parameters after 

projection of fixed particle components rather than before. This method 

differs from the usual projection method (PBCS)3 in the order in which 

projection and variation are performed. 

It is well kno'~ that the conventional BCS method gives only trivial 

solutions {no configuration mixing) for pairing force strength below a 

critical force strength (denoted by G ) determined by Belyaev's inequality4 • 
c 

Two of the authors (Rho. and Rasmussen)5 earlier studied two-level model 

systems by means of the BCS and exact methods to gain insight into.the 

approximations and validity of the BCS method. We now wish to extend 

that· study to include the FBCS method. 

In I, we made the remark that the existence of G below which the BCS 
c 

equation has only the trivial solutions might be an artificial feature of 
,, 

the theory, and w.ight be due to fluctuation of number of particles. We 

show in the following that indeed the FBCS method in the two level case 

gives a non-trivial (or configuration mixing) solution for all attractive 

pairing force strengths. Nogami 6 has independently shown the same result 

by a different method and Dietrich 7 has provided in an unpublished paper 

an argument that the same conclusion should ~old for general cases provided 

interaction is attractive. 
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In comparing the FBCS solutions with the exact ones, we find that 

. the two methods yield in low-G limit exactly the same ratio c
1
/c

0 
where 

c. are the amplitudes with i-pair promoted to the upper level, but they 
~ 

deviate in c
1

/c
0 

for i ?- 2. In order to match one more ratio c2 /c
0

, 

one is tempted to introduce an additional (independent) variational 

parameter, say~' by adding a 4-quasi-particle component. We demonstrate, 

however, that it is not possible in the present model and framework to 

match exactly the t1.;o quantities simultaneously (though c2/~0 may be 

improved). We show further by a generalized variational calculation 

that c
1
/c

0 
can always be made to match 1vith the exact value independently 

of what the parameter v turns out to be. As a consequence, the ground 

state energy in the low-G limit does not depend on the v-parameter up 

to third power of the coupling constant G. Thus unlike the FBCS 

method where the v-parameter (and hence 6) is closely related to con

figuration mixing, v
2 

and 6 do not play significant roles in the 

generalized FBCS method (GFBCS). This point is also discussed in a 
. 8 

paper of Vautherin and Rho where the same phenomenon occurs in an 

extended BCS theory without projection. 

II. EXISTENCE OF NON -TRIVIAL SOLUTIONS 

Let us consider the system with two.levels of identical degeneracy _c.L 

and with N = 2 .n nucleons or ...n_ pairs. This system seems sufficiently 

complex to bring out the superfluidity properties of a real nuclear 

system, but it is simple enough (owing to special symmetry) to yield exact 

analytic solutions for the BCS equations and approximate analytic solutions 

for the FBCS equations in the low-G iimit. 
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Taking the separation of the two levels (denoted by h for the 

higher level _and £ for the lower level) to be E, we write the Hamiltonian 

in two forms: 

H ~ t . L a ;Ma/ZI4t_ 
Y=-1; 1C 
::: '""l 

a ,n , 
---s-"• LA-$ )u 

:=.:- E [52 ( { ) -5 i e ) J - q [s r te.) S _(.e) -1-· S+ t{\ ) 5' _ C {) ] 

+ S+(t) ~-C {) t 5+(-R)S_(l)J 
(1) 

+ where ~ and a are the fermion creation and annihilation operators 

respective~, and 

. s_ c i) 

and 

are the quasi-spin operators introduced in I. 

The set of BCS equations with the Hamiltonian given above was solved 

in I and the "critical force strength" was found to be 

• (2) 
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Now using Eq. (2.9) of Dietrich et. a11, the expression for total. energy

for Eq. (1) in FBCS method can be -written as 

(3) 

where the. "residuum _function" R is defined b~ 

(4) 

and where the contour of integration may be any path around the_ origin. 

In Eqs. (3) and ( 4), n is the number of pairs and N the total number of 

orbitals (magnetic substates). 

