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ABSTRACT 

A general relation between the integral over energy of the 

discontinuity of a scattering amplitude and a form factor, obtained 

from the algebra of current conutators,is discussed. The relation 

is analyzed as a function of (momentum transfer) 2  t and of te external 

masses. It is shown how the high energy part of the discontinuity 

generates the singularities in t of the form factor and also how, 

when the external masses are those of strongly interacting particles, 

the relation reduces to a purely strong--interaction condition. The 

case of isotopic spin currents is discussed in detail and illustrations 

-half particles are given involving spin zero and spin one  
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I. INThODUCTION 

The suggestion by Gell-Mann 1  that broken symmetry problems may 

be studied by examining the equal time cormutators of the currents 

whose algebra defines the underlying symmetry has recently proven very 

successful. If we assume there are no additional terms, such as gradients 

of delta functions, 2  which contribute to relations beteen ph3sical 

matrix elements of current commutators, these commutators are of the 

form 

K p1 	(J01(,o)) 	J()] 	= • 	i3k 5(x)( 	 p2  ), 

(1) 

where i, j, and k are indices labeling the internal symmetry 

ijk transformation properties of the currents and c 	is a structure 

constant of the underlying group. By the use of dispersive techniques, 

one of ushas recently shown3  that Eq. (1) yields a relation of the 
* 

iorm 

a13 (v', q12, q2 
2 
 t)dv' = 
	ijk Gk(t) 	 (2) 

where Gk(t) is the form factor (assuming for the moment that there 

is only one) of the current J 	between states of momentum p1  and 

p2  , (p1 - p2 ) 2  = t 	a13  isa scalaramputude obtained from the 

expansion into invariants of t 	; 

* 
This relation has been derived independently by R1 Dashen and 

M. Gell_lvithm by considering matrix elements of Eq. (i) in the 

frame. 
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r • 	iq•x 1 	.. 

J (P1J 
[j1(x) 

 j3(o)] Jp2 ) e 
1 	d x = s 	+ t 	 () 

t 	=. a P i  P V 
+ d13  P QV 

 + e1 
Qp. Qv  + 	

(la)
~Lv i  

= hP P 	+ •• 	 (l.b) 

pl +p2 	q1 + 	 p1 -p2  
where P = 	 The 

2. 	 2 	 .2 

quantities t 	are odd under the interchange of i and j while 

s 	are even. Our sum rules will always be for the t 3 's ; the 
gV 

correspond in practice to the presence of additional terms 

like those of Ref. 2 being present in the commutation relations. 

The a13  in Eq. (2) is just the coefficient of .  P P, upon 

ij. 
expanding t 	. In the general case-there are several such relations 

that may be obtained from any given set of commutation relation matrix 

elements. 	 . 

Now a(v, q2•q2 
 2 t) can be related to the imaginary part 

of a transition amplitude for a particle with quantum numbers I and 

momentum q1  , coupled to the currnt J 1  , colliding with a particle 

p1  (we have suppressed for convenience the internal quantum numbers 

of this particle) to give a two-particle state, one with momentum 

q(j) and the other with momentump2  . Schematically one can view . 

this as 1 'Fig. 1. 	. 
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We wish to emphasize that the figure is merely illustrative and not to 

be interpreted in terms of Feynman diagrams. 

Several questions immediately arise upon analyzing (2). Is it 

2 	2 
valid for all values of q1  , 	, and t, or are there restrictions 

on the range of these variables? This leads to the related problems 

of what are the values of these. three variables for which the integral 

converges most rapidly as a function of V. 	This is crucial if one 

wishes to approximate the contribution of intermediate states by a 

few low-lying resonances, as is usually done in practice. In factthe 

integral presumably does not converge at all in certain cases. This 

of course implies that the validity of the current commutation relations 

is intimately connected with the asymptoticbehavior of scattering 

amplitudes, and conversely that the latter may be able to restrict the 

class of commutation relations with physical meaning. 

Yet another question is how do the known singularities of the 

ij 
form factor G(t) develop out of the integral of a? 

We are not able to answer any of these questions completely, 

but will try to give indications of lines of approach for studying 

them and possible partial resolutiona in some cases. 

