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ABSTRACT 

Operators are obtained which can be evaluated with respect to 

nonrelativistic wave functions to produce.the same result as obtained by 

evaluating the Breit equation with respect to relativistic wave functions. 

This greatly simplifies calculations involving the Breit equation by al-

lowing the calculations to be made within the more familiar framework 

of nonrelativistic theory.· The operators are classified according to 

their angular dependence; a comparison with the angular dependence of 

each fine -structure operator leads to the relativistic equivalents of the 

fine-structure interactions. The operators are expanded in a power 

series in (v/ c)
2

, and the lowest nonvanishing terms are shown to be the 

fine-structure, interactions. 
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We have _obtained equivalent operators for the terms in the Breit 

equation (Sec~ III); these operators are then broken up into groups which 

correspond to fine-structure interactions (Sec.· IV).· Finally, these groups 

are reduced to the nonrelativistic limit in order to obtain the fine -structure 

interactions. This last step is important because it reveals new operators 

of the same magnitude as the fine-structure interactions. 
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II. THE HAMILTONIAN 

The analysis is based on the solution by first-order perturbation 

theory of the Breit equation for two electrons (charge -e-)'!' 5 

JC 'lli = { \ [~~ • (cp. +eA.) + j3.mc2 - Ze2] + e2 - e22 L ....... H.oJ. -1 1 r 1 . r 12 i=1, 2 

2 e 
- T 

= E'lli • 

(~a· =..1~H!!;.2· =..12) 1 w 
r12 

(1} 

We assume that the potential terms in Eqe (1) can be approximately re-

placed by a central field term ~- U(ri). The approximate Hamiltonian is 
1 

then 

JC0 = \ [~. ~ (cp. +eA.} + j3.mc
2 + U(r. )~ · , L -.1 :...1. -1 1 1 

. i=1, 2 

(2) 

and the difference, JC
1 

= JC ~.;.,:. JC 
0

,. can be treated as a perturbation. For 

the special case in which A. = 0, the wave function satisfying 
. -.1 

(3) 

where Ei is the energy of electron i, can be written as a product of wave 

functions of the form 

. . (F/r l.tjmJ) 
ltJm) = · 

. iG/r !.ljm) 
(4) 

where 1 = I. :1: 1· as j = I. :1: 1/2, 

and 
l 

('5) 
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The te~m X 
1

/
2 

is. the. usual two-component spinor; Here and in what fol-

·. lows, relativistic wave functions· are written in the general form !.tjm) and 

nonrelativistic functions as !tjm) " .. Terms written [a, b, ~ :. ~ J stand for 
'.· .. 

(2a + 1)(2b + 1)· • • • We shall restrict our discussion to the configuration 

"2· . 
.f. .• 

The radial functions F and G, which can be taken to be real, can 

be related through Eqs~ {2), (3), and (4): 

( a~i ::) Fi = -k [mc
2 

+ ~ - U(ri)] 

(

d . 
~+ 

/(. ) 1 -- G. -r. 1 
1 

j. + .t -1/2 [j. J 
with K = (- ) 1 1 

i ·-··· . 7. .. 

G. ' 1 

(6) 

The energy, to the first order in the perturbation, is then given by 

where 

and 

~ = L ~i a . a 
. . 1 

·Je = 
13 

. 2 
~ail - ''t.Ze . 
t)\., - "": • •. ,r---' ' a r. . 

1.. ! 

(7) 

'."I' 

. •.' 

• 

• 
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The first two terms on the extreme right-hand side of Eq. {7) are the 

kinetic energy and mass-effect terms, ·respectively. In the following 

sections, we shall not be directly concerned with these two terms, but 

rather with the remaining terms in JC • 

. ' 
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III. EQUIVALENT OPERATORS 

We wish to obtain the operator OE defined by the equation 

(~o l·xa + ~ + XY + Xo 1\]'o) = (-w JoE 1\]') ' . (8) 

where J~) is the nonrelativistic wave function which J\rl0 ) approach~s 

in the nonrelativistic limit. The operator OE is the 11 equivalent operator" 

for the i:~lteractions xa through xo' and will be obtained below by con.~.: 

sidering the interactions xa through xo separately. 