The trial ~rave function corresponding to Eq. (3) is given by 

- C .Prv 1 lf ~")(1:> [ 'VK S..-(k;/ul< J \0)} 
~ ... I 

...... 4t v 7l ..a.~ f ~ . 

- C £rl. l ~ f (~J (~~-~li~ J 10)} 
(5) 

"' 
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where C is the normalization constant proportional to R~ • We have 

replaced the contour integral by an eq_uivalent operation- P projecting 
. n 

out the components with n pair. In the last line of Eq_. (5), we have 

made use of the relation 

A . 2 
· Vhere I k ) is an eigenstate of [s (kll . 

Using the symmetry properties of the system (same degeneracy etc.) and 

Eq. (4), one can verify that the condition 

implies 

and ~ = u.JZ - v-. 

This relation holds exactly even when a four quasi -particle component 

is added. 

With the relations of Eq_. (7) 1 Eq_. (3) becomes 

(6) 

(7) 

---- Z ~ I I f I . Ro ...0.. (E- -3 ~.f'l) u 'R Ire..) - ..[)_ ( E- + <T.Q.) 1r R, U) 
~ . 

(8) ~ ~ ( '2. '2..) - :<,~..a_ u. 11"- u. 
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·We are mainly int.erested in the limit G-> 0, and hence we can expand 

. 2 2 
the R functions in powers of x :::. u /v . Keeping terms u:p to quadratic 

in x, we have 

The minimization of E d.etermines the x: 
0 

or 

( E- +CT )_Q} 
(9) 

. (10) 

First we notice that x is linear in G and consequently the energy Eq. (9) 

is valid up to third power in G, 
' 

where 

(11) 

Next Eq. (10) shows that a non-trivial solution with x > 0 obtains 

in the FBCS method for all G > 0. The solution also has the proper per-· 

turbation theoretical limiting dependence of configuration mixture on 

· :pairing force strength. The apparent singularity in the solution at 

€ = G(~-1) is a consequence of our retaining only terms quadratic in x 

for Eq. (9). 
. €=-

Equation (10) is valid only if G <.<s.t • The FBCS 

solution which minimizes Eq. (8) behaves properly in the limit of 

large G where both PBCS and FBCS approach the exact solutions. 
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III. COMPARISONS iiiTH EXACT SOLUTIONS 

Exact solutions are obtained by the quasi-spin method as described 

in I and come from the diagonalization of a tri-diagonal matrix of 

dimensionali ty(a +J). We have obtained variational solutions to the 

complete FBCS energy expression of Eq. (8) using the computer proiram 

2 of Mang, Poggenburg, and Rasmussen • 

Specifically we study the system with ~"2.1.. = ..n ..e.= 5 and orbital 

separation € = 1 MeV. The error in the sround state energy is plotted 

in Fig. l against pairing force strength for several variational methods. 

There are the ordinary BCS, PBCS and FBCS 'Which also have been studied 

numerically on large systems, but without benefit of knowing the exact 

solutions, by Mang, Poggenburg and Rasmussen. A fourth method is a 

PBCS retaining a v4 self-energy term, which has been often dropped but 

carefully examined in some calculations of Lande. 10 Note that all 

methods except FBCS make the same error belovT the critical pairing 

~ 
strength G = ;:;- = O.l MeV; this results because projection of fixed 

c .o<n.. 
particle component from a trivial solution does not modify the wave 

functions. 
2 . 

In Fig. 2 is plotted vh vs. G. Notice that FBCS method always 

2 . 4 gives a larger vh than BCS (more properly PBCS) with the v terms. The 

4 2 BCS method without the v terms gives a rapidly rising vh which crosses 

slightly over FBCS at G ~ 0.14. Thus the curious cusp in the error curve 

for PBCS in Fig. l occurs nei;U' this cross-over, and, of course, FBCS and 

PBCS solutions and energy value errors are identical at the cross-over. 
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Let us now see how well the various amplitudes of the exact wave 

