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PHENOMENA IN GASES

Bandel Bezzerides

SLawrence Radiation Iaboratory
University of California
Berkeley, California

January 1, 1966

ABSTRACT

Green's function techniques are used to develop a general

| fheory,of line broadening in gases. As an example, the impact

theory. of Baranger et al is derived, including effects due to

/

recoil of the emitting atom. The fundamental processeé responsible

for the detailed structure of the absorption line are'éxhibited

with the aid of a generalized optical theorem for scattering from

. thermal systems. To the extent to which intuitive notions of
vi‘scattering theory are applicable, it is possible to define partial
. absorption rates corresponding to overall coherent séatteripg.
-{ processes. In particular, the fluorescence and quehching of an
atom excited by resonance radiation are defined preciselyj.and_a
simple formula is given for the branching raﬁio between these two

: ae-excitation channels.
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I. 'INTRODUCTION

: The étudy of absorption and emission line shapeé~prbvides

‘a convenlent dilagnostic tool for systems which otherwise resist

. detalled observation. For_example; thevstellar compoéition of the

universe itself is investigated'solely from the emitted radiation.

.: The plasma state offers another 1mportantvexample. 'Even though
‘large-scale ferrestrial plasmas are now available, absorbed and
| emitted light is still aﬁ excellent non-interfering proble, resulting
~in information necessary to the understanding of the dynamics.of

the plasma. Finally, the study of intermolecular forces benefits

from line shape work in neutral gases.
The kinds of information which one may obtain fall into the

broad clasSification_of el ther kinetlc or dynamic depending on

' ~ Whether either Doppler shifting or pressure broadening predominates,
. Doppler broadening may reveai mass motlon and soméﬁimes temperatﬁres,"'
.. whereas all the possible collisions that ﬁhe atom can experience |
" contribute to pressure broadening. For gll practical purposes
j broadening due ﬁo-radiative reactioh may bé 1gndréd_except in

) situations of high power levéi.

It is convenient to focus attention specifically on the -

- absorption line to obviate any question concerning the means of

' excitation of the emitting atoms. A prbtotype experimental

situation would be to scatter radiation from & target composed of

K- low density collection of atoms A imbedded in a foreign gas B .

‘ Theﬁ the measured abéorption rate as a function of the frequency of
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" the 1ncidentfradiéfioh.is preqiéely vhat is meant by the absorption

. line shape.. From the viewpoint of scattering theory the photons

" have a number of final chénnels—open to them, and one.might expect

H that the detailed development of the line is established by the{

| cémpetition of these various channels for the incident radiation.
- That is,‘fhe total absorption rate may be regarded as the Sum'of
partial rates each one of which corresponding to an overall
coherent séattering process definéd by the initial photon flux and
f: one of the final channels. |
These partiai rates may themselves be 6fAcentral interest.
' Thus processes such as resonance fluorescence, etc., should find

thelr analytic expression in such partisl rates. It is the purpose

* of this thesis to construct such partial rates descriptive specifically

of resonance fluorescence and the quenching of resonance'radiation
when broadening due to collisions is significant.
The paper is arranged in such a way that the reader

-interested ohly in total rate calculations‘may restrict aﬁtention
to the first half of the work. In section II the basic field
operators for an interacting gas of absorbing atoms hnd'perturbers
“are listed, énd the total aﬁéorption rate is defined. in section III
".a temperature propagator formalism useful in quantum statistical

. mechanics is briefly outlined, and the rules for cglculating the
absorption rate are given. Section IV contains an exeample calcula-
tion for the total absorption rate in fhe impact approximation o
. including recoll effects. In sectioan the definition of éa?t;al.

- rates for gas collision processes initiated by the absorption of
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”-;‘feéonaﬁce‘fﬁdiafibn 1§fconsidefed. 'Thejﬁethod,is.motivatédvby, F'
;_i aféimplevexamplé whereas the details are developed in_an\appendix},

Section VI 1s devoted to fluorescence and quenching. The relation% R

 ;.ship to an*assoéiated beam experiment is also discussed, Finally,

'7j ahvexample éalculatioh‘is considered for a'hydrogen plasma.
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R FUNDAMENTAL EQUATIONS AND DEFINITIONS

- The Hamiltonian operator for the system may be written:
H= tlnt He+ (2.1)

where in second quantization notatidn v

HMz 2/‘75”&‘9(4{ #ﬁm‘&)"f‘(ﬁ)d’)(

o+ ' : |
| Z,; /z’x/m «/,’q,f)zzx,f) Y, x-Xr8"txt) «;M,t)

- (2.2)
/ 7$*(x <) (- ﬁ/ )V,,?!cxt)ﬁx + /z& /J’X’/O(X’-t ) V- X')/o()(.é)
- £y Vo)
(2.3)

: 2 o .HR*’;ﬂﬁ’X(f;‘l‘,*>*51(2‘,“)'>.
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| H—v- //[(m/:{xtw’x | S
v T i (g)ﬁ’xZﬂ‘(}(t}A‘(H) (2.1)

.4Hbré va(z;t) is a fleld operator in the Heisenberg picture
- ‘for ebsorbing atoms of mass M with c.m. position X in an
_; intefnal state labeled by « of energy N . pd(zkt) is just
the density operator for the'atoms.in the « tﬂnstate.‘ Simllarly
"ﬁcg,t) is the field operator for the foreign gas. For simplicity
these atoms have been assumed structureless with an associated |
density operator p(X,t). .This restriction may be removed later
(; if desired. These gas particles interact among themselﬁes through
a two-body potentisl V(x - x') and with absorbing atoms through
V ,a(g”; X) or in the cbprdinate representation through V(Zbéi""zvrﬁ):.

Z.,°**,% , electron coordinates.

2 -y
B The electric and magnetic field operators ET(X,t) and
" B(X,t) are obtained from the vector potential field operator

A(X,t) which satisfies the transverse guage condition,
S V- Alxe)ro | (2.5)

‘The atomic current field operator is defined by
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where f’ P
- 2 'K

/

M«

© is the total mbmentum operator for the ‘atom's electrons.

The matter field operators obey anticommutation relations. .

for equal time arguments,

, - 3 | : @), ., N
[plye)de)]- [poe), pie)] = o, LF'e) purl- 8§70 e

[ gaol; [1/* /xf) V)0, L)t ae] =48ty ) &9

Whether the matter is represented by Bose or Fermi fields is
unimportant since degenerate systems will not be considered here.

The result of Fourier analyzing the vector potential is:

Ko



| /{ (Xt)= (1‘7[‘},6){/"( (d (/(-t E'/X %.v&:/g’;)é"&z()
(AT) *~

(:ﬂ\)-,“ (2-9)
The Ad satisfy the following.commutation relations:

C 'd—/’ (&), CLee] = A, k8 l-xy (210

E wherc | AS; (k)= j’ x ? | B

* e

Upon switching on & macroscopic external field AO(X t),

the Heisenberg picture for H becomes the interaction picture

’ for H' =H + H' 1 where

Ie

- JIX TU)AXE) ()

”'Thectime dependence of é?(g,t) is fixed by extern&l‘charges.;

-If the system was in an eigenstate ln) of H in the distant

past, the probability smplitude for transition to state lm) in

. the far future is given by (n|S(c,- ® )|m) , where

Sttt)= 7@‘/’[ "‘%4"*'”"*"}_ S 2
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‘Thus in the lowest non-vanishing order in the external field,
the probability[fime for excitation of the system from ln) to , ’ ' - ;
lm) with energies En and Em and momentum Eh and gm by . N

‘ absorption»bf a photon from the external field becomes:

- 4

__n_zﬂ‘ Z’ﬁzk.!- [(m | Tt e/n>/ /A /k)/ “'(2‘15) |

x 2m4 J{E,,,_E ch)(.zm‘) I P Pt ).

2 1is the volume of the system and the c-numbers Ae(k) vare the
' expansion coefficients of the external field in plane waves of

definite polarization,

— -

E | (K- X-ket )
Ae)-arie)s Lk, Z[ As (e (KX ket)

&
] (2.14)

L Aatoe itk X- ket)]

Ny

‘The normalization is chosen in such a way that the time-averaged
Ibyntihg>vecto: 8 = ¢/l E'X B 1s given by:

‘ " * ' . . . ’
(Sr=ck (Fre)IAzb) /0 (2.15) ¢ .

" identifying
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:,_,. 4vvy'='1~ | ,‘(k)".
(kw)= <> f_’:q_-i_.‘/-/

\(2.16‘)
@mr)? |

m

"iias the flux of'photons per unit frequency interval per steradian.
It is convenlent to introduce an absorption cross-section
.+ defined as the transition rate per‘unit volume per unit flux of

" photons of specified momentum and polarization. From Eq. (2.13),

.oz(é,w)wwc)"éﬁ?:' fn' (m/f(a)-é/m,/z ;
ﬁ‘ (2.17)
X 2% 8 (Eu mm,)czm‘)’ J (’Pm +#K> -

where an average over a statistical distribution of. initial
_states 1s taken through the sum againsf Py If the farget
is regarded as & gient molecule with en assoclated spectrum of

"eigenstaﬁes, Eq. (2.17) is merely an expression of Fermi's

"~ "Golden Rule" in quantum perturbation theory.

A Hamiltonian formulation of quantum mechanics yields

iprobability amplitudes directly, not probabilities. However,

"' an amplitude closely related to the above probabllity of absorp-

~ tion may be constructed In fact, that such an associated
- amplitude exists is essentially the content of the Fluctuation-
t Dissipation theorem. The absorption rate is in the nature of

a dissipative quantity, and it is a type of current autocorrelation_d'
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o tion._ This amplitude will be defined in the follcwing section

and the method of its calculation described.

vffﬁnctionsdf the atoms which 1s a measure of the associated fluctua- '

.

¥
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'III. . FROPAGATOR FORMALISM

'A. Spectral Representations

It‘was.noted'in the last section that the absorption rate .

where the Heaviside function - ' -
| €2¢

. f'—{l)g P ' .
1 | o ted N

- The brackets indicate a trace over a grand canonical ensemble

distribution function,

P exf( N-H-pN)

& 1s the grand potential and uy_:the chemical potential for

R
1j

i1s closely related to an amplitude for vhich a well defined calcula- ’

- tional procedure exists. Consider the retarded current commutator,

(3.1) .

(3.2)

is only a function of difference

variables (X - X') and (t - t'), and thus may be Fourier analyzed

" directly. It is a simple matter to show that the associated

Fourier coefficlents ‘ﬁ;JR(E}w) "have the spectral representation,: o
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% (f’w) ﬁ“’ [w La-rle'J (Cﬂzw— ') A (Pw) (3 3)'

where-l:‘;bhe spectral f‘uncﬁion

A (P )= z, e A(A-Enpeltn) zrno‘(ﬁw-szu

(3.14)
xqf/‘ﬁ)’ é'(ft P-Fot Pn )(n/:?:-(o)/')n)(m/z-'/o)/n).- | :

.. But aside from & constant factéf this is preciselyvthe tota;l'
absorption rate. Thus if p)iJR. is knowm, Ai,j and hence the'_;
. total 4absorption rate are determined. ~ Rather than working

directly with 43;_ jR s however, it is convenient to introduce
| another current function which is simi:ly relsted to ji JR s

but which has the added feature of being In the form of a one-.
| rarticle propagator., Such propagators may be calculated within .
' the framework of a diasgrammatic perturbation theory.

Consider the function
{z?g,_yf-) (TZ T U, B ©.5)

vhere S T, LB

N
v

]
N
O
A
o
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That is, TT' denotes the usual Wiék'ordering-W1th'the J's
~acting like Bose operators.
RS, HTH T,y e HTIR .
. 7) = ' - { e ;
)= e ke T (5.6)
o complete the definition -7 and 7' are limited to thevdomainf
. [o;n gl . ﬁﬁlj is then well-defined if absolute.convergence
- for real times is assumed.
Directly-from the cyclic invariance of the trace,

l:' . \ . ‘./

P xt)= B ) 70 - G

‘.'where the difference varieble T = 7T.- T is restriéted to thé

17 2
domain [-h B, h B} . It is useful to extend the definition

of fi ; beyond this strip. Teke fi ; s periodic with

v

?,(J,c)— %;j_(z(,ﬂﬁ(a) ; o

‘Then Jﬁij can be developed in a Fourier series as:

)

| Yoo ' P-x) - (T-T
-.%—-.(_,'3';,7,‘4) =//3P L 5 d CPaJn)el,f(—X: %) o n (] ’“_) (3.9)

AR S T



vhere wﬂﬁ czan 1*11=o, l,

o #o o -
- wn(T"/) , )
@Q( ,)W7 /d(’r-/ﬂ * f X 2({7;-7;)_ R
L - A : o (Bao)
?E"In prééiéely the same.méﬂnerjas‘for' iJR ;-

%(Pw,,)/ (w,, , ’)(‘”’”" /)A CPw) 14>a | .('3.'11).'