A. -Equivalent Operator for X 
a 

Evaluation of ~ between relativistic wave functions is straight;;..: 

forward, and yields 

2 2 (F. +G.}. 
J J l 

r. 
l 

dr. 
l • .. (9) 

The equivalent operator for Xi a 
i namely 0 , can be written in.the a 

general form 

(10) 

·· (Kk)K . 
where the a are constants to be determined, and the w are defined -
by the relation 

W(~ek)K = {t~evk}K, - --
(11) 

and 

Because :JC is a scalar, K = 0 in Eq. · (10) above, and ther'efore 1<. = k. 
a 

Taking matrix elements, we obtain 

... 

• 
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( ijm 1 0~ 1 ijm)'~ I <Li (~) (-)k+l+j.H/2 [k]1/2 { 1~2 1{2 f} . (121 

k 

Equating the right-hand sides of Eqs. {9} and {12.}, and multiplying both 

sides by 

we obtain 

\. {1~2. ,_ · j} r·J < }j L ¥.. 1/2. k J - , 

J 

a.i(kk} ·= .[k] 1/2. {-}k+l-1/2. Ze2. L!f] 
j 

{ -}j {1/2. I. j~}loo 
·J.. 1/2. .. k 

. 0 

(. 2. 2.) F.+ G .. 
J J l 

r ... 
l' 

(13} 

We postpone a discussion of this and subseque.nt results until Sec. IV. 

B. Equivalent Operator for :re
13 

·Because :re
13 

is a two-body operator, we must consider matrix 

elements between relativistic states. composed of two electrons. The final 

form obtained for OE does not depend on the type of coupling used for the 

wave function. However, in order to demonstrate more fully the met.hod 

to be used, we use below wave functions of the form jt 2
SLJM). 

As is apparent from Eq. {4), in relativistic theory j, and not l., is 

a good quantum number. The state I £2
SLJM) must then be decomposed 

into states jj
1

j 2JM), which in turn are decomposed in the usual way into 

a sum o£ products o£ j.ej1 m 1 ) and \Lj 2m 2). Then 
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, (.t2s1 L1 JM lxf31t2s2L2JM) = . I 
.j1j2 

j3j4. 

The term ~ car.i. be expanded as 

K 

1/2 

2 '\ r< CK··CK · 
e L.- r~+1 -1 -2 

K 

Th~ symbol CK is defined by 

UCRL-16670 

{14) 

. '1 

,. 

where Y~ is the usual spherical harmonic. In evaluating the matrix 
- ,·. 

element on the right side of Eq. (14), one obtains reduced matrix elements 

such as 

!i1 \\CKrK\\i3) = (titi!CKI!ti3)JFj/j
3 

rKdr + ( li11!cKjjli3) !Gi16j
3 

rKdr, 

{15) 

This simplifies to .-j -1/2 I (j _ ( ) .3 [ , . J 1 2 1 I 
-- J1,J3 

- - . . . -1/2 

·for K even, .or zero for K odd. We finally obtain, for Eq,; (14), 

' 
i. 

• 
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2 .· ·2 . - 2 . 1/2 . . . . . . j'1+j3+J 
{.t S1L1JM]XI3].t S2L2JM)- e I [S1,S2,L1,L2] [J1,J2,J3,J4](-) 

r2 
1/2 51} { 1/2 1/2 

S2 ~ { j3 j4 ~~1 K j3x2 K j4) X J. I. L1 J. J. L2 
. j1 j2 J j3 . j4 J J2 j1 -1/2 0 1/2 -1/t·.o .1/2 

X If (F iF 3 + G1G3)1 (F 2F 4 + G2G4)2 
K 

( 16) 

r< 
~.r 1dr 2, 

K+1 
r> 

where the sum is over j
1

, j 2, j
3

, j
4

, and K, and F 1 has been written for 

F. , etc. Pa:rticle. assignments are subscripted to the parentheses • 
. J1 

T1le e9.uivalent op~.rator is written in this case as 

(17) 

where the sum is over k
1

, K 1, k 2 , K 2, and k. This is the most general 

form for a scalar two-:-body interaction.· Proceeding as in Sec. IIIA, we 

evaluate 

and equate the r.esults with Eq. · {16). The constant 13 is obtained by·utilizing 

. the·orthogonality conditions for 6-j and 9-j symbols. • One obtains 

1/2 
(k1, K1, k2' K2] 

[k] 

{18) 

c~2 : ~:/2) (:~2 : !~2) 
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· where· k is even •. By inter.changing 51 at?-d j 3, 52. and j 4 ,. we see that 13 
... , . . ·. . ·. . .. 

will be zero for either {or both) ·k1 + K
1 

or k
2 

+ K
2 

odd~' 

' . -;< .: >' .· .... 