function are matched by the FBCS method.. There are ..D. + 1 ( =6) ampli-

tudes c
0 

through cJ.L in the wave function, corresponding to components 

with zero through -fl (=5) pairs in the upper level and, respectively, 

_(l through zero pairs in the lower. In I vre showed that the ratio 

c./c are easiest to compare with :BCS-type •rave functions. In Fig. 3 
~ 0 

is plotted the comparison of c1/c
0 

for F:BCS and exact solutions. The 

two solutions are indistinguishable belo'YT G ~ 1. 5 G but for higher G . c 

values the FBCS slie;J:ltly overshoots the exact ·solution. Figure 4 shows 

the "second-order11 amplitude ratio c2/c
0

• Here there is a slight over

shoot by F:BCS for G~ 1.5 G, but the second order amplitude is pro-c 

gressively underestimated as one goes to wea..'lcer G than 1. 5 Gc. The error 

is about 50% at G = G and a factor of two at G = 0.5 G. We flo not c c 

plot the higher-order ratios c
3
/c

0
, c4/c

0
, etc., but we have checked 

c
3
/c

0 
and find it a few percent low at G = 1.9 Gc and almost a factor of 

four low at G = G • .c 

Let us examine briefly the nature of the error in c2/c
0 

by using a 

simple perturbation theory. From Eq. (20) of I, we derive generally 

that the first two off-diagonal matrix elements in the Hamiltonian matrix 

for degeneracies _a in higher and lower level are - ....Q.G and -2( ...!Z.. -l)G. 

Thus by first order perturbation theory the ratio of amplitude of one 

pair promoted to the higher level (c1) to the amplitude of zero pairs 

promoted (c ) is 
0 

(12) 
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where ~ is defined by s = G/2€. By second order perturbation method, 

(13) 

FromE~. (10), we have 

(14) 

Now using E~. (5) and (13), we obtain for the FBCS theory 

(15) 

in agreement with the exact result Eq. (12). However, for the second 

order ratio, we get 

- t ..a..cn-t) ~ -z. 
0 

(16) 

Thus in the low-vorce limit the FBCS variational wave function gets 

c1/c
0 

correct and is a factor of two low on the second order amplitude. 
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In fact, no wave function of projected BCS product type can simultaneously 

match both c
1
/c

0 
and c2/c

0 
in the low-G region. The FBCS method in this 

case minimizes the energy of the system by using its single degree of 

freedom t~ closelynatch c
1

/c
0

, which is larger than c2/c
0 

and more signi

ficant in determing the total energy. Chasman, 11 for instance, has been 

able to obtain lower energy values in his iterative-variational approach 

by introducing more degrees of freedcm than in the BCS methods in the 

form of factors correcting on the average the higher-order amplitudes with 

respect to lower-order amplitudes. Thus in order to improve on the 

second-order component, we are tempted to introduce one more variational 

parameter ~ in addition to v by adding a four-quasi-particle (projected) 

wave function to the FBCS function. 

IV. EFFECT OF 4-QUASI -PARTICLE COMPONENTS 

There has been considerable study of improvements to BCS wave functions 

via the random-phase approximation (RPA) treatment of interactions be

tvreen quasiparticles .12 The emphasis has been mainly on the effect of 

groUnd state correlations on excited states. Frequently the RPAmethod 

is applied to quadrupole-quadrupole force component, admixing, 4, 8, 12 etc. 

quasi-particle components into the ground state. In our work here, we 

shall not consider effects of force components in addition to the pairing 

force in Hamiltonian. Even with the pure pairing foroe alone, there 

remain the residual terms H40 , H22, and H31 in the quasi-particle 

Hamiltonian. It seems worth exploring whether introduction of terms of ~ 

4-quasi-particle forms might naturally provide extra variational parameters 

to improve further the FBCS wave functions in the low G region. So far 
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as we know, such higher order corrections to fixed-particle-number 
·• 

(projected) wave functions have not been studied heretofore, although 

a few studies13 have been made to incorporate such corrections to 

ordinary BCS wave function in infinite systems, as well as in finite 

systems. The latter studies have been primarily concerned with their 

effect on the energy gap. 

