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ABSTRACT
A general relation between the integral over energy of thé 
discontinuity of a scattering émplitude énd a form factor, obtained
from the algebra of current commutators,ié discussed. The relatioﬁ

is analyzéd as a function of (momentum fransfer)2 t and of théﬂexternal

‘masses. It is shown how the nigh energy par£ of the discontinuity

generates the singularities in t of the form factor and also how,
when the external masses are those of strongly interacting particles,
the relation reduces to a purely strong-interaction condition. The

case of isotopic spin currents is discussed in detail and illustrations

involving spin zero and spin one-half particles are given.
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I. INTRODUCTION

The suggestioﬁ'by Geli-Mannl that broken symmetry problems may
be studied by examining the equal time commutators of the curfents
whose algebra defines the'undeflying symmetry has recentiy proven very
successful. If we assume thére are no additional terﬁs) such as gradients

of delta functions,g'which contribute to relations between physical

" matrix elements of current commutators, these commutators are of the

form
(o, | 19,500, 3,%0)) 2,0 = 1 ¥ s p, 19,50) 1 2,),
| (1)

where 1, j, and k are indices labeling the internal'symmétry

ijk

is a structure

_constant of the undérlying group. By the use of dispersive techniques,

one of us has recently shown5 that Eq. (1) yields a relation of the

*
form

{5 IS 15k X
Catvr, 0%, o tav = RGN, (2)
o '
where Gk(t) 1s the form factor (assuming for the moment that there
is only one) of the current Jvk. between states of momentum Py and
2 ; '
=t
=y

expansion into invariants of t

p, 5 (py = B, a™) 1s a scalar amplitude obtained from the

' ij .
v, 7

" This réiétion has béen derived independently by R. bashén and

i b : .
M. Gell-Mdnn by considering matrix elemenis of Eq. (1) in the
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(0,1 [0.500, 590 Iy e X = o B e w2 )
Py " XJs 9y, 1P/ S Tuv, uy
23 - aMp op 4 alip v el oq e (ba)
MV B 4 K % I %
S B S | S ()
LLV M V . ' . )
o | | ‘
v P, + P oqy + P, - D ‘
-where P = —1—2—2', Q='—2'—-é——i!?-, and A=-—J;—'-2—-—-'2— .,The

quantities tutJ are odd under the interchange of 1 and j while
suiJ's are even. Our sum rules will always be for the tpiJ'S ; .the

s“ij’s correspond‘in practice to the'pfesence of additional terms
like those of Ref. 2 ﬁeing §resent_in the commutation relations.

The atd in Eq. (2) is just the coefficient of P, Pv upon
’ expanding tuij . In the general éa;e-there are'severai such relations
that may be obtéined from any given set of commﬁtation relation matrix 
elements. |

Néw aij(v; 91?5'q22’ t) can be related to the imaginary part
of a transition amplitude for a particle with quantum numbers i and
momentum ql.; coupled.tq fhevcurrént Jui ,”coliiding with a particl
Py (we have suppressed for convenience the internal quantum numbers
ofvthis particle) to éive a two-particle state, one with moméntum
.qé(j) an%;the other with momgntum D, - Schematically oﬁe can view -

this as in'Fig. 1.
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We wish to emphasize that the figure is merely illustrative and not to |
be interpreted in terms of’Feynman diagrams.
Several questions immediately arise upon analyzing (é). Is it
valid for-all values of ‘qlg, qee, and t,_or.are there restrictions
on the range of these variables? This leads‘to fhé releted problems

of what are the values of these three variables for which thevintegral

converges most rapidly as a function of v. 2 This is crucial if one

wishes to approximate the contribution of intermediate states by a
few)low-lying resonances, as is usually done in practice. In fact:the
integral presumably does not converge at all in certaip cases. This

of course implies that the validity of the current commutation relations

is intimately connected with the asymptotic\behavior of scattering

amplitudes;and conversely that the latter.may be.able to restriét the
class of commutation felationé with physical meahiﬁg." -

Yet anothef question is how do the known singularities of the
form factor :G(f) develop out of the integral of atd 7

We are not able to answer any of these questions completely,

buf will try to give indiéatidns of lines of approach for studying -

them and possible partial resolutions in some cases.

