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ABSTRACT 

We consider the question of the normal modes of oscillation of an 

idealized uniformly charged axially symmetric liquid drop about its saddle-

point shape and calculate the frequencies and eigenvectors of these modes 

as functions of the fissility parameter x. Both expansions to first order 

in l-x and formulae appropriate for numerical evaluations are derived. For 

the range 0.7 < x < 1.0 numerical results for the 1  lowest symmetric and 

the Ii. lowest asymmetric modes are tabulated at intervals of 0.02 in x for 

the frequencies, normal-coordinate stiffness and inertia constants, and 

eigenvectors (with respect to the coefficients a in an expansion of the 

drop's radius vector in Legendre polynomials). For 0.3 < x < 0.1 the 

results obtained are of limited accuracy, and in this range only graphs 

of the frequencies of the 3 lowest symmetric modes are included. 

Some applications of the results are discussed. These include the 

transition-state energy levels of c011ective oscillations, the probability 

distributions for the saddle-point states of motion, and the penetration 

of the fission barrier. The formula for the penetrability of a cubic 

barrier is derived by use of the WKB approximation. The calculated (purely, 

imaginary) frequency for motion in the fission direction, which affects 

the penetrability of the fission barrier, is compared as a function of x 

with existing experimental data on fission widths, spontaneous-fission 

lifetimes and the variation of fission cross sections with excitation 

energy. The comparison, which is made without the use of any adjustable 

parameters, indicates that the calculations are capable of reproducing the 

correct order of magnitude of the fission-direction frequency. The data 

are at present not sufficiently accurate to provide a sensitive test of the 

theory. 
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I. INTRODUCTION 

Of fundamental importance in the study of any physical system is the 

question of small oscillations about the system's positions of equilibrium. 

In the normal fissIon process there are three relevant equil:Lhriun poai 

tions: (1) the initial either spherical or slightly deformed ground state 

of the compound nucleus, (2) the intermediate highly deformed saddle doint 

and (3) the final either spherical or slightly deformed rounul states of 

the two fraients at infinity. Both the initial ground state of the com-

pound nucleus and the final ground states of the two fragments at infinitr 

are positions of stable equil±briurn. The small oscillations about these 

spherical or slightly deformed shapes have been extensively studied by 

expanding the drops' radius vectors in spherical harmonics. 

On the other hand, the normal modes of oscillation about the 

remaining position of equilibrium—the unstable highly deformed saddle-

point shape—are more complicated and have not previously been worked out, 

except for certain of the lower modes in the limit of nearly spherical 

saddle-point shapes (1,2) or in other approximations (3-5). The present 

paper considers the normal modes of oscillation of an idealized uniformly 

charged axially symmetric liquid drop about its saddle-point.shape and 

calculates the frequencies and eigenvectors of these modes as functions of 

the fissility parameter x. The fissility parameter specifies the relative 

magnitudes of the Coulomb and surface energies and is defined explicitly by 

- Coulomb energy of sphere 
- 2(surface energy of sphere) 

The determination of the saddle-point normal modes is important in 

the study of the fission process for at least three reasons. First, the 

quantized energies of these oscillations are of interest in connection with 

the spectrum of quantum states of a nucleus near its saddle point, i.e. at 

its transition state. 
I

Second, the knowledge of these modes helps determine 

probability distributions for the states of motion near the saddle point, 

which can be used as initial conditions for classical dynamical cdlcula-

tions of the division of charged drops. Finally, the (purely imaginary) 

frequency for unstable motion in the fission direction is related to the 

probability of penetrating the fission barrier, and consequently to fission 
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widths, spontaneousfission lifetimes and the dependence of fission cross 

sections on excitation energy. 

The plan of the paper is as follows: In Section II we discuss the 

drops Hamiltonian in the neighborhood of the saddle point, with particular 

emphasis devoted to the kinetic energy. For both the kinetic and potential 

energies near the saddle point, expansions to first order in l'-x (i,e, 

expansions valid for nearly spherical saddie'point shdpes) are obtained 

in addition to formulae appropriate for numerical evaluations. Section III 

continues with the calculation of the normalmode frequencies and eigen 

vectors, including both expansions to first order in lx and the results of 

detailed numerical computations, The three reasons enumerated above for 

studying the rormal modes are discussed as applications of the results in 

Section IV, which inludes a comparison with existing experimental data, 

The paper is summarized in Section V. 