Let us first construct a trial wave function for our two-level system. 

A generalization to more realistic cases will be obvious. We consider 

the 4-quasi-particle component built up by creating two quasiparticles 

each in the upper and lower levels. 14 The wave function for such a state 

looks like 

(17) 

where a's are here quasi-particle operators. For our calculation, it 

is more appropriate to write the wave function Eq. (17) in a coupled 

representation where each of the pair of quasiparticles is coupled to 

total angular momentum zero. From the second form of Eq. (5), we have 

(18) 
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and where use has been made of the relations (7). For convenience, we 

also write down Eq. (5) in the same notation 

(19) 

7.. 

Now introducing x = u. ,_ , and projecting out the components A. + '}..' = .i'2.. , 
't;-

we get 

1:o = N fn ( ~o +fto/J = J{ ZJ 1<;, \A) 
~=o (20) 

where 

and l '}..) is defined by 

\1'.) ::0 l.n..;ll)) 

[ 
'<.. z. 

SaJ] I~ ) -::: [ S( .eJ J I i\ ) == J.._..o. ( ..t n +\) 111) 
~ 2 ) 

s~<tJiil) = c-tj2-t-~) I~)} 

5~ (!) /7l) = (tSl-))) II)) . 

(21) 
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Now if we designate as c (4) the amplitude of n pairs promoted in P~~, 
n 4 

we obtain from Eq. (20) 

-= -X 
) 

and 
c~) ~ 
_2._ - -2 (-.l'l-t) X [ 1- -S2-2: xJ cb - "> 

~ .. 

On the other hand, we obtain from p rh 
-"!L.. 't'o 

and 

Thus explicitly 

(22) 

(23) 

(20a) 
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A standard variational treatment minimizing the energy with respect 

to x and~ will be presented in the next section. Let us see whether, 

given the two degrees of freedom x and ~' we can find x and ~ values to 

match in the low G limit the amplitude ratios c
1
/c

0 
and c2/c

0 
to the 

exact values • 

The conditions to be satisfied are for the first order amplitude 

ratio <, 

_Q'J- f' [ 1-(S2:1) ;x') 

1-~x 
=S2.'s +---

(24) 

and for the second-order amplitude ratio 

?... 

...Qc.;_-t) x'-- fLf(J2-1) x [I-¥ x] 
"2. 

= .12.(.0:1) ~ +---

1-px 
(25) 

In Eqs. (24) and (25), we have neglected hiBher order terms on the right 

hand side •. Thus retaining only the lowest power terms in x and ~ on the 

left (for G-70), we obtain 

(24a.) 

and 

(25a) 
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By a trivial computation, one can see that there exists no real and non-

negative x satisfyingEq_s .• (24) and (25) (xis in fact complex). Therefore 

the extra degree of freedom is not sufficient to fix c
1
/c

0 
and c2/c

0 

simultaneously. However a variational calculation with the addition of 

the 4-q_uasi~particle component improves the ratio c2/c
0

• This improve

ment can be seen in the follmving way: the left hand side of Eq. (25) 

as a function of x [with (3 satisfying Eq_. (24)] has the maximum ~ .Q(..f2..-J) ~ <.. 

for the value x = ; ) Now !_f ~ satisfies Eq_. (24), the ground state 

energy E4 (and its derivative) is expected to be a smooth function of x 

in the neighborhood of the extremum point,· and to satisfy from the 

variational principle 

E4 (x) ~ E t for all x / exac ) (26a) 

(
d ~(X)) :::::. Q 

dx x~~~ ) (26b) 

(26c) 
.. 

We shall see in the next section that Eq. (24) follows from the con-

di tion d~~f~ 0. 
?.. z. 

~ ..3.sl(jH)S which is 

certainly an improvement over the FBCS value Eq_. (16) 

Note that an improvement on c2/c
0 

necessitates a renormalization of 

u and v and in fact reduces x by about 30% (therefore a reduction of A). 

