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ABSTRACT 

Green's function techniques are used to develop a general 

theory. of line broadening in gases. As an example, the impact 

theory of Baranger ~ ~ is derived, including effects due to 

recoil of the emitting atom. The fUndamental processes responsible 

for the detailed structure of the absorption line are exhibited 

with the aid of a generalized optical theorem for scattering from 

thermal systems. To the extent to which intuitive notions of 

scattering theory are applicable, it is possible to define partial 

absorption rates corresponding to overall coherent scattering . 

processes., In particular, the fluorescence and . quenching of an 

atom excited by resonance radiation are defined precisely, and a 

simple formula is ·given for the branching ratio between these two 

de-excitation channels • 
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I. riNTRODUCTION 

The study of absorption and emission line shapes PrOvides 

a convenient diagnostic tool for systems which otherwise resist / 

deta~led observation. For example, the stellar composition of the 

universe itself is investigated solely from the emitted radiation. 

The plasma state offers another important example. Even though 

large-scale terrestrial plasmas are now available, absorbed and 

emitted light is still an excellent non-interfering proble, resulting 

in information necessary to the understanding of the dynamics of 

the plasma. Finally, the study of intermolecular forces benefits 

from line shape work in neutral gases. 

The kinds of information which one may obtain fall into the 

broad classification of either kinetic or dynamic depending on 

whether either Doppler shifting or pressure broadening predominates. 

Doppler broadening may reveal massmdtion and sometimes temperatures, 

whereas all the possible collisions that the atom can experience 

contribute to pressure broadening. For all practical purposes 

broadening due to radiative reaction may be ignored except in 

situations of high power level. 

It is convenient to focus attention specifically on the , 

absorption line to obviate any question conc·erning the means of 

excitation of the emitting atoms. A prototype experimental 

situation would be to scatter radiation from a target composed of 

.a low density collection of atoms A imbedded in a foreign gas B 

Then the measured absorption rate as a function of the frequency of 

• 
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the incident. radiation .is prec.isely what is meant by the absorption 

line shape. From the viewpoint of scattering theory the photons 

have a number . of final channels open to them; and one might expect 

that the detailed development of the line is established by the, 

competition of these various channels· for the incident radiation. 

That is, the total absorption rate may be regarded as the sum of 

partial rates each one of which corresponding to an overall 

coherent scattering process d~fined by the initial. photon flux and 

one of the final channels. 

These partial rates may themselves be of central interest. 

Thus processes such as resonance fluorescence, etc., should find 

thelf:.r analytic expression in such partial rates. It is the purpose 

of this thesis to construct such partial rates descriptive specifically 

of resonance fluorescence and the quenching of resonance radiation 

when broadening due to collisions is significant. 

The paper is arranged in such a way that the reader 

interested only in total rate calculations may restrict attention 

to the first half of the work. In section II the basic field 
'• 

operators for an interacting gas of absorbing atoms and· perturbers 

are listed, and the total absorption rate is defined. In section III 

a temperature propagator formalism useful in quantum statistical 

mechanics is briefly outlined, and the rules for calculating the 

absorption rate are given. Section IV contains an example calcula-

tion for the total absorption rate in the ~pact approximation 

including recoil effects. In section V the definition of partial 

rates for gas collision processes initiated by the absorption of 

• 

•, 
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resonance radiation is considered. The method is motivated by 
. :· 

a·simple example whereas the details are developed in.an.appendix. 

I 

Section VI is devoted to fluorescence and quenching. The relation+ 

• .. ship to an associated beam experiment i13 als9 discussed. Finally, 

an example calculation is considered for a hydrogen plasma • 
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TI. FUNDAME!NT.AL :EQUATIONS AND DEFINITIONS 

The Hamiltonian operator for the system may be written: 

(2 .1) 

where in second quantization notation 

I 

. (2 .2) 

+ /r' (t_,-r) (-1ii..2 Va·r(5,-t)J3x + i.f't.f"''(t.-t) v&,-Of'5'/) 

- f. IV V(b) 

(2 .3) 

• 
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. Here *'c/!, t) is a field operator in the Heisenberg picture 

for absorbing atoms of mass M with.c.m. position~ in. an 

internal state labeled by a of energy . Ea pa(~ t) is just 

(2.4) 

the density operator for the atoms in the a th state. Similarly 

,0 (~ t) is the field operator for the foreign gas. For simplicity 

these atoms have been assumed structureless with an associated 

densitY: operator p(2f, t). This restriction may be removed later 

if desired. These gas p:~.rticles interact among themselves through 

a two-body potential V(2£ - ~') and with absorbing atoms through 

Va'a(x .:: !) or in the coordinate representation through V(~~l' • • •z.y,!), 

z1, ···,z, electron coordinates. 

The electric and magnetic field operators ~(X,t) and 

~(X,t) are obtained from the vector potential field operator 

~(X,t) which satisfies the transverse guage condition, 

v. A (Xt)= o - - ,, 

The atomic current field operator is defined by 

• 

(2.5) 



0 

(2 .6) 

where 

is the total momentum operator for the'atom's electrons. 

The matter field operators obey anticommutation relations .. · 

for equal time arguments, 

Whether the matter is represented by Bose or Fermi fields is 

unimportant since degenerate systems willnot be considered here. 

The result of Fourier analyzing the vector potential is: 

• 

j 
- ~. 
•.J 

0 
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The ~ satisfy the following commutation relations: 

where 

Upon sWitching on a macroscopic external field !0 (~t), 

the Heisenberg picture for H · becomes the interaction picture 

for· 'H' = H + H1

1 
, where 

The time dependence of !0(~t) is fixed by external charges. 

If the system was in an eigenstate In) of· H in the distant, 

past~ the probability amplitude for transition to.state lm) in 

the far future is given by (njs(oo, .. oo) lm) , where 

• 

(2. 9) ! 

(2.10) 

(2 .12) 
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·Thus in the lowest non-vanishing order in the external field, 

the probability/time for excitation of the system from In) to 

lm) with energies E and E and momentum P and P by 
n m -n -m 

absorption of a photon from the external field becomes:· 

....n..:; f fi•k t., /(nt/:fl•J.~ ltl.> /l ~l (!fJ/. 

x :~. rr li d ( E111-- E11-1i l<t:.) t ;:rrl / J t .f~ f,. -tr ~). 
(2 .1;) 

Sl is the volume of the system and the c-numbers ~e(~) are the 

expansion coefficients of the externai field in plane waves of 

defin~te polarization, 

. (2.14) 

The normalization is chosen in such a way that the time~averaged 

Poynting vector S = c/4-Ir. !!, ~ ~ is given by: 

(2 .15) 

· identif)ring 

'-

' . 
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(2.16) 

as the flux of photons per unit frequency interval per steradian. 

It is convenient to introduce an absorption cross-section 

=. defined as the .transition rate per ·unit volume per unit flux of 

photons of specified momentum and polarization. ~om Eq. (2.13), 

. qd,w)~ (w<-T 1~'f,,_fn. /(1n/;[toJ·§;n>(. 

x ,z.qt tf (Ex.- [~+fi 4/)(J-11~ / tf ( ... f"'- + t,+ i; 15) 

where an average over a statistical distribution of initial 
I 

states is taken through the sum against p '. n 
If the target 

is regarded as a giant molecule with an associated spectrum of 

eigenstat.es, Eq. (2 .17) is merely an expression of Fermi's 

"Golderi Rule" in ·quantum perturbation theory. 

A Hamiltonian· formulation of quantum mechanics yields 

probability amplitudes directly, not probabilities. However, 

(2.17) 

an amplitude closely related to the above probability of absorp-

tion may be constructed. In fact, that such an associated 

amplitude exists is essentially the content of the Fluctuation-

Dissipation theorem. The absorption rate is in the nature of 

a dissipative quantity, and it is a type of current autocorrelation 

,, . :.i,. 

• 
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fim.ction. of.· the atoms which .is. a measure of the associated. fluctua.;. 

tion. This amplitude will be defined in the following section 

and the method of its calculation described. 
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III. · IROPAGATOR FORMALISM 

A. Spectral Representations 

It was noted in the last section that the absorption rate 

is closely related to an amplitude for which a well defined calcula-

tional procedure exist~. Consider the retarded current commutator, 

'(3 .1) 

where the Heaviside function 

1 (t;_-t') ~ {r I 
1" 0 -t< t:,l 

· The brackets indicate a trace over a grand canonical ensemble 

distribution function, 

n is the grand potential and ~r the chemical potential for 

·species r • As indicated /ij R is only a function of difference 

variables (~-~')and (t- t'), and thus may be Fourier analyzed 

directly. It is a simple matter to show that the associated 

Fourier coefficients /ij R(E_,c.o) ·have the spectral representation, 

.. 
' . 



~~(f.w):. Yw'[ .· , .,._ 1·.,(· -JS'Iiw') A tP ') ":l:v -' · J~ w-w_,.,... er· - 1 · • w . . ,...,... .'Vi_, . 

where·;~the spectral function 

But aside from a constant factor this is precisely the total 
R . . 

absorption rate. Thus if fij . is known,. Aij and hence the . 

total absorption rate are determined. Rather than working 

.. directly with /ij R , however, it is convenient to introduce 
. R 

another current fUnction which is simply related to itij , 

but which has the added feature of being in the form of a one-

:r:article propagator. Such propagators may be calculated within . 

the framework of a diagrammatic perturbation theory. 

Consider the function 

where 

• 

. l 

(3 .3) 

(3. 4) 

(3.5) 

.... 

• 
' ·/ ( 
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-13.;. 

That is, T,. denotes the usual Wick ordering With the J' a 

acting like Bose OPerators. 

To complete the definition .,. and 1' 1 are limited to the domain 

[ o, "h 13] • d'- is then well-defined if absolute convergence 
I/ ..Pij 

for real times is assumed. 

Directly :trom the cyclic in variance . of_};he trace, 

T.t l1) :::. f. (X 'l+'li4) ~<o 
'.J } '" -I I 

where the difference variable ,. = 1'
1

- ,.2 is restricted to the 

domain [ - "'h 13, h 13 ] It is-useful to extend the definition 

of ;;,j beyond this strip. Take j;_j as periodic with 

P:. t X, 't) =- P.. tt, 1'+n,4) · 
IJ - IJ l 

. Then j;_j can be developed in a Fourier 'series as: 

(3. 6) '. 

(3. 7) 

(3.8) 

f. (K-X 7:~1:) = &lp ..L or:;"~;;. CP.w )eif.(1,-!,)e. -w~~.C1,'-?;.). (3.9)· 
'J. -1 - 1-J I ~ j!!:;-1T)J 1;~ ~ 'f:'.. -1 ll · · . ~ rnv 

• 

I 



where 

· In precisely the same manner as for fij R , 

This spectral representation may be used to define an analytic 

continuation into the entire upper half plane. Since ~j R 

(3.10) 

(3.11)' 

and /ij agree on the infinite set of points ~n , with a limit 

point in their domain of analyticity,, ~ij's analytic continuation 

into the upper half plane coincides with /ijR's • Thus to determine 

· Aij one calculates /ij (~"h), performs the trivial analytic 

continuation, and takes the imaginary part. 

B. Diagrammatic Perturbation Theory 

As noted above ~j is essentially a one-particle 

propagator, and may thus be calculated in a manner similar to 

•f ... 
I 

~. 
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the Feynman-pyson diagr~tic' perturbation theory so successfUl 

in quantum electrodynamics. The rules for calculation of ·/ij 

will be given without proof since the procedure for their 
. . . 1 

. derivation for any given<::system is well-known. 