@ .

The simplestkinematical configuration is that of 'qlg = q22 =t = o)ﬂ

corresponding to the commutator of two.charges. In the case of axial

vector cherges, this leads, by use of PCAC?to the well-known Adler-

Weisberger relation between weak axial vector current renormalization

and pion-nucleon scattering. The general case of charge commutators
has been studied extensively by the present suthors in collaboration
with J. D. Walecka, so we'shall say nothing about it and turn our

attention‘iﬁmediately to more general kinematical configurations.
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.II. SUM RULES FOR SPINILESS TARGETS
(a) We shall illustrate our arguments by treating the algebra

of isotopic spin currents and considering the matrix elements of the

*«

commitators defining the algebra between pafticle'stafes of spin zero.
This will greatly simplify the discussion though:none of the general

features will be lost; we shall in addition restrict ourselves to the

case Of, qu -_-'qe2 = qz . Consider therefore the amplitude tuiJ as L%

t

defined in Eq. (3), where the initial andéfinaL states may be taken

to be pions of momentum Py and p; respectivély. Neglecting

electromagnetic corrections, the isotopic spin current is conserved,

S0 tusj obeys the subsidiary conditions
4 13 ij o :
t = 't = ‘e -
4, By T Gy bty = O )

~ Before discussing the physical consequences of the current
commutation retations, we shall find it helpful to give a short
discussion on invariants. To begin wifh, let us introduce polarization

€, and use them to construct the scalar amplitude

vectors elp, €ov

iy 13 e Y12
A = €, Sy tuv (+nlE2) . ; (6)

AlJ can now be decomposed into infariant amplitudes

1] oy 1,

1 A + I, A2 3 A5 + I, AT, (7

the I's being chosen as follows:

{rsiwm
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I, = (il-qe)(el'P)(eg'P) - 'P"Q [‘4(61"42)(62'?) | . v(eg-ql)(el-P)]

(e re)(@P)?,

(82)
I, = (eprepd(ayray) - (era)(epq) (8
I = (eljez_)qh - & [(el-qe)(eé-ql) + (el'qe)(ez‘qe\).] .

| Plapa)ea)epra) (89

1, = e R eP) - (PR [(el-ql><e2-p> + (e, 92)(e1.pﬂ
o eie e erey) . (8

It is partlcularly convenlent however, to conoider the "transverse

system" in which el~P = 62'P =0 .. In it the amplitude A 13 is expressed
by:
Aij = €., € f 13 (hE.E )l/2
o 1lp 2y 12
- ij LN =4 i'J j ‘ L .
- fl €l ‘-2 + f q2)(~ ql> + f (el ql)(€2 Q.Q)

+ vfh’lJ [(Gl-ql)(“&'z-'ql) + (elb;qg)(GQ.q_Q)jl . (9)

" The relation between the A's and the f's} is:
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. . , g
13,2 1J i3 % i) !
ATV + A, ,(ql oqg)-FA3 q- = 1,7, . (10=2) |
id iy . ‘ S .
- AT = nY | (10b)
2,1y _ .1 , - ¢
(qrq)a5™" + vo a0 = £, (10¢)
2 i3 ij
-q A5 = .Lu 5 (lOd) -
and inverfing, to express f's as functions of the A's ,
iy 1 1 iy 2 13] ’
Ay = 2 [fl gy afy " + q'fu r (11a)
iy _ iJ
L (11b)
o il _ | .
ATt = -6 /d, S (11c)
) S a, - . - o
13 1 1 1°% iJJ - ,
Ayt = 7 [f5 T3 z N B R (114)