 This sﬁectral representation may be used t§ldefine an analytic
continuation into the entire upper half plane. Since g jR

" and ~g&j agree ontthe infinife seﬁ of points ,Qh s with a limit

| point in their domain of anélyticity;,\ﬂlj's analytic continuation

into the upper half plane coincides with ~ﬁ;JR's « Thus to determine
j AiJ one calculates ~g§3(53“h)f performs the trivial.analytic

- continuation, and takes the 1mag1nary part,

|
B. Diagrammatic Perturbation Theory

As noted above 13 is essentially a one-particle

propagator, and may thus be calculated in & manner similar to

v
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5 the Fbynman-Dyson diagrammatic perturbation theory 80 successful
in quantum electrodynamics.- The rules for calculation of 43;3
a: will be given without proof.since the procedure for their .‘
:,derivation for any glven: system is well-known.l |
| Draw all topologically distinct, connected diagrams

" leading from an external photon absorption vertex and ending

'in an external photon emission vertex (represented respectively
vvby a directeo wavey line into the initial vertex and one outjof
the final vertex) One may regard the action of the first vertex
. as exciting an atom particle-hole pairf or equivalently as: exciting
an atom from the equilibrium configuration, resulting in &
" depopulation of the state from which the atom was excited. This
- particle~hole pair may then interact with the medium and each
other until the system is.returned to the equilibrium state by
. the photon emission. Hole lines are directed down and particle
lines.upward. t

The system has been restricted to include two‘kinds of

material particles and‘radiation. Atoms are represented'by
; heavy solid lines, gas particles (perturbers) by thin solid linesy
‘and transverse photons by ‘wavey lines. .Atoms,vgas particles ano |
- photons each carry a momentum and frequency label, atoms ‘1ebeled
additionally by the state of internal excitation. Static inter-
~actlons ere represented by horizontal lines, dotted line for
atom-gas interaction and dashed line for’ges-gas interaction.

- (See fig. 1 for exanple graphs. )
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Associa.ted with each diagram in the pertur‘bation expansion

e is a corresponding a.nalytic expression wh.ich may be determined from_; ,

... the following rules:
1. Propagating linee o _ |
(a ), For each atom line write Gyt (k,a) )

where .

o™ e [w»f/‘« ""]

'(b) "For each gas pe.rticle line write G (p,a)m)
b ._\where ” |

(5 12)_ R

'5",?}.’,'“’*)’ [#wmqk}—é(p]',' (513) .

© T (e) For each pnoton Atne wrste Dy,°(Bay )
' e ‘Where | |

Dbb(f)wn) A‘v/ <f>[wn ﬁkw‘] (3 1]*)‘;” " :

2 Interaction Linel |

| (a) (k 'at, |V|ka, ) for atom-gaa 1nteraetion, 5§ (315)
o p' P : e

(b) <21P2 lV'P.lEQ) fﬂ‘ sas-gaa 1nteraction. g _T [(3.16) o

o }g (c) ‘For each mtemal atcm-radia.tion vertex

- writer_' :

em i
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Weve number and imaginary frequency. conservation at '

' every vertex require factors -

(m)ja I(Zk, - .ZK"“*) Q)’ZWMZ (3.18

“out
Integrate over all internal wave vectors and sum .
all imaginary frequencles according to
sZ [LK - o (3.19)
w, Y ) - A ,
; . ‘ n+F R

Affix an overall sign factor (-1) vhere F = number
of closed fermion loops, and - n = the'orde:'of the graph.

The order is determined by the number of interaction

- lines; a photon line is considered anvinteractionlline-

here.

Finelly, since perturbation theory is being used, it is

necessary to specify the relevant smallness parameter. For the

case of neutral particles interacting through short range forces,

the dimensionless expansion parameter is (nt)B » Where n 1s

- the particle density and_'t is the gas-atom scattering amplitude.

For a high temperature classical'plasmg the smallnessnparameter'is 

;{ , proportional to eznl/z B . Further, the atom's level structure

should be more or less left intact with interactions switched on;‘f

that is, shifts and splittings of the order of magnitude of the

absorbed energy would be quite outsidé‘the domdin of pertﬁrbation o

~ theory.



- rate was given in the last section 1n terms of rules for calcula.tion' .

. of j; 5(& (B0) in a systema.tic pertur’be.tion theory expa.nsion. ‘Once - L

, 5i8-'."

| © v, Taor e op hasonerion 1ave smar

o .

.The mescription for ‘the calculation of the tote.l a‘bsorption "_

@IJ is known, from the spectral remresentation,

.. v.“‘f’@ (P)- g.u ,f“,)) In g. sz-z//-e f»w)A., ¢F o) fiﬁli -

Cyhere o .o . L -
S 4 e S . R N -
T ) . Lo e T e cen . (A . L. T

c.;,-,. pw. zr <n¢>"g £, A <w>

"i In this section an 1nvastigation of & partioular theory of’ line

L brca&ening will be mdertaken first, to gain familiarity with the

”7'genera1 caleulational procedure, and second, to obtain some 1nsighx -

into ﬁhe complications special to line broadening..

= 2 cheriCie r’““’> ‘T»«?"""’ RO
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' In recent years a -theory of line broadening has been-

~ developed and used with a certain measure of success.2' This.

wqu'ié essentially an amplification of an important paper by

~ P. W. Anderson on microwave absorption.3 The fundamental
~~ assumption of this theory is that'the perturbing effetts of a

- foreign gas on an absorbing atom may be regarded as collisions

non-overlapping in time, or if collisions occur simultaneously

they are sufficlently weak as to Justify first order pertwrbation .

" ' theory in the. single particle collisions. Such a theory has‘been

quite useful in determining the perturbing effects of electrons,

which to a certain extent do satisfy the "impact approximation"

~criteria. Here recoil effects will not be ignored and broadening

due to radiative reaction will be discussed. Note that including
recoil effects doés not merely imply.broadening due to Dopéler
shifting. The stom can recoil against perﬁurber collisions as
well ;s upon absorption of a photon. Finally,’it will be appafent

how one accounts for simple gas-gas correlation effecfé((shielding

- in & plasma, for example).

| A, Rediation Broadening

Ignoring all perturber effects (see fig. la.), one dbtains

'the usual result that only frequencies precisely equal to a level

difference of the atom will be sbsorbed. If the effects of
perturbation are included one might expect to relax this strict'

energy conservation with a particular level, However, if



0.

gucgcontributionsvfrom.so“callediself-energy graphs are included in
"g some ordér of pérturbation theory. (for a qomplete discuSsion
- of self-energy functions see appendix ITT), the result will be a
| f.divergently_large éontribution to q} and hence the ébsorptibn
“rate. The origin qf‘this anomalous result may be understood iﬁ'
t.” ;-the following mannér: as far as radiation absorption is concernéd;
the atom may be regarded as a harmonic oscillator; further, the

present perturbation theory has been developed in such a way that

the external field acts for all time., Thus the atom reéponds to

the field 1like an undamped oscillator which can realize arbitrarily

. large amplitudes, It is clear that if some damping were introduced

" the oscillation would always be amplitude limited,

~The lowest order disgrams in radietive éoupling‘contribuxing

to 435 are shown in Fig. 2. The "ladder" diagram 2c. is smaller

than 2a., or 2¢. by an extra power of the fine structure comstant

- and may.thus be ignored. Since the external field-formaily acts
'--j for an unlimited time, an infinite sequence of such dlegrems must
| 5e_summed‘ (See Fig. 3.) The double, heavy, solid lines represent
pg the‘sum-of'ﬁhe infinite sequence obtaineé“by iterating Fig. 2a.
- Iterations of Fig. 2b. are not considered since they correspond to ]

" instabllity of the ground state against absorption from the

incident beam or from the assumed thermal radiation, This

- approximete form for \é\ results in an absorption rate with the
. wells=known Lérentz 1line shape, the width prcportional to the rate

| of decay of the atom by radiative emission.
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~'B.. Collisional Broadening

| The result of including gas perturbing effects is showm

in Fig. 4,  The thick lines represent amplitudes in which all

possible interactions with the gas or radiation are included,.

Contrary to the case of pure radiation damping, "ladder" diagrams

must be retained (see Fig. 2c.), since they contribute terms to

: {T of the same order of magnitude as the first graph of the sequence.

. Higher order graphs, examples of which are shown in Fig. 5., are

outside the impact approximation. These graphs” include collisions

- 'which are not separated in time and hence must be ignored. The

utility of a diagram approach is clearly demonstrated here. FPhysical

overlapping manifests itself directly as & topological overlapping

_ in higher order diagrams. However, this_intuitive picture is often

obscured for systems of high density. That a given diagram may
be analyzed directly in terms of the real collisions that the atom

experiences in its excited 1lifetime 1s quite false.

1. ladder Sequence and Integral Equations

(1) The special case. The contribution of Fig. la. to

(Aﬂv ﬂ =t

/r‘». o - ____x{ac/,fé//).

K, "‘Z G,«(k @, )(,o’/\fé/ac) ” (k+Pw+w) (42)
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Note that full i;rdpagatior;, amplitudes are béing used here, and,
: p-'.' | -.ih general, theée amplitudes:are'elements of .a propagation ﬁaﬁrix.
| . In general, non-diégonal elements must be included in the.above
sums. In this éection, however, assume:
1. (o,a') are members of a single degenerate collection of
states (neglecting overlépping lines),
2. damping does not connect different members within this
degenerate collection, and |
3. the same assumptions for the excited levgl;
g ‘(These restrictions will be removed after the frequency sume gnd
"analytic continuation are demonstrated for this simpler case).

"Eq. (4.3) becomes:

« am’f

_,' ,/:k _cg (k,,w‘,)(fﬁ'e/o G/ ,%)(x,y-é/p (b, u)
ﬁhere

G K wn) = [ - 6tk et Bl wnles]

© With e eimilar expression for Cog * v
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~ For the details of the frequency sum and analytic continuation
. see Appendix I ‘Eq. (4.4) is: .'

(e [ Zn () 17yt NIl

QZT‘J v
_ (5)

X [w e(,(k #P) + € (K- «r’ﬁ?“‘*””ﬁ —@@m)/

j"where n7;_ (kl) is the equilibrium distribution function for the
- absorbing atom, '

|  Mpa-epkr) 77 |

) . N + v‘ ' . .
- ‘and (7’{3 - (.’r_c)ly) are the self-energy functions of the atom in

~ a state of c.m. mdmentum'.-_l_c.' and internal state 7’ .

- To continue, it is convenient to define

l(l)

' (K, wn, | K+Fw +y )= c/ a"x,, L | |
¢ ’ " 77‘) <zﬂ‘)’(° G’x'(—é‘;/w X
G{J (K Fw 'f‘w.n ) (le K-'—P 7)’ / V/‘d P.'. )—,:*_§>)( _ (h-r()

. : ta),
| (xl—'-(a.) f’"}/\/{ﬂ(f_ﬂ) T/ >Fl ; Gw)(wﬂ.:w'ﬂ7 w".u?*?)é (vl/b/'.f’)
. | W, .



end

b

(o')-r v -,- ' ..
Aspregy = et

" Then the first, ‘two diegrams of Fig. 4 are:

~¢£;ﬁ,ﬁcil Z{x/Té/ﬂ> [/Lgﬂxp /L(/Ia.;p]
"¢

oo

45”4%7 é,l,e (& +P a;,,,-;- Wy )

| &(m and A(‘l) may thus be regerded as vertex functions."
" an arbitrary member of Fig. U consider |

¢s)
: /\\\xl’ﬂf/,é//: (“’n, /B /wn,*wm K+ P)

. &s shown in Fig, 6, Then (..~

a(v“'

x ( ¢’ IT-4[') Gmf,ﬁff,. sW5) € Coa (BT n; + Wi )

(4.8)
For
k4P)
/ =y =
(4.10)
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. A.: Jot (wn,/wn,f-wn) Z /\‘t‘”“{’ (w,,‘/wnl,,w”) S |
( r _ e (k21)

: ami, for con.ve.nience,; momentum dependence has bee_h suppréséed.v
: ;Fx"om the form of A(s) it is obvious that it may be expressed.
,  : . in terms of A(S'l) as in Fig. Ta. But this result implies an -
| ~ integral equation for A itself as schematically represented .

in Fig. ‘b. Thus,

Actpitury @n, 1mron) = L dy

: g(g’_ -(;;7")’(’ Z 6,&“’.(.6*‘,“).",_) Gﬂa‘d /(*-r_P) Wt Pn )

£ TP (%o ks, B3 VI K,,?’>((/ *f,/’,/V /L,‘ff,,«z) (h 12)

&y .

o ( @n, [&nrl), 7
| 0 J—-}J G(o)(w 'f(.()m'wﬂ )~.FI+5>6 /“)m )‘f( A«L(‘;/&‘O” N,

m

The frequency summation and ana.ly‘t}ic continuvation procedure req_u;i.re

some speciel care since A(wn lwn + a)n), when ané.lytically

continued, has several branches. (See Appendix I for details.):
Upon teking the low-density limit for the absorbing atoms, |

foe

AT satisfies



A (wn, Ky |wn+ wn,k, + P)

af BllerB”
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v am J(ELK) 6,10 +ELRI=€ (329)) (Kl rplVIn K, 8) (.13)

‘ - ' ; : \/ | S |
X Ay g BtBr B (B2 AIVIA SR 202 )