Draw all topologically distinct, connected diagrams 

leading from an external photon absorption vertex and ending 

in an external p~oton emission vertex (represented respectively 

by a directed wa vey line into the initial vertex and one out .·of 

the final vertex). One may regard the action of the first vertex 

as exciting an atom particle-hole pair, or eq~ivalentlY, as exciting 

an atom from. the equilibrium configuration, resulting in a 

· depopulation of the state from which the atom was excited. This 

particle-hole pair may then interact with the medium and each 

other until the system is returned to the equilibrium state by 

. the photon emission. Hole lines are directed down and particle 

lines upward. 

The system has been restricted to include two kinds of 

material particles and radiation. Atoms are r~presented by 

heavy solid lines, gas p:~.rticles (perturbers) by thin solid lines, 

and transverse photons by·wavey lines. Atoms, gas p:~.rticles and 
. .· . I . 

photons each carry a momentum and frequency label, atoms labeled 

additionally by the state of internal excitation. Static inter-

actions are represented by horizontal lines, dotted line for 

atom-gas interaction ·and dashed line for gas-gas interaction. 

(See fig. 1 for example graphs.) 

• 
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Associated: with .each diagram in the pertm"bation expansion .. . . . 

i-s a corresponding analytic expression which may be determined from. 
. ·. 

. . . .. the following ruJ.es: 

1. P.roJBgating lines 

(a). For"· each atom line write Ga, a 0 (!,(J)n) · 

where 
·' .. · .. 

·, l 

.. •.' '· ... 
. ( .... , 

· .. , .... 

' ( . ·,, 

. . . ·, . ' ,. 
G D '= doC I~ ["Ji WI& 'f J4.t -.*.c.{/!)]'.-. d'« .... { • . 

(b) For each gas :particle line Write ' G0 (~~) . · 

·Where 

' <t,;' 

.. (:5 •. 12) 

•' _t' 

··. . ' ,_:. ' .. · 
" • I . ~ • 

·.r. 

~ ·. 

. ' J 
.:.: , . :.~--~·. I . 

· ... · 
·.· ·,, 

·'···: · .. · ;_· .. ··. 

1. 

.• ' .. '·. 

·(c) .For each photon .line write Dij 0(~(J)n) 

·Where 
. ,. 

'• .I • 

" 0 (P . . . A·· t.f) [w .. _ ., ... ttl}-1 
l/lj _,w~)=':~ ... '" " . (:5.14)· .. 

I , . .' .( 

. . . ' . .... . 
. _,,.: 

. . . . ~ 

2. .Interaction Lines 

· (a) (~'a' 1 i' lvl!s,a,li) t~ atcm-sas intera~tion,: · (3.~) 

.·· .· ... ··. (br (pJ.p2 lvli1iQ) tor sas-sas interaction~ . 

(c) For each internal atom-radiation verteX . . ·:,.,_ .· 
)··· '-

write 

,;. 

' ·. ·,' 

,., '··· 
:: l 

'' . 

. . ~ : 

( . 

., ·' 

.. 

(. 

;_,' 

. -~ 

! 
I 

. '·, 

,, 
'• . 

. i 
I 

' ! . . 
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3.. Wave number and imaginary frequency conservation at 

every vertex require factors · 

4. Integrate over all internal wave vectors and sum 

all imaginary frequencies according to 

(3.19) 

5. Affix an overall sign factor (-l)n+F where F = number 

of closed· fermion loops, and . n = the order ·of the graph •. 

The order is determined by the number-of interaction 

lines; a photon line is considered an interaction line 

here. 

Finally, since perturbation theory is being used1 it is 

necessary to specify the relevant smallness parameter. For the 

case of neutral particles interacting through short range forces, 

the dimensionless expansion parameter is (nt)~ 1 where n is 

the particle density and t is the gas·-atom scattering amplitude. 

For a high temperature classical plasma the smallness. parameter is . 

proportional to e2n1/3 ~ . Further, the atom's level structure 

should be more or less left intact with ;l.nteractions switched on;_ 

that is, shifts and splittings of the order·ofmagnitude of the 

absorbed energy·would be quite outside the domain of perturbation 

_theory. 

• 
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.The prescription for ·the calculation of 'the total absorption 

rate· was given ·in the last. section in terms of rules for calculation ~ 
' . . . . . 

' .of ltj<~(l,)) in a systemtic perturbation theory, expansion. Once 

. · 'l;.j is lmown, fran the spectral repr;-esentation, 

(4.1) 
.. 

(. 
. ·, 

. ' 

-·~ .. 
... '.· 

.. . ~ 

~ (.f, f4J) ,;; !:.J,· ('It~ t I£ •. E;A j; 'f, '14)) '' ~·. . ' ' 
... , 

- .. .. = ~ <.'1.--r•u-e·t~w> ~r,.,.1t.f,Jd> .. ' (4.2) 

' ,• 'I 
'~- : .. 

. . ' ' . 
·. j .. , ~ . 

' ' . ' .. 

,., . 

. · · :; In. this .. section .. an investisation. of. ·a ·Jia.rt1aUlar theory .. of 'line .. 

· gemml calculational proce4U1.'e1 ana. seaon41 to obtain some :1nsisht 

into the complies tiona special to line broadenins. 
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In recent years a theory of line broadening has been· 
. 2 

developed and used with a certain measure of success. This 

w9rk is essentially an amplification of an important paper by 

3 P. W. Anderson on microwave absorption. The fundamental 

assumption of this theory is that the perturbing effects of a 

foreign gas on an absorbing atom may be regarded as collisions ' 

non-overlapping in time, or if collisions occur simultaneously 

they are sufficiently weak as to just,ify first order perturbation 

theory in the single particle collisions. Such a theory has been 

quite useful in determining the perturbing effects of electrons, 

which to a certain extent do satisfy the "impact approximation" 

criteria. Here recoil effects will not be ignored and broadening 

due to radiative reaction will be discussed. Note that including 

recoil effects does not merely imply broadening due to Doppler 

shifting. The atom can recoil against perturber collisions as 

well as upon absorption of a photon. Finally, it will be apparent 

how one accounts for simple gas-gas corre],.a.tion effects((shielding 

in a plasma, for example). 

A. Radiation Broadening 

Ignoring all perturber ef~ects (see fig. la.), one obtains 

the usual result that only frequencies precisely equal to e. level 

difference of the atom will be absorbed. If the effects of 

perturbation are included one might expect to relax this strict 

energy conservation with a particular level. However, if 

• 
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· · contributions from so called self .. energy graphs are included in 

some order of perturbation theory (for a complete discussion 

of self .. energy functions see appendix.III), the result will be a 

. d1 vergently large ~ontribution to ,f and hence the absorption 

rate. The origin of this anomalous result may be understood in 

the following manner: as far as radiation absorption is concerned, 

the atom may be regarded as a harmonic oscillator; further, the 

present perturbation theory has been developed in such a way that 

the external field acts for all time. Thus the_atom responds to 

the field like an undamped oscillator whiCh can realize arbitrarily 

- large amplitudes. It is clear that if some damping were introduced 

the oscillation would always be amplitude limited • 

. The lowest order diagrams in radiative coupling contrll:buting 

. ·to ) are shown in Fig. 2. The "ladder" diagram 2c. is smaller 

than 2a, or 2c. by an extra power of the fine structure c cnsta.nt 

. and may thus be ignored. Since the external field .formally acts 

for an unlimited time, an infinite sequence of such. diagrams must 

: be summed. (See Fig. 3.) 'I'he double, heavy, solid lines represent 

: the sum of the infinite sequence obtained by iterating Fig. 2a. 

· Iterations of Fig. 2b. are not considered since they correspond to · 

' . instability of the ground state against absorption from the 

incident beam or ·from the assumed thermal radiation. This 

approximate form for j results :Ln an absorption rate with the . 

. well-known Lorentz line shape, the width proportional to the rate 

of dec:ay of the atom by radiative emission. 

._, 
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B •. Collisional Broadening 

The result .of including gas perturbing effects is shown 

in Fig. 4. The thick lines represent amplitudes in which all 

possible interactions with the gas or radiation are included. 

Contrary to the case of pure radiation damping, "ladder" diagrams 
' 

must be retained (see Fig •. 2c. ), since they contribute terms to 

~ of the same order of magnitude as the first graph of the sequence. 

Higher order graphs, examples of which are shown in Fig. 5., are 

outside the impact approximation. These graphs-include collisions 

which are not separated in time and hence must be ignored. The 

utility of a diagram approach is clearly demonstrated here. Physical 

overlapping manifests itself directly as a topological overlapping 

in higher order diagrams. However, this intuitive picture is often 

obscured for systems of high density. That a given diagram may 

be analyzed directly in terms of the real collisions that the atom 

experiences in its excited lifetime is quite false. 

1. ladder Sequence and Integral Equations .. 

(1) The special case. The contribution of Fig. 4a. to 

f is: 

(4.3) 

• 
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Note that full propagation amplitudes are being used here, and, 

in general, these amplitudes are elements of a propagation matri~. 

In general, non-diagonal elements must be included in the above 

sums. In this section, however, assume: 

1. (a,a') are members of a single degenera~e collection of 

states (neglecting overlapping lines), 

2. damping does not connect different members within this 

degenerate collection, and 

3. the same assumptions for the excited level. 

(These restrictions will be removed after the frequency sum<· and 

analytic continuation are demonstrated for this simpler ,case). 

· Eq. (4.3) becomes: 

where 
.. 

::: [w~,+ f.~~.. .... e.-< t
1

k.,>- («/ ft~, ~n,>l<.)] 
.. / ,, 

With a.similar expression for G~~ • 
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For the details of ·.the frequency sum and analytic continuation 

see Appendix I. Eq~ (4.4) is: 

( --Afw) /;:PK, ~ n tk,)(/-'n4 t/!,~!>)(«IT·~If> e. -1 J5.rrJ, ~ « r 
o<.,(' 

/( [ t.o - <0.~ ( !5,..- J') d"- ( 15 I)- (< (I f!ts,+!) I ( > -("-{ f'l_k, 1/rxj) 

where nr (kl) is the equilibrium dis'tribution function for the 

absorbing atom, 

and (r !It (~)!r) are the self-energy functions of the atom in 

a state of c ~m. momentum· k and internal state r . 

To continue, it is convenient to define 

G~f9,Cff~-r~w,:w,) ( ts ffJ-rf} f, I VI~' f+~) t,~- ~>x 

(~.5) . 

(4.6) 

(4.7) 

(()(_I !S~ I ft-1- 'f I v /«. f5,) f, )~ "£' 6 IP)(w1t;wm; WnJ.} r-~-tp) r; I#)(&V/1(;/f, ) 
tt.Jw., 
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0 · and 

A(o) r ·r 
S Q,., ... , ()AAI · 

. . (II.~ 1<'/' ........ rr-

Then the first two diagrams of Fig. 4 are: 

A (O) and. A {l) ms/y thus ba ree;artl.ed. as vertex functions. For 

s..n ~itra.ey membar· of Fie:, 4 aondd.er 

.'t ' .. l 

'-'' :~:./ 

(4.8) 
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and, for convenience, momentum dependence has been suppressed • 

. From the form of A (s) it is obvious that it may be expressed . 

.. in terms of A (s-l) as in Fig. 7a. But this result implies an 

integral equation for A itself as schematically repre·sented 

in Fig. 'Tb· Thus, 

(4.11) 

(4.12) 

The frequency summation and analytic continuation procedure require 
l 

some special care since A(oo loo + oo ), when analytically 
. n1 n1 n . 

continued, has several branches. (See Appendix I for details.)· 

Upon taking the low-density limit for the absorbing atoms, 

A-+ satisfies 

·, 

• 
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~ c.., r . 
. == - ~ 1,; k,., j iJ , n. £p,) ( 1- n t.. p,.,. 1 J) 

~,. ~~#. (_J.. fi') (.2.11') . . ' . 