This completes our diécession.ef invariants. Letrus now eee
how the assumed current commutation relations lead to a set of. relations
connectlng form factors to integrals over imaginary parts of scattering
amplitudes. To begin with let us use translational invariance to
revrite Eq. (3) as

| iQ-x .14 ' »
[J (x/2), J (-x/2)J l p2>e a’'x, e

(12) *

i 2 .2
tu\];j(\’) ql ) 92 ) f(Pl

and then observe that we can define.
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. 2 ) . 1 ' iQ.‘x "
TS, 2 B ) =i]]%lb;uknJvuﬁa]bge4 8(x,)d x
| (13)
related to tuij by
i W, ()

Y uv

where H symbélizés the process of taking the Hilbert transform with
respect to the‘variable v . Eqpation (14) means, as stressed in Ref. 3, -
that, if we develop Tpij and ‘tuij in the éame‘set gf inva;iants,

the components of Tuij are Hilbert transforms of the components of

t 3| Because of the ue(xo) in Eq. (l}),»operating on tuv ‘with

v

Qu and H are noncommutative processes,

Qex i

| . ) |
u[(pl¥_[Jui(X/2), ij(-X/E)J lpg>6§xo)e d'x

i}

ij
(Q¢H B BqtQu)-tw

A RO (15)

having used the current commutation relations, in the form of Eg. (1),

for the last step. Equation (15), the fundamerital identity we shall

use, is true even if the currents are not conserved.

When Py and P, are bion states,

(2, 13,50) 1 o) = (mp)™2 riwye,, (8

there being?only one form factor in the limit of conserved current. Ve ,

it

)
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have not written explicitly the isotopic spin labels of the initial
and final stafes; we are taking it as implicit in the subscript of ' -

* ' ;
the form factor. It is now easy to see that only A and Ah will

1
" contribute to the sum rule arising from Eq. (15) as only Il and Iu

contain terms proportional to el-P €2-P,'or, dropping the polarization

vectors, to Pqu .. The necessity of the Pv is cleary as the right-

hand side of (15) is proportional to P, the Pu' term needs to be
present to give a nonvanishing result vhen'applYihg the. operator

'Ru = Qgﬂ -:HQ“ to the amplitude tuij . To illustrate this)consider

i

applying R toian arbitrar function al(v)=P a Q + a Ay
p? ying R, y “( ) " (V) Q, o(v)

, | o |
. ) ¥ 2 []
Mo, (v) = M (va +d® a2<v>> -2 v al("’ ) + Q7ay(v >.’
00 v -V
(172)
©  ya(v') + Q2 a¥(v') |
1 VA ) o
Q&H a (v) = 2/ ‘ W , _(l7b)
~00
S oo (v' - V.)a (v") ®
1 1 1 1
Ca, - o Ma ) - 2 —t— .2 80
. - : -0 o
(17C)

1

The commutator of two isospin currents taken between pion

and we see that Ruau = R+Pa

states, using (6), (7), (8), (15), and (16) and the fact that

Al(-v) = A%(v) and Au(-v) = Au(v)’ leads to the sum rulgl

Note thét pl2 = p22'= ug , AP =AQ=0 .
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(o] .
£/ 2 2 b, id,. 2 2

i [(ql-qg) AV, 8, 0, g ) +a .Aul‘](-\*', f, a, q )] v’

= i Stk g k(t) . | _ (18)

Let us calculate explicitly the contrlbution of the one-plon

“intermediate state. This is ea51ly done, as the 1ntegrund of Eq. (18)

is the coeff1c1ent of l-P e2}P in A*J s as one immediately sees by

‘referrlng vack to Eq. (7) and (8). That this must be so can be seen,

' vés wve stated earlier, by. the fact that only a term in. Pu-PV gives

something proportional to Pv after being operated on:by Qu:ﬁ -:HQu .
The one-pion contribution is
i, 2y L 32y J, 2 i, 2
F.(q%) F (q7) - F (a7) F (a)
If we now let i and j be the indices corresponding respectively to
isotopic spin raising and 70wer1ng, and let the p;ons in the 1nit1al
and final states both be =x ’s, only Fn F“J is dlfferent from zero,