The simplest kinematical configuration is that of q2 	
2 

corresponding to the commutator of two.charges. In the case of axial 

vector charges, this leads, by use of PcActo the well-known Adler-

Weisbergei relation between weak axial vector current renormalization 

• 	 and pion-nucleon scattering. The general case of charge commutators 

• 	 • has been studied extensively by the present authors in collaboration 

with J. D Walecka, so we shall say nothing about it and turn our 

attentior ifr1mediately to more general kinematical configurations. 
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II • SUM RULES FOR SPINLESS TARGETS 

(a) We shall illustrate our arguments by treating the algebra 
e 

of isotopic spin currents and considering the matrix elements of the 

commutators defining the algebra between particle states of spin zero. 

This will greatly simplify the discussion tiioughnoñe of the general 

features will be lost; we shall in addition restrict ourselves to the 

2 	2 	2 
case of q1  = q2  = q . Consider therefore the amplitude t 	as 

defined in Eq. (3),where the initial and final states may be taken 

to be pions of momentum p1  and p2 respectively. Neglecting 

electromagnetic corrections, the isotopic spin current is conserved, 

so t 
ii obeys the subsidiary conditions 

ii 	 ii 
a 	t 	= a 	t 	= 0. 
J4L 0 dV LV 

(5) 

Before discussing the physical consequences of the current 

commutation relations, we shall find it helpful to give a short 

• 	discussion on invariants. To begin with, let us introduce polarization 

vectors c , €, and use them to construct the scalar amplitude 

A'3 = 	
€ 	t 	(E1E2)h/2 	 (6) 

can now be decomposed into invariant amplitudes 

A13 = I A 	+ 12 A
2ij + I3A3ij + 1

4 A, 	
()

ij  

the I's bing chosen as follows: 



i 

UCRL- 16755 

-5- 

= (q1.q)(€1 .P)(e2 P) - PQ [(El-q2)(C2-P). + (e 2 .q1 )(E 1 .P)j 

2 
+ (€1 .c2 )('°P) , 

(8a) 

12 = 	12l 	- 	l2l , 
	 (8b) 

1 3  = (€12)q - q 2 (€1 	)(€2 .q1) + ( i2 ) 

+ (q1)(€1q1)(2, 	 (8c) 

I 	= 	l2 	
- (P.)q2  [(€1.q1)(c2.P). + C 

2 	CL2 )(E l - p)] 

+ (P•)2(€1'q1)(2q) . 	 (3d) 

It is particularly convenient, however, to consider the "transverse 

system" in which e 1 P = 	= 0 . In it the amplitude A 1  is expressed 

by: 

= 	
€ 	t J  (E1E2)' 

= 11j l2 + f 1 ()(c.) + f3 (c1 q1 )(€2 q2 ) 

+ r 3  [c 	q1) + 	 )] 	(9) 

The relation between the A's and the f's is. 
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IM 

+ A21 (q1  .) + A3  A11 v2  q 	= 	f1 , (ba) 

A1 
2 

- 	fJi 
2 

(iob) 

(q1 .)A31 	+. v2  A 4. 	
= 	fli 

(lOC) 

- q2  A31 	= 	ij (lOd) 

and inverting, to express f's 	as functions of the A's 	, 

A111 	= [flij + 	q1.f2 	
+ q2fj] 

, (ha) 

A2 1  (ub) 

A31 	
- fJ/q2, (hic) 

Ahj 	= 
+ 	q1 	fiJ] 

(lid) 

This completes our discussion of invariants. Let us now see 

how the assumed current commutation relations lead to a set of. relations 

connecting form factors to integrals over imaginary parts of scattering 

amplitudes. 	To begin with let us use translational invariance to 

rewrite Eq. (3) as 

t(v, q12, 	
2 
 t) =J(p1 	[J1(x/, Ji(_x/2)] J p2 )e 	dx, 

(12) 

and then olerve that we can define 

IP 

- '- 
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T(v, p12, p22 , t) = iJ(pi i [J(X/2),• J_x/)] p2 )e 	Q(x0)dx, 
~Iv

