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INTRODUCTION 

We consider from a deterministic viewpoint the growth of pop-

;ulations of cells that die or divide according to continuous ae-dependent 

schedules. We show that the age distribution of any such population tends 

to a limit that is independent of the initial age distribution. Further, we 

exhibit explicit formulas for the limiting distributions and, consequently, 

for the stationary age distribution of each population. Convergence to a 

limiting age distribution differs from the periodic behavior derived by 

other authors (Trucco, 1966, who also gives additional references). They 

described periodic behavior only under the unnatural hypothesis that all 

cells considered divide at precisely the same age. As we show here, 

even slight deviations from such a rule, as certainly occur in natural 

populations, will destroy periodicity. 

Our conclusions make more definite the usually vague invocations 

of "steady-state kinetics" in experimental studies of population growth or 

metabolism (e.g , Moses and Lonberg-Holm, 1966) and may even allow 

the use of iiaturally growing cell cultures in experiments formerly thought 

to require synchronization. 

More precisely, we consider a continuous finite population of cells, 

measuring the age of each cell from its time of birth Let n(a, t) be the 

number of cells in the population that are of age a at time t. By con-

tinuous population, we mean that n(a, t) is a continuous function of a for 

each t 0. This is a departure from actual populations of cells, where 

for each t the n(a, t) can be nonzero only at a finite number of distinct 

ages a. For large populations, the smoothing introduced by continuity is 
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thought to be negligible, particularly since the determination of age by ex-

perimental means is necessarily approximate. Let N(a, t) =f0  n(s, 0 ds. 

Then N(a, t) represents the number of cells of age not exceeding a at 

time t. By finite population, we mean that N( co, t) =lim N(a, t) exists. 

We assume that the partial derivatives Nt  and N 
a t 

 exist and are con-

tinuous, For each population, we define the age distribution D by 

D(a, t) = N(a, t)/N( , t), with the convention that D(a, t) =1 when N(oo, t) = 0. 

Now suppose that P(a) is the proportion of cells of age zero that 

would divide before age a if no deaths were to occur, and suppose that 

• 0(a) is the proportion of cells of age zero that would die before age a if 

no divisions were to occur. Division means replacement by two replicas 

of age zero, death means removal from the population We assume that 

0(0) = P(0) = 0, that lim P(a) = lim Q(a) = i, and that P and Q are 
a - co. 	 a —boo 

continuously differentiable. Note that discontinuous P or 0 are excluded. 

We set I = 2 f 0(s) P'(s) ds. 

If t = 0 for some arbitrary initial time, it is clear that N(a, t) 

depends on N(a, 0) for all a0 As we shall show, however, the influence 

of N(a, 0) is negligible for large t. The main result to be demonstrated is 

that lim D(a, t) exists and is independent of N(a, 0). Indeed, we shall find 

explicitly the asymptotic behavior of N(a, t) for large t when I > 1, N(a, t) 

tends to zero for each a, when I < 1, N(a, t) increases exponentially in t, 

when I 1, N(a, t) tends to a function of a alone The condition I = I 

deserves particular and further attention for moderate values of t, but 

we postpone its detailed consideration. 

• 	• 	 • The demonstration proceeds through three parts: the establishment • 

:11 	• of a basic equation for N(a, t); the derivation of a renewal equation, the: • •• 

solution of which governs N(a, t), and the analysis of that renewal equation 

I 
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y(t) = 2 	J y(t-s)(i-Q(s)] P'(s) ds + 1(t), 	 (9) 

where 

1(t) = 2 f Na(St 0) exp(R(s-t) - R(s)} p(s) d8 	 (10) 

is a known function, given Na(a,  0), P(a) and 0(a) for a 0 

So far, we have proceeded without regard for differentiability and 

integrability requirements. If y(t) is to be Continuous at t = 0, then the 

definition, y(-s) = Na(S 0) exp R(s), together with Eqs. (9) and (10), yields 

the compatibility conditionNa(O 0) = 1(0) or 

N(O, 0) 2 	N(s, 0) p(s) ds, 	 (11) 

Let us assume for the moment that this compatibility condition holds. If 

Eq. (2) is to have meaning for t = 0, we must assume the existence of 

CO 

N(s, 0) p(s)ds andf 	Na(8 0) q(s) ds. 