and our sum rule (18) becomes

. e 0]
- 2 -2 2
F '(a%) F (%) + = [(ql q2) A (v t,q %, &)
Jy, ) 7
. .
+ g Au+ (V':tyq 59 )J = FKB(t)
S (19)
or equivalently, by (ll) ®
2y o= 2 2 [ av' |, L2
r;(q)Fx(q)f; —L[‘lqe)f (v ‘c,q,q)
V'

v 2 p - LI A2 o - ;
o+ (gyrqp)” Ty (Wieee) + g “; (vies-) + 29 (a,°a,)f), (\“u*}J

- va(t) . (20
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. i} » | ,
where Fﬂ)(qg) is the pion form factor normalized to unity at q? = 0.

and v .is the threshold for Al and Ah .. Remembering that ' ..
. * g

+ qev’ we see that for t =g = 0 we recover the

0
e =7

statement of current conservation, namely, that F+(O) = F3(O) . By

Nt

_ taging t = 0 and then the derivative of (20) with respect to .q2
~at q? = 0 , we obtain a sum‘rule, first dérived by Cabibbo and
Radicati,8 which relates the isovector charge radius of the pion to
the integral over energy of the isovector photon-pion total cross.
.section, the latter being oBtained'from the integrandiin (20) by use
of the obtical theorem. The same sum rule folloyé by setting q2 =VO o
énd.then taking the derivative with respect to t at t =0,
'remembering the definition pf 'ql-qe . It is-hard to estimate the
~validity of this sﬁm rule, however, because of lack of data on the
iform factors and cross sections. The more readily verifiablevcase,
in wﬁich thé cufrent commutator is-efaluated Between nﬁéleon-states,
is discussed in Section III, so we shall defer the discussion of sum -
rules of.thevabove;mé#tioned type until.Section iII.

| (b) Until,now we have discussed only the kinemaﬁical region
| of the infinitesimal ﬁeigﬁborhood_of q2 and t equal to zero. What_
do the commutation relations lead to for finite q2 and tv? Let us
.begiﬁ by analyzing the t dependence; thé first and most striking , ) |

fact that meets the eye is that the right-hand side of Eq. (20), P
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proportional to F(t), has well-defined singularities in t , namely

a pole at the o mass,‘a cut, etc., while the one-pion contribution

L

3

on the left-hand side -of Eq. (20) is independent of t . It is in

fact clear that, in the neighborhood of t =m_~ , we cannot approximately

ol
saturate the sum rule by a few low-lying resonances, as these will not
géneratéua bole. Wé éfe then faced by two possibilities to obtain

, ‘ e
>consistency; either say that the large v contributiﬁns are negligible
and that essentially we have a subtraction constant of fhe form

2 N
qﬂﬁ-mp.)% or else really analyze the large V contributions. Clearly

the é;cond’of-the twéris more attractive; it’is also réésonable to

' suppose that’we have to consider large Vv , COrrespondinQFtd taking
'into account many partial waves in the scattering amplitude,‘in"order
‘ to_obtain a pole in t . To see how this pole could indeed be generated
by the large v' behavior of the scattering amplitude,'let' ué use a

9

Regge pole representation;” the poles presumably dominate the possible
Regge cuts fdr_time-like t , so this is a reasonable approximation.
Remembering that v <X s/2 for large v , s being the (center-of-mass

energy)2 variable, a Regge representation would say that in Eg. (19),

for large v,
ey alt) i5,. 2 - . ~ |
T R Y o (21)

. » . | .
the f's being the discontinuity in. ¥ of scattering amplitudes.

It is easy to see that the f's have asymptotic behavior va(t)
“so A~ B2 |
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If Qe assume that Regge behavior sets in around some value of -~ o

v , which we shall call Vg the contribution of the "asymptotic tailﬁ

of (19) has the form, keeping, e.g., only the first term in the integral,

[ awe o, a7, b7(¢,q%)  o(t)1
ql'qQ (v') b (t:q Jav' = - (VR) ’
oy : a(t) - 1 » y .
' 'R
(22)
where a(t) is the leading Regge trajectory contributing to ‘fl+7 .