V — '~‘. -, .
o "‘[w—cé(.*us:f)—é«.;‘ﬁn)-((r‘*/i’ Qﬁ*f)/r'a?'(“xfé‘i‘f”“ﬂ)] |

!

where thev --‘4- ,designa.t.'.ion‘ qorreqund.s 'tq a pérticul?.r branch of
 the analytically continﬁed A. Tt is 1x:£p5rtant to note tnat
| the presence of 8 -enéréy eppears here ‘lainceb only completed, non-
'overlapping collisions are represén‘bed. (ee',B?) a.c.t merely as '
e v ' . free indices in the‘above equation., This simplifying feature
| - -;‘will be lost when the more general cése is considered in which
the propagatioﬁ~matr1x has off-diagonel élgments. Finelly, the k

self-energy fl_méti‘ons are dependent on frequency in general., Here



~ they may be evaluated as:

' where M

. _2.7_

it has been assumed that they are sufficiently slovly varying that |

4

huos €p (KePr o608 (hany

" 'Thus, one is assured that only completed collislons contribute

to the line shape since only on-energy-shell scattering amplitudes

. are used,

It 1is possible to put the expression for the total absorption"

rate in a more compact form by defining the amplitude'

K,
| M*m.c'p"cf’“’)= ST /L‘.’*E’. A
(b, 15)
X [w - Cé(‘ (Kt Pr-€utK))- (<Fl§(k +P)e?- (o</§(k )/«))
. Then,
r -phw |
ég(f)w)':’ (C (ﬂ l)z /a/ K, 7’[_ (K)
' ')F L’-T“) : . :
p “r S (ka6)
X ("‘\Ié/‘97 Mx‘a,xﬂCPu)) ¢ /Té/,() |
k : H . » .
'a B'.¢ satisfies the set of integral equations:
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A

o f‘w;(.‘é,;}??.(,%f»-é.;l"&»)_v—"/ <g,5§*(5,,2~),(>-'<,<- 1B L) )jM’S’C.P;w)

P
(h.17)

= GGt J KE™ (e AN (o

————— J 1 L5
“ofyT G i g £ 18’

‘The "collision-integral" kernel K is:

K o .y 75 |
Bl py= R B i (- ntm )
Xf1%a e ens e | L

) i | e | . ‘ﬁ.lé
x @m) 5 “ K+ Bi- K- P @A) J(é;((k,>+’ecr,>f,é¢,(‘(/a)-é<g,’7 (.18)

X (ko Ba | Vi K1, B0 P k0 B | VI Pt K, 2 )

':?,K"cannoﬁ be interprefed as‘resulting from collisions of,gas
partiqles-with the atom in either; the upper or.lower}levels;
',Rathef, if represents a coherent inteference effeét due to scaftering
from both of them, ‘The physical meaning of Eqs, (h.l6)‘and (4.17)
| will be discussed'after’the,general case including overlapping

", lines and degeneracy is considered.
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:(2) The general case. As was noted above, although
.

-+ e kl T
"AQBIG'B' and Maala'a'

states, two of these labels are free parameters which may be

are objects labeled.by four internal

~ ignored in the solution,of_Eq, (4.17). The more general situation
~results invessential1y the same.equations; however, all four
. indices are involved in a non-trivial manner.
In the previous section it was assumed that the propagationv
matrixvcould be approximated by its diagonal elements. Further,
- all levels were assumed well-separated; i.e., thé collisional '
_ interaction did not result in overlapping of lines. When tbe
| leyels are so strongly coupled that their'inaividuality is washed
out, it is necessary to solve a new eigenvalue problem for these
~states. Thus in the coufse of obtaining the final result, a new
Schrodihger'eqpation for the atom must be introduced, wheré the
self-energy operator plays the role of aApseudopotenfial. Then
the élgebraic manipulations of the analytic continuation closely
':parallel'the special case. |
To return to original basis for the internal states of
the atom, a dyad vector space was used. This space‘is analogoué
to the vector space in which the quantum Libuville operator ac’cs.5
- It is lmportant to realize, howevér? thét the Liouville operator
acts on full states of the system rather than the internal states
of the absorbing atom. U. Fano has employed such a formalism to
.derive a theory of collision broadening.?_ Fano formally exhibits

a cluster expansion for the line shape, but the generality of the



' restricted to the case of non-interacting statistics and thus is valid ' -
" Green's function approach does not suffer from this deficiency.

 of'an atom, Given an operator @, .acting in the spéce spanned by

,f'the same energy and strongly coupled by the effecté-of-collisions. E

‘ g‘-BQ-,~j

 result is deceptive since the Liouville operator method is necessarily .

: only to first‘order’in the density of the perturbing gas. The

The dyad -vector space i1s an ordered, pair of internal states

. the internal states of an atom, one may-construct two different operators

R acting in the dyad space. For a given Q , definec.-

Rp1QEIY= b (IR (k)

e (QRIpY= S (1RIFY)

'Cioéure is expressed by:

Z /«()(éﬁl =1 SR -'»(u.eok)' 3
of - S -

The o,Q', -+, denote a collection of states with approximately

'f The B,Bi,?",'dre similarly chosen but with energies exceeding the

' f (o4 group by approximately the'enefgy of the absorbed radiation. '

This formal device enables one to transcribe the results of the - .
special case to the general situation. Now, however, Mdﬁla'ﬁ' ”(;}m)

L k . *
is to be regarded as an element of the matrix operator M_l(ggn) i



‘_51_ S

in the dyad space. Mkl(gva)) satisfies the matrix-integral equation:

 Jeo-(Hfuper- i) - ,(?*wfv"— () )] MO (P w)

F 7+f°’”’;) K" K‘(P)/\/\ éP«o) (4.21)

' The kernel:for the collision operator is defined by:

K Ka o L I
K“ (P)='/i*._f* b nCP) - (p)) A
< o an? an)’? ; Fa o
x @ny’ J(Kw& Ki-pdarhd & (Golk, ”é‘Fx % (- “f"’)(“ 22)

X <°(F' /< / (K'J.P”K f&)>L</ <P*K '?./F*kt-; 'Pa.)) (g F4>

ki 3

(R’L)(k) is & dyad-space operator obtained from ‘the free-atom

- Hamiltonian. S:Lmilarly \g?(R’ are the corresponding self-
' + _ . ' 1
" energy operators, T~ 1is the two-particle scattering matrix .

~ (see appendix I).

2. Discussion

The integral-matrix equation satisfied by M reduces to
a matrix equation in the dyad vector space when recoll may be

ignored. Then, |
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.

If the.effects-of Doppler shifting and radiative reaction_are
- ignored, this resulﬁ‘is precisely the Anderson-Baranger theory

, of line broadening., However, if the mass ratio of perturbers to

L_the problem is essentially a marrisge of a D.C. conductivity

"calculation and what is typically regarded as a liné broadening

calculation. That is, momentum dissipation as well as internsl-

state excitation are present; For example, if one is interested.

in the special case of self-broadening (absorbing and perturbing

':vatoms are identical), the recoil complication must be understood.

The role of the impact approximation is quite clear in

n{the above treatment. If the self-energy functions were not smooth

functions of frequency, the impact criterion would not be satisfied,

and the line shape would not be determined simply by completed

- collisions., Indeed, one may investigate the limits of the impact

regime by considering the self-energy function itself. For example,

-4t 1s to be expected that the contribution of ion broadening to

the line shape is characterized by a self-energy function which is

a8 sensitive fﬁnction of w .

Finally, the effects of gas-gas correlations may be
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" included in a systematic fashion. In & plasma the coulomb' :
| Interaction is shielded through charged particle correlations.
- This effect is included by replacing the collision interaction

~ V(g) by the well-known screened dynamic interaction V(g,w) .
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V. PARTIAL RATES AND GAS COLLISION FROCESSES
A, Bcattering and Gas Reactions
\

. In the last section the total absorption rate in the impact

. T:'approximation was calculated in & manner which made no .explicit
reference to the various modes of decay open to the excitation. :An
'?ualternative‘interpretation of the total absorption rate is suggested -

by scattering theory. One may regard the total rate as equal to the

. sum of partial rates for certain scattering processes, the sum

. extending over all channels open to the initial radlation beam and the

thermal térget. Thus given the rate for the occurrence of certain

. processes initiated by the incident radiation, one may construct the

 , total rate and hence the line shape. Conversely, one might be able

to Interpret the detalled development of the line In terms of well-

defined processes.

In scattering theory a scattering event is defined if thé

. initial and final asymptoﬁic conditiohsvof the system are specified.
As an example conslder the stripping reaction of fig. 8. Associated
v © with this event is & probability amplitude, which in principlé is

. known glven the Hemiltonian of the system.

Intultively the scattering picture is immediately applicable

: to reactions initiated by a particle incident on a gas. As examples

é-one may consider the competing processes of quenching of an atom exclted t
. by resonance radiation and fluorescence (Fig. 9a.,9b.).6 However,

" the analytic expression of this picture is not immediately apparenpt:
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Initial |
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‘$ éince, generally épeaking,,the,particleé are never‘asymptotically
| free. That 1s, the particles in the’'gas which compoée the initial
. and fihal state are in interaction with the other particles of the
| gas. Clearly this difficulty must be of a purely formal nature; the .
_,;ntuitive seattering picture is obviously a good one, at least for
low density systems. |
The root of the difficulty stems from the fact that the)
" above scattering picture is itself baséd on a perturbation-like
' ‘construction, where, for example, (as in Figs. 92,9b.) the gas
particles are representable as & statistiéal eﬁsemble of free
.'beamé, Thus, to impart analytical méaning to the intuitive pilcture -
one must make appeal to perturbation theory from the very outset.,
To be acceptable éuch a: perturbation theor& should satisfy certain
» minimal criteria: | |
1, +the sum of the partial rates fqr all processes yields .
the total rate in that particular order qf ?erturbation
theory, |
2. the asymptotic nature of the scattering e#ent results in
initial and final stateS‘which méy‘be defined.unambiguously,'
" and
'3, ‘these asymptotic initial énd finai states are connected

" by overall momentum and energy conservation,



3 'rea1vaxis (equivalent to Dnj5L it 1s possible to rearrange the

diagrams'

momentum conservation'factor.’ Indeed, this "open diagramf procedure .

36~

¢

"B, Reduced Diagrams and Disgrem Cutting

To proceed 1t is useful to consider & particular‘examplé

in the calculation of the total rate. Figures 2a.,b.,c., represent .

’;.the loWest order diagrams in radiative coupling. if 6ne.explicitly

-calculates the contribution to the discontinuity of Jﬁ\ across the

'”€¢  result in such a way as to exhibit a certain natural grouping of

‘the terms. In particular, included is a collection.of terms which

may be symbolically represented as in Fig. 10a.-" These "open

1

are calculated according to the "closed diagram" rules

" for the amplitudezjr, The probability obtained from the amplitude

".. represented by Fig., 10a is multiplied.by a four-dimensional

B-function corresponding to momentum and energy conservation for

~ the scattering of light from an atom and some obvious statistical

factors. The special appeal of this resu;t 1s understood upon

;:comparing With'Fig. 10b., the usual Feynmen diagrams whose calculation

yields the well~known Kramers-Helsenberg light dispersioh formula.

If it is possible to generalize from this simple example,

‘one might propose to calculate the partial rate for a given procéss
: by writing down all the diagrams with the seme initial and final
state (all coherent amplitudes), take the complex-conjugate-square

. of the sum of these amplitudes, and affix the appropriate energy-

'1f' has been conjectured in a study of wave propagation in'plasmas.7
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'7 The method enJoys significant calculational advantage over the

o "closed diagram approach and, as well, enhances ones understanding

of the various microscopic processes involved.

Unfortunately certain ambiguities arise when reactire'
:,processes are important necessitating infinite graph summations.
~In particular, it 1s not always possible to put the various
contributions to the discontinuity of ;2? in a unitary-like sumd
without running the risk\of-overcountingvcertain diagreams. Thus,
the operation of "diagrem cuttdng," i.e., deriving an open diagram )
expansion from the corresponding closed diagran‘expansion, does’
not always commute with infinite graphvsummation, The work of
- DuBois gt.§£ does not suffer from this difficulty since reactive
effects are unimportant in their calculations.

| A less ambitious approach can be followed which does not
_suffer from the above ambiguity, and for which an analytical proof

3 may be constructed, To motivate this -alternative procedure,

o it is convenient to return to the light scattering example...The

scattering rate was proportional to
z‘ p ‘ [ . ¢ ' o . .
|A+Bl'= AN +BA+AB+BB (5.1)

(For a pictorial representation see Fig. 10c.) A glven diagram
- contributing to the total absorption rate is cut into two pleces,
~each one including an external photon'vertex. The two pleces have

. amplitudes associated with them which are calculated according to
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+ the usual diagram rules. (Note that all possible cuts are to be

.takén. In the present example, the two cuts corresponding to

. AB* and B*A are derived from the same closed diagrem.) This

procedure for calculating the spectral function A(Rw) is
'fessentially the "reduced" diagram scheme of Larndau and Cu.tkosky,8
used to analyze the analytic properties.of the Feynman dlagrams of
relativistic field theories. This technique has also béen applied
to conductivity éalculations at‘both zero and finite temperature.
Jd. 8. langer has proved the generalization of the method to finife
temperature for a norﬁal interacting Fermi gas;ﬂ'In Appendix IT

a simplified bu£ heurisﬁic derivation is given applicable to the

present system.
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' VI. RESONANCE FLUORESCENCE AND QUENCHING

A, ‘Reduced Disgram Expansién

The two radiétion absorption processes considered in the
laéf séction, fluorescence and quenching, may be investigatéd in.'
detail through the use of the reduced dlegram expansion. Fluorescencé
here is to be regardéd aéfphoton scattering-but of the initial beam,
whereas,-quenching-correspénds to actual heating of the gas without
photon emission. Energy 1s communicated to thewéas thréugh a.

diabatic collision between the atom and a gas particle. Such a

‘collision may also be accompanied by radiative emission, and this
" possibility appears naturally in the appropriate reduced diagram.