It is sufficient to require further the existence and continuity of Naa(S 0) 

for s 	0, and the existence of f(0) and 11(0),  in addition to the res- 

trictions already placed on P and Q.  For then the function £ is Con-

tinuous and bounded, entailing the existence of a unique, continuous solution 

y of the renewal equation (9) (Bellman and Cooke, 1963). Since, further, 

£ is continuously differentiable and all other functions appearing in Eq. (9) 

are continuous, it follows that y is continuously differentiable. Therefore, 

efined by Eq. (7) is differentiable in each of its variables, the'function N d  

and the operations required for the formation of Eq. (2), as well as those 
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performed in the derivation of Eq. (9), are all permitted. 	Equations (7) 

and 	(9) allow the calculation of N(a, t) for any desired (a, t), but let us 

turn to the behavior of N(a, t) for large t. 

ASYMPTOTIC BEHAVIOR 

The conduct of N(a t) for large t is determined through Eq. (7) by 

the asymptotic behavior of y. 	The latter is greatly influenced by the 	 L 

kernel of the renewal equation (9). 	We may distinguish three cases, ac- 

cording as 

60 

zf 	fi - Q(s)} P 3 (s) ds 

is (i) less than, 	(ii) greater than, or (iii) equal to unity or equivalently, 
00 

according as 	I = 2 f 0(s) p()  ds is (i) greater than 	(ii) less than, or 
0  

(iii) equal to unity. 	In case (ii), there exists a unique constant 	c >0 such 

that 

e8 
[ 	

- 0(s)] P'(s) ds  

for, considered as a function of c, 	the left side of this equation is con- 

tinuous and monotorucally decreasing in c, exceeds unity for, c 	0, and 

is arbitrarily small for 	c 	sufficiently large. 	We set 

00 

F(x) 
= 	

e 	f(s) da 	, 	D(x) 
= f 	. eXS f(s) 	ds 

and 

00 

m(x) =zJ 	se 8  [1-Q(s)JP'(s)ds 

whenever these integrals exist 
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The following behavior of y may now be established for the three 

cases: (1) lim y(t) = 0, (ii) urn y(t) e_Ct F(c)/m(c), (iii) lim y(t) F(0)/m(0). 
t — 00 	 t 	00 	 t 	00 

Proof of this behavior is in several theorems which we citeby number from 

• Bellman and Cooke (1963). Convenient additional assumptions for this proof 

• 	for the respective cases are the existence of: (1) D(0); (ii) D(0), F(c) and 

• 	m(c), where c is given by Eq. (12); (iii) F(0), m(0) and a b > 0 for which 

irnebt f(t) = 0 and for which D(b) exists. First, we may represent y in 
0-00  

• 	the form (Theorem 7.6) 
• 	 t 

y(t) = f(0) u(t) + J u(t -s) f'(s) ds, 

	

0 	 (13) 

where u is the continuous solution of the auxiliary renewal equation. 

u(t) 2 f u(t — s)[1-Q(s)] P'(s) ds + 1, 

Applied to this auxiliary equation, Theorems 7.14 and 7 • 11 yield the results 

• 	•• 	 • 	 -Ct • 	• lirn u(t) = 1/(I-1) in case (i), and lim u(t) e 	= 1/cm(c) in case (ii). 
• 	t — co 	 t'°o 