. . 

y 2-rri, J (.~,/k,>-~~-(1<,#..> -rllt..f,~-s tt,+'J>) («:,.~~,P-,+jiV}ICff, ,£,) (4.13) 

where the -+ designation corresponds to a particular branch of 

the analytically continued A • It is important to note that 

the presence of 6 -energy appears here since only c~mpleted1 non­

overlapping collisions are represented. (a'~~ 1 ) act merely as 
. 

free indices in the above equati.on. This simplifying feature 

will be lost when the more general case is considered 1n wh:fc h 

the propagation matrix has off-diagonal el~ments. F1nally1 the 

self-energy :f'unctions are dependent on frequency in general. ·Here 

• 
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.it has been assumed that they are sufficiently slowly varying that 

they may be evaluated as: 

(4.14) . 

Thus, one is assured that only completed collisions contribute 

to the line shape since only on-energy-shell scattering amplitudes 

are used. 

It is possible to put the expression for the total absorption 

rate in a more compact form by defining the amplitude: 

Then, 

where satisfies the set of integral equations: 

• 

(4.16) 

I . 
\ ~) 

/ 
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[w- ( ~~.t. !!,-rP>- (;-(l(.t~,,) -(< "l;n+t ~,rP-JI~>- <(I(. t~l. k 'lfX)J· 1M!5, cf,'w) 
. . f . I "' . r - _, . '.J (J(fttJ('t' 

·­-

The "collision-integral" kernel K is: 

.K .. cannot be interpreted as resulting from collisions of.gas 

particles with the atom in either; the upper or lower levels. 

(4.17) 

(4.18) 

Rather, it repr~sents a coherent inteference effect due to scattering 

from both of them •. The physical meaning of Eqs. (4.16) ~nd (4.17) 

will be discussed after the general case including overlapping 

lines and degeneracy is considered. 

• 
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(2) The general case. As was noted above, although 
~ ., 

Mr~la'~' are objects labeled-by four internal 
-+ ··' 

AOf3!a'~' . and 

states, two of these·labels are free parameters which may be 

ignored in the solution.of Eq. (4.17). The more general situation 

results in essentially the same equations; however, all four 

indices are involved in a non-trivial manner. 

In the previous section it was assumed that the propagation 

matrix could be approximated by its diagonal elements. Further, 

all levels were assumed well-separated; i.e., the collisional 

interaction did not result in overlapping of lines. ·When the 

levels are so strongly coupled that their individuality is washed 

out, it is necessary to solve a new eigenvalue problem for these 

states. Thus in the course of.obtaining the final result, a new 

Schrodinger equation for the atom must be introduced, where the 

self-energy operator plays the role of a pseudopotential. Then 

the algebraic manipulations of the analytic continuation closely 

parallel the special case. 

To return to original basis for the internal states of 

the atom, a dyad vector space was used. This space is analogous 

to the vector space in which the ,quantum Liouville operator e.cts.5 

.It is important to realize, however, that the Liouville operator 

acts on full states of the system rather than the internal states 

of the absorbing atom~ U. Fane has employed such a formalism to 

derive a theory of collision broadening.? Fane formally exhibits 

a cluster expansion for the line shape, but the generality of the 

• 



0 

(J 

·' 

-30-

result is deceptive since the Liouville operator method is necessarily 

restricted to the case of non-interacting statistics and thus is valid 

only to first. order in the density of the perturbing gas. The 

Green's fUnction approach does not suffer from this deficiency. 

The dyad vector space is an or~ered,pair of internal states 

·of an atom. Given an operator Q., .acting in the space spanned by 

the internal states of.an atom, one may construct two different operators 

acting in the dyad space. For a given Q , definer. 

( 4.19:J,) 

. ' 

. (4.19b) 

Closure is expressed by: 

(4.20) 

The a, a',·· •, denote a collection of state:s With approximately 

the same energy and strongly coupled by the effects -of collisions. 

The f3, f3.', • • •, are similarly chosen but with energies exceeding the 

' a group by approximately the energy of the absorbed radiation. 

This formal device enables one to transcribe .the results· of the 

special case to the general situation. Now, however, M;la'f3' .. J(!Jro) 

kl 
is to be regarded as an element of the matrix operator M- (r,ro) 

• 

.I 
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. . . ~ 

in the dyad space. M- (~ru) satisfies the matrix-integral equation: 

[w-(.H!(ts/1!>- 1-/:0s,))- ( (p+(!5,rf>)"'- ( p-t/j,)f i} M!f,(f,w) 

= T + jcj_' !5#.. K /5,1(,. ( p) M 15~. (_ f,u:>) 
~.,. )~ - . 

·The kernel, for the collision operator is defined by: 

K '!d5-.( f)= i ~)!f. tf:!A:J n t_p,>. ( ,_ n t. ~>) . (. . 
~I If'/(}( 8 ') Z.Ztr (.tl. f1') . 

1n .A,-'-

(4.21) 

1( c~fl'/ J ( /i~-,+- t£- !J,~ -'"f-,) u.:fi''-ti) tJ (G(J(~ {/:f:~.)+ t-tf~ ')- ~' (k,)~ G- (f,J) ( 4.22) 

t ( 0(,'1,' I ( T-(fs,, 1!, I~:S .. , -e ... > )L ( T+C.f#-1!,, -e, It.~ ts .. , -e ... J JR le< ... '.J.> 

H
0

(R,L)(k) ··is a dyad-space operator obtained from 'the free-atom 

Hamiltonian. Similarly, )<R, L) are the corresponding self-

+ 
energy operators. T- is the two-particle scattering matrix 

(see appendix I). 

2. Discussion 

The integral-matrix equation satisfied by M reduces to 

a matrix .·equation in the dyad vector space when recoil may be 

ignored. Then, 
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( 4.2;) 

I.f the effects .of Doppler shifting and radiative reaction are 

ignored, this result is precisely the Anderson-Baranger theory 

. of' line broadening. However, if' the mass ratio of' pert~bers to 

absorbers is not small, recoil effects must be considered. Then 

the problem is essentially a marriage of a D.C. conductivity 

calculation and what is typically regarded as a line broadening 

calculation. That is, momentum dissipation as well as internal-

state excitation are present. For example, if' one is interested. 
() 

in the special case of' self-broadening (absorbing and perturbing 

atoms are identical), the recoil complication must be understood. 

The role of the impact approximation is quite clear in 

the above treatment. I.f' the self-energy functions were not smooth 

functions of' frequency, the impact criterion would not be satisfied, 

and the line shape would not be determined simply by completed 

collisions. I.ndeed, one may investigate the limits of' the impact 

regime by considering the self-energy function itself'. For example, 

tt is to be expected that the contribution of ion broadening to 

the line shape is characterized by a self-energy function which is 

a sensitive function of' ro '• 

Finally, the effects of gas-gas correlations may be 

• 
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included in a systematic fashion. In a plasma the coulomb 

interaction is shielded through charged particle correlations. 

This effect is included by replacing the collision interaction 

V(g.) by the well-known screened dynamic interaction v(g1 m) • 

• !.1 

• 
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V. PARTIAL RATES AND GAS 'COLLISION .ffiOCESSES 

A. Scattering and Gas Reactions 
\ 

In the last section the total absorption rate in the impact 

approximation was calc~ated in a manner which made no explicit 

reference to the various modes of decay open to the excitation. 'An 

.. alternative interpretation of the total absorption rate is suggested 

bY scattering theory. One may regard the total rate as equal to the 

sum of partial rates for certain scattering processes, the sum 

extending over all channels open to the initial radiation beam and the 

thermal target. Thus given the rate for the occurrence of certain 

processes initiated by the incident radiation, one may construct the 

total rate and hence the line shape. Conversely, one might be able · 

to interpret the detailed development of the line in terms of well-

defined processes. 

In scattering theory a scattering event is defined if the 

initial and final asymptotic conditions of the system are specified. 

As an example consider the stripping reaction of fig. 8, Associated 

with this event is a probability amplitude, which in principle is 

known given the Hamiltonian of the system. 

Intuitively the scatrering picture is immediately applicable 

to reactions initiated by a particle incident on a gas. As examples 

·one may consider the competing processes of quenching of an atom excited 
6 ' . 

, by resonance radiation and fluorescence (Fig, 9a.,9b.). However, 

the analytic expression of this picture is not immediately appar.en,tL, 

• 
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'/ since, generally speaking, the particles are never asymptotically 

free. That is, the particles in the·gas which compose the initial 

and final state are in interaction with·the other particles of the 

gas. Clearly this difficulty must be of a purely formal nature; the 

intuitive scattering picture is obviously a good one, at least for 

low density systems. 

The root of the difficulty stems from the fact that the 

above scattering picture is itself based on a perturbation-like 

construction, where, for example, (as in Figs. 9a,9b.) the gas 

particles are representable as a statistical ensemble of free 

beams. Thus, to impart analytical meaning to the intuitive picture 

one must make appeal to perturbation theory from the very outset. 

To be acceptable such a', perturbation theory should satisfy certain 

minimal criteria: 

1. the sum of the partial rates for all processes yields . 

the total rate in that particular order of perturbation 

theory, 

2. the asymptotic nature of the scattering event results in 

initial and final states which may be defined unambiguously, 

and 

· 3. these asymptotic initial and final states are connected 

by overall momentum and energy conservation. 

• 
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· B. Reduced Diagrams and Diagram Cutting 

To proceed it is useful to consider a particular example . 

in the calculation of the total rate. Figures 2a.,b.,c., represent 

the lowest order diagrams in radiative coupling. If one explicitly 

·calculates the contribution to the discontinuity of .f across the 

real axis (equivalent to Im j), it is possible to rearrange the 

result in such a way as to .exhibit a certain natural grouping of 

.the terms. In particular, included is a collection of terms which 

may be symbolically represented as in Fig. lOa.;-·These "open 

.diagrams" are calculated according to the "closed diagram" rules 

.for the amplitude.jf. The probability obtained from the amplitu~e 

represented by Fig. lOa is multiplied by a four-dimensional 

8-function corresponding to momentum and energy conservation for 

the scattering of light from an atom and some obvious statistical · 

factors. The special appeal of this res~t is understood upon 

,, comparing with Fig. lOb., the usual Feynman diagrams whose calculation 
'.I' 

yields the well-known Kramers-Heisenberg light dispersion formula. 

If it is possible to generalize from this simple example, 

one might propose to calculate the partial rate for a given process 

by writing down all the diagrams with the same initial and final 

state (all coherent amplitudes), take the complex-conjugate-square 

of the sum of these amplitudes, and affix the appropriate energy-

momentum conservation. factor.· Indeed, this "open diagram" procedure 

has been conjectured in a study of wave prop:~.gation in plasmas. 7 

• 
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The method enjoys significant ,calculational advantage over the 

"closed diagram" approach and, as well,· enhances ,ones understanding 

of the various microscopic processes involved. 

Unfortunately certain ambiguities arise when reactive 

.processes are important necessitating infinite graph summations. 

In particular, it is not always possible to put the various 

contributions to the discontinuity of f in a unitary-like sum 

without running the risk-of overcounting certain diagrams. Thus, 

the operation of "diagram cutt~ng," i.e., deriving an open diagram 

expansion from the corresponding closed diagram expansion, does· 

not always commute with infinite graph summation. The work of 

DuBois et al does not suffer from this difficulty since reactive 

effects are Unimportant in their calculations. 

A less ambitious approach can be followed which does not 

suffer from theabove ambiguity, and for which an analytical proof 

may be constructed. To motivate this ·alternative procedure, 

it is convenient to return to the light scattering example •. The 

scattering rate was proportional to 

(For a pictorial representation see Fig. · lOc. ) A given diagram 

contributing to the total absorption rate is cut into two pieces, 

each one including an external photon vertex. The two pieces have 

amplitudes associated.with them which are calculated according to 

• 
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the usual diagram rules. (Note that all possible cuts are to be 

taken. In 'the present example, the two cuts corresponding to 

AB* and B*A ·are derived from the same closed diagram.) This 

procedure for calculating the spectral function A(!Jm) is 

8 
essentially the "reduced" diagram scheme of landau and Cutkosky, 

used to analyze the analytic properties of the Feynman diagrams of 

relativistic field theories. This technique has also been applied 

to conductivity calculations at both zero artd finite temperature. 