~ expansion. The emission line for such & prOCéSS'Will contribute

predominately to the "wing" spectrum.

For ease of interpretation, it is useful to consider only

_those cases; for which broadening in the lower state is unimportant.

This situation is often realized in practise. The atom is more

- tightly bound and compact and thus less readily polarized in 1ts
‘lower state than in the upper'level, The Lyman seriés of hydrogen
‘may be approximated inithis manner. Some lines of helium may

similarly be treated.lo The total'absorption rate is then proportional

to ﬁhe discontinuity of the emplitude of Fig. 11. This fully

 ‘ renormalized amplitude is expanded in gas collisions and the propagator

renormalized to radiative corrections as shown in Fig., 12,
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- 'Consider'the‘contribut;on to'ﬁge_discontinuity of the
.°t;totgl gmplitude from Fig. 1la; In particular,'cqnsider ail

- possiblé reduced diagrams which include a single photon line.~ 
(Seé Fig; l}a.) Buf these dlagrams are equiValently written és'_
‘in Fig. 15b., and hence may:be regarded as photon.absorption
: followed by.photon emission; il.e., photon séattering. The reducedv
diagrams in which the atom remains iﬁ an excited state need not
be congidered since the atom will always finally be dé-éxcited.
The diagrams shown in Fig. 1lb., llc., etc.'contribute further
reduced graphs in which a single photon'line ah&van atom hole-
iparticle pair is cut.

The excited atom may be de-excited by diabatic cbllisions.

as well as by photon emission. Here diabatic ;s taken to mean a
{t transition of the atdﬁ from an excited state to the ground state of<

‘the atom--the line is quenched, The diagram of Fig. llc. yields
 the lowesf order contribufion>to the absorption rate in which a
1 gas particle may be excited through collision with the éxgited
atom. Coherent with thié term are all the higher order collision
corrections with reduced diagrams in which an'unexcited atom
particle and hole liné appear simultaneously with a gas-particle
" hole and particle line.. (See Fig. 1bb.) ’ |
The cut shown in Fig. lla, may be regarded as contributing ’
‘  to the fluorescent rate of the atom. When collisional broadening
"is important additional processes, élthough inéoherent with that

of Fig. 1lla., must be analyzed to properl& assess the emission
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Fig.13






' where I

»photdh is present--the emission line.

=4lw

B

~line or the total fluorescent yleld. As examples, note the reduced B

. graphs of Fig,vlhc. In genersl, write:

J=o

TR RLE e

is the quenching rate, corresponding to de-excitation

Q

~-of the atom purely through diabatic collision with a gas particle.

This'qpantity is determined by the reduced graph: of Fig. 1hb,

The second term lncludes all possible processes in which a.final

r (O)'

F is precisely the

- partial rate represented by the cut of Fig. lla. On physical

; grounds, separeting out 4PF(O) is in a certain sense artificial,

However, in the event that collisions may be ignored, this quantity

’ins Just the scattering rate of resonance radiation and hence useful

asra comparision.

Consider the cut of Fig. lha. or 15 in detail. If it is

- possible to write it in a ﬁnitary-like-sum form, it is natural to

identify PF(Q) as a partial rate, contributing to the fluorescent

o yield. Since the lines retained in the reduced diagrem are free

- propagators, it follows thdt:

%wn___, &, (k)—}?-.,, % w,,—> AW | (6.2)
: (} o

 Hwy é,g'm")—/c,',,)ﬁwm,aﬁ@'. o . - (6.3)



~i1a-




o

_As showniﬁ_Aépendix IX, the contribution ﬁo the total absérption
"rate from a pafticularuréducéd diagram is a_product of fi&e factors:
" a statistical factor S, a‘factor containing & product of the
“ spectral functions of the lines of the reduced graph Z , two

vertex amplitudes Al’ A2, and an energy-momentum &-function.

The  amplitude factor

‘A (w-i€)A, fww) Z’ZJ [( /Ie/,e> 2,0 (&P O i, k4P

III

xd—ﬂ‘ﬁ’> .
/1T €, 1) w!| T4, [ Y LTH ) o
Vaz o ((5 JZ [( 1€, ,___._zﬁw e

X G (&.0K)+ #o wiy, KrEI(EITE /x)]

Now,
A tuwr—ia)= A (10+e€) L (6s)

Thus, ' ’ ;
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) /7 1 32 E ’ .' . ’ . .
- - dk dl - ¢k + b(PY)
. Z.; TGS u-ﬂ‘)’ M (K) L/ Ny 1 LK) ‘( / ¢F

;x'zrr_h 5(40((,0.*?{‘.) q‘llk') ﬁw)(Zf\) J(k*P k' P') (6.6)‘

‘X ~ ‘T'é )/ >C‘f‘ﬂ‘f) )’"6 <é (k)+ﬁ¢o-rl’l,/\‘+P)
' }_’/Z( TS0
=X |  x(eurfml

2

Similarly, the quenching rate is proportional to

= S7 ok d% '
[Q' L:/-——-e 7 '77‘ ___g\ V(B (K)LLP) (/_ﬂ“:(k))
Ck+

\3?:

o Ky &1 )J

X C'/-ﬂ—tf'/)u-ﬂ‘)?i P-rf 7: K’)Aﬂﬁ'J( (k)fﬁ'u)-f'écf) €' 1K)~ é(p'/)

/E (x)p'(T (é(K)fﬁw-*é(P’)/(P*K)(‘ 2y . 6n
o (é (k)+ﬁw E*f)((’/fé /«}/

; These are schematically represented by Figs. 16a. ,- 1’6'b.. s respectively.

| Here the Bbrn approximation for the"quénching collision. has been -

replaced by the full Born series (see Appendix I) These expressions

':-will be dlscussed a.fter the - cuts of Fig. lhc, are considered. | |
By analogy with the cuts of Figs. 1lha. and 14b., the |

. contributions of the cuts of Figs. llc. (1), (11) (111), and (iv),

may be represented by Figs. 16c. (1), (11), (111), and (iv),
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k fesﬁectively.' Indeed, if these processes have cohefent final
‘; states, then their total.céntribution4may be written és the complex

- square of two coherent pfdbability amplitudes as shdwn‘iﬁfFig. l6d;
Figure 16d. has a cleer interpretation. The "finai" state
   1ncludes a phéton of posé;bldeifferent enefg& from tﬁevincidént

: photon and a gas particle which tﬁiough energy conservation makes
up for the difference in’energy.' If the atom may actually be
 .vregarded as in anvexcited_state.prior to the phtton emission.'
(for example, if the atom is stimulated by an excitation line
' gcontinuous-over the absorption line of the atom;) then the
émitted radistion contributes to the émission line of'the atom,
This emiséion rate might be important in opacity calcuiations
where the wing spéctrum is needed. Alternatively, 1if the excitation
and de-excitation must be reggrded as a coherent process, then |
study -of the emitted radiation outside the core_of’the emission -
:1ine could be useful in 1nvestigating_aspects of tﬁe diabatic gas
- collision from levels other than the resonantly excited one. Detailéd
analysis of these rates wili not be considered here. FQ and FF(O)
as defined by Eqs. (6.7) and (6.6) may be simplified éonsiderably
’ in certain cases. It is useful to See'to what extent_they may be
related to experimentally determined qﬁan@itiesh iny} pF(O)
will be discussed in detail since similar'arguments are applicable

t T .
° ‘q
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B. Approximate Expressions for 'PF and PQ
(0)

may be written

0) S | : R .
' A 1’2 lk (k P) , ’ '
/;7/ i )F o 68

- where

‘/4,_ 4P :.11~fr 5(4 (K +Ho ecm o)
m‘l L)-ﬂ', (ﬁ‘)’ ‘ .

2
=X

(4,‘m)+wf.<+m<,«/ /fe«>/

A/‘;

* (6°9)

'Here the initial photon polarization is averaged, and the radiation

'coupling matrix elements are wi_'itt'en in terms of »roté.tiona.llyv ’

. invariant operators. Also;. the 1limit of Maxwell-Boltzman statistics

: i_is taken.

As discussed in Appendix 1V., for a nunber of situations

G A @) (6.10)
J’M{az ’{,MFZ,: S{;.TJ ;M{,Gf,/gf : .
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'; In Eq. (6;9)'thé'étates.,qu'aﬂ have been assumed to correspond ":\
f% to & single level characterized by the angular momentum Ty
Thus 4in the sum over B, B' only terms labeled by J + 1, 3,
0 4a.re é.lldwéd for dipole ra.diation; Further, if levels with these |
-:llangular momentum are sufficiently separated in energy as to be
. considered non-overlapﬁing, then the sum in the brackets £educes
to a single sum over the spin _pro,jection M[3 . Equation (6.9)
become s '

. &
%) +
Kk P /G 72,‘(6«“"*#“’/ k+£)f

"/“i dp5CP-Pfdagy ] Z /Z’(Pe,x/v B e V/Fex)/(G 11).
el- L

4T MM é"é,\ Mg

~ “The "se%ond integral in Eq. (6.11) may be written:

DY ( m, v, /\,(cml/,./m,)(mf;/%/l.‘li")l/ /’"ﬂ;‘ : (6.12)
g |
where '.i
= [dANp ) | o |
A.e» /+ﬂ‘f A« £, . (6.13)

'_”a.nd

-



iy

/\ (P)= %}1 f’é ,fé*! (6.11)

:_A&(P)  isjclear;y a-rotationall& invariant operator. Thus, the
| pirst matrix element vanishes for Nb = Nb, , and in Eq. (6;11)'
- the sum over Nb' may be removed froﬁ the squared qpantity;
Finally, the lowest order contribution to the total ‘
absorption rate from resonant photon scattering is (éee‘Eq. 2}17):

- o}[b’ff’)m‘ Jil 2‘;*)/".4 (DE(P)(/G Qé‘mﬁw K+P)f>(6 15)

4_where
x(, (P)= Z o A‘E/(*lé I /f>/ : (6.16)
M, | o

" the traﬁsition rate for photon_emission; The brackeps Qenoté a
- ‘thermal aﬁefage over c.m. wave number of atom. Fof the case in
 which the atom is isolated, Eg. (6.15) ;edﬁces to the well-~-known
- result for'scatfering of resonance radiation. More generaliy,
Eq. (6.15) includes the effetts of collisional broadening and
Doppler shifting. Further simplifications of Eq. (6.15) will bé'__v‘ |

discussed léfet.



| _X G((;, (é:c(K)*ﬁ"-’jK*E)({’/V»/Eéf‘)/ .

'-1;8-‘

. For the q_uenching rates
= [d% d’

C}_T\) (117‘)7 (? (,.(, B, E)h‘(’() %()7) . (6.17) .

" -where .

| ix' dp! '
Q‘(K 2,R)= Z i;)’ L;_ﬂ‘)’ 3-77’-5 Jéé,g(k)f'ﬁ(o-f-é(f) ¢, (K') étp ))

N (ﬂ“) J(kr P+~p-K p),z. /E <ki('f |T (é(k)*—ﬁ(‘ﬂ é(y)/(ﬂ-k)p)f)
(6 18)

" Similar arguments to those used in simplifying Fo. reduce

%) P
Q( | G/szcé‘ (k)e-’ﬁw K+ )/

/’K' d?p’ mﬁf(é,(cknﬁwwcf) éou<k')—é</’") )

‘x (zﬂ)’Jth+E+ﬂ— E'—fi')E

(217‘) (_1.77‘) - .
, *Z / K p /T*(e oo (6 19)' |
e T € .

+e6pd) /cmx;,e, 2 [

X /<(s1'v,,1fé;<>l



N (/S’M.g?&j'ﬂ'/ T e k)t ﬁwfe(p))/(ffg) .y 7,3//2) /"',_‘, g

- - : >
NP mp T p /T*(ég,((k)ﬂwfecp)/eam“,z;,/.a{)/ |

- ebg-

‘. Note that the collisionsl de-excitation probability is not directly

. related to thé de-excitation cross-section from an excited atomic

state since it is evaluated at the initial and not intermediate

- energy of the atom- ﬁrticle system. Similafly, the energy
conservation connects the final state with the initial state--the -

- nature -of the excitation line is "remembered."