Equation (13) then permits the stated conclusions for y in cases (i) and 

Case (iii) can be reduced to case (ii) by considering z(t) = ebt y(t), 

where b > 0 is any number satisfying our assumptions r case (iii) We b  

easily obtain the renewal equation 

z(t) = J z(t-s) ebS [1-0(s)] P'(s) ds + ebt  f(t), 

• 	 which possesses a case (ii) kernel. Since D(b) exists, z(t) has a represen- 

tation of the form of Eq. (3), and we conclude from the behavior of the 	• 

• 	• 	solution of its auxiliary equation that lirn y(t) • urn et  z(t) 	F(0)/m(0). 
t00 	t —'- oo 
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The consequences for N(a, t) of the various asymptotic behaviors 

of y are.easily assessed through Eq. (7). Indeed, we find 

urn N(a, t) 	0 	for I > i 	 . 	 . 

et = e 5 {-P(s)}[1-Q(s)] ds 	for 1<1 

and 	 . .• 

= 	
[i-P(s)}[i-Q(s)] ds 	 for = 

where the cOnstant c > 0 is given implicitly by Eq. (12). It follows that 

D(a, t) N(a, t)/N (eo, t) tends to a limiting distribution in each case, and 

that the limiting distribution is independent of the initial distribution. 

If N(a, 0) is taken as proportional to the appropriate limiting dis-

tnibution, then N(a, t) will be stationary or independent of t. That these 

are the only stationary N(a, t) [except for N(a, t) identically zero] follows 

from the necessary convergence to a limiting distribution 

REMARKS 

Relaxation of our assumptions is possible under the condition of a 

S . 	
finite life spanfor the cells considered. Namely, if there is a number A .  

such that P(a) = 0(a) = 1. when a A, then we need not assume the exist- . .., 

ence of F(0), F(c), m(0), m(c), or D(0) 

Regarding P and 0 as being fixed functions, we have imposed 

several conditions on N(a, 0) and its derivatives, usually indirectly by way. . . 5. 

of restrictions on the function I defined by Eq. (0). Apart from the 

smoothness required by our formal manipulations, these restrictions en-

sure only that n(a, t) = Na(i 0) tends rapidly enough to zero as P(a) or 

	

0(a) tends to unity. Thus, we may say that we require a sufficiently 	. 

youthful population given by N(a, 0). It is easily seen that naturally growing 
. S 

S . 	 . 	 .. 	 S 
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populations have precisely this quality: few cells survive past an age a 

at which P(a) or Q(a) is almost unity. 

• 	: 	 The compatibility condition (13) is also a restrictionto a natural 

• 

	

	 initial population, ensuring that the initial population arose from the 

process defined by P and Q.  It is not an essential condition, however, 

If the compatibility condition does not hold, we determine y from the 

renewal equation (9) and then redefine y(0) = Na(O 0). The resulting 

N(a, t), given by Eq. (7), then has a saltus at a = t. Nevertheless, our 

conclusions for N(a, t) remain valid for a <t. Under.the condition of a 	. 

finite life span, the limiting age distributions sliown are valid also. 

Our results can be extended slightly to include the case in which 

• 	each dividing cell gives rise to k daughters. Our conclusions remain 

valid if we replace I by kI/Z(k-i) and correspondingly modify the defiril- 	• 

• 	• 	tions of c, m and 1. 	,. 	 •• . 	 • 

• 	 • 	
The stochastic treatment of questions of age distributions has re- 

• • 	ceived attention in the case of age-dependent birth and death probabilities • 

(Kendall, 1!949), but most questions remain open. Our work may be inter- 	• 

preted as a contribution to a stochastic theory, for if P and Q are regarded 

as distribution functions of random variables, then our results pertain to the • • • 

mean value of the random variable N(a, t). Our assertions about convergence • • 

• to limiting distributions are less meaningful without the evaluation of other 

• 	 statistics such as the variance of N(a, t). Since actual populations of cells 	• 

exhibit stochastic behavior, practical applications make this difficult eval- 

• 	uation of immediate import. 	 • • 	•.. • 	 •.• • 

• 	 • 	 • 	 ,. 
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