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Abstract 

A dynamical description of collective quadrupole motion is 

given. Quantum mechanical fluctuations of nuclear shapes and 

their effects on coupling between rotations and vibrations, and 

between B-vibrations and y-vibratioflS are investigated. These 

effects indicate the need of a more complicated B-, y-dependeflce 

of the collective potential energy than that used in the paste 

A potential function, which is an extension of the MyersSWiatecki 

potential, is suggested. On using this extended potential, good 

agreement is obtained with the experimental energy levels and 

B(E2) values of Sm154 . The general nature of the potential is 

utilized to gain some qualitative understanding of other nuc-ei. 

A metastable band, which represents quantum mechanical tunneling 

and which can decay to the ground band only through a cascade 

involving one of the excited bands, is predicted. 
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1. Introduction 

The Bohr-MottelsOn ' ' 2  description of collective quadrupole 

motion, approximated by a vibrational model incase of spherical 

nuclei and by a rotational model in case of deformed nuclei, has 

been widely used for understnding low energy properties of nuclei 3 . 

The energy levels and transition probabilities of nuclei often 

deviate from the predictions of these idealized models. For 

example, the two phonon triplet of spherical nuclei is usually 

split 4  and the excitation energies of- deformed nuclei often deviate 

from the 1(1±1) rule 5 . The purpose of the present investigation, 

of which this is a' preliminary report, is to understand these 

deviations, as well as the basic assumptions of the vibrational 

and rotational models, by giving a dynamic description of nuclear 

deformations. 

Baranger and Kumar 6 ' 7  have recently developed an exact, num-

erical method of calculating energy.levels, static moments, and 

transition probabilities corresponding to a given Bohr 1 s collective 

Hamiltonian 1 . This method makes the adiabatic approximation that 

the intrinsic motion follows the collective motion of a nucleus. 

However, the shape and hence the intrinsic motion of the nucleus 

is free to change from one nuclear state to another one. In fact, 

the collective wavefunction of each stationary state is in general 

a linear combination of many different intrinsic wavefunctions. 

Therefore, this dynamical adiabatic approximation is an improve-

ment over the approximation where the shape of a nucleus is con-

sidered to be static or capable of executing only harmonic 

vil)rations. This method does not make the usual assumptions 
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about (a) the separation of rotations and vibrations or (b) the 

separation of - and y-motions. Thus, it is possible to test 

these assumptions. Of particular interest are quantum mechanical 

fluctuations in the shape of a nucleus which can be different for 

different states of the same nucleus. 

In the numerical method mentioned above, the kinetic energy 

and potential energy of Bohr's Harniltonian can be any arbitrary 

functions of nuclear deformations, subject only to the symmetry 

requirements of the Hamiltonian. In the present paper, the 

kinetic energy of deformation has the Bohr form 1  which can be 

expressed in terms of a single inertial parameter However, 

the potential energy of deformation, v(,Y), is given special 

cons id.eration. 

In most of the analytic or perturbative methods 8 ' 9  of solving 

Bohr's Hamiltonian, the potential energy is a quadratic function 

of deformation. The equilibrium point occurs either for a spherical 

shape or for a deformed shape. However, with the probability 

of large fluctuations in the deformation, the assumptionof 

quadratic potential energy cannot expected to be good, one reason 

among many being that, with a deformed equilibrium shape, it does 

not satisfy the proper symmetry requirements of Bohr's Hamiltoflian.. 

Myers and Swiatecki 10  have recently suggested a semi-empirical 

formula for V(,y). They obtain the values of the constants of 

this function by fitting the ground state binding energies and 

quadrupole moments, and fission barriers of all nuclei. This 

potential. function has several remarkable features. (1) It . 

does not require a priori knowledge of the shape of a nucleus. 
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The lowest minimum of the potential determines whether the nucleus 

under consideration is spherical or deforPed. (2) It satisfies 

the symmetry requirements of Bohr's Hamiltonian. (3) AdditiOnal 

terms can be included withoutaffecting the nuclear behaviour at 

large deformations which lead to fission. 

In this paper. , we take the MS (Myers-Swiatecki) potential 

as our starting point and search for the potential energy of a 

well-deformed nucleus like Sm154 , Then, we study the effects 

of various terms of V(,y) on the energy levels. We try to 

answer some of the usual questions. What terms of V are respon-

sible for anharmonicity or deviations from a pure phonon spectrum? 