Tt is convenient to relate the quenching rate to an

assoclated beam experiment in which an atom is excited by impdct'

with subsequent photon emission. Indeed, it is the excitation

. cross~sections which are determined experimentally.

By space and time inversion symmetry, !
(6.20) .

Under the sums over spin projections set - MB-—)MB cand - Ma,_—-»Ma, .

Similarly,
:-\—. . ) ’:_—- N A" : .
L Gl TE(wd (=2 (Gmp 1 ZEmI[ (621)

ok . . : .

Q

. In the expression for T, set P + ksk . With this change,

Senergy —> S(&tkI+ pI-Elh-Prha () (6.22)
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Ny (K) —> N (K- P) R (6.23)
For all - situations -of interest P << kthermal f For a . plasma of .
' =4
1,2e‘v. and excitation energy 10 ev. P/ th rma.l <2x lO .

' where

Thus, ':v!.n these two functions set ea(li-g)e) ea(l_{_) .

With the above changes,
=/g ﬁ('f/")’ ”"/’? (@f’m( 5,/2)) o - (6.2k)
(Q(P)(K F)> }?..(/ ( I‘é‘ -P)+ ﬁu_,"' 5),)

”C k' 9',72", (zr*ﬁﬂ J(é‘ AKIHECPI-€ (/o—ﬁu éép)>

QLW‘) 7))

x an? J(K’*P k- )L /< KMW ’K'“é(f’))/’—f&’ﬁ?/, (6.25)

(4)

‘LZ /((4/ ,PéO/"

. 'Compafe this expression with Egs. (6.8) and (6.9). Due to the

simple form of the de-excitation probability there, only the
resonance factor is involved in the thermal average.  Here both. '

the resonance factor and the -de-excitation probability must be

averaged together since the de-excitation amplitude is dependent o

" ron k. To relate this expression to the analogous beam experiment‘
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0 S & ¥ isiheéessﬁr&jto‘approximateithe'average of the product of these -
.tifﬁhctibns_ﬁy fhé>productvéf the ayerages;' Such_a procedﬁre is
. reasonable in two limiting cases. | |
l; the absorbing atom is massive compared to the qpenching
atom,vindicating a Weak-dependence on k i1n the ‘second
factor (He - Hg, for example), or | |
‘2., Doppler shifting‘is negligible compared to préssure
| bfoadéning,'and the broadening particies éngage in
_ collisions.in which the momentum of the target is
;Funimportant (i.e., piasma quenching particles ﬁrev
electrons ). | . |

'~ For these limiting situations, EQ(P) =

)
/J,/LP (/5“(’((é’,<m PI+RWTK) ) GW G ,mfm éK_) (6,26)

a”k i‘(,f- wh 5(4 (K’)+é(f,') € (K)- Aw - éép))

L‘Lﬂ\J (_7-7’\ )

« ar) 5(5',«/2’—5-;&)% R W*%ﬂ")/" P>/

' where an éverage over 2 has been taken, “Such an avefage has no

J'éfféct on~PQ,; .Since t?e'first factor mgst'aléo be independent of N

~ ‘beam direction, this average may be taken to act on the absorption
probability. fhen, this last factor is indépendent.of MB s, and

the sum-épplies only to the collision probability factor.
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Finally, the'contribution_to the total absorption rate

from gquenching may be written:

optm=td) ef* ( | 6P <<-;‘<¢r-e>+w,;_<>/>

n Fp'Za |
. - £ 4 I (6.27)
o). J ! ‘_’ ) ) (El I) __ﬁ (P) )
x [ //%_%mxmm@ ?;:f‘)aa—-(zf) any’ gm? ‘(™
‘ﬁhere fhe excitation croés-sectibn,
8x.) ' pr 1ﬂ? ‘ ' : ﬁ ;
kiR }._———-—--""' 2 y ) a
’ /R)—'ﬁ&)“et)_. .
QZT)F(—(ZT& /ﬁk i ol g m), ﬂé fk)+é<f’) wmEPs.

| X 5(/(1.# k‘F>/¢&<)Z /(k(g /:/[ (6 (K')I-é'(p'))/k }’)/(6 8)
- f’

- | | ) prw . ~
'n‘(k)ntﬁ'*?‘ac“f'méf e (6.29) .

. has been used in Eq. (6.27),‘
. Thus, as one might intultively expect, it is possible to
write the partial rates as the product of an excitation probability

:,and a de-excitation probability into a particular final channel.
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e
ijweVer,”it‘is cléar‘from;the'above discussion that this result’
s by no means general; it requires a number of simplifying

assumptions.

C. Total Absorption Rate and Branching Ratio

‘Cbmmon to oF(O)(P) and aq(P) 1s a factor which contaips fhe.
".details bf the pressure broadening aspect .of the absorption line
problem.' it is useful to determine to what extent this quantity
may be related to the absofption line. As discussed on page 39,
the total absorption rate is proportional to thé discontinulty of
- the amplitude of Fig. 11 in the limit that broadening in the lower

~ level may be ignored. It follows that:

1=
5 /m,;, 0 (o | €, Gl #es koPOT S k) (6.30)

é

_—

7 As discusséd on page 45 Eq. (6.30) may be approximated as:

[ - ImE > /«uuum fe (G <’ efk)+ﬁw*k+'°)>

Z, s, g (6.31)

_The total absorption rate then becomes:

O-T; L .;_’: /jﬁ(f’) [y (P a1, G%::,r‘;éé (R hes] KD )>J (6.32)
. : ' o ‘ C . "



Sl
':‘AsfdiSCnssediin AppendiX'iII,f_

Gdf (& (K)f-ﬁ-w k2D
é%lﬂ? :
[—é (K)_/_ﬁw-r é (k+P)~ (J‘z,,/g'_; (k*P) /TZ‘{I>J (6.53);«

 ,'fwhere 4&& 1s an Eb'n proper self~energy operator; i.e., in

‘ ‘diagram expansions for its matrix elements no single atom line

: labeled by a state with-energy E, i1s allowed,. .

p
As is well-known, .

' F e ye (T2a R 1520~ i Tekal T 1 Ta%a) o
(I8 0= (R R 1P B A

‘Where
(T2l RE 20z A (080 655y
(G2pl I, ) et 2o L (636)
_4Eqpation (6 52) becomes _
) . ) A (é’,c(/r)mzo*,'b L )
CLCPI=g (- ¢P (
| ( /“(’ (é (/(+P)‘ é(/_{))—A{g] + ,a/4- ) _
| (6.37)

e 1 (77“)//#) “(,‘P) A,((g (w)



 The z-axis is taken along ‘P . Then;

- =55= |

- The effect of Doppler. shifting may be-expliéitly shown
kP I
5 .

~in Eq.' (6.37). set ”e'B(k + 1>) - ed(k) = ho, +h" 2w .,

Pa M

[ Gtttk £ R
> (6.38)

A({gw) / So-yPr( - Pl t 4

or

N N, o
A‘?’(wéﬁc | A ASED)

[#w-w P/M—A,] A
- " s

The bracket in Eq. (6.39) means averaging with .

Jhe o PP €D
aery

, If the self-energy function is only weakiy‘dependent on .c.m.

momentum of the atom, the above expression is the basis for- the

I

. simple "folding-in" pmocedure often utilized to account for

Doppler shifting.

It is important to note that nothing has been said about

‘the specific nature of the collisions up to now. For example, in

:_a hydrogen plasma the effects of both electrons and ions must be



'6:(_”,), m( )( /0(00> é:(q(P)< @ (o € (K)+‘ftl f_ﬁf)}l>‘ .‘

. -5'.6‘,-

0 considered simultaneously, i e., no "impact" approximation has -

been applied here. If, however, the self-energy is only‘weakLy.'

. dependent on the frequency of the incident,light,'then the

expression above represents a'Lorentzian line shape where QT is

& measure of the width of the line.

To relate GT(P) to the expressions for GQ(P) and

' qF(P), it is necessary to approximate the averaging over the

atom's c.m. momentum accordiné to the technique used for

OQ(P) . Then,

f " (6.40)
X ( /; (& (k) +rhw] K+ P )>
* Comparision with Eq, (6.27) éives:
o ; ) .
So(P) = 40 [k’ #p'|s k)
: ‘ SL)

[< /‘;(é <K)+fuo krP)>]

-where n  is the number/ﬁolume of qnenching particles. The
brackets in both Egs.. (6.40) and (6.41) denote averages. over
c.m., momentum of the atom and the quenching particle. The branching o

_ratio for'de-excitation by collision or radiation is then determined.,

In fhe even that Pb 1s not a sensitive function of the
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incident.energy-or.the'c.m; momentum df the atﬁm, it'is’precisely
' the full-widbh at half maximum of the absorption line. . The
" branching ratio is then determined by qpantitieS’directly accessiblev
.| to experiment.
To get an idea of the brénching ratio fof a.parficular
system consider the Ly~ 1line of atomig hydrogeﬁ in a plasma, ’

'(> Since the total cross-section is a Lorentz invariant,

. . | -
a”/(’ )y o ax) <K' P)//’k noov S e -
any ) r{,«- 27), Jany czr)fe— 2T (6.42)

where negligible corrections to the statistical facfor haﬁe been
ignored, Note that the cross-section is dependent onlyvonvthe

energy of the electron in thé rest frame of the atom. - Then, -

€ /®
Sg/Sr = el/—'nf(-l] et f e /f}c }6(30

(6.13)

<

 iwhere for the Ly-a llne of hydrogen u(B)/p(a) = 3, end

) P(Ly-a) is the full-width at half maximum of the absorption line, -

x- 1;/ @)% ) Calt =

the freqpency‘of’theﬁlineéi'V:='volume/électron, and 1t a02 is the

»



. For T = 4,000 °K, n = 10%7 electroﬁé/bh.3, MLy-a) = 0.017 ev.

 58-

pross-sectiohal areafof'thevfirst Bohr -orbit. ‘For calculational

convenience a dimensionless measure of the cross-section has been

{_ introduced:b

(ox)

<)

(€)= T 'S (p) 4= €4
12,3, 3, & ®
fes - 3

6.14)

11

‘\;'Frcm'experimental data on electron excitation of the Ly-o liﬂélg

I,

firyetaw s o

Thresho /d

numerical integration gives

'The value of the - integral is essehtially-détermined,b& the‘threshold
f data, the exponential factor providing a strbng cutoff. Then

"_ QQ/OT' 51“0.019 or ¥(P) = 0.02. The branching ratio is defined as:

-

e ()

:'From the above 1t is clear that pure queﬁching 1s a relatively

5 unimportant mechanism for the de-excitation of the atom in this '

example, -

For the case in which quenching particle is identical to

' the absorbing atom; the gquenching rate is usually a’significant

part of the total rate.6
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' APPENDIX A. Analytic Continuation‘and Frequency

- Sums for Total Absorbtion Rate Calculation -

1.  Special Case o
‘The first diagram of the ladder sequence for the special )
.case’-i"nvolveé the sﬁm,. i : ' R o o
ZG (K ,w0n) Gyo (K +P, 0, tWy ) , .
7 e B0y On1) Cigg 55 Cn T T w1
N : ) : C
. over ‘frequencies
Wp= & (A OTYE -
.. This sum is reproduced by the contour integral
O awe /’f(?—’) G Q‘uz)éﬂf‘ﬁ‘ﬁf»z*"’n’. . (a.2)
-with the contour surrounding the poles of | - - ' L
.7[. [-“z ]" .
' = +1 o T - *
(@)= L I %) -
for z.= ® , with residue - (B)"'l . (See Fig. 1T7a.) Take
Im wn> 0 . In accordance with the well-known analytic structure o .

~of the one-particle propagé;tor, the branch cuts at° Imz = O for
Gw(z)' and at In(z + mn) = ‘O for Gﬁﬁ(z + wn) are explicitly :

shown.,
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It is. convenvientv.-to distort the contour I.‘.O I to.

. facilitate the‘ integration. The integral becomes:

| = ///x/mg (x- /7>6ﬂ,(x 17+w,,)

/ 0()(7[0‘) Z o (Xf/'Z)G/a‘y{xﬂ?'Ho" : ( 4
s \ (ALY)

/XXf(X u),,)@ (x- /7 “)n)é“ﬂ (X-1 ?)

/ /X -ﬂ (X- w”)G ()(4-/7 14),,)6’ (Xfl7)}

. To perform the analytic continuation set f (x - a)n) = f (x)
then ‘@ - @+l vhere e >, In the third and fourth

integrals set x = x + w . Equation (A 4) then becomes.
//x [/(X) 7[(Xﬂ4>>]R + .zmﬁx [7-[(’(*”))?’— 7[()() R 7 (A.5)

~ where

R 6.4«(’( "Z, >G,,(Xfw+17/K*P>- o (A.6)

. iy, K2
Rers Gu /X20Y, 5',’67‘//"*”"""" > SN

It 1s ‘convenient to w’ri"c‘_e»
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) o .1v -1
R-f--f' = (k.f’A%-(r ) l'( %t A X:-)

/7.. (2) -1
(Ax“’-A%“’ V (Ke- DXy ’_(9<+ INvl )

with

0 z .
U AkYs &G EOK),

A,Xu) = {([?é (x+w, K +P)/lg> | |
(& U P-4 (60)

'vx_r = ’Xfti7 rpa— % ‘K:)

(A.sj o

(a.9).