(13) 

related to t 	by 

T 	t 	, 	 l) 
P.V 	 p.V 

where J4 symbolizes the process of taking the Hubert transform with 

respect to the variable V . Equation (14) means, as stressed in Ref. , 

that, if we deveIbp T 	and t 
13  in the same set of invariants, 

the components of T 	 are Hubert transforms of the components. of 
PV 

t 	. Because of the 9(x0) in Eq. (13), operating on t 	with 

Q and 14 are nonconimutative processes, 

iQ.x 
(Q 	Q)t 3 	J(p1 1 

[

1i(x/2), J/2)J p2)8( x0 )e 	d4x 

iik 	j 	k(0) 	p2), 	 (15) 

having used the current commutation relations, in the form of Eq. (i), 

for the last step. Equation (15), the fundamental identity we shall 

use, is true even if the currents are not conserved. 

When p1  and p2  are pion states, 

I p2) = (!E1E2)_l/'2 F,(t) ç, 	(16) 

there being only one form factor in the JJ.mit of conserved current. We 
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have not written explicitly the isotopic spin labels of the initial 

and final states; we are taking it as implicit in the subscript of 

the form factor. It is now easy to see that only A 1  and A will 

contribute to the sum rule arising from Eq. (15), as only I and I 

contain terms proportional to E 1 .P €2 P, or, dropping the polarization 

vectors, to PP, .. The necessity of the P 	is clear, as the right- 

hand side of (15) is proportional to P, ; the P term needs to be 

present to give a nonvanishing result when applying the operator 

	

Q. to the amplitude t 	. To illustrate this consider 

applying H to an arbitrary function a(v) = P a1(v) + Q. a(v), 

110 a(v) = 	(v a1(v) + Q2  a(v)) =1 f 
Co 

v'a1(v') + Q2a2(v') 

(17a) 

	

/ 	
Va1(v') + Q 2 a 

 2 (v 
a (v) 	

') 

	

- 	, 	
(7) 

co 

- 	)a(v) = 	

fco 	

(v'- V)ai(v') = 	

f-CO 

a1(v') 
if 

(l7c) 

and we see that H a = R.Pa .' 1t1L 	1 

The cormutator of two isospin currents taken between pion 

states, using (6), (7), (8), (15),  and (16) and the fact that 

A1 ( -v) = A1tv) and A1 ( -v) = A14(v), leads to the sum rule 

* 	 2 	2 	2 
Note that p1 = p2  = p. , &P = &Q= 0 

p 

0 
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f[(q1 . ) A113 (v', t, q2  q2) ± qA ' (. V', t, q2 q2)ld v? 

=i c 	 F 1'(t)  

Let us calculate explicitly the contribution of the one-pion 

intermediate state. This is easily done, as the integrandof.Eq. (18) 

is the coefficient of E1 P c 2 .P in A 	 , as one immediately sees by 

referring back to Eq. (7) and (8). That this must be so can be seen, 

as we stated earlier, by the fact that only a term in. P 	gives 

something proportional to P after being operated on!by Q -  

The one-pion contribution is 

	

1 2 ,j 2 	j 2 	i 2 

	

F,  (q ) 	(q 	F (q ) F (q ) 

If we now let i and j be the indics corresponding respectively to 

isotopic spin raising and lowering, and let the .pions in the initial 

and final states both be 	only F F 	 is different from zero, 
TC 

and our sum rule (18) becomes 

	

F(q2) F(q2 ) + 	f dv t [( i ) A1 (v',t,q2,q2 ) 

± q A 	(v',t,q ,q ) 	F (t) 

(19) 

or equivalently, by (11) 	CO 

F(q2) F(q2 ) + 	 [(q1 	) f1 (v',t,q2 ) q2 ) 

	

+ (q 	
)2 f

2 ( 	) + q f3 (v' 	) + 2q2(q1 	)f(v' .)J 
= F(t) , 	 . . 	 (20) 
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where F( 2 ) is the pion form factor normalized to unity at q2  = 0. 

and V0  is the threshold for A 1  and A14  .. Remembering that 

ql,= - t + 2 , we see that for. t = 	= 0 we recover the 

statement of current conservation, namely, that F + (0) = F 3  (0) . By 

taking t = 0 and then the derivative of (20) with respect to 

at q 
2

= 0 , we obtain a sum rule, first derived by Cabibbo and 

Radicati, 8  which relates the isovector charge radius of the pion to 

the integral.over energy of the isovector photon-pion total cross 

section, the latter being obtained from the integrandin (20) by use 

of the optical theorem. The same sum rule follows by setting q2  0 

and.then taking the derivative with respect to t at t = 0 

remembering the definition of q1 .q2  . It is hard to estimate the 

validity of this sum rule, however, because of lack of data on the 

form factors and cross sections. The more readily verifiable case, 

in which the current commutator is evaluated between nucleon states, 

is discussed in Section III, so we shall defer the discussion of sum 

rules of the above-mentioned type until Section III. 