In the case under consideration in Eq. (20), namely thét of isotopic
spin, - where 7 is actuaily a.difference of two terms corresponding_
- to the two terms in the commutator,Athe leading trajectory is presumably
that of the p meson. As ‘ap(t) has a real part which equals unity.
at .t = méz and an'imaginary part progortional to the width of the o
- _meson; we see from (22) that the "asyﬁptotic tail" is in fact generating
the desired pole in t . 10 ¥ |

We can then draw two conclusions: the first 1s that assuming

the commutation relations to be saturated by a few intermediate states |

may be a Very bad approximation in- certain kinematical configurations,

The scattering amplitude is proportional to [sin x ap(t)]-lexp[ap(t)log v].

The discontinuity of the logarithm introduces a factor which cancels

the denominator, leading to the form (21).
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the second that the high-energy behavior of the scattering amplitude

provides an "asymﬁtotic tail" in the dispersion integral which restores

_consistency. -

The‘situation is much more drastic in the case of the commutétor

‘of a charge and a current,ll €e.g.,

{py | [Qsl, Juj_(o)] | p,) = 1 Cijk (py | Jﬁ;k loy) 5 (2h}

o are axial vector charges and currénté;wbecause
the relation corresponding to (19) and (20) (see Reference 3) then

become of the form, with q - 0O ,

o r 13, 11
w_"Y%(v',t) E .
A rpde) + 2 [—5———-’-—-] av' = 1 e 1% P Keyy |

Yo

where A is a constént and w5i3>.can'be relgted to‘the discontinuity
in‘ v' of a scatteriné amplitude.' When éne does the integration over
V! ;the "asymptotic tail" géntribgtesia term:of the form E%Ej g(t,qe);
so if the pion trajectory contributes, we.have a singularity in t
very clése to the physical'region.*

(c) Let us conclude this section with a discussion of the

behavior of the sum rules on the variable q? . The most striking

- feature is the independence of the right-hand side of Eq. (20) on q2 .

This implies that there must necessérily be some Strong cancellations

We hopegﬁo give soon a more thorough analysis of the  t - dependence

ot . s
of current commutator matrix elements using Regge pole notions.
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occurring in the scattering amplitudes. To illustrate this point, let
: ' ©
us, assuming Fr(qg) to have a simple pole at q? =7, with residue -
R, , multiply both sides of Eq. (20) by (a° - mpg)2 and then let o

q? - mp2 . A1 and Ah presumably have a double pole at q? = mp2 whose

residue, 5;; lL(v,t,mpg, mpe); can be related to the absorptive part
Sl
. . XK
of an amplitude for = - p scattering. Rﬁ is in turn proportional
to the prnxt coupling constant, and in this limit we obtain a condition

on xn - p scattering,

(26)

Denoting byljg 13 the residue of the f functions of Eq. (19) at the

double pole in q? , (26) can also be written as,12 with

F1J - Hfia and - Rid ;.}{ﬂlj | _ |

| o )R 1S b 13, I
31220 [(ql-qe)Al (-y,t) + oo By »(v,‘;_)} | | - ;

[}

i L o (58 ) s e e E S L 2T D) h—’ij}
il—x?ov [(ql q2)<rl (v,t) +v(ql qe)I‘2 v+2mp Fh) m F3 _

See appendices of Ref. 7.
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f An elegent way of stafing that the current commutation relations

do not place a restriction on the stréng interactions is to write the
13 '

t 1 being the residue
MV {STRONG

analogue of Eq. (15) for}.q2 = mp2 , with

“of t .79 at the double pole in q2 . It reads

uv

(¥ - o)t M - o . o (28)
M BT WV fsTRONG - ;

In this strong interaction configuration, 1t may well be that
the "dsymptotic tail" is not as important as we.saw it to be previously.
The reason for supposing this is that the whole integral no longer has

t.  channel singularities, as the right-hand side of (28j is zero, so the

"asymptotic tail" is not required by consistency for. t - mp2 . Of

course the question of how .one should simultaneously let t — mp2 and

2 2

@ ~n is still open.