' (A.10)

; (A.ll)

Upon expanding the two terms in the second bracket in the neighborhood |

. : | - . Aki’: A’Xl-z)': }\
g R+*‘ (?(* )1" ’

Similarly, -

(A.12)

(8.13)
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~of the atom and the final integration over this-variable.
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= (a K- Ax::’) ((9( ax) s A%“v)

, (2) - (/) (.l)

i 500 (axc- T o (K%
X axt’ _ A’Kf |
X > Xy )L

v' (A.1h).

. -7

These expansions are divergent for X =‘O;.but their validity

-rests -on the slow dependence of all quantities-on the momentum

From the expansions ebove it is clear that the dominate
contribution to the frequency sum comes from the first integral .
in Eq. (A.5). If the smaller contributions are neglected,

Eq. (A.5) becomes:

(7{.(6,4(&)-/‘0'{(%“’7'/‘“ +h0)) |
(Aa.15)
[h‘w Cér((K,p) & (k ;) (<(«/§(4(K)—h+tvk+f’)1(>

- (x /% (e Lk- /%,K,)}-())]

t
|

In the spirit of the impulse approximation, only

.. on-energy-shell scatfering amplitudes should figure into the 

~ determination of'the self-energy functions. If self-energy

functions are smoothly varying functions of energy and sufficiently -

small, one may evaluate them for e (kl) o (k + P) A
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similar approximgtion-for the second statistical term of’Eq._(A.l5)

gives:

I

./( (.K) f‘c) -/(é’ (k)- /(ba'l-ﬁto)

S e pcmt’)-".” L LA SO fhe ) (a.26)

‘With these approximstions Eq. (4%.4) becomes:

et )Y [T m cryCi-m CK,+P>)
: Q21T) <0 F

X (< IT-81P o - ¢ & CirP)- & f.m)—(ﬁo X721 SR R b
- - | Fkokp] (1T

© where

(2’/?1(5))))75 &/? U#:”p E)I}’>/ |
| v=é,zk)-7/q," |

' To calculate the full ladder seqﬁénce it is necessary'ﬁd S

(A.18)

¥ explicitly perform the frequency sums of Eq. (4.12)., The gas
;'particle frequency sum is converted into~a contour integral

. surrounding the poles of f+(z) 4in the usual manner:



O

".. where .PO
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Z G"’(w +(4) wu,,, f’,*?) Gw)(wm )/’4
“hu, .

= Re.nc/u.&[yz ('Z) G”)( Whn, ""2 Wy, ) PI 4’2) Gméi, [?,J

Y 19)"
[/(e (g, +3>—/<u> fléfﬁ /‘u-’]Gw(é(f r%)—/‘u ,P,) |
- Thus, the final frequency sum becomes:
?LZ Gd“oé“(wn})ag_) /\xlﬂgég'(él (‘011’_/ w;.'&‘f“')h) l
W@y,
K G(’;(;(w“ #on & *P) ém(éénj)* g On; e, P’) (A.20)

which is equivalent to:

.zﬂ,/di('/(&)f"’[(é{f’) 5471*77))6 (4(17,-"7) w”-f-z‘-/‘n‘)},'). |

(A.'el)

K gdg_,(_‘_c'z/ /fa.) /\.Q(g‘_ /‘/‘,,(i /2#-4);,? 6(41(,#('2 +wu7f .,.1(4)

e
i
i
i

1s the contour of Fig. 17a. In anticipation of the

.distortion of the contour, 1"0 -+ I , note that the second factor

. in the above integral has:



’ ”_12,1'a branch discontinuity for ‘Im (2 + @ ) -90 and
4if A is assumed to.have the analytic structure expressed by -

from the iteration equation which 1t satisfies, The first factor . , I
" in the contour integral has been chosen in such a way that the
simple pole gives no contribuition for the I' contour of Fig. 17b;

:vAs in Eq. (A.%), integration along the I' contour gives:

X [6“« X-~¢ 1{)/)4(.15 ""I"(x I?IX*IO”) - (YMZ)/L{ lea((<x+4 ?l/\'*“)n)] .

B N - : .
X z’;n‘/f/.x ({(x)+{)c.’°>(xew"-wn,+é‘72,*.3 o) Geyet, CX-On) L e
-o0 - : ' - _
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1, a branch discontinuity for Imz = O.,:

© 3%, 'a simple pole for z + e€(p,+ q) - ® = €(p,) =0 ;“n Y
v ‘ =1 = n, =l ' .

+1. and 2, That -A does have such a structure follows directiyf

/KX(:/(X)J—?[)éM)/’( Wy +é(ﬂ,*})—ﬂ‘) é/‘*(dl x+wu

(A.22)

X [G(,_(d,_ ()(—I"Z )/L(; K=y X1 7) {‘(Xf Z)/L(’ f( wk/x,,y)]

. where the momentum dependence has 'been suppressed.for convenience. T

The analytic continuation of - A has three separate pleces:

Wy Bt i é,ro , Wppton— Erw #6000 (a23)
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B where.
.'.‘/)-p
"__,’,(ét’t‘-zé%):f sl EENCEDN
wl, el |
 Let

: ,\/(g,‘,;?z"'o/zww'z&;)j: 7/,?::/ e

vrepresent the various analytic functions defined by Eq.-(A,22). .

Then,

V(;_ wYol2rw 7,_0)’ u,, /M% (/’/gu/)é' )(x 2- yo+e//>,+z) //‘_

o (f(\(ﬂo)-f-f)G (x- z-,7£o+e<g,+7> /‘“')]6‘“( O(_@)
X Gf*ﬁ (Xt w40 Ny g, e (K-io)xees+io)
277"/40([(7( X+ ) +-[)6(°)C" -2 - 7 0+€‘P1+b)‘/“—) »

3 | )( 6 0( ,D)Gﬂ (l (X+eo~ (D) /L(&(g /o((\‘ (’(*/O/X*‘O 107—] A (A.25)

- L e
xm'/ﬂ(x [(ﬁ(x)m{ )60)(x-2-,l'7,0+6(/3/*_?)7(")

% 6,(,( (X#70) 6-‘4&‘3 /1@ +:D) /L(a(,&/ i’ ,(Xrid /X+zowo)



),se;v

| This equation should be compared with- Eq. (A.h) The same expdnsion‘
"procedure used there indicates that V is correctly represented
in the same approx1mation by the first integral of Eq. (A.25).

For A this result implies that
vy (s, 2 +,0 KB, 210+ 00)= J L, f,
N 2T )2 ey dpp

-3 [am, [ar, C%(7,+Z> mz’)(v‘ e it 31 V1 850 P

, XY
. ' “"(d" . [
Lo » ) PP ) . ’- . 3)))
| - + .
'v x G “tx-2- ‘Yot € (P, f_z)_/t},, f,) (fcx+w)+,[’(ézf,>-é(f/+;>% 26)
X GO 2oy o+ €AYy B S (XHteaT AR
| v' X /\«,.ﬁ,-. <’ (K, x-io [ Kot P X+LO+i0 )]

i
[w (é (k,+P>- é<<!.<=n) (((ﬂy.l%(xmkfm)/(d) («;lf X, K5 ,_] ]

i

R i
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From this équation-thé various branches of A may be determined.

The "ladder" approximation.for ﬁ(g,‘a)) may be written:

._'E dKjél//(i)(o(/je//J}G (-?.) ‘d(léi+h%t) (

“/(‘f' @) A.27).
<)@ '
@l ! (2 /i“"’ﬂ ¢’ IT-& 1)
" where I‘O is the contour c&‘ Fig, 17a. With the contour I* the _

o ' . o v
-/-;f,;ﬁ{x Zf(x+a>}6,<,<(x—fo) @ﬂ,(ww -,'Q) /\,\g,?{,ﬂ: (x-10 /x+w-/'é2
- . .

integral 1s:

o : .
vy /dx ({ffx) - ,f"(xﬂ‘,)) &‘“ (x-m)Gﬂ, (Xt +i6) /\?M'f' {x»(‘o /x+w+/oV)'
Y- 4 . . ' ‘

(A.é8)'i

:x 74 (x) GM (x+/0) 6’&4 (X+ ,l'o o) /\x(f /,(;4, (x+70 /‘x+zo +,’o)_

-

- Again ignoring all but the contribution of the first“integral

of Eq. (A.28) evaluated in the approximate fashion illustrated

above for ‘A, one finds:



X (“/75/(’>/\ M{,/(K,,X o1t rE,x+wa,b) (F//:_T_é‘ /o(’)

=70~

@(P‘w)“ZﬁK’ﬁx(-f'(u f{xm))f(“/%“ ‘K/)>

(A 29), 'v

ﬁ?w (é(,uwi’) (K)) (((/§4x+wk+f=)/[e) («.@(x,m/oc)]

" If the resonancé is sharp and both At and\ﬁ&“wére Smooth fuuctionsv
of frequency3 one may substitute for these quantities as arbitrary i
functions of frequency their values for ® + € (k ) = < (k + P)

The same expressions are used with the frequency dependence
. suppressed. |

The statistical_factors appearing in Eq.. (A.29) arevconveniently.
rearranged as:

| /. | | (.é(:)—é(}?/*fbv —/~
(7 -"lpr®) %‘4<K;>'+(ef A 2,5")

. uo) ley (A 30)
= —ncm(/ 71«;4"‘2’)(/ ”ép"w)(/”‘cﬂ(ﬁ e }iét}’n%’)

=

' with a similar expréssion.for the second statistical factor.

%

" Finally, in the low density limit for absorbing atoms: . -

8 .=



A= 7 /, & /{E ¢ 2o o (A.31)

%(pw) (e/‘wt_,)zf K.m(K)C/- (q(vg,r‘jf))'.

am)?
)(‘

<o</:/‘él() /\«(em(e CK, |+ P (F /TE £ (') | (A 32)

[m) (g b= &etso) (1 F s >/f> («/s?w'«o)]

‘where A" satisfies the equation:

AT (K/E/fP) 5 5 ¢
Ao(cflo((d (‘(

_Z d?k,z C{PI %‘P')C, %(_Pff?))

“a.,('a. 27 7“)" (&) 20 )

(A. .
5(4 cm—é.‘éx,.k),»ezp,) é/szD(a(,k” pfgij&&). (a.33) -

X oamd

X (ﬂfm,,P/ V/(‘aff&,m%) /\.((, ,,{(,,CK 1P

(2

—/ L
[‘kw—(é CK;.#f) é,x K )) C(fu)§CK+f)/(€) '(0(4,/?(/(7}9(,.)‘] . |
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2. .The General Case

~ In the general case consider Eq. (4.3). The frequency

sum may be performed in the same way as with Eq. (A.2) . That is,

C w R v o
l—_ﬁﬂ,/;(x(ﬁ(x)—'ﬁ (Xft«’)) R’f * :}ei “X( ) /?++
> ol C
| o o (A.34)
+ ;%'l. d’( ( . ) R—’ . N
-y . '
where as beforezl ——
| :   —-/' ) K /(Y'ﬂo*”" .f.("‘f) - o
Rov= Gaw X1 Cpp RS sy
| f. ¢ *; Z7 ’ +i it P .\
Ree = G:(,,(’.(x, WD Coa (Xt e PO oy

The first integral of Eq. (A.34) gives the main contribution as
" discussed repeatedly above. Gy,y(ayk) is to be regarded as the
- matrix elemenfs of tﬁe operator _G(ayg) satisfying the matrix

éqpation,
[ 4o germrrhepa—B 5{]6<”'5’5—L s

where ea(k) . is the kinetic energy.of the atom.

Considgf the eigenvalue spectrum:



T3

(H B ) [K s Wy | L)

(4.38)
' Associafed with ﬁhé setvf[!Xi(x,g))] 1s the reciprocal set
'{lgi(x,g))} for which '
\ G ool ¥; =i (4.39)

- In general these eigenvectors do not constitute a complete set.
However, in the limit'that the ,jbs constitute a small perturbd-_
tion on Ho this'cénclusion usually may be assumed vdlid. In

this event G(x %’in,gl) has a spectral representation:

TN e SR S10A DR - |

G(x*"?)’—(') 274 X+t oo, — €,0K) - Wi (X, K) (a.L0)

Cand since glxk) = @ (xx)T, | o (a)

G &-i9,60° )] LoD (KRR ey
- [ KUt e G- W)

'With these spectral representations the frequency sum of Eq. (4.3)

becomes:



. _ v ’ ;7u- .
-';r'./o(‘: (ﬂ.(x) —7{_ (s ))Z i@'_/jf(x, 5,7>(1/;(X, bf:)/'o(_): -
P o XL S

. . .
(K-I’{f'/‘a,-é (Kk)- W (X K/)) ()(4-/7{-%&0{-/(“’ a,‘K/*p)"W (X-HO K?P)) ‘Q |

; Again it ié neéessa£y touépproximate the product of these energy
. denominators. However ﬁow the.procedure‘used previously@isv

i ambiguous since the point of expansion of the energy denomihators

is not uﬁique. It is important to realize that the end result of.

the expénsion is ﬁo uncover an energy conservétion relatiné the
N integration variable and fhe point of expansion. Let I' bYe a
" measure of the expected width of a paftiéular isolated line. If
the self-energy functions are insensitive to variations in their
- energy over a range I ; then the résult of the.expénsion is
- clearly insensitive to the precise. point 6f expansion., For convenience
| expand about € to make easy contact with the old result.