J. s. !.anger has proved the generalization of the method to finite 

temperature for a normal interacting Fermi gas. In Appendix II 

a simplified but heuristic derivation is given applicable to the 

present system. 
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VI. RESONANCE FLUORESCENCE AND ·QUENCHING 

A. Reduced Diagram Expansion 

· The two radiation absorption processes considered in the 

last section, fluorescence and quenching, may be investigated in 

detail through the use of the reduced diagram expansion. Fluorescence 

here is to be regarded as photon scattering out of the initial beam, 

whereas, quenching· corresponds to actual heating of the gas without· 

photon emission. Energy is communicated to the gas through a 

diabatic collision between the atom and ~ gas particle. Such a 

collision may also be accompanied by radiative emission, and this 

possibility appears naturally in the appropriate reduced diagram 

expansion. The emission line for such a process will contribute 

predominately to the "wing" spectrum. 

For ease of interpretation, it is useful to cons·ider only 

those cases; for which broadening in the lower state is unimportant. 

This situation is often realized in practise. The atom is more 

tightly boun.d and compact and thus less readily polarized in its 

lower state than in the upper level. The Lyman series of hydrogen 

may be approximated in·: this manner. Some lines of helium may 

10 
similarly be treated. The total absorption rate is then proportional 

to the discontinuity of the amplitude of Fig. 11. This fully 

r~normalized amplitude is ex~nded in gas collisions and the propagator 

renormalized to radiative corrections as shown in Fig. 12. 

• 
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Consider the contribution to the discontinuity of the 

total amplitude from Fig. lla. In particular, c~nsider all 

. possible reduced diagrams which include a single photon line. -

(See Fig. l)a.) But these diagram~ are equivalently written as 

in Fig. 13b.:, and hence may' be regarded as photon absorption 

followed by photon emission; i.e., photon scattering. The reduced 

diagrams in which the atom remains in an excited state need not 

be considered since the atom will always finally be de-excited. 

The diagrams shown in Fig. llb., llc., etc. contribute fUrther 

reduced graphs in which a single photon line and an atom hole-

particle pair is cut. 

The excited atom may be de-excited by diabatic collisions 

as well as by photon emission. Here diabatic is taken to mean a 

transition of the atom from an excited state to the ground state of 

the atom--the line is quenched. The diagram of Fig. llc. yields 

the lowest order contribution to the absorption rate in which a 

gas particle may be excited through collision with the excited 

atom. Coherent with this term are all the higher order collision 

corrections with reduced diagrams in which an unexcited atom 

particle and hole line appear simultaneously with a gas-particle 

hole and particle line •. (See Fig. 1l4b.) 

The cut shoWn. in Fig. 14a. may be regarded a. a contributing 

to the fluorescent rate of the atom. When collisional broadening 

'is important additional processes, although incoherent with that 

of Fig. 14a., must be analyzed to properly assess the emission 

• 
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line or the total fluorescent y!Leld. As examples, note the reduced 

graphs of Fig. 14c. In general, .write: 

!7.= r, ;: tj). 

r . F 
J""l> 

(6.1) .. 

.. , where r Q. is the quenching rate, corresponding to de-excitation 

·Of the.atam purely through diabatic collision with a gas particle. 

This quantity is determined by the reduced graph:.· of Fig. 14b. 

The second term includes all possible processes in which a final 

photon is present--the emission line. rF(O) is precisely the 

partial rate represented by the cut of Fig. 14a. On physical 

grounds, separating out . r F ( 0 ) is in a certain sense artificial. 

However, in the event that collisions may be ignored, this quantity 

is just the scattering rate of resonance radiation and hence useful 

as:·.a ·comparision. 

Consider the cut of Fig. 14a. or 15 in detail. If it is 

possible to write it in a unitary-like-sum form, it is natural to 

identify rF(O) as a partial rate, contributing to the fluorescent 

yield. Since the lines retained in the reduced diagram are free 

propagators,. it follows that: 

~ Wn----) .:!~ (k)-f'a..' 1;w~~ 1i tJ 
I 

(6.2) 

(6.3) 

. ,I 

; 
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As shown in Appendix II, the contribution to the .total absorption 

. rate from a particular reduced diagram is a product of five factors: 

a statistical factor S , a factor containing a product of the 

spectral functions of the lines of the reduced graph Z .1 two 

vertex amplitudes ~~ ~~ and an energy-momentum 8-function. 

The-amplitude factor 

A:l_tw-ie)A,fWtt~) zD Ro<.tr€-t~>G~ II'(~ (K)+1i.W-i11,k+P> 
. ).. (l, ~f, ( I ( I o(. l - -

X-~ (f/ J:! !~ J.t.'>] L. [(o<.'/T!).It)<J-11'~ .. >! 
:z.:F,w f~(· 1/;.;;w' {6.4~ 

X Gf'f ( ~(1(. ()()+ t; w +t'~, IS r_f!.) ( r11 r·~ /c< >] 

Now, . 

(6.5) 

Thus, 
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rtlt>) \'h1 cP I d~P' . . .b(. P' ) 'F ::: L _!, _lSI - J 1'7.,c. ( K) (/- 11..,.1 {..#(1)) ( I+ . .J 
t<'" V.1l') (~1("' cJ.rT) . 

I . 

(6.6) 

Similarly, the quenching rate is proportional to ·, ,, 

r; c r; ~·15. ~ ~!!!.7 d_j ~ r!_1'
1 

nee. ( ~<> -tt(p> ( l-11fl("k'J) ·. . 
o< It!( j ~ ff') (J. ff ( J.1f') (. "L 'f1' , . 

I 

. A ,(. /-1tlf'J )u.fl' ) 1 $ ( 1;S r f+'f- -?-'- K') .t.:f)tl <f(~~tk.>-rlrw-r~f...,)- ~~C.k'J-6lfJ'J) 

x J lJ, ( JS'.<.;r-•(T'r~ll<>t-'liw.,.~£p>)lt.!•JS)f' 1

"1!. ) <:· 7) 

{l,f .( a~r ( ~"" ( k >+ ;~;w; 15~"!> ( ~ tr.f 1-</ / 

These are schematically represented by Figs. 16a., i6b., respectively. 

Here the Born approximation for the quenching collision has been 

replaced by the full Barn series (see Appendix I). These expressions 

will be discussed after the cuts·of Fig. 14c. are considered. 

By analogy with the cuts of Fig_s.. 14a. and 14b., the 
\ 

contributions of the cuts of Figs. 14c. (i), (ii), (iii), and (iv), 

may be represented by Figs. 16c. (i), (ii), (iii), and (iv), 

• 
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respectively. Indeed, if these processes have coherent final 

states, then their total.contribution may be written as the complex 

square of two coherent probability amplitude~:~ as shown in Fig. 16d. 

Figure 16d.. has a clear interpretation. The "final" state 

includes a photon of possibly different energy from th.e incident 

photon and a gas particle which through energy conservation makes 

up for the difference in energy. If the atom may actually be 

regarded as in an excited .state prior to the pnoton emission. 

(for example, if the atom is stimulated by an excitation line 

.continuous· over the absorption line of the atom,) then the 

emitted radiation contributes to the emission line of the atom. 

This emission rate might be important in opacity calculAtions· 

where the wing spectrum is needed. Alternatively, if the excitation 

and de-excitation must be regarded as a coherent process, then 

study of the emitted radiation outside the core of the emission 

line could be useful in investigating aspects of the diabatic gas 

collision from levels other than the resonantly excited one. Detailed 

analysis of these rates will not be considered her'e. r and r (o) 
Q F 

as defined by Eqs. (6.7) and (6.6) may be simplified considerably 

in certain cases. It is useful to see to what extent they may be 

related to experimentally determined quan~i ties. Only r (o) 
F 

will be discussed in detail since similar arguments are applicable 

• 

/ 
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B. Approximate Expressions for r/0
) and rQ 

(o) r F may be written 

·where 

~ 

1( .c +'ff'liJ_f.. /' I (4..- ( 1<)-~oli~ai IS+ f )(,8 I '4 If ~\o<) I 
n V".2.1i~ c.:;tf .... I . ~ 

(6.8) . 

. (6. 9) 

. Here the initial photon polarization is averaged, and .the radiation 

coupling matrix elements are written in t.erms .of rotationally 

.. invariant operators. Also, the limit of Maxwell-Boltzman statistics 

is taken. 

As discussed in Appendix IV., for a number of situations 

' ' 

I. ·' 
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In Eq. (6.9)' th~ states a,.· a'· have been assumed to correspond 

to a single level characterized by the angular momentum Ja • 

Thus in the sum over f3 , f3' only terms labeled by Ja + 1 , Ja 

are allowed for dipole radiation. Further, if levels with these 

angular momentum are sufficiently separated in energy as to be 

: considered non-overlapping, then the sum in the brackets reduces 

to a single sum over the spin projection ~ • Equation (6.9) 

becone s: 

·The se~ond integral in Eq. (6.11) may be .written: 

Z < mt J Vr /k.' p')' 1/,. /mf) ( 'ltttJII!r ll.t £ PJ Vt- 11fAl} ~ 
*t' ""r' 
. where 

·and 

·i 
! 

' (6.12) 

(6.,13) 
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(6.14) -

A,/P) is ·clearly a rotationally invariant operator. Thus, the 

first matriX element vanishes f'or \ = \, , and in Eq. (6.11) · 

the sum over \ · may be removed f'rom the squared quantity. 

Finally, the lowest order contribution to the total 

absorption rate f'rom resonant photon scattering is (see Eq. 2.17): 

where 

(6.16) 

the transition rate f'or photon emission. The brackets denote a 

thermal average over c.m. wave number of' atom. For the case in 

which the atom is isolated, Eq. (6.15) :r:;educes to the well-known 

result f'or scattering of' resonance radiation. More generally, 

Eq. (6.15) includes the effects of collisional broadening and 

Dopp~er shifting. Further simplifications of' Eq. (6.15) will be 

discussed later. 

• 

/ 
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For the quenching rate:" 

··where 

Similar arguments to those used in Simplifying F' reduce a 

... ·.-

(6.17) 
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Note that the collisional de-excitation probability is not directly 

· related to the de-excitation cross-section from an excited atomic 

state since it is evaluated at the initial and not intermediate 

· .energy of the atom-:pc.::.1 ticle system. Similarly, the energy 

conservation connects the final state with the initial state--the 

nature of the excitation line is "remembered." 

'It is convenient to relate the quenching rate to an 

associated beam experiment in which an atom is excited by impact 

with subsequent photon emission. Indeed, it is·the excitation 

cross-sections which are determined experimentaliy. 

By space and time inversion symmetry, 

I ( ls.'M "'J".sP I I T-~"(~o<.( 1<.)-t 1i w + 6(.f> )/( f-t/5) m.l3t"' t-> ,~ =:: 

. . ~ 

I ( (f~J!.>-ItfotJ(,f!.l y+(~OO+-Iico.,.eLp>)/~'-JHo(,~'f-')/ 
(6.20) 

Under the sums ov~ spin projections set 

Similarly, 

In the expression for r Q set E + !~.!! . :With this ·change, 

(6.22) 

• 
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11.-<- t k) __, 11.«- (IS- .f) (6.23) 

/ 

(6.24) 

· where 
'· 

';""' 

·compare this expression with Eqs. (6.8) and (6.9). Due to the 

simple form of the de-excitation probability there, only the 

resonance factor is involved in the thermal average. Here both 

() the resonance factor and the de-excitation probability must be 

:averaged together since the de~excitation amplitude is dependent 

·on k • To relate this expression to the analogous beam experiment 
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it is necessary to approximate the average of the product of these · 

functions by the product of the averages• Such a procedure is . 

reasonable Jn two limiting cases. 