(b) Until now we have discussed only the kinematical region 

of the infinitesimal neighborhood of q and t equal to zero. What 

do the commutation relations lead to for finite q2  and t ? Let us 

begin by analyzing the t dependence; the first and most striking 

fact that meets the eye is that the right-hand side of Eq. (20)1 	. 

a 
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proportional to F(t), has well-defined singularities in t, namely 

a pole at the p mass, a cut, etc., while the one—pion contribution 

on the left-hand side of Eq. (20) is independent of t . It is in 

fact clear that, in the neighborhood of t = m 2  , we cannot approximately 

saturate the sum rule by a few low-lying resonances, as these will not 

generate a pole. We are then faced by two possibilities to pbtain 

consistency: either say that the large V contributiOns are negligible 

and that essentially we have a subtraction constant of the form 

or else really analyze the large V contributions. Clearly 

the secondofthe two is more attractive; it is also reasonable to 

suppose that we have to conside'r large V , corresponding to taking 

into account many partial waves in the scattering arnplitude,inorder 

to obtain a pole in t . To see how this pole could indeed be generated 

by the large v behavior of the scattering amplitude, let us use a 

Regge pole representation; 9  the poles presumably domina'tê the possible 

Regge cuts for time-like t , so this is a reasonable approximation. 

Remembering that V : s/2 for large V , s being the (center-of-mass 

energy) 2  variable, a Regge representation would say that in Eq. (19), 

for large V. 

fii 	t) b1 (t,q2 ), 	 (21) 

th fts being the discontinuity in .v of scattering amplitudes. 

*  
It is easy to see that the •  f's have asymptotic behavior V 

a(t) 
 

(4_ 
soA --v 	. 
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If we assume that Regge behavior sets in around some value of 	 44 

v , which we shall call yE , the contribution of the "asymptotic tail" 

of (19) has the form, keeping, e.g., only the first term in the integral, 

00 	a(t)-2 	 q 	biJ(t,q2) 

.. f 	(v') 	biJ(t,q2)dv 	= 	1 	 (vR) 
cz(t)-1 

(22) 

where a(t) is the leading Regge trajectory contributing to f 1  

In the case under consideration in Eq. (20), namely that of isotopic 

spin,where f 	is actually a difference of two terms corresponding 

to, the two terms in the commutator, the leading trajectory is presumably 

that of the p meson. As a(t) has a real part which equals unity 

at t = m 2 . and an imaginary part proportional to the width of the p 

meson, we see from (22) that the "asymptotic tail" is in fact generating 

10 * 
the desired pole in t . 

We can then draw two conclusions: the first is that assuming 

the cónmiutation relations to be saturated by a few intermediate states 

may be a very bad approximation in certain kinematical configurations, 

* 
The scattering amplitude is proportional to [sin it a(t)]exp[a(t)log vJ. 

The discontinuity of the logarithm introduces a factor which cancels 

the denominator, leading to the form (21). 

r 
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the second that the high-energy behaviOr of the scattering amplitude 

provides an "asymptotic tail" in the dispersion integral which restores 

consistency. 

The situation is much more drastic in the case of the commutator 

of a charge and a current, 11  e.g., 

	

i 	 5 

	

(p1 I I Q-, 	
jJ 	 i c (o) 	

p2) 
] I 	= 	ik 	5.i

k 	
' j  

	

where 
q5.

and J 	 are axial vector charges and currents, because 

the relation corresponding to (19)  and (20) (see Reference 3) then 

become of the form, with q - 0 , 

F(t) + 2 I [w5iiVtt)] dv' 

	i c5 	
F5k(t) ' (25) 

It 

where X is a constant and v513  can be related to the discontinuity 

in v' of a scattering amplitude. When one does the integration over 

v' the "asymptotic tail" contributes a term of the form a(t) 

soif the pion trajectory contributes, we have a singularity in t 

* 
very close to the physical region. 