What is the role played by prolate-ablate differences? What are 

the effects of lack of axial symmetry? What are the effects of 

coupling between (a) rotations and vibrations, and (b) the - and 

- motions of a nucleus? How big are the quantum mechanical 

fluctuations and how do they depend on nuclear states? 

Quantitative results are given for Sm154  The general 

nature of the method is then utilized to make some qualitative 

conclusions about other deformed nuclei. 

2. Theoretical Background 

2.1 Bohr's Hamiltonian . 

A phenomenological treatment of quadrupole deformations is 

provided by Bohrs collective Hamiltonian 1 , This is a classical 

Hamiltonian involving five coordinates describing both the 

orientation and the shape of the quadrupole. The orientation is 

specified by Euler angles 6-,4',' while the shape is determined 
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by two variables, 	and Y. The three intrinsic radii R 1 R2 ,R3  

are given in terms of 	and ' by 

R1R0[' 	 (la) 

R = R0  Lt 	 T + 120 0 )] ;  

K3  = R0 [ 	 ,. J )  

R0  being the average radius of the nucleus. 

Then, Bohr's Hamiltonian is 

H 	v() + ot + T .  

The first term is the potential energy of deformation and will 

be discussed in Sec. 	3. The second is the rotational kinetic 

energy - 

T =L) (3) 

(lb) 

(ic) 

(2) 
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where,,A, 43 are the three principal moments of inertia, and... 
U 1  ,&, C)are the components of the angular velocity on the 

intrinsic axes. The third term of H is the vibrational kinetic 

energy. 	. 

In Bohr's formulation, the six inertial coefficients, 

and B's, have the forms 

stiiY  

Thus, the total kinetic energy depends on a single inertial 

parameter,e' 	Even though,the numerical method used (Sec. 2.2) 

can handle any arbitrary forms of the six inertial coefficients,, 

we use Bohr's form because of the obvious simplification and low 

number of. parameters. In fact,we have done some experimentation 

by using a different13for''-vibrati0n511, as compared to the B for 

-vibrations and rotations. However, it does not lead to any 
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154 
significant improvement of the results of Sm 

2.2 Numerical Solutions of Bohr's Hamiltoniafl 

Collective energy E11J  and wavefunction 	 correspord 

ing to a stationary state with angular momentum I,. -componeflt 

M, and other quantum numbersL, are determined by solving the 

equation 

I 	E 	1f 	M 
	 (7) 

' 
617 

where H is Bohr's Hamiltonian. The wavefunctiOn is written as 

41141) AIK(,T) 	
X (~~T) ,  (8a) 

Y)=[(12.1+1)/1G7V L 	 ±e) 	
(8b) 

where x is the intrinsic wavefunction of the nucleus, 

K is the projection of I on the k=3 axis of the intrinsic system 

and takes even, positive values only [K=o,2,. . . 
,I for even I; 

K=2,4,...,(I-1) for odd i], and's are the usual rotational 

matrices' 2 . There is a summation over K in Eq. (8a) since 

rotation-vibration thteractibn can lead to band mixing and thei 

K is not a good quantum nuithe.r. Also, the usual separation of: 
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the wavefunctiOn AIK(Y) into a ,-dependent part and a ''-depen-

dent part is not made since these two motions are in general not 

independent. 

• 	 The wavefunctions AIK(') are computed by using KATIE, 

a Fortran code written by the author. This code employs the 

numeridal method developed 'by Baranger and Kumar 6 ' 7  and the 

details are given in the references cited. Examples of wave-

functions calculated by using KATIE 'are shown in Figures 4-7. 

In these plots, 	is the radial coordinate, and ( is the angular 

coordinate which varies from 0°  to 60° . It can be seen from 

Eqs. (1) that it.is sufficieflt to vary ' from O to 60 0 . The 

-'' region consists of a large equilateral triangle which is 

divided into 256 small triangles. Values of AIK are computed 

at all the points of this -Xmesh. The left hand corner of, 

the large'triangle corresponds to = . O , while the right hand 

corner and the uppermost corner correspond to 	. Value of 
n1J 

or the cutoff point for numerical integrations is determined 

• by testing the convergence of the numerical solutions and is ' 	• 

0.65 for the Sm154  wavefunctionS shown in Figures 477 
	The 

method of calculation of these wavefunctionS will be discussed. . 

1  later. They are normalized in accordancewith the relation 

,• 	• 	. 	. 