1. the absorbing atom is massive compared to the quenching 

atom, indicating a weak dependence on k in the second 

factor (He - Hg, for example), or 

2. Doppler shifting is negligible comPared to pressure 

broadening, and the broadening particles engage in 

collisions in which the momentum of the target is 

unimportant (i.e., plasma quenching particles are 

electrons). 

For these limiting situations, P:Q(P) = 

.. 

(6.26) 

· where an average over P has been taken. Such an average has ·no 

effect on· r Q • . Since the. first f'acto~1 must al.so be independent of 

· 'beam direction, this average may be taken to act on the absorption 

probability. Then, this last factor is independent of ~ , and 

the sum applies only to the collision probability factor. 

• 

I 
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Finally, the contribution.to the total absorption rate 

f'rom quenching may be written: 

(6.27) 

·where the excitation cross-section, 

.,. 

X ~ (t'-rp'-IS-r-)tlo<.) 2} /(15t,f-IT-fl~~,{k'JfHp'J)//f.k~ ~~)/ (6.28) 
. 1Kt, m"', ~ 

. (6.29) 

has been used. in Eq. (6.2:7) • 

. Thus, as one might intuitively , ex:pect 1 it is :pas si ble to 

write the :partial rates as the product of an excitation probability 
i 

and a de-excitation probability into a particular final channel • 

.. 

/ 
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However, it is clear from the·above discussion that this res1l.l.t 

is by no means general; it requires a number of simplifying 

assumptions • 

C. Total Absorption Rate and Branching Ratio 

Common to O'F(O)(P) and O'Q(P) is a factor which contains the 

~etails of the pressure broadening aspect .of the absorption line 

problem. It is usefUl to determine to what extent this quantity 

may be related to the absorption line. As discussed on page 39, 

the total absorption rate is proportional to the discontinuity of 

the amplitude of Fig. 11 in the limit that broadening in the lower 

level may be ignored~ It follows that: 

(6.30) 

'-' As discusst:d on page 45 Eq. (6.30) may be approximated as: 

The total absorption rate then becomes: 



. As ·discusse.d in Appendix III, 

wher.e ~f3 .is an Ef3 ·- proper self-energy. operator; i.e., in 

·diagram expansions·for its matrix elements no single atom line 

labeled by a state with energy Ef3 is allowed!_ 

As is well-known, 

where 

Eca,uation (6.32) becomes:. '···' 
.~~I: i . • ' : ..: 

(6.33) . 

(6.34) 

(6.35) 

·. (6.36) 

) 
(6.37) 

,. 

/ . 

...... 
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·in Eq. 

,/ 

The effect of Doppler. shifting·may be explicitly shown 
2 kzP 

(6.37). Set 6t3 (k + P) - €a(k) = h rot3a .. + h 
M 

The z-axis is taken along· P • Then; 
. -

or 

( [[-it-( tv-. --wl"'-. -_ A-~-~;__:-~:.._~-J'"_1_P_4--j} 6 • 39 l 
rtf~=} 

The bracket in Eq. (6.39) means averaging with 

If the self-energy function is only weakly dependent on.c.m. 

momentUm of the atom, the.above expression is the basis for the 
! 

simple "folding-in" :procedure often utilized to account for 

Doppler shifting. 

It is important to note that nothing has been said about 

the specific nature of'the collisions u:p t,o now. For example, in 

a hydrogen :plasma the effects of both electrons and ions must be 

... 



':i.) ''. 

0 

() 

r; considered simultaneously; ·1.e., no "imp3.ct" approximation has 

been applied here. If, however, the self-energy· is only weakly . 

dependent on the frequency of the incident light, ·then the 

expression above represents a Lorentzian line shape where r~) is 

a measure of the width of the line. 

To relate O'T(P) to the expressions for O'Q (P) and 

O'F(P), it is necessary to approximate the ·averaging over the 
-

atom 1 s c.m. momentUm according to the technique used for 

Com];:arision with Eq. (6.27) gives: 

6 a c f'J / ) = . 1L I _ttt > )·e piuv /~~~-. 1i. fl/6 ( ~- )( ~~ P-' )\ 
.·. '( /6..,.C P . l" fto<.J /If \ 1 1ft. N\. <.cT~t- ct::r~ I 

xL ( frtt!-"'" (I<)~""'~ ~ • f)>t 
where n • is the number/volume of 1quenching particles. The 

brackets in both Eqs. (6.40) and (6.41) denote averages over 

(6. 41 ). 

.. 

c.m. momentum of the atom and the quenching particle. The branching' 
. . 

ratio for. de-excitation by collision or radiation is then determined •. 

In the even that r~ is not a sensitive function of the 

·,/ 



<) 

0 

-57-

incident energy or the c.m. momentum of the atom, it is precisely 

the full-width at half maximum of the absorption 'line. ·· The 

branching ratio is then determined by quantities directly accessible 

· to experiment. 

To get an idea of the branching ratio for a.particular 

system consider the Ly-a line of atomic hydrogen in a plasma. 

() Since the total cross-section is a Lorentz invariant, 

(6.112) 

where negligible corrections to the statistical factor have been 

ignored. Note that the cross~section is dependent only on the 
' , 

energy of the electron in the rest frame of the. atom. Then, 

(6.43) 

,where for the Ly-a line.of hydrogen J..L(I3)/~-t(a) == 3 1 and 

r(Ly-a) is the full-width at half maximum of the absorption line. 

the frequency of the~line, V = volume/electron, and is the 

/ 
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cross-sectional area of the fi'rst Bohr orbit. For calculational 

convenience a dimensionless·measure of the cross-section has been 

introduced: 

(6.44) 

. . 0 . 19 . 3 11 
0 For T = 4o,OOO K, n = 10 electrons/em. 1 r(Ly-a) = 0.017 ev. 

·'12 ·. From experimental data on elec~ron excitation of the Ly-a line 

numerical integration gives 

}t te~:r~ lf) .... ,0. l> lZ..' 
Titre~ hD /J 

The value of the integral is essentially determined ~Y the threshold 

data, the exponential factor PrOviding a st~ng cutoff. Then 

C'J~C'JT. = 0.019 or r(P) = 0.02; The b:tanching ratio is defined as: 

From the above it is clear, that p~e quenching is a relatively 

unimportant mechanism for the de-excitation of the atom in this 
' 

example. 

(6. 45) 

For the case in which quenching particle is identical to 

the absorbing atom, the quenching rate is usually a: significant . 

6 . 
part of the total rate. 

..... : 

< 
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APPENDIX·A •. Analytic Continuation'and Frequency 

Sums for Total Absorbtion Rate Calculation 

r) 
1. Special Case 

The first diagram of the ladder sequence for the special 

.case· involves the sum, 

'?; ~"' ( !!,1 Wn,) Gr9f ( 15, +-f, Wn/ wn ) 
n, . (A.l) 

· over·frequencies 

• This sum is reproduced by the contour integral 

with the contour surro1mding the poles of 

for z . = ro , with residue 
nl 

i 

( A )'•1 ( ) .... • See Fig. l:7a. 

(A.2) 

Take 

Im ro > 0 • In accordance with the well~known analytic structure 
n 

· of the one-particle propagator, the branch cuts at Im z = 0 for 

G (z) aAd at Im(z + ro ) = 0 for GAA (z + ron) are explicitly 
aa · n ........ 

shown. 
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It .is convenient to distort the contour .n0 -+ r to 

. facilitate the integration. The integral becomes: 

t;,;! ['jx 1,: lx) &"-"'lx·,.?) G:t't' fX-iyrw0 ) 

- j O"'tix J; 0<) Ga<.o< (Xrt'~) GtltX.,t'lf. +LtJ~) 
-Od 

.,.. f;~~. £ (x -w" ', co(../x-,.r-1<)~) Gt'l' ·t·-·~) 
(A.4) 

-.. ~ j .. g( x IJ_ ( )t _ w,. )C ""'-(!(,..;~ow~> Gf'lxri '{} 
_w 

. To perform the analytic continuation set f (x - oo ) = f (x) + n + 

then oon -+ oo + ie where e > 11 · • In the ~hird and fourth 

integrals set x -+ x + oo • Equation (A. 4) then becomes: 

(A.5) 

where 

.(A.6) 

i. 

. (A. 7) 

It is co~venient to Write 

.. 
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R++·==-
. (1)) .. '( '') _, 

( 
1/. . -A 1/ . . 'X . -ll X+ ) 
At. ;vt t ---

. = (A'/-~1- A x;•1f'( ('K"!-A/(.~11_,_ ('Xr;. 'X';'J'') . (A.8) . 
.. 

with 

() 

(A.9). 

LJ.'k':) ~ < f If t(y.+4)1 I!,.,. f)/f> -
+ ( {t ( ts,~ !'> ~.~ t. /5,) )-it tv;· (A.lO) 

. (A.ll) 

Upon exp:mding the two terms in the second bracket in the neighborhood 

of 

. similarly, 

1\ 1/ {I) A?<,,.) ~ 0. 
~~:t J :t / 

R + -r = . (Jv ) ,_~ . . . , ~ 
-- rt . 

(A.12) 

(A.l3) 

/ 

,• 

. ! 



R-1-= ( e:. x~'- .c:. x':'P (('X: LJ.r:~·~-'-(?C.-4~ :~· r') 
. . . tJ.} -1 (I) ' {,.} -I 

= ,_7T,. tft)() ( ~x~o- ~x 4- J +- (Ax_- A Y-+ J 
v (I} 

( 
Ar-_ 

~l 

(;z.) ) 
A 'XI- +- ••• 

(/(.y.)t.. 

These expansions are divergent for X = 01 but their validity 

. rests on the slow dependence of all quantities-on the momentum 

() 

. of· the atom and the . final integration over this-variable. _ · 

From the expansions above it is clear ·that the dominate 

contribution to the frequency sum comes from the first integral 

in Eq. (A.5). If the smaller contributions are neglected, 

Eq. (A.5) becomes: 

{ £( ~bl( k, )-~)- { ( 4_(1<, )- f'a + liv)) 

t[ t.., _ c~(t[(,•.f>~~ t~<,,)-h ifu«-tk.)-f<ati~<>,J5,+!)1(> -I 

- (oc:. I P-( ~(K,>- ~~ 15, > Je~;)) 1 

In the spirit of the impulse approximation, only 

on-energy-shell scattering amplitudes should figure into the 

determination of'the self-energy functions. If self-energy 

(A.l4 ) •. 

(A.l5) , 

functions· are smoothly varying functions-of energy and sufficiently 
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0 similar approximation for the 13econd statistical term of Eq. (A.l5) 

gives: 

.::.:;-· 

(A.l6) 
-=: 

(l 

.With these approximations Eq • .(4.4) becomes: 

; (e-liiw_ ,) /11 k,, L not. t ~,) (.' :,_ 11" t.. 1!,-r f-> ): 
(.). ff} o<.,f I 

X (~IT~ /f) F~- ( ~( ( /5,+ _f)- e:.~. l/5, ))-{ <r tl+-t!f,tf] If>'. ' (A.l7) 

. - <~tf-tl5,>/<;</]-'(r 1l":~~ot> 

·where 

(r t?ftl/5>/r/= MP tl)t;'f.IS Jlt>/ . 
. . · v= e:rt.k)--~ 

~. 

· To calculate the full ladder sequence it is neces.sary to 

explicitly perform the frequency sums of, Eq. ( 4.12). The gas 

~rticle frequency sum is converted irito a contour integral 

, surrounding the poles of f +(z) in the usual manner: 

~. 
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~ L; GttJJ(w,,-r,wfft;w.,,.) f-,~~) r;tD>lw,, Jf-,> 
~, ' 

=- f?u;du..c.{~(~){)/~>(wn,+i.-w,,..) f!,.,.j) Gt61(~JiZ,>] ==-

(A.l9f. 