(c) Let us conclude this section with a discussion of the 

behavior of the sum rules on the variable q . The most striking 

feature is the independence of the right-hand side of Eq. (20) on 2 q 

This implies that there must necessarily be some strong cancellations 
* 

We hope to give soon a more thorough analysis of the t dependence 

of curreht commutator matrix elements using Regge pole notions. 
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occurring in the scattering amplitudes. To illustrate this point, let 

us 	
2, assuming F(q ) to have a simple pole at q = rn , with residue 

R , multiply both sides of Eq. (20) by (q2  - rn 2 ) 2  and then let 

q - m . A l  and A1  presumably have a double pole at q 2 = in whose 

residue, ,Ria(V,t,mp2, m 2 ) 	can be related to the absorptive part 

of an amplitude for it - p scattering. 	RiT is in turn proportional 

to the pitit coupling constant, and in this limit we obtain a condition 

on iT - p scattering, 

+ 
 , f

co 

dv t '[ i . q2 	1 (v',t) + 	(v',t)] = 0 

V0  
(26) 

Denoting by 5 ij  the residue of the f functions of Eq. (19) at the 
, 

double pole in q 2 , (26) can also be written as 2 

	

, 	witn 

ij = j5iJ 	
and

ij 

lim V [(q)3(vt) + 
v-'co 

urn 0 
	

{(q 	)(iJ(Vt) + (q1 
)i + 	2 i) 	m 

= 	0 	 (27) 

* 
See appendices of Ref. 7. 
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An elegant way of stating that the current commutation relations 

do not place a restriction on the strong interactions is to write the 

iji 
analogue of Eq. (15) for q2  = m 2  , with t 	 being the residue. 

ij of 	at the double pole in q2  . It reads 

- 	t 	 = 0 	. 	 (28)
ij  

ISTRONG 

In this strong interaction configuration, it may well be that 

the "asymptotic tail" is not as important as we saw it to be previously. 

• The reason for :supposing this is that the whole integral no longer has 

t channel singularitie; as the right-hand side of (28) is zero, so the 

asymptotic tail is not required by consistency for t -, m 
2
. Of 

course the question of how one should simultaneously let t - m 	and 

q - m 
p 
 is still open. 

. 

Adoptingnow as,a workinghrpothesis theneglect of all butlow-

lying resonances, we see that an approximate relation can immediately 

be derived from (20). Of possible intermediate states in the commutator 

the p is forbidden by G parity, the A1  is highly questionable, 

and the 0 - p,t . seems to be very small experimentally and forbidden 

theoretically in various models. The only remaining low—lying state 

with the correct quantum numbers is the w; keeping only it, Cabibbo 

and Radicati found a relation between the pion charge radius and the 

rate for 	
- 	+ y from a sum rule like (20) with q2  infinitesimally 

close to zero. Now, however, we are free to extrapolate in q ; letting 

22 	 . 	. 	 . In fact q - m 	and separating out explicitly the w pole from 

Eq. (20), as is easily done once again by just keeping the coefficient. 
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of c1 P €2 P, we find, in this approximation, a relation between 

g tipit 
 and -g 	, the w-p-r coupling constant. If we define these 

constants by the following effective Igrangians 

• 	 oZ 	 = 9 	P - ( Tr x 	, 	 ( 29a) 

= 	
w. , 	 (29b) Ci)pt • 	II] 	2VXa 4 V X PCr 

the condition is quite simply 

2  - 	=0. 	
/ 

30 plt,t 

• 	Taking 92 /it = 2.5, corresponding to awidth13  of 12' eV, we find, 

using the Gell-Mann - Sharp-Wagner model, that the partial width 

-+ 3r) equals 6.8 MeV, as compared with the experimental value 13 of 

(12 ± 1.7) x 0.88 = 10.6 t 1.7 11eV. 	Considering.the fact that 

several approximatiorhaye been made to obtain this comparison, 

agreement is.not too bad. 