) 
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2.3 Quantum Mechanical Fluctuations 

Keeping thern symmetry properties in mind, we define 

YO = <I I> _<I)TI>) (10) 

=. I 	3 T 1 i 	- I 	3 1 

<i1it 

= 	+ 	 (13) 
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(16) 

-. 	 , 	 ' 	 (17) 

t 
the integrals over =0 to 360 can be easily reduced to integrals 

over=O 0  to 600 only. In fact, the integral 	T4 

is always• zero, but <I. 9 	 vanishes only if the 

wave function is symmetric around''=30 ° . We also ca]cu1ate the 

separation paiameter,LL, defined by Davyd6 3 , which is written 

in our notation as 

JI 
	 (18) 

2.4 Intrinsic Moments 

Expectation values of the quadrupole operators for an 

intrinsic state 	 , obtained by assuming uniform 

charge distribution and using Bohrs definitions (Eqs. 1) 

are found to be 

= <xI/ 	I X 

R 2xJ 
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2- 7  fY2,-)l > 

= £ _v(g
] 	

' 	

( 19 b) 

where R0  is the average nuclear radius given by.  

• 	 = 	. 2 A 	>( 10 	 (20) 

Note that the expectation values of M=+1 components of the quad-

rupole operator vanish and those of M=+2 components are equal 

in the intrinsic system. When00 , 	=0 and Eq. (19a) educes 

to the familiar form 8 . 

3. Collective potential Energy 

3.1 RequirementS of 

(a) The Collective Hamiltoflian and hence the potential 

function, v() , must satisfy the invariance re-

quirements discussed by Bohr 1 . In particu1ar, the 

nuclear shape and the corresponding potential energy 

must be independent of the choice of the axes. It 

can be seen from eqs. l) that the transformations 

and (/) 	> (,_120
0 )COrre5P0nd to 

a simple relabelling of the three axes and hence 

represent the same nuclear shape. Therefore, we 

must have 



	

11 	 UCRL-16768 

v(2-l2o°) 	 (21) 

Hence the only terms that can be used in an expansion 

	

of V(/') are 	 , 	, or some combinations of 

these twoinvariants. 

(b) It can be shown from very general considerations, for 

example the self-consistency requirements 14  of. a 

Hartree-Fock type of calculation, that the spherical 

_shap.e_O4-_shou-Ld—a-l-w-ays be a solution 15  of the 

Hamiltonian. Hence, V must satisfy thecoridition 

(22) 

mother words, V should not have any linear terms in 

Similar conditions on the '-dependence require 

that 

	

o 	ct= 	 (=o,I,2, ) (23) 

Combining these conditions with those discussed before, we find 

that the lowest order allowable terms are 	, 

etc. 
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According to a Wilets-Jean
6  theorem, any '-independeflt 

potential leads to degeneracy of the first excited 

4+ state and the second excited 2+ state. In the 

rotational nuclei, the former state belongs to the 

ground band and the later to either a -vibratiOna1 

band or a ''-vibrational band. In the vibrational 

model, the two states belong to the two phonon triplet. 

The two states are usually non-degenerate in actual, 

nuclei. Therefore, it is essential that the potential 

function must have an adequate -dependenCe. 17  

The potential function should be suitable for spherical, 

as well as deformed nuclei since it would be desirable 

to have a unifjed picture for both kinds of nuclei. 

This might also enable us to study transitions from 

one kind of nuclei to another kind. 

3.2 parabolic Expansions of V 

The usual parabolic expansion of V around a deformed shape 8 ' 9  

(o) 	(24) 

has been a useful guide in our understanding of '- andT-vibratiOflS. 

Hàwever, such a potential does not satisfy the requirements dis-

cussed in Sec. 3.1. Eq. (24) yields different potential values 
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for the same nuclear shape depending upon how the intrinsic axes 

are labelled. Also, this potential does not have the correct 

behavior at 	or at 	'ft7c/2 (C #o), 

The parabolic expansion of V around a spherical shape 1 , 

does satisfy the requirements (a) and (b) of Sec. 3.1. However, 

it leads to a pure vibrational spectrum with a degenerate, two 

phonon triplet. Additional terms are needed to obtain the 

spectrum of a realistic nucleus.. 	 . 

.3.3 The Myers-Swi.ateCki Potential 

From their considerations of binding energies, quadrupole 

moments, and fission barriers, of all nuclei, Myers and Swiatecki 

obtain10  

(25 

They give extensive tables of the values of 	 andO. These 

values vary fairly regularlyover the nuclear chart. The first 

two terms of Eq. (25) correspond to changes in the surface energy 

and the Coulomb energy of deformation of a liquid drop nucleus. 