' [I (! (f!.,-t j )-~)-It ( i-((D-fa-g G (~J( 1-(ft -t' >-f-.,+-Wtt; wH,) e)~ 
f ' 

.Thus, the final frequency sum becomes: 

i [; G«~c(.} w~ /5,.) 1\o~.,_,,., ... ,t'' (w.,,.. 1 w,.)..-ttv11 ) 

' w,,.. ' 
t G ' ( w"' .rt.u,.,) /.5p. of"! ) (!; tli) (_ £ t. 'f, +-j )r Wn~.-l.t)H; /4 J P-,) 

r:~-t,. ,.. · . . (A.20) 

which is equivalent to: 

(A.21) 

where r 
0 

is the contour of Fig. 17a. In anticipation of the 

. distortion ·of the contour, r 0 -+ r , note that the second factor 

. in the above 'integral has: 
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1. a branch discontinuity for Im z = 0 , 

2. a branch -discontinuity for 'Im (z + m ·) = '0 and n 

a simple pole for z + € (,E1+ 9:) - m - € (p1 ) = 0 , 
nl -

if A is assumed to have the analytic structure expressed by 

·1. and 2. That · A does have such a structure follows directly . 

from the iteration equation which it satisfies. The first factor 

in the contour integral has been chosen in such a way that the 

simple pole gives no contribut-ion for the r contour of Fig. l7b. 

As in Eq. · (A.4), integration along the r contour gives: 

f.,.,.j~x ( -4 tv. J+-1:..) G"~l('l(- wH, +/; t '-~ ""J>-/'~o) (;t'.._f,~ (~+w,.) 
..... 

. X [ G..<.._ .... (>I-I 't ) tt..f~ ,.._. ~· (X-i'( I ~+ "'~ ) - ~..:.. t•• r) lt.t.lot. 't ,(X+( r 11(+4>~ J] 

. ..L . f:; ( .f fx) .,./) G'">(x .. w.,;wH,-r ~ lf-,+ '} >-fa..) C$.,c,.~.c<,1. t.x- w,) 
X 211t )_~ f. - . ·· (A.22) 

where the momentum dependence has 1been suppressed.for convenience. 

The analytic continuation of · A bas three separate pieces: 

(A.23) 

•• 

/ 

• l 

I 

.. : 
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where 

Let 

.· .\. 

.;.. I +I 
) 

represent the various analytic fUnctions defined by Eq. (A,22). 

Then, 

. x c rs,.t,_ ("., w +t'O) 1\tJ<..,. f.:d"''t' (I<_ ,.0; ><+w + i o) 

+ fin/ ;X [(f._l>l+ w) ~f.){; '"'(>1.-i -''(<+ E I f-,.,.p>~/"'-) 

)( · ;
00 

o<..,./o) GA. A (X+t.i>-io) 1\o<",~~.A,~./a<.'A' ((-/O/ X+tv-t'D)] ~.J.o<.J. r:a..r.:z. . r-· . 1 lj 

-Cd 

'(A.~5) 

... 
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This equation should be c~m;pared with Eq. (A.4) • The same ~x;pansion · 
... 

· ·procedure used there indicates that V is correctly represented 

in the same approximation by the first integral of Eq. (A.25). 

For A this result implies that 

- \' j<J..1K;.,j~'.J, J (_ ~(,_,.,. J J- J1.l..[!, >) {tl(,_fS,., f-,-t :J I 1//o(/ !Su f-1) 
L1 ' ... :t:1T') .._1.ff') 

tJ< .. , t!'-
't(< I p /V/,4-E'+I< e,r,) r~x{t!j.tx)-t((~(p,>-~(f-,-tJ>)) f' - + !S, ,., f '- _,., r ~ 'j_<>- - . . 

x /7'"1(x-Z-t'1tlot G lf-,.,.~>-1(14. f-,)- (/tx-~>t.o)+[{~lf-t"J-~([!.,+:{>)) 
l7 11 - I ' I 1- ' . (A.26) 

x G (IJ) (x-l-,.""!~t> + e t..'f-,.,.1'- frt., f-,) ~ ( >t +/-"A..-{:~:). t 15~' ) 

x /\o<~.,f:t /D{'( ( IS,., x -io I ~.,_ + ~ x t-t....> +/o ) 

.. X r w _ ( ~~. ( !S •• 1'> -{;,., 15.,) -( (( ... , r ~{ .. ., ~ .. 1') '(·>- ( o<..IF(><,!S;) 1«.) r I 
' '' I 

\ 

'·-C: 
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From this equation the various branches of A may be determined. 

The "ladder" approximation. for j(r, ro) may be written: 

where r 0 is the contour of' Fig. 17a. With the contour r the 

integral is: 

· t:;,,.j:y., ( J;.t~)- ~ lX-f~)) Ck (x-io)G~t<' (X-tw -rio) ~t.t. 'f' ~x -/o l'x.+wt/0) 
-l>tl . 

+ /H ;:. ;{t>r+<.> JG-"" t~-;o) £?/ ~-"' -<o) ~ t.<W tx -(D I X+M -io) (A.28), 
-00 

- f-i, i /.. ;k -!,. M G "'-< ( xno) G(' (' t '1. + i"+4> ) !'I.( I /oC '('' (x -.·o lx+w t:o )_ 
-~ . 

() 

· Again ignoring all but the contribution of' the f'irst integral 

of' Eq. (A.28) evaluated in the apprbximate fashion illustrated 

above f'or A 1 one f'inds: 
': .. 

,i· 
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X (o</l'·~l() l\~/o('f'{JS11 Y.-,"D l~+-f:.,"i.+li>1-,-o) (f'l;r~ /c(') 
(A.29). 

x {tw _ ( ~( (!s,-l> -e.cJ JS,))- ( (( 1'} 'Cx+w, 15, +P Jr >- ( .... iPtx, f!, l /«.) t 1 

· If' the resonance is sharp and both A-+ and./ '"--are smooth _f'uncti ons 

of' ~equency, one may substitute for these quantities as arbitrary 

functions of' f'requency their values for ro + €a(k1 ) = €t3·(~1 + E) · 

The same expressions are used with the frequency dependence 

. suppressed. 

The statistical. factors appearing in Eq. (A.29) are conveniently 

rearranged as: 

. i 

· with a similar expression for the second statistical factor. 

Finally, ,in the. low density limit for absorbing atoms: 

. ! 
I 

.• . 

... 
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(A.31) 

p ( f,w) =- (e-lwt:_,) lJ }J;__t<, 'Yku<;> (I- XAc ~,r ?J). 
. o<,t c_-z"'TT'/ ( . . 

~'4' . . ,,-
X /c(. 1 :r:t 11) A --r ( K,t t<,-tP> (iS' rr-i k'> (A.32) 

\' - - ( f ~~ '"' ,~, - - - . I - , - (' 
() . . - I 

• [ -tuv- ( ~ ( 15,~ l'l- 1<. 'fS,)) -(<(I I"'< 15,<1') If) - <c( I Pi !f,l k>) J 

.where 
. -+ ' 
A satisfies the equation: 

. . . 
1( ~17; $ (d.,< (X,>- e-"",_t- I<~) -ri:C.p,>- l:tp,,+j>)(fl(:l !!'LJ 'ft~J(V/f/G~ 1 ~,) 

(A.33) 

-~ . 

X (I /-t ~IJ f-, J VI (~ft -~' f-,-t:J > ~,_t,.l~(" ( ts. .. I K..-t f) 

• X [ fi.w - (e~, CIS,~ .f)- G,,_l'J..> )- ({(._! j'C!S,_+ .m(.>-{«L iflt:r..l fx.~ -I 

•' 

0 
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.2. . The General Case 

In the general case consider Eq. (4.3). The frequency 

sum may be performed in the same way as with Eq.· (A.2) • That is, 

(A.34) 

) R--

where as before~ 

(A.35) 

The first integral of Eq. (A.34) gives the main contribution as 

discussed repeatedly above. Gr'r(~~) is to be regarded as the 

matrix elements of the operator G(~~) satisfying the matrix 

equation, 

where e (k). is the kinetic energy.of the atom. a 

Consider the eigenvalue spectrum: 
' 

/ 

'J 

. j 

- ' 
' 



' !' 

~ .. 

>. . ·~ 

·(Ho -r-p+('/()/5>) /x~·(xJis>>~ wct"t.,/5> I ~,·(x,IS>_) 
' 

Associated with the set ·(IXi(x,~))} is the reciprocal set 

Clsi(x,~))) for which 

(A.39) 

In general these eigenvectors do not constitute a complete set. 

However, in the limit that the /' s constitute a small perturba­

tion on H0 this 'conclusion usually may be assumed valid. In 

this event G(x +. i~,~1 ) has a spectral representation: 

(A. 40) 

and since j(x~ ~) = (/! (x, ~)) t , (A. 41) 

(A.l!2) 

With.these sp~ctral representations the frequency sum of Eq. (4.3) 

becomes: 



0 

[) 

X (~I ~·(·ow, /:S,.,. e)) ( r; (X-tW,I:S, +I') If'> (A.43 ). 

-1 . .. . . . . "'/ 

I( .· ('I(_ ,·'1[ .,. r-();- ~IL t t<,>- ~.~~"t X1 /S, >) (x+t'( -t -Aw'f" f-tC e-a. t.!J,+!)- ~· (X.+~ /5,-tfJ 

Again it is necessary to approximate the product of these energy 

denominators. .However now the procedure used previously.is 

ambiguous since the point of expansion of the energy denominators 

is not unique. It. is important to realize that the end result of 

the expansion is to uncover an energy conservation relating the 

integration variable and the point of expansion. Let r be a 

measure of the expected width of a particular isolated line. If 

the self-energy functions are insensitive to variations in their 

energy over a range r , then the result of the expansion is 

clearly insensitive to the precise point of expansion. For convenience 

ex:r:and about e to make easy contact with the old result. 
0: ' 

The energy denominators may be written: 

. . _, 
(t- /! r f<a..- G.(. (/:s,J ~ ( w/" tx1 ts,)- ~)) 

, (x '''f. r f-•·.- ~"-I K,)- ( w_; lx<w, /5, '!' )+G,J 15,•!> ~li, II$.>) J I 

·r·r. 
;j 
'".I: 

(A. 44) 

•• 

'.J 

_ ... ;; 

• 
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Upon expanding one obtains for, the first integral of Eq. (A.34): 

Equation (A. 45) may then.be expressed in terms of the original . --- : 

basis through the use of the dyad vector space introduced on 

page 30 •. · One obtei.ins~:.for (A.45) · 

where, for example, 

From.this example it is clear that the results of the 

(A.47) 

special case may be t:ansposed immediately to the general case. The 

only essential difference is. that the equation which A satisfies.·. 

involves summations over both the right and left .hand sets of·· 

. subscripts. One finds: 

• 

.. -:: 
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_._·, . 

. -·· . 

•••• ·> .•• 

~. :. 

•, 1 

:.:. 

.. · 

.. 
(A.48) .. 

'')( 

and 
. ': ·.· 

. '! 

. ,, ~~ :.··. -. -. 

. · 
' ·; 

... '1. 

X (f,' f ... ~. P:l I v lp. f;- !f.; f, f" J) 11~:1' .. Jot.'f' (fS.IIs.·!) (A.49) 

)( (-<.f .. / (jev -(II/' (JS". ! ) - H :(IS. I)- ti-t t If. •f')-J -/'5. ) ) r i-t..' f.'>..· . .. ~- . 

-)_. 

··, ."' 

.. :; ~. . -,- :' 
. -- -~ ... 