This is consistent with the nuclear matter calculation, though the re

duction is less drastic than in nuclear matter. 13 It should be emphasized 

that while ~onfigur~tion mixing is effectively increased, v~ = u2 
is 

decreased. In fact we shall show later that the expectation value of the 
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number operator N. is independent of v2 in the low G region, differing 
l. 

thus from the ordinary FBCS method. 

V. VARIATIONAL METHOD 

In. this section, 'Te show that in the low-G limit, the stationarity 

condition of E4 vri th respect to f3 is equivalent to the condition necessary 

for matching c
1
/c

0 
to the exact value, and that the energy E4(x) is inde

pendent of x up to the third power in~. In so doing, we assume that x 

behaves linearly in ~ in the low-G limit. 

The trial wave function is given by Eq. (20), and the relevant 

matrix elements of the Hamiltonian Eq. (1) are given by15 

C>d [ s*au - ~(~)J 1 ~) 
C~ I StUJ S_( t!) I),) 

(/) lstc4.)S_("-)171) 

:::: - .i1 -t-...~0._ : 
) 

'L 
= ....Q..~ + ~ -~ } 

. 2.. -= ~~ +S2-/) -I{ J 

LJ KAk71' (A
1

!S+Ce)S_(~JI~) = 6 kAK))+I (..>L.-I!)(~+t) 
"A(l' It . ) 

2J KA K) I ("A' (~_({)S_(eJ ti)) 
11,)1' 

Consequent~ we have 

... {2. { 

~o [E-C~~~.Q) 

(27) . 

+ ,zq->. (~'2-A+t) 1<, 1<~-r} 
(28) 

"With the understandin~ that ~ = 0 f:or A. ( 0. 



I . 

r---'-------C.-----~-------'-----------~--------···----· --·-·- ----·---·--- --- ·-,. 

I 
I 

I 
' 

UCRL-16550 

17 

Now varying Eq. (28) with respect to ~ and solving for it by expand-

ing the resulting equation in powers of t and x, one finds 

(29) 

Comparing with Eq. (24), we see that Eq. (29) is exactly the same as 

2 Eq. (24) except for one term proportional to ~ • The absence of such a 

term in Eq. (24) is obviously due to taking only the term linear in ~ on 

the right hand side, and that term should be included in order to be 

consistent up to second order in~. Thus we have shown that c1/c
0 

matches 

the exact value independently .£! ! values. .As a consequence of this 

result, the energy E4 with ~ satisfYing Eq. (29) is independent of x 

up to third power of s in low-G limit. The second order amplitude (two

pair promoted component) contributes in (~ I H ! !J ) only the terms of o -o 

0(~ 4 ) and hence up to 0(~3), only the first and second components in 

Eq. (20a) contribute. But ~ satisfies Eq. (29) and therefore E4 is a 

J.6 constant : i.e., 

Expanding in powers of ~ , we have 

E4(x) =a+ b~ + c~ 2 + ds3 + O(x2s2 ) + ••• 

It is clear from our discussion that if we neglect terms of O(t 4), 

E
0 

[Eq. (11)] and E4 should be the same; i.e., 

a = -eJ).., 

b = 

c = 

d = 

-2e...Q 1 

2 
-2€ .0-: ' 

2 -4€ ..a ( .Q.. -1) • 

(30) 

(3l) 

(32) 
. \ 
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Let us consider the occupation probability of a pair for a magnetic· 

substate v (in the upper or lower level) which is defined by 

1 In the FBCS theory, it is given by 

2. 

f)J 
I 

'R 1 ( vJ 

1\: (33) 

where the R function is used for compactness and also to exhibit the 

similarity in form 'to the ordinary BCS theory. The coefficient ve is a 

function of u and v factors, and thus fe is a function of x. Therefore 

x is closely related to configuration mixing. But in GFBCS. [ analogousl:y 

to Cf I H I :f ) ] fv
2 

does not depend upon x (up to the third :power in ~ ) 
0 0 . 

due to the conditionE~. (29). Therefore here x does not play the same 

role (:the amount of configuration mixing) as in the Fl3CS. 