The -term leads to fission at large deformations. The third 

term of Eq. (25) Is attributed to shell effects '° , the fact that 

the single particle shell model levels are not uniformly spaced. 
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These shell effects disappear at largedeformatiOnS and do not 

affect nuclear fission. In case of nuclei near closed shells, 

the nuclei are even more tightly bound than the 

term would suggest. In case of nuclei away from closed shells, 

G>Oand the lowest potential minimum corresponds to a deformed 

shape. 

The MS potential has several remarkable features which have 

been listed in Sec. 1. However, as we shall see later, it is 

not enough. Since thee -term is usually small, this potential 

is practically ''-independent and the 2 '  + state and the 4+ 

state of a nucleus are almost degenerate. Therefore, additional 

terms are needed. 	 - 

3.4 Extension of the MS potential 

Keeping the requirements of the potential1 discussed in 

Section 3.1, in mind, a searh. is made for additional terms of 

the potential function. The calculated energy levels and B(E2) ' s 

are compared with the experimental data of Sm 154 . We find it 

necessary to add two 'i-dependent terms to the MS potential 

and write the resulting potential function as 

C10 . 	(/ft + 	 3)Cfl3: 	H 

(26) 

+ r  /Ckl 
Both the G 1- and G 2- GaussianS vanish at large deformations 

and hence do not affect nuclear fission. The G 1-term affects 
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the relative positions of the prolate ('K=O 0  ) and oblate ('=60 0 

minima of V. When G 1  is negative, the prolate minimum is lowered. 

The reverse happens for positive values of G 1 . The G 2-term does 

not affect the axially symmetric part (K=0 °  or 600)  of V 1  but 

creates a hfll (G 2> 0) or valley (G 2 <0) at'=30° . Effects of 

these terms on the co11etiveproperties are discussed in Sec. 4. 

4. Discussion of Results 

4.1 Determination of Parameters 

The collective properties thatare discussed in this paper 

involve essentially  low energies and sml1' deformations as 

compared to the fission barrier of a nucleus. Therefore, we 

have nothing new to say about the first two terms of Eq. (26), 

The coeffjcjentsC.andare taken from the MS tables and are 

considered to be fixed. However, we do need to modify the shell 

function of the MS potential. in order to get a reasonableagree- 

ment with the experimental data. Therefore, we treat the Gaussian 

coefficients G , G'1 , and G2  of Eq. (26) as adjustable parameters 

and determine them by fitting the known experimental data. The 

Gaussian range,ai, is treated as a fixed parameter since its 

main effect is to determine the magnitude of nuclear deformation 

and hence small changes in Q.i do not change the nature of the 

nuclear spectrum. We use a value of 0'=0.3 foi Sni 14 . Our 

estimate is considerably larger than that used by MS, but it is. 

probably more realistic because (1) the magnitude of experi-

mental deformation is aboutO-'=0.3 in the region considered and 

(2) a look at Njlsson levels' 8  reveals that the shell effects 

do not disappear until after 3)>0.3. 
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We have an additional parameter, namely the inertial para-

meterBof the kinetic energy (Eqs. 3 to 6). An estimate of Bcan 

be obtained as follows. Grodzins 19  has given a semi-empirical 

relation for the transition probability 

T CE ; 	o) = 3 X 	(E Z Mev) 	/A) see.. 	(27) 

where E is the excitation energy of the first 2+ state. Combin-

ing this relation with the rotational model 2 , one obtains (using 

the notation wheret=c 1 ) 

- 	x 
ç7  

This gives a value of B=127 (Mev)' for Sm 154  and the same has 

been used in our calculations. 

4.2 Potential Energy of Sm 4  

A comparison of the calculated energy levels and B(E2)'S with 

the experimental data2°  is shown in Fig. 1. Good agreement is 

obtained. The collective potential energy used for' these results 

is shown in Fig. 2. Effects of various terms of V on the energy 

levels of Sm154  are shown in Fig. 3. The column (a) corresponds 

to the first term of Eq. (26);which leads to the well-known 
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phonon spectrum with a two phonon triplet of 0'+,2'+,4+. Column 

(b) of Fig. 3 corresponds to the first two terms of Eq. (26) 

Comparison with column (a) shows that the effect of the 

term is negligible at this stage. Hence,this term is not the 

main. cause of anharmonicity. It should be noted here that (1) 

the 	term could not be made arbitrarily large.otherwise the 

nucleus would fission at unusually low energies and deformations, 

and (2) additional terms in'the expansion of V become important 

near the fission, barrier' 0  but are unimportant for our purposes. 