C. Equivalent Operator for JC 
. ·,_ ·. ·, .. :- ·: 

. y 

The.derivation ofthe equivalent operator for JCY is carr.ied outl.n 

'. essentially the same manner as for the equivalent operator for ;re
13
• We .. 

.· ··• .. first, however, rewrite JC : 
. . . •·.. . ' y 

2 e 
T 

. . 
-:··.··;:' t· - 1 

-i .... :'· 
.;.,;;1' t ... 

.. '~-.:: .. .. /. 

'· .. _:.•· 

\.·· 

. . ~ 

: .. ·: ·· .. ' (19) 

>: : 

-~ .' 

Then '.• 

(20) 

X 
' . -.~ . 

. ·The sum is over j1' j 2 ,. j 3, j 4 , ~~ and k; the reduced matrix elements are 

given by 

·l· 

~ :, . '·. 

.. ·' 

. . () 

",, .• 
~ .. 
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(ji II (!;c!>k IIi) =i[k,ji' i3J i/2 { ..rz HHi ( ~i 

(21) 

for 13 odd, zero for 13 even. The equivalent operator is defined as' 

(22) 

where the sum is over k 1 , K 1, k 2 , K 2, and k. Solving for y, we find 

X (23) 

By interchanging j 1 and j 3, j 2 and j 4 , we see that y is zero if either (or 

both) k 1 + K 1 or k 2 + K 2 is even. 

• 
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' 
D. Equivalent Operator for :rc6 ·. 

The term :FC
0 

can be rewritten in the form . . . , 

2 

[; 
. ' .. 2 .. . .. 2 0 

jC = - e ~a· !!2 + (5) 1/2 ! <.~~a~ l !;:i z:. u l l ] . 
(44) 0 .. z r12 · r12 . 

. The _first term on the right above has the same form as :Fe ; the second 
y 

term can be evaluated by using· the rel~tionship 7 ... 

1/2 

(25) 

+ (cf3cf3+2> 2 .[(f3+1)(f3+2)(2j3+1)(2f3+s> l 112
} •. 

- 1 - 2 . 5(2j3+3) . J . 
The terms in this expansion can be rewritten 

(26) 

where y = j3, j3 ::1: 2, and F (13"1) is the term multiplying the angular factor 

(cf3cY) 2 in Eq. (25). · Upon inserting Eq. (26) into Eq. • (24), one sees that --
· :FC.0 has the same form as :fey. We write the equivalent operator for :fe0 as 

\{ .. 0 . 2 . l { (k1K1)k ·. (k2K2)k) 
06 = L 6 (k1K1k2K2k) + 6 (k1K1k2K2kf \'::.1 • '::.2 

(27) 
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where the sum is over k 1, K
1

, k
2

, K
2

, and k. The expression 5P 
. . 2 . 

corresponds to the first term on the right of Eq. · (24), 5 to the second • 

These two expressio~s are easily evaluated by comparison with Eqs. (19) 

and (23). One obtains 

and 

X 
{ 

1/2' 1/2 

. f. f. 

j1 j3 

j1 1 zt F(yl3). 

ly 13 kf 

(28) 

(29) 

The sum is over,j
1

, j 2, j 3, j
4

, 13, .andy.· Both o0 and 6
2 

are zero if 13 

is eve~, and if either (or both) k
1 

+ K
1 

or k
2 

+ K
2 

is even. 

Further simplification can be obtained for particular cases: let 

2 s:21 s:22 f 23 h ·s:21 d f h. . h" h A 622 5 = u + u 5 , w ere u st<;~.n s or t e case 1n w 1c y = ~""' 
. . . 23 ' . 21 2 22 23 

for y = 13 + 2, and 5 for y = 13 - 2e For k odd, 5 = 3 y, c5 and 6 

are zero. In this case a0 + a2 = y •. For k even and k = 13 + 1, 

for k even and k = 13 - 1, 

50 + 521 + y = 2(k+1) 
2k+1 y; 

s:O + s:21 + y = 2k 
u u 2 k+1 y. 