The energy denominators may be written:

| ~/
(Y"’[*/‘a« - w03y %))
: : _ = o/ (A.4k)
X (xﬁlszoa,—é‘tk,)*(v\(/(ww, f_<,f_P)+E,,(5,+_P)fé«u_<,7)) _.
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- Upon expanding one obtains for, the Pirst 1ntegral of Eq. (A.34):

nlx (f (x) ()(-flo))z (/5 (x K 7)(?( x K,)/0<>

-ov

oox ((917( (X+@ K+P)><3' (Xt Kt P) /’4 )z.mzf(w/q,-é Uﬂ) (A. 15)"}

K[-A‘w —_ (éa'(ﬁ(l"'ap)*éa’é 51’)"‘( \A{I(X+w ;"'P)— W (X K,))]

(

' Equation (A.45) may then be expfessed in terms of the original
basis through the use of the dyad vector space introduced on

page %0. One obteinsi:for (A.h5)

/o(x (f (x) - £ { Xtw)) J(X'f/w,— é.dk))

("("/ [ﬁ"o (”b Ck+rEO- Ho 65'>)~(§(X+w 5,+_P)'5f(x ks]k/ (#- %)u B

where, for example, ' .

(o1 )= L @D o ‘<A-1+7A>.

From this example it is clear that t,he‘results of the -

special case may be t”ansposed immediately to the general case. The
, only essential difference is that the eqpation which A satisfies ;'
involves summations over both the right and left hand sets of-

. subscripts. One finds'
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? (Pw)— (e e (" /)E o"Ko yzkum (oc /Ié /(f)
- | I'(" ) :
(

xé(d/[;tfo (Hovckd'?’) HOZ5:)7 (é(K“P)"E CK'))/JK)
(A “8)

f‘*

_,IK+P)((4’/T6 ]o('>

’/x(e
. and
R ‘l' MI(‘ ,' et :
Z’ d”<a d’f'} m/m /= 'n(P a)) N e
E "‘)(‘* ' ' S t

L o i 0 (4, (K;)4—é(?'+2)— ,cK,)—éfPrD ("9’&,?"*}/‘/“ "uﬂ>
) <F " ,;,J'v'lﬂ;f’* p,r$> /\ 'J M“ (K //<+ P> (A.h9_),,;-g?'-j'j ‘-,

X {0(,.(5;/ Z;«w (/./ (K+P) Haék ;) (%’ cK+E) }5(«,07]

; .
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To put these results in a'more\tranSParent form it_is_convenient
e ' °; ' to define: |
/v\—'cw-.
L =-: <0<(3 [m) (R m,p, Hoék)) (é'ck*f) (5.7)7/1(5,1K+P>o</)

(A. 50),_

and

| (e)= c/v'ﬁdfa \ T

f‘ﬁ’ A 1% fa. amn? Gy’ ’1‘P>¢f/ B ) .
K 8D

- K <zf‘t) o4 <K,.)*é(.p,,)—€, (K,) ecp,))@f‘) (S(Kv*f’,L KR

Iyt Bl ) VRt PP B) l“zf’z)
0

x(«, (A1)
‘ -where, for example,
. '. ’ 4 = /. V(K ﬂ-ﬂ-'KuPl)’d> :
(“:. K, Ba ! VI“:-L‘:;I?;)'__ <°(“ *s | | (A 52) |

/)Z ﬁt"' rtvck)(olITf’f) ,((,(;{,'w)(f 4 |« (A-53__)'
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. _ ,
where Nfi(§3aﬁ ‘satisfies the matrix equation

[Feo- (hs'tse = Ho 1)~ (%'o?ﬂfr Fth Micewy

(A.5L)

=T + -“‘(P)/V\ *(Po)

C‘-l)’ /

“in the dyad vector space, N R

Above the effect -of the collision interaction is treated

.in first Born approximation. In general a gas particle may

collide virtually an arbitrary number of times. That is, the

| be replaced by the complete series. This amplitude is obtained

from the solution of:

(xk p’/M(#})/K« f) (k' B\ K% R
-5 e /wk«,,mze“’cw,, )

[72)
K, &%, f: ny

M’(¢+;”“)hn P,){E, f //V)(?‘f})'t(“ P>

Upon carrying out the frequency sum

EYN

- amplitude associated with the -first graph of Fig. 18 must then

| (A.55)

<
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' ’(;ﬁ*}) V+V [5754-0}:":5 Ko K*qcum,] {1 hp,)é/—nﬁ )

v (. K- pa) o fC0PF5) ) Tt ) |
<l | f /‘ ¢ o - (A.56)

vfhefé T t(ﬁ + ¢) denotes the' two branches of M(# + 3 + 1e).
' In the‘limit of‘IQW atom density and ﬁbltzman‘ statisfics
fqr‘the gas: | | w
| >
6;1‘9“‘:—#& )——’70
)- N, —>o

/""y-""’) o E | " - ".(A-57) o

| . L l : 2 né¥ N v
' | - ot ] ) (Pt :
~T -+ V +t3ti€~ Ko = o j J ?5 } , .
: B ) . . + . '
- (A.58) is precisely the two-particle scattering operator where '
- the chemical potentials nave been absorbed into ﬁf + & ., The .

. ¢collision kernel now becomes: .

. _
K’I/EL(’P)h /;3‘ ,_& 'n(ﬂ) 27/72-(4 (k;)l—é(f,)— %,(K,) é(ﬂ))
=l s aﬂ‘) an)’ (A 3

X (% //Tcmm YT e, P,IPMS;,F.'. M )
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APPENDIX B;"Reduced_Diagrams aﬁd Rules *

for Calculating Absorptive Parts

In the following discussion skeleton diagrams will be used
That is, all diagrams have self-energy insertions removed, and each
-line has associated with 1t an exact single-particle propagator._
The diScussion is equally valid for any given order of perturoation
' theory where free propagators,are used throughout,‘ The.system is
composed of photoos and Fermions. |
For Fermion lines

Glonr[ 42 522>

(3.2)

"and for the photon lines

-

Dxlwm)"/ 755:'/?) o | ‘(B.e.),'

Hbre Z,X are line labelings, i €., particle type, internal state,

' momehtum, etc,

An arbitrary diagram contributing to ¢(w P) may be written-

B, £ E?""ﬂ x)/ AFQyF) - fo(} Qs 'F)
</ ad a4 - /"’7‘ “X‘?” el )

oo d
e 4n“,“5§

. | A (3.3) | :..
ﬁﬂ }z)”‘(—”q. j/h>(—jL ?t) #{7 '3



/e - (b0

-80-

s boson lines, and u + t -independent, w's .,

of the w's .

line-labeling sums with .g(p)(z ,x) represénting all the matrix

‘where p "indicates a particular dilagram with r Fermion v‘lines '

Z denotes various

. elements, sign factors, -.etc. 5 and the Q's are linear combinations

If the a)n sums are performed energy denominators linear

that these denominators give poles as  approaches the real

9

theory as in the zeroftemperature theory.

since landau's reduced graph procedure may be used in the zero-

- temperature limit. Under the limit

/"’7’” E"’ wr [d W

e

" the frequency sums may be written:

/U}/I }" ?’/ gb:)’

!

N =00

.where for notationa.ly convenience let

%=}h+ll T /?’;}‘"‘f‘r

/N - ‘ |
,'/w;z-" p(k) ﬂ(w /‘{wmt[.ﬂ}7

4

A

. in the a) appear. Upon analy'tically continuing a) - W, one finds

axls. To locate the positions of these poles, J.S. Langer noted
- that the same energy denominators appear in the finite-temperature .

This fact is convenient |

. ;(—a‘;k’]_'

(B.3)
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In the usual menner rationalize with
A
7T ( }7 + ’4'1. )
=1 |

- and introduce the Feynman parsmetrization. AEqpatioh (B.3) becomes :

'f(.l:,h,.-._)‘ | ,'o-- | > /
d“’n,"“‘"’ﬂu /‘”m;"”(‘”mf_o/‘{“,";/% -\

~16s —104

o | » (B-hj
i (F+,) §(Zx-) D7 - ~
where . |
D= N« (35-47), N
- %/ ‘ }' (B.5)

‘ An intggfai transform.in a §inglé variéble becomes singular .
‘when a singularity of the intégrand coincideS'with;gnvendpoint.of |
the integration,contouf or whén‘the contour is "pinched" by two
singularities of the‘integrand which straddle the coﬁtour and
'develOP e coincident singularity on the contdur.. Analogously,
Eq. (B.4) may be regarded és & multiple integral transform and  u

~develops sihgulafities fof fanishing D such that either:

1. an éndpoint singularity or' |

2. a pinch singularity



- a8l
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. appears in every stage of integration.

for D=0 ,.and'either @, =0 (endpoint) or

Jl—o

DJU

. (pinch). These conditions yleld the Landau line and loop equations: -

1. a.=0 or'g -, =0

2. -(+) § = 0 for each. closed loop 1n the graph.

I develops & singularity in ® when this set of" eqpations
d'yields a determined solution. A purely algebraic procednre would
be to start with all @ = 0 and set as many Q@ =0 until a
| determlned set of equation isfobtained. Then those lines for which

ai = 0 are excluded from consideration, and the vertices connected

by these lines may be fused together. Thus one obtains the reduced

o graph, the lines of which satisfying

g0 L (.6)
An alternative approach is possible. leen e‘total rate

- diagram, draw in an auxiliary line such that the graph falls into
twq connected pieces‘each one including-an external vertex. This
procédure is facilitated through the use of suxiliary graphs. An
An auxiliary graph is obtalned by deleting each interaction line

and fusing the vertices joined by them. To illustrate the procedure
see Fig. 19a., 19b, The value of 1ntroduclng the-auxiliary graph

1s not apparent in the example shown in Fig, 19a. The somewhat

Thus;singularitiesvoccur".

v



 Frequency  Auxiliary ~ Reduced
- graph groph" - | graph

- Frequency"
graph
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more complicated example of Figq 19b, would be quite difficult
" to analyze without the aid of the auxiliary graph.

In the zero~temperature base the_analytié propertiesrof

‘ §jﬂa;P) are used to obtain its discontinuity from a given reduced -

| graph. At finite temperature no such method exists; if in

jﬂa> P) one sets @ = ® before performing the iﬁdicated summatibns
: an essential singularity develops at 1nfinity. Langer constructs
:an iteration procedure closely-related to the analytic continuation

9

method for zero temperature.” Here a simpler yet heuristic
derivation will be presented.

Consider the reduced diagram of Fig. 20, corresponding to

T a particular pole as per the Landau prescription. The reduced

graph is composed of c¢ Fermion lines and d photon lines. The

'special labeling of 1lines is possible since the number -of independent

frequencies in a reduced graph is equal to the number of linés
with one frequency conservation constraint. The sums in Eq. (B.3)

‘may be written:

J‘ tz . .. - =1 L
£- by T g gt g
“;n, m ‘Wn Wnt ‘v /’ ld wﬂlz'/w“ w"‘,“’)" »

@7

X[(%;}f,)~.--twnxc-};6>(w;,¢l—;é_)' (w,, Sé/.,(.rl,, 454/7
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where I is an anlytic function of the frequéncies W g, .
. c,d . ‘ S ‘n,” - Ny,

The freqﬁ.ency sums may be represented by contour integrals in the
usual manner. The iterative procedure" of Langer indicates that in

the neighborhood of a landau singularity I maey be factored

c,d
past the integrals evaluated at the singularity. Thus in the

neighborhood of a ILandau singularity Eq. (B.7) becomes: )

J-ca’(}/, )Zc,?%; ?J-//}.ch/) lh‘lcﬁd*// ¢f/“))°>

K-—-- - ZJ_ [wn-f > - (K jzc)/wu 7‘) (%.—-?‘9- )/—44 -4 ] (B.,a) e

.
o, Wi my.,
L W B

.Where Ic a has been evaluated for energies g'iven'by the .Iandaun
. >3 .

7 equations. Energy conservation across the diagram requires

W - — W -
—(LJ ldn+w + .- fﬂ)«nc .wnu_ _ ", *, Wy (5.9)
Weite | | , v
with | | o
' L {d-t-(_‘_(La/—wmd')‘ . |
b, mwje T |
. Wy, ) : c o o (Bea1)
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The remaining -energy sum may. be: written:

Vo

| |  tw
o, / 7, -/
[FZ‘C -T Meri (w —'I}Cw) : _(ég € 2 () e ;gc)]
7y

,x[—; 5 e Mty 7 - "ff%—sé«zi

e, “ned

/ twn,_{z‘ Z;’ Eef "’(Wn 5’) (EC‘MZ; wﬂg(%:zé?'

".r.e

{

(B.12)

and hence these sums may be performed independently of each other.