Column (c) of Fig. (3) corresponds to the first three terms. 

of Eq (26) 	This is the MS potential except for the different 

magnitude and range of the' Gaussian. This G0 - Gaussian lowers 

all the energy levels dramatically. The lowest three levels 

• 	have the rotational sequence 0+,2+,4+. Also, there is a dramatic 

change in the value of B (E2,o-2.) from 1.0 to 3.7 (not, shown in 

the figure) which indicates th,at.he nucleus has deformed. Hoi- 

ever, similarity with the rotational picture ends there. The . 

energy levelè of a rotational nucleus are characterized by an , 

energy gap of about 1 Mev between the 4+ state of the ground 

• 	band and the 2 1 + state which should belong to a v-band or a 

'X-band. (See, for example, the experimental spectrum shown at 

the right of the figure.) Instead, in case of the spectrum 

shown in column (c) , the 4+ and '2+ states are almost degenerate. 

The reason is that the MS potential is practically -independent 

since the' f-term is small. Therefore, there is quantum mechanical 

tunneling between the prolate and oblate minima of the potential 
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at rather low energies. Interaction between rotation and vibrtiOfl 

is strong and K is not a good quantum number at all. 

Column (d) corresponds to the first four terms of V (Eq. .26). 

Comparison with column (C) shows that the G 1-Gaussian, which has 

a negative value in this case and lowers the prolate minimuflt as 

compared to the oblate one, does create an appropriate gap of the 

kind mentioned above. However, the p-band and the''-band are 

almost degenerate -- in fact, the ''- band is lower -- in contra-

diction with the experimental data. 

Column (e) shows the effect of adding the G 2 -Gaussiafl to the 

potential of column (c) . This term separates the prolate and 

oblate minima by creating a hill at 1=30° . This has the effect of 

creating an oblate band with its bandhead 01+  at an excitation 

energy of 0.6 Mev only. It is perhaps not impossible that both 

prolate andoblate bands may exist at fairly low energies in some 

nuclei. But this does not seem likely in case of Sm 54 . Therefore, 

we concjude that it is essential to have a term of the type dis- 

cussed in the previous paragraph which creates a substantial prolate-

oblate difference. The G 2 -Gaussian also plays an essential role; in 

that it removes the near degeneracy of the -band and the 'K-band of 

col. (d) . The resulting spectrum is shown in col. (f) which is in 

rather good agreement with the experiment. Since these calculations 

require about 10 minutes of CDC3600 for each run, most of our 

calculations are done for only the nuclear states shown in Fig. 3. 

Some additional states are also calculated and are shown in Fig. 1. 

Some of the collective wavefunctions,.A 	for Sm154  are 

shown in Figs. . 4 to 7. 
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4.3 Comparison with the Rotational Model 

Here, our purpose is to understand some basic assumptions ofthe 

rotational model 1 ' 2 	For a given Hamiltonian, many quantities can 

be calculated by using the standard techniques. For example, the 

excitation energies of the ground band of a prolate nucleus 	00
). 

are given by 

E = --r (-X + I) 
Y 	 (29) 

where 

(30) 

and 	refer to the lowest minimum of v(,') . 	Energies of the 

-phonon ( E04) and the ''-phonon ( E) are given by 	: 

= 	
(31) 

EI+ 	
(32) 
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The B(E2) value connecting the lowest two states of the ground 

band is given by 

= 	 (33) 
0 	j 

where 	a o is the intrinsic quadrupole moment, defined by 

Eq. (19a) , and calculated at 	,''='=0. Branching ratios for 

the intra-band transitions are given by 15  the ratios of Clebsch- 

Gordan coefficients: 	 . 

I. 2Ic\ 
BE1t ) 	 K 

/ 
B(E2 If K'4 K; ) 

LI 

\\ K' K'K 

(34) 

.2 
The spectroscopic quadrupole moment of a state I,K is given by 

= [ K 1 +/f +i)(zi+J o 
	

(35) 

Values calculated according to the above formulae are compared 

with the results of the dynamic method used in the present paper 

and are given in Table 1. Agreement in the results of the two 

methods of calculation is rather good. The main effects of. the 
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dynamics are the following. Energy of the first excited state is. 

increased by 15%, or the effective moment of inertia is decreased 

by 10%. Energy of the 13-phonon is decreased by 15% and that of the 

y-phonon by 20%. The branching ratio involving decay of the 2+ 

state of the 13-band is reduced by a factor of 2. 