• 	•• 
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III. 	GENERALIZATION TO SPIN 	TARGETS 

Let us now turn our attention to the case in which the initial 

and final states of Eq. (i) are spin—i baryons. 	As is wellknown, the 

presence of spin is a nontrivial complication in the decomposition into 

Invariants. we hope to tieat in the future the general case, but shall 

limit ourselves here to the particularly simple kinematical confiuratiofl 

2 	2 	2 
of 	= q2 	= q 	and 	t = 0 , averaging over the initial and final 

spins. 

There are then only two independent invariant amplitudes, 

• 	ij 	 ij 	 1/2 	 ii. 
B 	= 	

(E1E2t41M2) 	= 	1ni: B1 	+ 	'n2 	
B2 

J.tt 

(31) 

The invariants are 	 - 

'ni 	
= 	q2( 1 	)( 2  F) - v [(€ 	q)(€2  F) + 	

P)(c2  q)] + 

(32a) 

2 
 - 
	(€1 .)(€2 .q) 	, 

'n2 
(52b) 

12 

where, since 	t = 0, 	ql= 	. 	Once again we can go to the "transverse 

system" and there decompose 	B1j 	as follows: 

ii 	ii 	 ii 
B 	b 	 + 	b 	(€1 q)(€2 q) 	, 	 . 	. (33) 

12 

the relation between the 	b1 's 	and the 	being 

B11 	V2 	+ 	q2  B21 	= 	b11 	, (3l.a) 

ij 	iJ 
-b2 	, 

I 3b 
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and conversely, 

B1 	= 	[ 5 i + 2 b2 J ] , 	( 35) 
; 	

1  

where of coursethe functions are all evaluated at q•2 = 

and t.= P . By then applying the operator Q - Q to t 	we 

obtain, analougously to (19)  and (20), the sum rule 

fo 

q B11(v,q2,q2,0)dV = 

	

2 	dv' 

= i C 	Fk(0). 	 (.6)ijk 

Once again we separate out the one-nucleon state contribution to the 

sum rule. This Is easily done, as it is the coefficient of €1.?  €2P 

ij 
in the evaluation of 	at the nucleon pole. When this :c0nt1t50n 

is made explicit, the sum rule becomes 

[F1 i (q  2  )F1  (q 2) - 	
: F2i(q2)F2J(q2) 	

- [ij] 
41,1 

+ 

/00 

q2 B1hi(v)q2,q2,o)dv 	=i c 	 F1k(0) 

0 	
(37) 

where F11  and F are the Dirac and Pauli isovector.form factors 

and V is. the inelastic threshold corresponding to the one-pion and 

one-nucleon state. Let us now take the. particles of. momentum p1  and 

contained in respectively the initial, and final  states to both be 
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p 	 protonS, and let i and j derote isotopic spin raising and lowering, 

as in Section II. Our sum rule then.takeS on the form, with FV being 

the isovector form factor 

F1V 2( q2 ) - 	
v2(2) +• 

	

B1 (V',q2 ,q2 ,0)dV' = 
 ic 

0 

• 	or alternatively, using (35), 

	

- V2( q2) = - 	•2V (q)  + 	
b1 	b2 

 7T. 
f  . 

	
V

t 

V0 	 (9) 

where B+ and b+ have two terms corresponding to the two terms 1 	
1,2 

 

in the commutator of currents. This sum rule has already been derived 

in one form or another by several authors, 1  but we would like to 

2 
discuss some of its featureS in particular its dependence on  

At q = 0 , we have the identity F 12.(0) = 1 ; taking the derivative 

with respect to q at q. = 0 , we obtain 

	

2 	v2 	 ,-co 

	

(r) 	F 	(o) 	1 	1 dV 	v 	
V 

+ 	2  J 	T (2l/2 - 	
'

3/2 

	

where (r2) is the isovector charge radius, F2v(o) = 	- 	
, and 

a1!2 	a3/2 
 are the total cross sections for isovector photon 

production on protons of I = 1/2 and I = 3/2 states, the cross 

sections haing been obtained by the optical theorem applied to 

b1(V,O,O;O) . If we try to saturate the integral by a few low-lying 
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resonances, the agreement of (140) with experiment Is not exceptionally 

'good. Roughly speaking, 	 is equal to (r2)/3 , and the 

contribution of the N* to the integral is negative and of the order 

of magnitude of one half the anomalous magnetic moment term. Low-

energy photoproduction is dominated by the N* ; other resonant low-

ener,r states, say up to energies of 2 BeV, contribute to the first 

term in the integrand of (10), but do not appear to be more than 

20-30% of the N* contribution, so we are still left with a discrepancy 

of the order of 1.5 to 2 between the two sides of (L.o). This does not 

mean that the relation is not valid and consequently that the equal 

time commutation relations of isotopic spin currents are suspect; it 

may just signify that the intermediate states with energies greater 

than 	2 BeV make up the difference. 