N 1 . l"f" . . "bl f s: 22 s: 23 .· . o ana ogous s1mp 1 1cat1ons are pos s1 e or u or u • 

• 
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IV. INTERPRETATION OF THE OPERATORS 
-

The terms in OE having the same angular dependence as the fine-.. 

structure interactions can be identified as relativistic fine -structure 
. . ·. 

interactions. These relativistic interactions can be expanded in a pow~r 

series in orders of (v/c)
2

; the lo.west 'nonvanishing terms will, in most 

instances, be just the usual fine-structure interactions. We consider 

·now· the terms according to their angular dependence.· 

A. Terms With No Angular Dependence 

The only term of interest here is a.(OO); (3(00000), the only other 

nonzero term having no angular dependence, will be seen to be the first 

term in the expansion of the operator e
2
/r 12: 

. 1 (F2 + d2).) 
dri+[.t- 1/2~. - ri -

1 
dri 

(30) 

~here F ::1: stands for F "=L:!:1/ 2 , etc. . . J , 

The expansion of Eq. · (30) in orders of (v/c)
2 

is based on Eq. (6). 
i i 2 . . . 

We define EQ = W +me , and write Eq. (6) as 

G.=~- { 1 + 
1 GmC . 

i . 
W - U(ri)} -1 

2 
2mc 

. W-tr 
The expansion of the express:ion in braces· in powers of ~2 is 

2mc 
roughly equivalent .to an expansion in orders (v/c)

2
• · We will need to 

consider only the first term in the expansion 

G. = 
1 

JJ.o 
e ( 

d K ) · '"::'~"::" -- F., ur. r. · 1 
1 1 

(31) 

(32} 

.• I 
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eft 

2 me 
).1.0 = where 

To this-order, F satisfies the equation 

[
- fl2 .(· d2 ,;. l(J. +1} ) + U(r}] 

2m -::-zd . 2 
r r 

(33) 

for both j = J.. + 1/2 and j = I. - 1/2 states; Eq. · (33} is just the radial ·. 

· Schrodinger wave equation for a particle in a central field. The no'rmal

izati~n used in this limit is J F 2 
dr = 1. 

. In this order of approximation, the term containing F 2 in Eq. · (30} 

becomes 

J 
2 

2 F. 
l . 

- Ze -z- dri • 
r. 

. l 

(34} 

· The term in G2 
can be obtained by use of a· general relationship obtained 

from Eq. · (32), •. ·· . 

. -- 2 f GVGdr o :g J F dF ·r dV (d
2 

a:r + ~ ar- v ~ -
r · dr t<Ly'JF} dr, 

(35) 

where Vis any,,function of r. The term containing G
2 

then becomes 

'.:, ).I.~ J · [1 2 .'··'ze2 ·· ·ze 2 ( d 2 .1(1+1})] 
---r-"- F - 'i1 (- -} + - ----.., - 2 

G 2 r. r.d. G · e 1 1 r. r. 
. . . i l l 

{36} 

This term is discussed further in the next section. 

B. Coulomb Repulsion Terms 

The Coulomb repulsion Hamiltonian, e 2 /r 12, can be written as 

2e 2 \ ( 1. K £ )2 (J..] 
2 r~ . ( . (OK)K ·.· (OK)K) 

L · o o o --x:F1 ~1 • '!2 · 
K .. [K] r> • 

{37} 

\·· 
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Only 0(3 has terms with this angular dependence; the equivalent operator 

for this interaction, OCR' can therefore be written 

OCR= I ~(OKOKK) (-i~OK)K. ~ (OK)K). 
1< . . 

(38} 

. The first nonvanishing term in the expansion of OCR is exactly Eq. · (37}. 

The second nonvanishing term is 

I 
. ifj=1, 2 

2 ( d
2 

F.F. ~ 
1 Jd. t:. r. 

J 

2 2 2 . 2 ' 
where U' = e /r 12 and V = V 1 + V 2 • 

_ L(l·f"1})F·} 
. 2 J 

r . 
. J ·. 