The main reason for the good agreement seems to be that K is 

a rather good quantum number for the bands discussed above. This 

implies that coupling between rotations and vibrations is not signi-

ficant in this nucleus. The disagreements are probably due to 

coupling between the 13-motion and the Y-motion of the nucleus. 

This coupling is caused by quantum mechanical fluctuations in the 

shape of the nucleus. Magnitudes of these fluctuations and root 

mean square values of the deformation variables 13 and y are given 

in Table 2. As the excitation energy is increased, the root mean 

square values do not change significantly but the fluctuations 

become larger. Also, the separation parameter i (Eq. 18) becomes 

larger. Our calculated values of 	are always much larger than, the 

upper limit of 1/3 suggested by Davydov' 3  as a criterion for the 

separation of 13-motion and y-motion. 

Large fluctuations at high excitation energies lead to quantum 

mechanical tunneling between the prolate and the oblate minima of 

the potential and create a metastable band, denoted by rn-band. 

The present theory predicts the head of this band to be a 0+ state, 

at an excitation energy of 1.879 Mev (Fig. 1) . This band is meta-, 

stable in the sense that direct E2 transitions from the states of 

• this band to those of the ground band are highly forbidden. It . 

can be seen from Fig. 1 that. the most probable mode of decay of 

this band is through the cascade 4 ' ''+-*2 
1  1
+-0 

 1 1+-2 1+-0 '+±2+ 0+ 
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involving states of the 3-band. 

4.4 Detailed Study of Effects of V 

In this subsection, we present results of variation of the three 

Gaussian terms of Eq. (26) . Other parameters are the same as those 

. 	 . 

used for our Sm 
.154.  calculation. The results are shown in Figs.. 

8-10.. Fig. 8 shows the effects. of the G0  -term (G 1=G 2 0). For 

G0 =0,'we have a spherical nucleus with the usual phonon spectrum. 

As G0  is given increasingly negative, values, the nucleus become's 

more tightly bound. its collective wavefunction is more highly, 

concentrated around=0 and'hence the B(E2) value decreases. The 

two phonon triplet is split,. but the 2'+ and 4+ states remain de-

generate because 'of ''-independence of the potential. When G 0  is 

made positive, there is a general collapse of the phonon spectrum 

and theB (E2) value increases sharply. The nucleus gets deformed 

but there is too much coupling between the various motions. 

Effects of the G 1-term (G0 = 10 Mev, G 2=0) are shown in Fig. 

Negative values, of G 1  lower' the prolate minimum relative to the 

oblate one. Positivevalues ofG 1  have the opposite effect. 

Spectra on the two sides of the G 1=O column are almost the saMe 

except for the slight difference due to the f-term of the MS potential 

which favors prolate over oblate. Thus, one cannot distinguish 

between prolate and oblaté deformations on the basis of energy levels 

alone. One has to determine the signs of auadrupole moments of 

excited states. 

Effects of the G 2-Gaussian (G0 =lOMev,G 1=O) are shown in Fig. 

Positive values of G 2  create a hill at''=30 0  and hence increase 

the tendency towards axial symmetry. The band starting at 01+ 
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state is not the usual s-vibrational band, but is an oblate band 

since the corresponding wavefunction (not shown in the fig.) is 

' 	concentrated around the y=60 0  axis. Negative values of G 2  create a 

valley at y=30 0  and the nucleus becomes asyrrunetric or "non-axial", 

•and a DavydoV-Filippov 21  type of spectrum is obtained. The pre-

dictionmade by Das-Gupta and cunye 23  about the lowering of 21+,• 

state below 4+ is confirmed. However, the Ia-band is pushed to 

very high excitation energies. 

It is hoped that these figures will be useful in learning about 

the y-dependence of the potential of a nucleus. However, it shoUlci 

bekept in mind that each term of the potential affects alithe 

energy levels and wavefunctions and therefore only qualitative con-

clusions can be drawn without doing the actual calculation for a 

particular nucleus. Also, it is necessary to have reliable data 

about both the -band and the y-band of a nucleus before one can 

• 	arrive at any meaningful conclusions. 