Adopting now as.a working hypothesis the neglect of all but low-

lying resonances, we see that an approximate relation can immediately

be derived from (20). Of possible intermediate states in the commutator

- the p 1is forbidden by G parity, the Al is highly questionable,

-and the ¢ -+ pnt .seems to be very small experimentally and forbidden

theoretically in various models. The only remaining low-lying state

with the correct quantum numbers is the w; keeping only it, Cabibbo

and Radicati found a relation between the pion charge radius and the

‘rate for w, - T + 7y from a sum rﬁle like (20) with q? ihfinitesimally ‘

0

‘close to zero. Nog however, we are free to extrapolate in q2’; letting

- in fact q? - mp2 and separating out expliéitly the o pole from

Eq. (20), as is easily done once again by just keeping the coefficient

e

5%
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of el-P €2°P, we find, in this approximation,,g_relation between .

d . the w-p- coupli tant. If |
gpxn an oo * ° ._p ® coupling constan If we define these o
constants by the following effective lagrangians
Pt Bomn P71 % O ), (292)
igy o - . ' ' .
= T ' : g . .
wprt m,. 'euvkc au Ly ak O™ 7 (29v)
the condition is quite simply - -
2 2 ' . '
b8 T Box = O - | : | (30)
. 2, o 13 . 3
Taking gpﬂﬂ/hn = 2.5, corresponding to a width™~ of 124 MeV, we find,
using the’Gell-Mann--Sharp-WagnerlLL model, that the partial width
IMNMw - 3%) equals 6.8 MeV, as'compared wrﬂ1ﬁe experimental valuel3 of
(12 #1.7) x 0.88 = 10.6 + 1.7 MeV.  Considering the fact that
several‘approximationshave been made to obtain this comparisbn;
égreement is-not too bad.
h)
j
G
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III. GENERALIZATION TO SPIN él- TARGEis |
| Let us now turn our attention tdfthe.Case in which the initial
and final states of Eq. (1) are spin—% baryqnsg'.As is well known, the

presence of spin is a nontrivial complication in the decompoSition into

invariants; we hope to treat in the future the'gederal case, but shall

limit ourselves here to the particularly simple kinematical configuration

of qig = qé2 = q? and t = O , averaging over the initial and final

There are then only two independent invériant‘amplitudes,

_ | ivj 2 W 1/2 - ! iJ ) .
BT o= €y fpy Yy (ElEa/MlIf‘e) = I, By® + I, Bp':

The invariants are ' , v o

I, = a*( e, P)(eyP) = v [(el-é)(éz-P) +-(el?P)(62-q)] . 3(€17€2)V.2

(52af_

S CHPR o CREN EREV I ¢ 25

where, since % ='O, 9y = qé . Once again we can go tovthe."transverse

system” and there decompose BiJ as foliows{.

B = b, 1% * ;le(el'Q)(€2°Q) S o lv»’ (33)

* the relation between the biJ's and the Bij's.béing:

i 2 o 13 . _ij . o ' '
LVt oa B2.j = bl'J_’- e ol (3he)