‘and for ;photons, B | B ' E

- Where

For Fermions,

JZ’ :)"}r " . /(}ue

J.Z’ (/_’f;(;,))e.f)"f

wﬂ.r }"

Vi Z’———f‘———"""‘ —V—i(/+;7[_b(¢,.$)¢-_¢¢"{'

i

fop- e

(B.13) .

o (Bilb)

| »-"'(B.is)

: (B.16')



A

o _ " Then Eq. (B. 12) may bé written:.

oo i’_cv: | (/
| (-/) ) Tf/})// Cl- f(}))// </+f/¢))
' (=CH

ot Skl reBe) . am
'»‘[wn ( SFt5E *2’7”]

=/ (=eti >/

o - . where the t integration has been performed., COmparing with the
spectral representation on page 12, one finds ‘the particular
" reduced graph chosen above contributes to the spectral function

- the factor,

NS )d(—/)‘"'rf(}) // </—//; 077/#/% )

(=C 2 | - (B.a8)

x 27 27(}¢»+§g'yf >

o f

Ir one limits the integrations of the spéctral representations
_ for the photons to g >0, then (B. 18) becomes:

J

ot l/ /m// (1400 //mfz;i )77“/ b

(= CH+l

uﬁ‘J(wv“Z’}’*Z' ?‘ Z’ ¥ - Z'?‘)

ey (=b#i

'13:19)

It is convenient to interpret this factor as corresponding to-

(A - b) absorbed photons and c¢ Fermions in the initial state
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and b emitted photons and c¢. Fermions in the final state. For

‘this purpose write:

o E ?’Z ZZ E E;l'/ i ’f.-gbﬂ Pi ' - (B.20)
e ; F ‘ f _f_’ - o o o
Ef ‘_Z:;“'v ¢'=Ié) :J" "gc-r/. =t L -

The contribution to the absorption rate from a particular

reduced diagram may be written: ot

E 5(8 £ PwWPEE) o

DL AT oo+ i @xzf")’é'(/’r[,-;-_& ) (m2)
where C i - collectively represent initial and finsl sta.’ce labels
and 2 the various sums and integrals.over these labels. The

€18 , ~

statistical factor s(ei,?;f), is defined:

' e
S(z &)= 7Taf/; S I-£4 »)7“(/+!f¢»>f‘ fq» ) (8.23)
=1 ‘56*1 . (: . ~ O

and

l P

v (p) . -
@(?)( F) zlé'-f) t(i.,é;)A - .  »(:,B.2’-I-)



"‘_1 respectively. It is-hseful to write the emission vertex in terms
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jf where. Z represents the product of the spectral functions ,
'”associated with each line of the reduced graph, and A (P) :,EQ(P)
| correspond to the two shaded circles of the reduced graph, i.e.,

the verten functions for»eXternal phoﬁon absorption and enission, . .

-

"~ of ‘the corresponding absorption amplitude.

(p)_ (p) S foy g
ET= AT | | - (3.25)

.-ﬁ_Finallyyif one sums over all possible vertex aﬁilitudes, that: is,
'_::311 rossible diagrams with the same reduced graph, the total -

. contribution to the absorption rate may be written :

b JKS;E;DZ(E.;&)A/w?; £60 ) AS (TR} £L0)
€k | | 3
| x 2ES(Hw+ Er Ef yaam)’ F(P+B- &) ~ (B.26)

" where

At By TAC L)

. c | PR
Cy, . . . ;‘!,

i

'w'-;(3927)_'
Note that the faLctor_ (-1)¢ in the original statistical factor
accounts for the fact that ¢ Fermion loops have been removed
from the original disgram. Similarly (-l) ' accounts for the

fact that d photon lines have been cut. Thus the overall sign
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.. assignment is-made on the basis.of the lines internai to the -

- vertex amplitudes.
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. APPENDIX C.. Self-Energy Functions -

1A,éelf-éhergy graph.is ob£a1ned'by removihg the ffee |
, propégétion ampiitudes from the‘first'aﬁd,iast vertex of é giveﬂr
v'; interacting one-particle propagator'amplitude, In general, these
;vgrapﬁs éfe non-diagonal in the internal state of an atom, but .
- they are labeled by a single moﬁentum'and frequency. A proper ‘
-self-energy grarh is one which cannot be broken into two connectéd
_parts by cutting a singleAatom line.
It 1s sometimes useful to consider & more expanded definition
.of selernergy graphs. For example one might speak of a-proper
Eseif-energy graphs. i.e., all possible self-energ& diagrams which
m.;cannot be broken into fwo connected graphs simply by cutting a
"line labeled by & . More generally it is possible to speak of
‘>&-proper self-energy graphs whére no single line from the & |

collection appears inthe graph. In this case the matrix element

~of G in the space of internal statés statisfies:

,. le= i) (X /@I«')+¢</@,<>Z7«@/0§>@/6w_ |
| T 2

b (xlGobey & 1Sl 16 17

- : ) ’
. - 1

(c.1)

where " represents all those. self-energy graphs which are

"Sp -pl‘oper. 1 . ‘ ) ‘ 7
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'_-@,gmgm,; el ik) = <«/o<'> *( @Z,m(«/@w

 :;+ Z’ (/- <«J/o<>)¢< }3’ Mﬁ(«,,/ax«)

- %

£ (1= T uery) 1B (16 'y
“d

~(c.2) 3

Equation (C.2) may be solved for Gy

| ("‘/G(Wnﬂ’)/’(') (Wt fa—& K~ <0</§4 /wﬂ,{;()/od)
| ({« > g O L A
+ (1—27(« ) (oclé,/oo& 16 let }) (©3)

In special caseé this result simplifies. .
. With

.'1-vEQ = & single state

¢</€b<>— <wn*f¢w éoc"" <°"§"°‘>) BN

-and

éue/oo (vww acuo <«=</§<z«<>)"
. x@@w)(w e b ]!

(e5)



g

2 SQ the whole spectrum o .‘
(“/51‘7" ( @y f/"“" ‘k)—(“-/i"f(wn,ls)/«>)‘/

. ..-‘7( (/-f- Z] <o< é_/"(“\ (‘(n/@/o())

ll#(

. and

<o<lG/o(> (w +/co.-é (K) - < /ézx)

) : , , bt o(l//&/x
x[éc 15 1> G ey 7%;«;«1?% ¢ >

-3, 59 < states degenerate with o :(usefui for broadening

.calculations). vFOr a'.e, S
1 Grucy= (1t foam crrd = (ot B 1)
X[/ o <§F’,/§&MJ>(09/G/0QZ

PP Jﬁx

and

- %;}(_/f 4y (61D,

Other choices é.re possible depending on the specific situation.

' ‘;(C~6) '

(01,7)

(c.8)

v <$/@/d'>=<wn*f°&”é¢lk)'f (d/‘é.égl&>)—/ .' .-

(e.9)
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Case 1. is equivalent to the perturbation expansion of K

Hbitler in his tréatment of resonance fluorescence for atoms in

a vacuum, 2, 1is the usﬁal definition qf'the'self-energy function.

'Such a perturbation scheme was used by F. Low in a calculation

of the natural line shape. 3. may be useful where the particular

" level of interest is degenerate and off-diagonal elements within

this degenerate collection of states is desired.
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APPENDIX D. Symmetry Properties of the

' One-Particle Propagator

'The oné-particle atom propagator enjoys certain seiection

rules upon considering the group:of symmetry transformations T

- of the full Hamiltonian H. .

: propagator in configuration space is written°

G f’rﬂ>=’7?[ o T At T ]

~

The explicit expression for the one-particle atom

<o (D k)

Here
pap- LAY WX) "“”’f‘”’
r - (0.5)

and \lry(X_,O) creates an atom with c.m. position' X iin an '_ _

'zinternal state ¥ .

Restrict T here to include all transformations induced.

by & rotation of the observer's coordinato frame gbout a direction -

‘/ﬁ_byan angle © ., Thus;..

X "= 3 R, (81)X; . o)

L

&

S
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" where the .X'i are the;coordinates in the new frame of a vector

" whose coordinates in the original frame are X

J

", one may consider the system asg rotatéd‘byvan angle ) about ;ﬁ_,

¢ Equivalently,”

'j For such & rotated system the field operators beéane:

- L -1y .
Cx T %muan"; % (R @) Doyt R ) (D.7)

- OR 'L/:C (,X“)ﬂv.) Dfe" =§(?prr (R—.l__;u "7,D0<J’(R—I). L (D.B)‘

The 'D's are matrix elemehts-of_the irreducibzé represenﬁétions
: of ﬁhe rbtation»grbupnand thus are indexed by a total angular
1’momentum quantum number Ja and angular momeqtum projections
' Mj;,. These explicit dependencies will be shown when convenient. -

o . .
The right side of Eq. (D.4) may be written:

. . _ -t T
T+ [6(6(_(L+/g-ﬁ “2 = Y Xy ) '%:Q(’"'/‘) % ORJ .
=T [ef Y T ot ) O Or Y a|

T oy [ [ Bla-p-ty-H) - 7ep-ty ;]} b
= ( )D,(,'R)['/ ée . ’(R')_(/’,)?(R__,.)[&él_ / .
%—; va RTE., h[ .TL% f y -

- vhere use has been made.qfu [H,QR]_ = [E, QR] = 0, cyclic '
. invariance of the traée, and Eqs., (D.7) and (D.8) . But the"

bracketed expression is again a one-particle propagator. Thus 



@ucx, X (&)*‘ R . .
> G, CRCXAXD, (& D, (R">D (R")
7Y @N, F |

(ﬁ.lo)

_ "'v:“or o ' -
- /d3K Y.< (X- X6, (8 P>
9 a7y

'

...... _ (9.11) \

Set k' = k ~on the right hand side of Eq (p. 11)  Then
. j

' Eg. (D 11) becomes

- R, e
2 /ﬂ’éf'/R s frpade B BAD R RD By Ry

X/ @m

Thus,
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F
v

%

5 ”n>=§y6,;,<ﬁ'k,u%) DLy (R Dyyul R

.xG\

(D.13)

" where a Fourier-serieé decomposition in_(ﬁl- Bg) has been used.
. . It is convenient to write « = (JdMa%X)’ exhibiting angular
. momentum numbers explicitly; Za denotes all additional quantum

'numbers necessary to fully specify the state. Then

| , : (E};r - (:f,) o
kw0 =5 @ (RE®n) D™ R DR
. Z'M«'Z,(J&/Vbifd M/)MJI {'Mf'zd'/\z,‘_M{Z( M‘Mr M‘;M ’ (D.lll-)

It 1s impossible to proceed further without making some simplifying
assumptions regarding the effects of collisions is spherically

_symmetric. Anderson and Baranger have discﬁssed‘the results of

:  this assumption in thelr theories of pressure bfoadening.a’3 Here
N this assumption takes the following form:
(RIS, wn) = & ('S,wnv)_, " S
2 e i I Sk A (0.15)

¥
It 1s'not sufficient merely;to,assume that the gas is isotropic,

for an atom with a non-zero angular momentum defines . 8 préferred

direction. Equation (D.15) follows trivially if spin-orbit
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;ﬁinteractionsrare aﬁéent Siﬁce in this cése the Hamiltonian is

1nvﬁriant under separate rotﬁtions of the c.m. coordinates énd

~the internal coordinates of the atom, |
With Eq. (D.15) integration of both sides of (D.1k)

~over all possible rotations ylelds:

é CKywn) ﬁRsZ &(/_\',Wn,)

7;41/\/\‘/%(/ /\Z;/szx MJ/]M , Z/Mxlfd,(.Z(“M/Z‘(

M WMy  Mamy

/ (V‘)CR_Q D( T?) (R')dR o | - (D,16)

7
2-/ Szf/ SMKM«’ ZMI/V‘Y/G ([SJ l{)n) S
My, M, TMZAT M Z,
7y 2.7 +/ g Tl L My Zgr

whereithe orthogonality relationship for the representation -

coefficlents has been used.lu_ But this result means that

. ldvp
<

Z/MO(IZ‘;/Z:A/L(%c \Z‘- ! ‘o(' =<’ (D.l"{)

Q
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© FIGURE CAPTTONS

Example diagrams
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External photon absorptions and emission by atom,

with no interaction in medium,

Internal transverse photon‘interaction.

.Hartree interaction with medium.

Collisional interaction of atom with gas.

Higher order diagram important when gas-gas '

correlations exist, i.e., shielding of long-range .

coulomb interaction in a plasma.

Atom hole-particle interaction through gas.

Lowest order diagrams in radiation.

Radiation damping.

. Collisional damping (impact approximation).

Higher order collision damping.

s~order vertex function.

Integral equations for vertex fnnotions.
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Fluorescence.
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#

Collision_brbadening‘(lower level uﬁperturbed).~'

Renormalized atom propagatorf(radiative‘corrections).

Reduced graph expansion of Fig. llé; (one photon

- emission).

Reduced graphs with renormalized propagators
a. Pure photon emission.

b. Pure collision.

'c. Collision and photon emission.

(0)
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Open dlagrams for quenching and fluorescence.
Contours for frequency sums.
Born series expansion in gas-atom collisions.
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