When evaluated in this limit~ the matrix element of the term 

··4= (E·i - (3imc
2

) contains, in addition-to the n6nrelativistic energy, a. 
l . . 

component of the order JJ.~/e 2 • This component is given by 

i 

(39} 

(40) 

Combining this expression with Eqs •. (36} (summed over i) and (39), one 

obtains 

where 

4 ( .4 + 4) ze2 
_ ze2 + p = p 1 . · Pz , and V = -

To obtain Eq. (41), we have made the approximation that 
. 2 

. . z 2 2 P. 
Wl + El + e e 1 

r. -7.- -zm 
•1 lJ 

2 
e 

(41) 
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··The fiJ:st term in Eq. (41} is the Darwin term8 for two electrons; the 

second, the .mass. correction term. 

C~. Spin Orbit Terms . 

The spin orbit H~miltonian can be written as 

- ·{£(.£ + 1}(2£ +1}] 1/2 (11}0 
~o--~o [ · ~ ' 

. . 

_{42) 

where 

Because 

both Oa. and o
13 

contain}erms having the angular dependence ~(11 > 0 • The 

relativistic spin orbit constant is then given by , 

. rel . _ [ · 2 ] 1/ 2 [ i , -1/2 l 
aso (1)--. l{.£+1)(21+1). a.(110)+(2[l~) !3(1100~J 

= 2_[. f. (F+V 
1
F+ + G+Y. lG+).dr. -f (F V 

1
F + G V 

1
G \dr l 

[£] re re 1 1 . -:- re -. - .re -'i ~ 

V rel is a "relativistic potential energy" given by 

V l(r1) = re , 

- . ~ 4 .!! __ .7 2 2 foo 
, r1 · 2(.£] .O 

. - i 
i' 

(43} 

dr2• 

(44) 

where r> is the larger of r 1, r 2 • In the limit discussed above, the second 

term on the right of (44} becomes the integral over r 2 of the potential 

energy of a charge at r 1 due to a spherically averaged charged shell at r 2• 

The relativistic spin orbit term reduces to a
50 

in the nonrelativistic limit. 
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D.· Orbit-Orbit Terms 

· The orbit-~rbit interaction can be written as 9 

x00·- 16 .. ~ L <fif:N (tJJcK 11t? (t)(Hi)(~~+i) {~ K;i :r 
K 

{~5). 

d d { 
··{OK+1)K+1 · · {OK+1)K+1) ·. 

r 1 r 2 '!.1 . • '!.2 • 

The equivalent operator for this interaction, o
00

, is given by the terms 

in Oy and 0
0 

with the same angular dependence as x
00

: 

{46} 

Only the, terms in this sum with Keven will be nonzero. In expanding o
00

, 

one finds that the first nonvanishing term is just x
0

c,. 

E; Spin-Other-Orbit Terms 

The spin-other-orbit interaction can be wr~tten 10 

Xsoo = · 
~ ~ [(K + i)(U + K+ ~)(2t _ K)~ i/~[( -)KH[K+ i]-1/Z (';!(OK+i)KH. ':i.(i K)K+i) 

~ 

x {MK-1 (tJJcKH lit)~ +~MK(t JJcKJit)z} + (CJK[KJ -1/~<'!(0KJK. ':i,(i KH)K) 

{47} 

X {MK (tJJcKJJt)~ + ~MK-i (tJJcKHJJt)~}] , 

where the MK are the angular integrals of Marvin. 11 The sum over K falls 

into two parts, the sum over Keven and the sum over K odd;. For Keven, 

.• 
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te'rms in the equivalent operator, osoo'' with the angular dependence 

( ,. (0 K+1)K+1 .. (1 K)K+1) . . "ll · · f 0 d 0 w
1
·t·h 

. ~ • ~ .. , .. Wl arrse rom y an 6; 

. ·· (OK)K · (1 K+i)K · 
{~ • ~. ), from o

13
• For K odd the situation is reversed • 

. . 
'The equivalent operator is given by . 

osoo = . I {[~(OK 1 K+i K) + y(OK 1 K+i K) 
K . 