e R ()
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i
, !
and conversely, ' ' : |
S | . Q]i
w13 . 2 [ iy | 2 ij] L , |
By 'Y = 5 b0+, ,. : (35) |
v ‘ © |
- 2 2 2 |
where of course.the functions are all evaluated at G =% =4a
: o . e {
~and t.= O . By then applying the operator QJH -:HQR to tusz we |
obtain, analoﬁgously to (19) and (20), the sum rule ) %
2 [ 2 i 2 2 o [P (&%, +‘q2+‘ beia)'
s g B (V’}q{)q ,O)d‘V’ = = ‘ av'! ;
7 1 A , E v,2 |
o 0 §
= ic Fk(O) . (36) |
13k - | s
Once again we separate out the one-nucleon state contribution to the
sum rule. ' This is eésily done, as it is the coefficient of el-P €2'P
in the evaluation of..BiJ at the nucleon pole. When this contribution
is made explicit, the sum rule becomes f
Lo .20 o® 1, 2 3 2 "
F. (q9)F."(q%) - = F,(aO)F,"(a7)] - (i3] ;
1l 1 . 2°2 2 : ;
)-&M J .
o : ;
2 2,1 2 2 ijk L k
+ 20 M Eoa = 1 MR r o)
0 o .
| - (37) .
where Fli, and F2i are the Dirac and Pauli isovector form factors | tﬁ
. ) ) ’ .o . ) oy
and Vb is the inelastic threshold corresponding to the one-pion and '
. { ' .
L Vi

one-nucleoﬁ'state. Let us now take the particles of momentum Py “and

p2' contéiﬁed in respectively the initial and final states to both be

x
N
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protons, and let i and ] denote 1sotopic spin rais1ng and lowerlng;
as in Section IT. Our sum rule then takes on the form, with F being

the {sovector form factor

00
2 : 2
ve 2 ve, 2 2 += 2 2
r,' 1a%) - -'u—qz Fy (a7) * —%—f B, (v1,q505,00av" = 1,
. M . Wy |
| | ()
or alternatlvely, using (35), ' _
' 2 . 4e
' 2 +q_ b -
vo, 2 v2 . 2
l"'F 2(q) = q’ (q).*..j—. ’.
1 2
Yo - (39)

~ where Bl+-‘ and b. "~ have. two terms corresponding to the two terms

1,2

in the commutator of currents. This sum rule hasvalready been derived

in one form or another by several authors,15 but we would like %o

~ discuss some of its features, in particular its dependence on q2 .

At o2 =0 , we have the identity Flz_(o) _ 1 ; taking the derivative -

with reépect to- q? at q?.= 0, we obﬁain

2. . v2 . ‘
(r,)  F, (0) N v | -
—— T 5 + ‘—"‘2 o . '(20 - g ), (u'o)
R T A L
, ‘ ‘ o

2 ' ' v, o\ '
vhere (rV Yy is the isovector charge radius, F2 (0) = Mp = My and
01/2 y ,05/2 are the-total cross sections for isoveotor photon
productlon on protons of I = 1/2 and I = 3/2 states, the cross
sections haVing been obtained by . the optical theorem applied to v

by **(v,0,050) . If we try to saturate the integral by a few low-lying
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. .. resonances, thé_agreement of (uo) with experiment is not exceptionally
good. Roughly speaking, TFQV(O)/hM? is equal to (f;z)/3 ; and the R 7
contribution of the N* to the intégral is negative and of the order :
of magnitude of one haif the énomalous magnetic mémént term. Low- v
eneréy photoproduction is dominated by the ,N* ; other resonant low-
energy states, .say up to energies of 2 BeV, contribﬁte to the first
term in the integrand of (40), but do not appear to be more than
20-3%0% .0f the N*‘ contribution, so we are still left with a discrepancy
éf the order of 1.5 to 2 between the two sides of (40). This does not
mean tﬁat the relation is not valid and consequently that the equal
time commutation relations of isotopic spih currepts are suspect; it
may just signify that the intermediate states with energies greater
than % 2 BeV make up the difference.

There is still an interestipg question; however, and that is
the depéﬁdence of Eq. (39) on q? . We shall illustrate this point
.by assuming the integral to be approximately saturated‘bj the N* R
whose contribution_wé calculate by use of an isobar quei,lg and
comparing the two sides of (39) as functions.of q2 . The matrix
element of the current between protonland N* is defined as