'; ' ··. . . ·-. ~ . . >· 
'' ·.·· .. ·; t 

• 1 I ,. ~. / 

'"· . '. _.. ~:- ·.:- . : ·: .::. ,· ... •.t. ;. • : ·. 

(. 

:. •' . , 

'. 

;", 

'· ·~ 

-:·-··' :· .. 

. '., . ' ~ 

:.· 

. ,• 
~: . -;' 
)'·· 

._, . 

· .... · 

r-,.'•; 

" 
I·' 

~ .,· ?·· ·. 

.. 
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To put these results in a more, transparent form it is convenient. 

to ·define: 

. . 

M15'(f,~)= 
"'f'~'t . . 

("'~ 1 {t.
0 

_(H.~~. us,. !rHoL ( 15,> )-tfi.;, .. f>-12 ~.,VI\{;,, J.<t'"f>I-'!X · · · 
. j' . . (A.50). 

and. 

(A.51) 

. where, for example, 

(A.52) 

Then 

f(f.,w)-.:. 

(e-fliw;,)b /¢'
1 
rt«c.~.)(o(/T-~ If) M~;f!;t;>)(f'JF-~ fot.'/ (A.53) 

o< .d L1..11"') · · ( I 
· I C 

o<', f' 

I 



:) 

0 

k 
where M-1(~ w) satisfies .the. matrix equation 

(A.54 r 

in the dyad vector space. 

Above the effect ·of the collision interaction is treated 

in first Born approximation. In general a gas particle may 

collide virtually an arbitrary number of times. That is, the 

· amplitude associated with the ·first graph of Fig. 18 must then 

J be replaced by the complete series. This amplitude is obtained 

from the solution of: 

(~ k~ P-' I /V1( tit}) liS()(' f-)~ (J:S.'D(./ f!.'I.V llioe, P-) 
~ 

-f ~~~~f..' 1 vI 5,o<,, f!,)-J r; &~b)(wn ,o<, ~. > 
~ ( I 

JSuo<,,p,~ . . . eo,., . 
x G ~4 ( f -t- }' -LJ ~,, f-,) \ tr, oe,J f-, I Nl (1+ J )l[$(1(, P..) 

~ . 

Upon carrying out the frequency sum 

(A. 55) 

'· 

/ 
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. . . . ~I ' . 

7 t(t/r J) == V + V [ ;ffj-t/ t! -k:- k'; +-ftA.-tfJ-] C 1-Jt~~,){_ 1- n!) 

X ( 1-- e-f(l<oq_-f~)e-~(K/)~"-f',..J) J:to;+'f) 

. . + 
where 1-(~ + ·§) · denotes the two branches· of · M(~ + § + .ie) •. 

In the limit of low atom density and Boltzman statistics 

for the gas: 

(A. 57) 
., ,_, 

'} 

(A.58) is precisely the two-particle scattering operator where· 

. the chemical potentials have been absorbed into ~ + s • The 

coll~sion kernel now becomes: 

!<!I~ .. ( p):: I 0f, ~1/! "J 1L (. f,) 21i'tJ ( 1<t k,.) l-'6lf,)- ~111./ ( K, )- l:{f. >) ' ' ' ' 
o<. /A I lot,. A,. J ~1.'fT')7 c_"Z.f1') . ' .z. ' ' 

' 
11 r . , (A.59) 

X ( «/ f,, I/-( ~If, /lil f,) T-t' R(.P+ ~~~ P-1 I e-t.I.Sl, y.. l«sq4&) 
' J 

' 
/ 



·, 

I , . 
. , 

!,···· 

" -~· '·' i ' 

. I 
:r 

.. ·,· 

·.-' .. 

· . .;. 

., . · .. · 
. ~ . ',. ' ... 

.. "t ••. 

. ~ '. 

~-eo-
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APPENDIX B~ Reduced Diagrams and Rules 

for Calculating Absorptive Parts 

In the following discussion skeleton diagrams will be used. 

That is, all diagrams have self-energy insertions removed, and each 

line has associated with it an exact single-particle propagator •. 

The discussion is equally valid for any given order of perturbation 

theory where· free propagators .are use~ throughout. The system is 

composed of photons and Fermions. 

For Fermion lines 

. (B.l) 

and for the photon.lines I 

r 

. (B.2) 

Here z,x are line la.belings,. i.e., particle type, internal state, 

momentum, etc • · 

An arbitrary diagram contributing to ,0(IDn'~) may be written: 

.:R"?w f)= E t lf)(~,X) (i>dptl; (Lt I~) •• J':t }',. at 1/t.) 
):' 11J .:Z. X J .. go -OA 

I . 

x / .. " r. a., (lf,J- _. -/'dfJA-x trf.> fu~rz"' P. ··"' 
- 64 - /1(1 . nt, ...... ~ ' 1t.-t 

. II [cA-,., )- --(..IL~ r~>(Ar;,t ). - .(_1/..r.,j- <f·l' (B.3) 

/ 
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·where p .indicates a IBrticular diagram with r Fermion lines · 

s boson lines, and u + t independent . (1)1 s • L denotes various 

·line-labeling sums ·with ( ) z,x 
g p (z,x} representing all the matrix 

elements, sign factors, etc., and the Sl's are linear combinations 

of the ro' s • 

If the Q) sums are performed energy denominators linear 
n 

. in the Q) appear. 
n 

Upon analytically continuing Q)~ Q) one finds n , 

that these denominators give poles as Q) approaches the real 

axis. To locate the positions of these poles, J.S. Langer noted 

that the same energy denominators appear in the finite-temperature 

theory as in the zero-temperature theory. 9 This fact is convenient 

since Landau's reduced graph procedure may be used in the zero-

temperature limit. Under the limit 

,-
the frequency sums may be written: 

.where for notational convenience let 

"': 

I 
I 
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r 

.) 

..... ' 

0 

!n the usual manner rationalize w1 th 

/. 
' 7T ( r,. + ...11.,- ) 

' I 
t=/ 

·and introduce the Feynnian parametrization •. Equation (B.3) becomes .. : 

(B.4) 

l"' I 

where 

L 

D =- .£~/ (f,·" --'L,·'" ). 
t=l (B.5) 

An integral transform in a single variable becomes singular 

when a singularity of the integrand coincides ·with ,an endpoint of 

the integration . contour or when the contour· is "pinched" by two 

singularities of the integrand whioh straddle the contour and 

·develop a coincident singularity on the contour. Analogously, 

E~. (B.4) may be regarded as a multiple integral transform and 

develops singularities for vanishing D such that either: 

1. an endpoint singularity or 

2 • a pinch singularity 

/ 

·I. 
i 

I 

I 
' 
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appears in every stage .of :l,ntegration.13 Thus singularities occur 

for D = 0 , . and either 

()i} -=o, ()tr). ' ' 

' 

ai = 0 (endpoint) or 

1J2_=-0 
Po</( 

(pinch). .These conditions yield the Landau line and loop ~quations: 

1. ai. = 0 or si - ni = 0 

2. ai(t) si = 0 for each.closed loop in the graph. 

I develops a singularity in m when this set of equations 

yields a determined solution. A purely algebraic procedure would 

be to start with all ai = 0 and set as many ai ~ 0 until a 

determined set of equation is obtained. Then those lines for which 

ai = 0 are excluded from consideration, and the vertices connected 

by these lines may be fused together. Thus one obtains the reduced 

~raph, the lines of which satisfying 

J: --_ll..7-D. 
' I 

(B.6) 

An alternative approach is possible~ Given a total rate 
• 

diagram, draw in an auxiliary·lihe such that the graph falls into 

two connected pieces each one including an external vertex. This 

procedure is facilitated through the use of auxiliary graphs. An 

An auxiliary graph is obtained by deleting each interaction line 

and fusing the vertices joined by them. To illustrate the procedure 

see Fig. 19a., l9b. The value of introd~cing the auxiliary graph 

is not apparent in the example shown in Fig. 19a. The somewhat 

' ;, 

"'· 
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more complicated example of Fig. l9b. would be quite difficult 

to analyze without the aid of the auxiliary graph. 

In the zero-temperature case the.analytic properties of 

. /(ro,-g_) are used to obtain its discontinuity from a given reduced 
.. 

graph. At finite temperature no such method exists; if in 

m = m before performing the indicated summations 
n 

an essential singularity develops at infinity. Langer constructs 

an iteration procedure closely related to the analytic continuation 

method for zero temperature. 9 Here a simpler yet heuristic 

derivation will be presented. 

Consider the reduced diagram of Fig. 201 corresponding to 

a :r;e.rticular pole as per the Landau prescription. The reduced 

graph .is composed of c Fermion lines and d photon lines. The 

special labeling of lines is possible since the number of independent 

frequencies in a reduced graph is equal to the number of lines 

with one frequency conservation constraint. The·sums in Eq. (B.3) 

may be written: 

If) . . . . .. ,h ) (B.?) 
T(../ ( UJ n/ .. . J w.,.te, UJH(.,' ••• J Z<J 11ttl-t) };_c..f.t' ••. 'Jr, fat.,.,, .. 'JTs' wit . 

X { ( ((}~,- ]', } ••• ( ((}.1< ,_.- };.~ ) ( W ~«; '/1 ) · · (.((Jilt <f. 7 tf.J · / ( ..ll.,r '/>J it 

' .I 

/ 
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where I c,d is an.anlytic function of the frequencies m , •••,m n . n.... 
1 cc 

The :frequency sums may be represented by contour integrals in the 

usual manner. The iterative procedure of Langer indicates that in 

the neighborhood of a Landau singularity I d may be factored c, 

past the integrals evaluated at the singularity. Thus in the 

neighborhood of a Landau singularity Eq. (B.7) becomes: 

.where Ic d has been evaluated for energies given by the:.Landau , 
n equations. Energy conservation across the diagram requires 

/l '·., + ,~, _,_ -t /A) - W--.~ . • - - W - ~: - - - ~~ J_ I ...s: ,_/~ ~Vn ""X-1 ' - - • 11c '"'!..ft 11~~ ~, '""q (B.9) 

Write 

(B.lO) 

. with 

l It -t: (..d. d - U) 'Ht" ) 
~ e . 
l i) . (B.ll) 

I 
' ·I 



.-87-

The remaining .. energy sum· may. be written: 

.•. 

I .. 

[; [ 
--t&tJn / - ~- -1 

J- e u·' u.u 'W dtC+ > · - ·-
;<. ~ t<l . ''C+I I 

'~~tf'( 

and hence these sum~ may be performed independently of each other. 

For Fermions, 

(B.13) 

.. · (B:~14) 

and for photons, .. 

(B.l5) 

where 
. ·• 

(B.l6) 
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·' 

. (B.l7)' 

,. . 
where the t integration has been performed •. Com.p:~.ring with the 

spectral representation on page 12, one finds the particular . 

reduced graph chosen above contributes to the spectra~ f'uriction 

the factor, 

If' one limits the integrations of' the spectrai representations 

for the photons to ~ > o, then (B.l~) becomes: 

(B.l8) 

:(B.l9) 

It is convenient to interpret this factor as corresponding· to 

(d - b) absorbed photons and c Fermions in the initial state 

I 

I ·, 



and b emitted photons and c Fermions in the final state~ For 

this purpose write: 

I 

(B.20 )" 

(B,21) 

The contribution to the absorption rate from a particular 
-

reduced diagram may be written: 

(B.22) 

<) . 

where ~i,if collectively represent initial and final state labels i . 

and ~ the various sums and integrals' over these labels. The 
. €.i'!.r . . . . . 

statistical factor s(£i,tf) is defined: 

. I 
a ¢. ~ , J 

S ([,1~)==-1! { IJ,-) 7T ( 1-~ (},·)) 1f ( 11-/_ tf,·)) 1!' { t f,. ) 
( .. I '~ t+ I . I= I I= &+I 

.. (B.23) 

. ., 
0 

and 

(B.24) 
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where Z represents· the product of the spectral. functions 
' ·,' •, ,. I , , • 

associated with each line. of the reduced .graph, B;.nd A1 (p) , E2(p) 

correspond to the two shaded circles of the reduced graph, i.e., 

the vertex functions for. external photon absorption and emission, 

respectively. It is useful to write the emission vertex in terms 

o£'the corresponding absorption amplitude. 