There is still an interesting question, however, and that is 

the dependence of Eq. (39) on q2  . We sba1l illustrate this point 

by assuming the integral to be approximately saturated by the 

whose contribution we calculate by use of an isobar model,Th  and 

comparing the two sides of (39) as functionsof q 2  . The matrix 

element of the current between proton and N*  is defined as 

(prot., p1  TJL3i N, p1+q) 

C(q2 ) 

N 	
(P1)(7 - 7%)75wx(Di + q) 

(l) 

• - 
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where w is a arita_Schwiflger spin-3/2 wave function, c 3(o) = 2..0 

17 	 2 
by experiment, and we assume for 	) the momentum transfer 

dependence 
v2 

c3(q2) = c3 	
G 

(o) 	7(o) 

where GM' is the Sachs magnetic form factor. When we use the 

relation between Sachs and Dirac form factors, 9  

V22 	 v2.2 q 2 
- G (q) 

v22 	q 	i22 	
E 	 M 

2 F2(q) = 	 2 
L4.M 

Eq. (39), in the isobar approximation, becomes 

- G( q2 ) 	= - G(q2) 	2 GM( q2) - 	1c(0) 	3M 2 	 - q 

1 - 	
- q 	9 GM (o) 	2M *2 

We shall plot the ratio between the right- and left-hand sides 

2 
of Eq. (i), which we call 7(q ), as a function of q ; for the form 

factor we shall use a recent fit by means of two poles and a hard 

20 	 2 	2 
core, one of the poles being at 2 
	2 q = m . At q = m , as 

explained in Sec. II, we lose all trace of the algebra of current 

commutators in (39) and obtain a consistency condition on the residues 

of the forin factors at the p pole which is presumably testing p-N 

(i.2) 
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scattering. The plot of y(q2 )is given in Fig. 2; we believe the 

2 	2 
remarkable agreement at q = rn 	to be largely accidental. However, 

the dependence on q2  is perhaps significant; what we are probably. 

testing is how rapidly the integral in Eq. (39) converges as a function 

of the mass (q2 ) of the scattering particle. The eventual convergence 

is guaranteed by Pomeranchuk_theoremLike arguments, but it is not 

implausible that there are regions of q •2  for which the convergence 

is most rapid and consequently allows us to best approximate the integral 

by its ±ow-enery part. This is very likely to be associated with some 
2 	2 

strong interaction mechanism and consequently is most marked at q 

which places us in a strong-interaction kinematical configuration. 

In conclusion we hope to have at least shown what are a few of 

the problems that lie ahead on the road to a thorough understanding of 

current commutation relations. First of all there is the complete 

icinernatic analysis for the case of initial and final particles with 

spin. 
* The independence of the form of the sum rules on the values of 

q12  and q.2 2 , onthe other hand, is still a puzzle to a certain extent, 

as is the dynamical significance of the connection between form factors 

and integrals of scattering amplitude discontinuitles. We have tried 

to indicate lines of approach for tackling these problems, showing how 

the high-energy behavior of the discontinuity of scattering amplitudes 

generates the cross-channel singularities, how the strong-interaction 

• 	. 	*• • 	• • One immediate result of such an analysis is a second sum rule iike 

(39), which presumably will be for the isovector magnetic form-

factor ràdius. 	 . 
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2 
configuration differs from that of arbitrary q , and so on, but 

have probably raised more questions than we have answered. We hope 

• 

	

	this to be the consequence of a healthy, thriving theory rather than 

the authors? confusion. 
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FIGURE CAPTIONS 

Fig. 1. Scattering.kinematics. 

Fig. 2. 	(q2) as function of 
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