+ [ 13(0 K+i 1 K K+1) + y(O K+i 1 K K+1) 

( 
(0 K+i).KH •. · (1 K)K+i)l 

+ 6 (o K+i 1 K K+i)] ~1 ~z J (48) 

The first nonvanishing term in the expansion of Eq. (48) is Xsoo· 

• 

. .. ... ... -· ---·----· -·--~-~-··-·~-~ .. ·~· '-""' --=----'-----'--
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··' . 

F. Spin-Spin Terms 

The spin-spin Hamiltonian is given by10 · 

(49) 

The equivalent operator for 'this Hamiltonian, OSS' comes from Oy and 

0
0

, and is given by 

. oss = I {y(1 K+Z 1 K KHJ + 6(1 K+Z1 K KH~( '!1 (1 K+Z)KH. ~ (1 K)KH) 

K · · ·. (50) 

The only nonzero terms in this sum will occur for K even. 

Upon expanding the expression for OSS' we find that the first non

vanishing term is given by Eq. (49} plus the additional term 

2 ((K+ 1)(K+ 2)] 1/ 2 
4p.o 

{2K+ 3) 

d 
(

. (1 K+2}K+1 (1 K}K+1) .. , 
r i !'1 · • ~2 • (51) 

The radial part of this additional expression is of the form of a delta 
-:=· . 

.. . 

.function between ;:1 and !.2; this term is discussed further in the next 

. section. 

• 
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G~ Spin-Spin Contact Terms 

The. spin~ spin contact Hamiltonian 12 is given by . 

• (52} 

(-)K+~ (lflcKI!l)z 0(1K)~. ~(1K)~• 

13 where we have used 

K(3 

crt.\:1 - izl = 6(r1 - •zl 4:rz L [K] (c~; c~}. 
K··-

Again, the equivalent operator for this interaction OSSC comes from Oy 

and 0 0, 

0 ssc = I 
K(3 

The only nonzero terms in this expansion occur for K even. 

Upon expanding ossc• we find that the first nonvanishing term is 

given by :JCSSS plus some additional terms whpse values depend on (3. The 

additional terms are, 

for (3 = K + 1, 
....... " 

. 2 
2K,.,_

0 
3 { 2K + 3} 

for ~ = K - 1, 

2 
Z(K + 1),.,_ 0 
3 (2K - 1) 

. . 4 

VIidK 111 )2 j:{ dr i 0\1 K,!KH. i~1K)KH); 
(53a) 

(~(1 K)K-1 ... ~(1 .. ~)~-1); · 
-1 .-2 . 

. • . . (53 b) 

• 
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and for . f3 ·= K~ 

. . . 4 

2 2f II Kll >2JF1 3 f.Lo \:1 · c 1 · · .· -z-
r1 

(,: ( 1 K}K . · ( 1 K}K) 
\~ 1 • !:2 •· 

(53c) · 

The additional contributions to the spin-spin Hamiltonian found by· · 

expanding the equivalent operators in powers of (v/c}
2 (Eqs~ 51 and 53} 

can be included in the Hamiltonian by adding the term 

= 16n 2 : · · ~ ·' · } [ :. • · : 3 ( s 1 • r}( s., • ~}] 
Xssc - --r f-Lo 0 <.:.1 .:.z. !1 !z- - · - 2--. -. 

r 
(54) 

This operator has not been obtained in previous treatments 5 ' 14 of the 

spin-spin interaction because earlier res.ults have depended on the assumed 

shape of the infinitesimal region in which the electrons overlap. The 

situation is highly analogous to that which exists with respect to the Fermi 

contact term 
15 

in hyperfine structure. Judd 7 has found that Jesse can 

be obtained by use of classical electromagnetic theory if the electron 

spin moments are replaced by currents, as suggested by Casimir. 16 

If one uses this method, the result does not depend on the shape of the 

7 . 
infinitesimal volume sur:t;ounding one of the electrons. Judd has also 

obtained Xssc bythe method of Bethe and Salpeter, 5 assuming that 

electron 1 is excluded from, and electron 2 confined between, two con-

centric spheres which collapse, in the limit, to a common radius.~ 

Unfortunately, JcSSC' which can be written as 

1/2 2 . . ) 
X. = 4(.5) f.Lo L.. (.-)K+O [K OJ (1 1 2) (K o 2) ~· · · .. >2 (CKCo}z o 

sse 2 ' o o o o o o !1!z -1-2 ' 
r 

Ko (55) 

can be shown to always give zero total contribution to the energy. That 

• 

.... , . 
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is, when the matrix element of Je~SC is' taken between the states ·J SL) . 

and JS'L'), the sum over K and o can be performed, producing a 

result which depends on the product 

{~~~ ~~~ ~} (L' J. J.). (L J. J. ) 
S S' 2 0 0 0 0 0 0 

For this productnot to be trivially zero, S = S' = 1, and L, · L' must be 

even·; such a state, however, would violate the Pauli .principle. It can 

also be shown that Je~SC makes zero contribution when evaluated between 

wave functions arising from mixed configurations~? 