• II. TI]EDROPS HAMILTONIAN IN THE NEIGHBORHOOD 

OF THE SADDLE POINT 

For the determination of the normal modes of oscillation about a 

position of equilibrium it is sufficient to calculate the Hamiltonian in 

the harmonic approximation, i,e, to retain in a Taylor expansion of the 

kineticand potential energies about.the equilibrium position only terms 

that are quadratic in the coordinates and velocities (or momenta), Whereas 

for arbitrary deformations the Hamiltoniaii of a .nu,cJeus undergoing fission 

depends explicitly upon the particula± model that is used, at least the 

structure of the drops Hamiltonian in the neighborhood of the saddle point 

is completely model iudependent Because of chis, muth of what is said in 

the present paper des not deDend upon our specialization to the liquid 

drop model: although the nume.rical results would be somewhat different had 

another piodel been employed, the same general procedure could be followed 

in determining the modes of collective oscillation, and the qualitative 

considerations concerning them would.remain uochanged. 

We shall not discuss here the important question of how well the 

liquid-drop model should be.  expected to represent the collective motion at 

the saddle point, Instead we refer the reader to Ref. (3) for some general 
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comments on the validity of the liquid-drop model for discussing fission, 

and to Ref. (6) for a discussion of the disappearance of single-particle 

shell effects with nuclear deformation. The general situation is that 

detailed agreement should not be expected between theoretical results cal-

culated on the basis of the liquid-drop iodel and experimental values for a 

particular nucleus. On the other hand, the liquid-drop model would be 

expected to represent adequately the average behavior of nuclei throughout 

the periodic table. 

In the liquid-drop model the potential-energy part of the Hamil-

tonian is simply a sum of surface and Coulomb energies. Once the boundary 

of the drop is specified the potential energy is uniquely determined and 

may be calculated in a standard way. On the other hand, the kinetic-energy 

part of the Harniltonian is not uniquely determined by specifying the drop's 

boundary and its time rate of change. One must in addition specify the 

nature of the hydrodynamic flow of the fluid inside the drop, i.e. the curl 

(rotation or vorticity) in the system. Thus a thorough treatment of the 

saddle-point normal modes even within the liquid-drop model would require 

the study of the system for various types of hydrodynamic flow, consistent 

with one and the same motion of the boundary. As the natural first step e 

consider here the case of hydrodynamic flow that is completely irrotational. 

The present treatment is restricted to the case of deformations that 

are axially symmetric. This excludes the possibility of discussing various 

modes of motion that are of direct physical interest, for example gamma-

like vibrations and the bending or "wriggling" of the saddle-point configura-

tion. The restriction to axial symmetry is motivated primarily by compu-

tational simplicity—especially the Coulomb energy of a non-axially 

symmetric drop is far more difficult to evaluate numerically than the 

corresponding quantity for an axially symmetric drop. However, since the 

Hamiltonian near the saddle point contains no interaction terms coupling 

the axially symmetric and non-axially symmetric distortions, the normal 

modes considered here would be unchanged by the inclusion of non-axially 

symmetric distortions. 

Furthermore there are many phenomena in fission that are not expected 

to depend significantly upon deviations from axial symmetry. Thus the 

spectrum of axially symmetric collective states at the saddle point, the 
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penetration of the fission barrier, and such quantities as the division of 

mass, the fragments' translational kinetic energies and their excitation 

energies can all be discussed without recourse to non-axially symmetric 

distortions. On the other hand, a consideration of non-axially symmetric 

distortions would be required for a discussion of such phenomena as the 

spectrum of non-axially symmetric collective states at the saddle point 

and the angular momenta of the fragments at infinity (which are affected 

by bending and wriggling vibrations) and should also be included when 

discussing fragment angular, distributions (since bending, wriggling and 

gamma-like vibrations contribute components of angular momentum along the 

symmetry axis). 