(B.25') 

FinallY:· if one sums over all possible vertex atnplitudes, that is, 

·.all possible diagrams with the same reduced graph, the total 

contribution to the absorption rate may be written : 

lJ J(e,~£;.)l.(£,j£;)A/to,.,...fj~;f+) Ai (t.u"';!j £,-,£r) 

e,jtf . 

;< 'J..1i'#$t1iw.,. ~·- ~1- )(J-1i' l j (f+ E--.f.,.) 

where 

Note that the factor (-l)c in the original statistical factor 

accounts for the fact that c Fermion loops have been removed 

from the original diagr~m. Similarly (-l)d· accounts for the 
' ' . ~. 

(:8.26) 

(B.27) 

fact that d photon lines have been cut. Thus the overall sign 

/ 1 

f"'J r 

' ·~ 'i 
i 
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. assignment is made on the basis -of 'the lines internal to the. 

vertex amplitudes. 

' . 

. ' f/ 

.) 

. I 

•) 
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APPENDIX c •. Self-Energy. Functions 

A self-energy graph is obtained b.Y removing the free 

propagation amplitudes from the first and last vertex of a given 

interacting one-partic~e propagator amplitude. In general, these 

graphs are non-diagonal in the internal state of an atom, but 

they are labeled by a single momentum and frequency. A proper 

self-energy graph is one which cannot be broken into two connected 

parts by cutting a single atom line. 

It is sometimes useful to consider a more expanded definition 

.·of self-energy graphs. For example one might speak of a-proper 

self-energy graphs. i.e., all possible self-energy diagrams which 

cannot be broken into two connected graphs simply by cutting a 

line labeled by a • More generally it is possible to speak of 

~-proper self-energy graphs wh~re no single line from the ~ 

· collection appears inthe graph. In this case the matrix element 

of G in the space of internal states statisfies: 

(t;~. f ~/D('>-=- ~ /o< ') (o< /G-0 /o<.'> -r (o<: I~ /Q() "[/~ft;~>(«.J /Gio<! 
~ 

-t (o< /Go I«> (o< l J ../ /«.~(c<' I~ /o<') 

where ~j · represents all those. self-energy graphs which are 

"J -proper. " 

(C.l) 

-c 

'i 

! 

... ' 



.. ..., 

.. 

"f' 

0 

-93-
./ 

. ~ !G /of.'>(%,. "/'L- ~..; ic); ~ <"' /.<') f (of. 1ft f.<>(« I r; /of.) 

+ 'i] U- <"' ..t t-<>) ~ (j~ (of.~){o<..J I G lc<') 

() 

o<.J 

-t ( 1 - f] <o( /o(')) («.If /t;(') {«'!Go'~'> · 
o< -I "..(/ 

../ 

Equation (C.2) may be solved for 

. ' 

G ' • . ao: 

. (« I G ( &on
1 
f) /fJ(') ~ ( tVn -t-f-o.,- ~ (I<) -:- (ex: I P--4_( wit 1 I:S )/«..) )-.' 

.· x ( (oe /c<. ') t-~ ( /-- Vx.J/o<) )(o< _I p .J le<J) {«jIB/~') 

(C.2) • 

'.J 

+ (/-"'J (~/«. ')) (oc /}~l.t.')~'/G /o()) ' (C.3) 

et(./ 

In special cases this result simplifies •. 

With 

·1. tP = a single state 

. . . . . . . ' I . 

(p<tGPt.> ~ (Wn r- fla;- ~lk)_;.(~ /~ /0(.) )~ 

·and 

~ 1 G ~ •) "' {to1L -t fa-- G-<-t I<) - (o< 11.< /«-) T 
1 

. X f (t_ lc<') ( wn +-f'- ~«.'( k> f' j 

(c.4) 

· (C.5) 

. '· 

' ·.! 
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2. ~ = . the whole · spectrum 

. {o<l(;lc(.>-=- ( w'ft.-t~- e~JkJ-.{«l~ t~~1 1sJ/«))'-' 
. . 

x ( 1-t 2] <«.lp/o<")(c<''/6/o())J .(c.6) · 
Ot.." ~ 

and 

{o<: I G/o(.'>::::: (tV,. -t ~ -~ (. K)- (Ot:. I ijto<.))-
1 

. 

' ' 

x r/o( , -;r:: ,o( '>< o<..' 1 c /o('> -r "iJ (u.ll /4(ll> <o(" ;& 'o( '> . L \O % D(11 ¥«;«. . .) (c. 7) 

3. ~· ,.; states degenerate with a: :(usef'ul f'or broadening 

calcula.tions). For a:' € ~ .. 

(d/ &/c<.)-=- (Wnrft-a..-e-<.rK)·- <tl( IP,:,,/11())-1 

X [t -t 2} <«:l"f f.../«. .i> (.C., I & {o<. ~ 
~-~(1(. . 

. I 

(o<.tG I~')-::: ( W}t,-t-f"~- 6.t. tl<)- (o<. II~ W-) }-I 
. ~ i ~· 

X 2} \c< lf/o<J> (o<j I G/ot.'> I 

o<./ot. Ed.. .. 

.· 

(c.B) 

(d.9) 

Other choices are possible aependihg on the specific situation. 
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Case l• is equivalent to the perturbation expansion of 

Heitler in his treatment of resonance fluorescence for atoms in 

a vacuum. 2. is the usual definition of the self-energy function. 

·Such a perturbation scheme was used by F. Low in a calculation 

of the natural line shape. 3. may be useful where the particular 

level of interest is degenerate and off-diagonal elements within 

this degenerate collection of states is desired. 

'I. 

I .. 



0 APPENDIX D. ~ymm.etry. Properties . of ·the 

One-Barticle Propagator , 

The one-particle atom propagator enjoys certain selection 
' 

rules upon considering the group: of symmetry transformations T 

of the full Hamiltonian H • 

The explicit expression for the one-particle atom 

propagator in configuration space is written: 

nere 

and "'r(~o) creates an atom with c.m. position X :iin an 

,internal state r . 

·\ 
' 

(D.4) 

(D.5) 

Restrict T here to include all transformations induced 

by a rotation of the observer 1 s coordinate frame about a direction 

A !! . by an angle e • Thus, . 

·x / ~ -t x · = / , R .. ( e, n; · 
t ~ ""' - ../ 

(D.6) 

I 
I .' 
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where the X' are the .coord:i,nates in the new frame of a vector . i 

whose coordinates in the original frame are Xj , Equivalently, 

one may consider the system as rotated by an angle 9 about 
A 
n • 

For such a rotated system the field operators became: 

(D.7) 

(D.8) 

The D's are matrix elements of the irreducible representations 

of the rotation group and thus are indexed by a total angular 

momentum quantum number J and angular momentum projections · a . 
MJ. • These explicit dependencies will be shown when convenient. 

a 
The right side of Eq. (D.4) may he Written: 

- T,.. {ef{.A+f- ~-fl >Tr,; %• tX,,(tJ "(_/C!.,f•J LJi' o,..] . 
. = -(/.. [ e ~ (.M e!!-f-1) 7:r 1k "f.t_ • (j, •t·) qf' DR "f./tX.,f--> 0(] . 
·~ il Dot' (R-'J DIS R-'>(-7;,[/(J!-~-~-fl~ "{1lR-'J,p tf/.(R-'X.,f .. >] J 

r'.f D<( ot:..l I. (D.9) 
I . 

I 

i 
where use has been made of [H, <>a] = [!!, OR] = d 1 cyclic· 1 

invariance of the trace, and Eqs. (D~7) and (D.8) • But the· 

bracketed expression is again a one··particle propagator. Thus 

·~. 

I 

' 
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(D.lO) 

\1 }J1 K -··!S.~ R-'(X- .Y.a.> G (k' 4 -A ) D'<" {o-t) D ( R_-') . - LJ ~ 3e.. -I - {'/ - I (I II- (,(./' '\ (:,(1 I 
1 v c:J."ff'J -·- · q . (D.ll) 

r)o . . ' . ' 

Set !j .= R-l ! on the right hand side of Eq. (D.ll). Then 

Eq. (D.ll) becomes: 

Thus, 

. ( ' -, ,· 
'. •• - II' •• ·~· : 

/ 

. ' 
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j 

\ ' 

(D.l3) 

··where a Fourier series decomposition in (13
1

- 132 ) has been used. · 

It is convenient to write a = (J M Z ), exhibiting angular · cca a · 
momentum numbers explicitly; Za denotes all additional quantum 

numbers necessary to fully specify the state. Then 

It is impossible to proceed further without making some si~plifying 

assumptions regarding the effects of collisions is spherically 

symmetric. Anderson and Baranger have discussed the results of 

this assumption in their theories of pressure broadening.2' 3 Here 

this assumption takes the following form: 

(D.l5) 

It is ·not sufficient merely to assume that the gas is isotropic, 

for an atom with a non-zero angular momentum defines a preferred 

direction. Equation (D.l5) follows trivially if spin-orbit 
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.interactions are absent since in this case theHamiltonian is 
(j 

invariant under separate rotations of the c.m. coordinates and 

the internal coordinates of the atom. 

With Eq. (D.l5) integration of both sides of (D.l4) 

over all possible rotations yields: 

wherei;the orthogonality relationship for the representation ,,, 

14 coefficients has been used. But this result means that 

/ 

(D,l6) 

(D.l7) 

\ \ 
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FIGURE CA.PflONS 

!age 

Fig. L Example· diagrams 15a 

() 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5· 

Fig. 6. 

Fig. (. 

.Fig. 8, 

Fig. 9a. 

Fig. 9b~ 

Fig. 10. 

a. External photon absorptions and emiss.ion by atom. 

with no interaction in medium, 

b. Internal transverse photon interaction. 

c. Hartree interaction with medium. 

d. Collisional interaction of atom witll. gas. 

: e. Higher order diagram important when gas-ga;s · 

correlations exist, i.e., shielding of long-range .~'' 

coulomb interaction in a plasma. 

f. Atom hole-particle interaction through gas. 

Lowest order diagrams in radiation. 20a 

Radiation damping. 20a 

Collisional damping (impact approximation). 2la 

Higher order collision damping. 2la 

s-order vertex function. 25a 

Integral equations for vertex functions. 25a 

Scattering reaction. . .· ' 31Ja 

Quenching. 31Ja 

Fluorescence. 31Ja 

Photon scattering 38a .·. 

a, Open diagrams, 
". 

b. Feynman diagrams, 

c. Reduced diagrams •. 

t> 

/ 
D. 

:> 

I~ 



.. 

.. 

I' 

.. 103-

Fig. 11. Collision broadening (lower level unperturbed). ·39a. 

Fig. 12. Renormalized atom prop3.gator ·{radiative corrections). 39a • 

Fig. 13: Reduced graph expansion of Fig. lla. (one photon 

emission). 

Fig.· 14. Reduced graphs with renarmalized propagators 

Fig. 15. 

Fig. 16. 

Fig. 17 • 

Fig. 18. 

Fig. 19. 

a. Pure. photon .emission. 

b. Pure collision. 

c. Collision and photon emission. 

r (o) 
F. 

Open diagrams for quenching and fluorescence. 

Contours for frequency sums. 

Born series expansion in gas-atom collisions~ 

Examples of reduced graphs procedure. 

Fig. 20. Arbitrary reduced graph • 
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This report was prepared a~ an account of Government 
sponsored work. Neither the United States, nor the Com­
m1ss1on, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 

or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor . 