H. Other Terms 

There are three more distinct operators in OE which have not 

been discussed. These are 

01 =I f3( 1 K+1 1 K+1 K} . ( ( i K+i)K. · ( i KH)K) 
!' 1 ·. !'2· •· 

' I 

K 

02 =I f3( 1 K+1 1 K-1 K) ~· ( i K+i)K ( i K-i)K) w • w . 
-1 -2 

K 

and 

03 =L: f3( 1 K-1 1 K-1 K) ~ ( i K-i)K .. ( i K-i)K) 
!'1 '!'z · • 

K 
. . 

Upon expanding these expressions, we find that none has any nonvanishing 
. 4 4 

terms to order llo/ e • 

• 
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v: .DISCUSSION 

Table I reviews .some of the results of the preceding section. In 

it, the terms in OE are classified according to the type of fine -structure 

interaction produced. In the parts of the spin-spin, spin-other-orbit, . 

. and orbit-orbit interactions arising from O'V and 0
0

, the angular depend

ence of each electron is given by W(a.f3}K, where K is odd. As was shown 

in Sec. IIIC and D, in this case O'V = 0 0• In the nonrelativistic limit, the 

contributions from O'V and 0
0 

to the spin-spin contact terms are also 

equal; this is not the case in the relativistic limit, however. 

As mentioned in Sec. III C, the values of OE do not depend on the 

particular type ofcoupling assumed; this implies that the equations for 

OE are valid for any two electrons in a conf~guration 1 n. This in turn 

implies that the equivalent operator for the configuration 1 n can be ob-

tained ~y replacing the indices 1, 2 in OE by i, j and performing the 

sums L Oi and L (OR + 0 + 0
0

). 
i = 1 a. i> j t-' 'V 
Using the operators obtained above and relativistic Hartree -Fock 

wave functions, then, one can calculate. in a straightforward manner the 

value of a particular fine -structure interaction in the configuration 1 n. 

The evaluation of the angular terms is carried out in the nonrelativistic · 

scheme, where the powerful tensor techniques of Racah 17 can be easily 

utilized. The methods used to obtain these operators can also be used 

to obtain operators valid for application to mixed configurations. 

• 
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Table I. Terms in OE classified accordin~ to corresponding fine -structure interaction.• 

Numbers in first column are KK as defined in Sec. III A. Numbers in second and third 

columns are k
1

, K
1

, k
2

, K
2

, k as defined in Sec. III B, C, and D~ 

0 013 0'1 and 0
0 

·· 
a. 

Interaction 

- ·t• 

0 0 - Ze
2
/r 

1 1 1. 1. 0 0 0 spin orbit 
,\ 

0 K 0 K 0 (K even) e2 /rf?; 

1. K 1 K+2 K+1 (K even) spin-spin 
I 

0 K+i 0 K+1 K+1 (K even) orbit-orbit N 
00 
I 

0 K+1 1 K K+1 (Keven) spin-other -orbit 
·~ 

0 K 1. K+i K (K odd) spin-other -orbit 

' 
0 K 1. K+1 K {K even) spin-other -orbit 

0 K+i 1. K K+i (K odd) spin-oth~r -orbit 

1 K 1 K K+i (K even) spin-spin contact 

1. K 1 K K (Keven) spin-spin contact 

~ 
1 K 1 K K-1 (K even) spin-spin contact () 

::0 
• 1 K+i 1. K+1 K (K even) •• t 

t"' 
I 

...... 
0'. 

1 K+1 1. ,K -1 K (K even) 0' 
-.1 
0 

1 K-1 1 K-1 K (Keven) 

'· 

·' 
r 

.,, ... '· 
:) 
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