*4

3
(prot., p, !J [ 87, py+a) =

NF*:i/z c (q ) | |
<E:* . u(pl)(qxv' - 7>\q“)75 (py + ), | .
, (41)
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where w, isa Rarita-Schwinger sp1n—3/2 vave function, C'(O)v=

by experiment,17 and we assume for C (q ) - the momentum transfer

dependenceld
- . v, 2
5 Gy (a7)
.ca(q ) = 03(0) = (42)
Gy (0)
where GMv is the Sachs magnetic form factor. When we use the
relation between Sachs and Dirac form factors;l9
-2
ve, 2
v2, 2 . v2, 2 M '
F.o(q7) - =% Fy(q0) = , o (83)
1 2 "2 2 .
4M g '
l1- =
uM
Eq. (39), in the isobar approximation, becomes
ve, 2 S v2, 2 L v2, 2 n 2 % .
- Gg (d7) Oy (a7) 2 G, (a) 40,%(0) "2 4 3R - P
- 2 -7 2 - 2 V2, a2
1 - —35 M R - Q‘GM (0) M
IM M (44)

, We shall plot the ratio between the right- and left-hand sides
of Eq. (44), which we call 7(q ), as a function of q ; for the form

factor we shall use & recent fit by.means of two poles and a hard

vcore,eo one of the poles being at q?-= mp2 . At q? = mp2 , &8s

.eyplained in Sec. II, we lose all trace of the algebra of currcnt

commutators in (59) and obtaln a consistency coqdition on the residues

of the forh factors'at the o] pole whichvis presumably test;ngv p~-N

i
- 211
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vs¢attering.. The plot of 7(q?)'is given in Fig; 2; we believe the
l remarkable agreement at q? = mp2 to be largely_acaidéntal. However, ‘);
the dependence on q2 is perhaps significant; what we are probablyA ‘%
testing is how rapidly.the integral in Eq. (39) convarges as.a function
of the mass (q?) of the scattaring particle. The'aventual confergence
is guaranteed by Pomeranchuk-theorem-Like arguments, but it is not -
implaﬁsiblevthat there are regions of q? for which the convergenée
is most,rapid and consequentiy‘allows us to best approximafe the integral
by its low-energy part. This is very iikely to be associated with some
stroﬁgjinﬁeraction mechanism and consequently is most marked at »q? :lmpg,
which places us in a strong—interaction kinematical configuration.

In conclusmon we hope to have at least shown what are a few of
the problems that Llie ahead on the road to a thorough understanding ot
current commufation retations. First of all there is the complete \ g
kinematic analysis tor the case of initial and rinal particles withv o E
spin.'- The. indepehdence ot the form of the sum rules on the values of . , ,%
ql2 and q2 , on, the other hand, is Stlll a puzzle to a certain extent, |
as is the dynamical significance of the connection between torm factors f
and integrals of scattering amplitude discontinuifies;' We have tried
to indiéate lines ot approach tor tackiingithese problems, showing how | i
the high-energy 5ehavior of the discontinuity of scattering amplitudes

generates_tne crosa-cnanneL singularities, how the Strong-interaction v o

‘One immedlate resutt of such an anaLysis is a second sum rute Like ' -

(39), wnicn presumably will be for the isovector nagnetlc torm-

ractor radlus.
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édnfiguration‘differs from that of arbitrary q? , and éo on, but

have probably raised more questions than we have answered. We hope

this to be the consequghce of a healthy, thriving theory rather than

the authors' confusion.
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FIGURE CAPTIONS

Fig. 1. Scatteringvkinematics._

RS

Fig. 2. 7(q?) as function of q2 .

~
A
i

i
'

it

.

i

“
.




2

(p,"Dz)

(_p1+q.1)2

(py+p,)-(q

Py p2_

2-p2]

4

ey e T 2_ 2 _
+8) = P-Q= 7 [25+ t-q7-q% -p

7 [es+t-3mi]

 MUB-10007



d

. 1 .
s Yy (q) 1
-+ 7.0
‘L 1 1 |.O y I 1 I . > .
- -1/2 0 1”2 I qZ(inunits
o mp !
‘MUB-1N008
A




o

This report was prepared as an account of Government
sponsored work. Neifher the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report

"may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-

mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.