VI. CONCLUDING REMARKS 

Although the model we have studied is perhaps an oversimplified 

one, it has, however, many features that are relevant in realistic 

systems. . In this paper, we have confined our attention mainly to low 

pairi1,1g-force strength region. We have seen in I that in the high-G 

region all the approximations (ordinary BCS, PBCS, and FBCS) approach 

the exact results. Physically important re~ion is of course the inter

mediate region which has been neglected in our studies (though considered 

in our numerical calculations) for the sole reason that analytic solutions 

are not available. 
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There is nevertheless a justification for studying the low-G 

limit. Besides gaining an insight into the pairing theory ;per ~' it has 

also a physical significance connected with the Mottelson-Valatin (MV) 

effect in the rotational spectra of nuclei. 17 The Mottelson-Valatin 

argument goes as follows: Coriolis forces in rotational nuclei act 

in opposite directions to the pairing force and tend to decouple the 

time-reversed pairs. This effectively reduces the pairing strength, and 

as the angular frequency ro increases, there is a certain critical point 

18 
As calculated by Chan and Valatin , the solution of the BCS 

equations in the presence of Coriolis force gives a smaller discontinuity 

of the rotational energy than does the Mottelson-Valatin coupling con-

stant areument. Though ro comes out to be c 

Cd6(LJ~ still does exist; i.e., & = (,t:J • 
- WW=ill . . c 

are equivalent. 

higher than MV estimate, it 

Qualitatively the two results 

The decrease of pairing correlation with increasing rotational 

velocity undoubtedly occurs, but we would stress that there should be 

no discontinuity. On the basis of our studies, we clearly see that the 

discontinuity is an artificial feature of the BCS method, and that this 

unrealistic feature is removed in the FBCS procedures - a gradual continu-

ous decrease of superfluidity with increasing rotational angular momentum 

would be reproduced by the FBCS variational method. This result was also 

obtained numerically in realistic systems by Mang, Poggenburg:, and 

2 Rasmussen. 
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The addition o~ 4-quasi-particle components in a generalized 

variational method (GFBCS) gives a ,further improvement, but does not 

qualitatively alter our conclusion. The latter ~eature is, however, not 

the case if the projection procedure is not employed. Vautherin and 

8 ' 
Rho have studied the ef~ect of adding a 4-quasi-particle component to 

the ordinary BCS wave function as a trial wave function. This is an 

extended BCS theory 1-lithout projection (GBCS). They have found that 6. goes 
I I 

to zero.at G ~G, where G and G are the critical-force constants in the c c c c 

GBCS and BCS methods respectively, and that in general 6 ~ ~s· How-

ever the configuration mixing in the upper level does not vanish completely . 

at the critical point. For example, the occupation probability in the 

upper level <Nh) remains non-zero even though 6 = 0, and goes to zero 
I 

as G -7 0. There is a very small discontinuity of (Nh> at Gc' but it is 

almost smeared out. Thus even within the BCS framework, a more correct 

treatment will not exhibit as sharp a discontinuity in the MV effect as 

. 17, 18 asserted by Mottelson, Valatin and Chan. 

Finally we emphasize that 6 in an extended theory (i.e., GFBCS) 

is not directly related to odd-even mass dif~erences or a physical 

energy gap (as it is in the BCS theory). 
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FIGURE CAPTIONS 

1. Error in the ground state energy for various variational methods, as 

deduced by comparison with exact solutions. The BCS critical force 

strength is indicated by an arrolr. _Q h = .sJ_ £ = 5, N = 10, e: = lMeV. 

2. 
2 2 v for the upper level (vh) for the BCS and FBCS methods. 

..Q. h = .f2p_ = 5, N = 10, e: = lMeV. 

3· The first order amplitude ratio c1/c
0 

for the FBCS and exact 

solutions calculated with~ h = ilp_ = 5, N = 10, e: = lMeV. 

4. The second order amplitude ratio c2/c
0 

for the FBCS and exact 

solutions calculated with _a h =_(2. £ = 5, N = 10, e: = lMeV. 
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