5. Summary and Conclusions 

The -y-d,endénce of collective potential energy of a well-

deformed nucleus like Sm154  is investigated by using a numerical 

method of solving Bohr's Hamiltonian. The potential function of 

Myers and Swiatecki is used as a starting point. • Two v -dependent 

Gaussians are added to their potential. One of them increases the 

prolate-oblate difference, while the other term separates the two 

minima by creating a hill or a valley at y=30 0 . The former term is 

essential for preventing quantum mechanical tunneling at unrealisti-

cally low energies and thus providing an energy gap between the 

ground band and the excited bands. The later term is needed to 
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separate the s-band and the y-band of the nucleus. 

While the coupling between low energy rotations and vibrations 

of theSm154  nucleus is weak and K is a good quantum number, that 

between s-motion and y-motion is not negligible and lowers the 

phonon states considerably. This coupling between- and y-motion 

comes from quantum mechanical fluctuations which are not neJ< ible, 

even in case of a well-deformed nucleus like Sm 154 . These 

fluctuations are quite large at an excitation energy of about 2 Mev 

and lead to tunneling between the prolate shape (the ground state) 

and the ablate shape of the nucleus. The corresponding states 

form a metastable band. The 13(E2) 's connecting this band to the 

ground band are vanishingly small. Therefore, states of this meta-

stable band would decay through the intermediary of either the .-band 

(the more probable of the two possibilities) or the y-band, and 

form a cascade of several ''-rays. The formation of this band would 

probably be more difficult than its detection. 	One possible method 

of formation is the process of double coulomb excitation -- probably 

a very difficult experiment. However, it would provide a test = 

of the present theory, as well as that of the theory of Coulomb 

excitation since mixing with the single or direct process woul1 be 

small. 

Calculations involving the application of the present methods 

to other deformed nuclei, and to spherical nuclei are in progress. 

A more satisfactory way of determining the parameters of Bohr's . 

Hamiltonian is to. calculate them from a microscopic model of the 

nucleus. CalculaLions of this type which employ the pairing7Plus- 

22  Quuirupole model are, being done. 	 . 
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Table Captions 

Table 1. Effects of Dynamics on the Results of Sm 54 . S.M. refers 

to the static or Rotational model method and D.M. to the 

present method. In each case, parameters of the collective 

Hamiltonian are the same as those used for Fig. 1. 

Methods of calculation are discussed in the text. The 

excitation energies E 1  are in Mev, the B(E2) values are 

in eo 	C',rt, and the spectroscopic quadrupole 

moments 	 are in 	)o 

Table 2. Fluctuations and Root Mean Square Values of the Nuclear 

Shape of Sm154 . Thesymbols -,/','irefer to the ground-

band, -band,'-band, and the metastable-band, respectively. 

Other quantities have been defined in Section 2.3. Para-

meters of the Hamiltonian are the same as those used for 

Fig. 1. 

Table 3. B(E2) values connecting v-band and i-band of Sm 154 . 

Parameters of the Hamiltonian are the same as those 

used fbr Fig..l. 
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Table 1. 

XPT.* S.M. ., 	D.M. 

0 072 0.082 0 	082 

E 4+/E 2  3.33 3.21 3 	26 

E 1 28 1.09 1.10  
0q  

E 21 , .1.80 . ,   1 	42 1 44 

B(E2;02) 	. . 	. 	45 	. 4.7 4.6 

B(E2;2 1 +O) 0.70 0.36 . 	0.47 

B(E2;2'+2) . 

B(E2;2Y-*0) 0.70 0.65 0.65 

B(E2;2''2) 

-1.93 -1.97 

-2.45 -2.54 

Q . 	-1.93 1,88 

4 1 + 
-2.45 -2.46 

2 11 + 
1.93 1.94 . 	. 

0.00 0.00 

-0,98 -0.97 	. 

-1,93 -0.54 

-2.45 -0.59 . 

* Y. 	Yoshizaw 	et. al., 	Nuci. 	Phys. 	73, 273 	(1965). 
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Table 2. 

_-_.-: 
Band 	State 

-,-- 	,--. 	......... 
<6cos3y> 

--------------------
f f, f r.m.s. 

0+ 0.276 0.008 0.037 0.045 0.348 

2+ 0.281 0.008 0.037 0.045 0.352 

4+ 0.290 	- 0.007 - 	 0.037 0.044 0.358 

01+ 0.248 0.022 0.035 0.057 0.344 

2 1 + 0,26 0.08 0.036 0.054 0.353 

4 1 + 0.281 0.017 0.038 0.055 0.366 

ULTl67E8 

1 r.m.S. 	-p 

11.14 0.86 

11.03 0.85 

1-086 0.8 -3 

11.03 0.98 

10. 80 0.93 

10.72 0.91 

y 	2"+ 

3+ 

4+ 

	

0.187 	- 

- 	0.206 	- 

0.214 

0.018 

0.014 

0.015 

0.077 

0.079 

0.078 

0.095 

0.093 - 

0.093 

0.361 

0,369 	- 

0.373 

16.76 

16,57 

16.23 

1.20 

1. 17 	- 

1.16 

m 	' 	011+ 0.114 0.050 0.037 0.087 0.316 12.48 1.32 

2 111 + 0.117 0.052 0.052 0.104 0.342 13.89 1.33 

4llV 0.98 0.051 0.065 0.116 0.354 - 	 15.38 1.36 
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Table 3. 

• 	
Transition B(E2) 

• 0.019 

2'-2" 0.030 

2'-3 0.011 

21-4" 	• 0.046 

2 11 -4" 0.002 

3 	4' 0.044 

4 c4s 0.014 
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Figure Captions 

Fig. 1. Energylevels andB(E2) Values for Sm 154 . The 1owet 

1=0 level is labelled 0+, the next one 0'+, and so on. 

The energy levels have been grouped into the conventional 

ground-band (K=0), v-band (K=0), ''-band (K=2) , and a 

predicted metastable-band of mixedK-values. The energies 
2 	428  

are in Mev and the(2) values are in units of e XIo efrrL. 

Known experimental data are given in brackets and are 

taken from Ref. 20. The starred values are uncertain. 

Comparison with the experimental branching ratios 

is given in Table I.. The calculated .(E2) values connecting 

the p-band and the 1-band are listed in Table 3. Para-

meters of the collective Hamiltonian are: B=127 (Mev) 1 ; 

77 Mev,=9.7Mev;0.3, 0 9 Mev, G1=3.5 Mev, and 

G2=4.5 Mev. 

Fig. 2. Potential Energy of Sm 154 . This is a polar plot of 

used for the results of Fig. 1. The lefthand, the right-

hanä, and the uppermost corners of the triangle correspond 

to (=0) , (=0.65/'=O ° ) , and (=0.65,'60°) , respectively. 

Equipotential lines are shown. Lowest minimum of this 

potential occurs at=0.33,'K=0 °  (ro1ate), and V=5.1 Mev. 

There is a second minimum at 3 =0.227=60° (oblate) , and 

V=8.0 Mev. There is a maximum at =0 (spherical) and V90 

Mev, and a saddle point at0.24,'40 (non-axial), and 

V=8.6 Mev. 
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Fig. 3. Effects of Various Terms of V(,y' on the Spectrum of Sm 154 

Columns (a) , (b) , (c) , (d) , (e) , and (f) correspond to 

theC; C andf; C, f, and G o ; C, f,G0  and G 1 ; C, f, G0 , 

and G2 ; and C, f, G 0 , G1 , and G 2  terms of V(B,y) used 

for Fig. 1. 

Fig. 4. Ground State Wavefunction of Sm 154 . IO=K. Values of 

AIK are given at each point of the - y mesh which 

consists of a large equilateral triangle (with the same 

dimensions as in Fig. 2.) divided into 256 small triangles. 

This wavefunction is concentrated in a small region near 

the lowest minimum of V(,y) of Figs. 1 and 2. Ampli- 

tude of the largest magnitude has been underlined. 

Fig. 5. s-band Head Wavefunction of Sm 154 . I=O=K. Similar to 

Fig. 4 except that this wavefunction is spread out 

over a bigger area of the 	-i mesh. 

Fig. 6, Y-Band Head Wavefunction of Sm 154 . I=2=K. This wave- 

• 	function vanishes along the 1=0 0  axis because of symmetry 

• 	properties of Bohr's. Hamiltonian. The K=O component is 

practically zero and is not shown. 

Fig. 7.. m-Band Head Wavefunction of Sm 154 . I=O=K. This wave- • 	. 

function is spread out over practically the whole  tri- 

angle and has about equal magnitudes for a prolate 

shape, a spherical shape, and an c'blate shape. 
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Fig. 8. Variation of G 0 . G1=G2=O. Other parameters are the 

same as those usedfor Fig. 1. 

Fig. 9. Variation of G 1 . G0=1O Mev (a typical value for a 

defornied nucleus) , G 2=0. Other parameters as in 

Fig. 1. Note that the slight asymmetry around G1 0 is 

due to the f term. 

Fig. 10. Variation of G 2 . G0=10 Mev 1  G 1=0. Other parameters as 

in Fig. 1. 
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implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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