The deformation of the drop is described here by an expansion of the 

drop.s radius vector as a function of angle 6 and time t in Legendre 

polynomials: 

r 	N 
R(6, 	

L
t) = 
	1 	

1 -i- 	a (t) i (cos e)f  
,{a(t)] 	n=l 	 J 

where the Special choice of N 18 is made throughout. We adopt a system 

of natural units in which the radius vector' (e,t) is measured in units of 

the radius R of the initial sphere. The volume-preserving normalization 

constant .X[a(t)] s given explicitly by (7) 

a. 	+' (2mn) a2aa 
n=l (2n+l) n=l m=l 2=1 

where the coefficients '(2mn) are the integrals of the product of three 

Legendre pblynomials: 

(2mn) 
'=J 1,2() ' p 	 d 	. 	 () 

With the inclusion of a 1  as one of the N generalized coordinates purely 

center-of-mass displacements of the drop can be described. 

The kinetic and potential energies in the neighborhood of the saddle 

point are.written in the harmonic approximation as 
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N and 	
" 	1 

nl 

N N 

mn m n 
n=l m=l 

N 
K 	(a -)(a -& 
mn rn 	m n 	n m=l 

We denote the time derivative of a by 64 etc. and the saddle-point value 
m 	m 

of am by  am  etc. Since the saddle-point shapes are symmetric all & for 

odd values of m are zero. We shall discuss later the calculation of the 

inertia (or effective-mass) matrix M; the elements of the stiffness (or 

elastic) matrix K are given by 

K
=  

mn aa 
m' n 

Because the saddle-point shapes are symmetric it follows that all 

M and all K for which m is even and n is odd or vice versa are zero. 
mn 	mn 
Thus neither the kinetic nor the potential energies near the saddle point 

contain interaction, terms coupling the symmetric and asymmetric distortions. 

The primary reason for our choice of the above parametrization is 

that in terms of it (with N = 18) the shapes, energies and certain other 

properties of saddle-point configurations have recently been calculated by 

Cohen and Swiatecki (8) as functions of the fissility parameter x over the 

range 0,3 < x < 1.0. In fact in terms of this parametrization both the 

even a and the matrix K that together define the potential energy in the 
ITI 

neighborhood of the saddle point are already known for this range of x. 

[However, as discussed in Ref. (8) the specification of a saddle point in 

terms of this parametrization is only moderately successful for x < 0.7 
Al 

and is of uncertain accuracy, at least in some respects, for x < 0.5. This 

difficulty in correctly specifying the saddle point would be expected to 

lead to inaccuracies in the calculated frequencies and eigenvectors for 

x < 0.7.1 Another advantage of this parametrization is that in terms of it 

(with N arbitrary) both the inertia matrix M and the stiffness matrix K 

(and hence the frequencies and eigenvectors) can be easily calculated to 

first order in l-x, 
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The coordinate system is of course in general completely arbitrary, 

provided only that it is capable of adequately describing the deformations 

under consideration. The results obtained for the frequencies and the 

actual displacements associated with the normal modes are invariant with 

respect to such a change of coordinates. On the other hand, the inertia 

and stiffness matrices and the.values of the components of the eigenvectors 

are not invariant under a change of coordinate system. It is desirable to 

use a parametrization in which the normal coordinates correspond as closely 

as possible to the original coordinates. For the coordinate system we 

have chosen this is the case when x is close to 1 but not for smaller 

values of x. 

For an idealized droplet there are an infinite number of normal 

modes of oscillation. However, since our parametrization contains only 

18 generalized coordinates there appear in our calculation only 18 modes 

of oscillation. One is interested physically in the lower modes, and it 

turns out (at least for x > 07, where the saddle-point shapes do not have 

thin necks) that these modes can be accurately calculated with only 18 

coordinates (see Appendix A). Of course our results for the higher modes 

of oscillation (say in particular the 17th and 18th) will in general be 

somewhat in erroi. 

In the following subsection we discuss the calCulation of the 

inertia matrix M and in Subsection II.B the stiffness matrix K. Once the 

inertia and stiffness matrices have been determined the frequencies and 

eigenvectors of the normal modes can be readily obtained in a standard way. 



arc 
	

IJCRL-16186 

A. The Inertia Matrix M 

We denote by v= v(r,t) the velocity of fluid flow inside the drop 

at position r = (r,e) and time t. (Because we consider only the case of 

axial symmetry we do not indicate explicitly the dependence of i upon the 

azimuthal angle.) Since the hydrodynamic flow is assumed irrotational 

(v X v = 0) the velocity vector can be written as the gradient of a 
velocity potential (p, i.e. 

v=p=p(r,t) 

The fluid is further assumed incompressible; it therefore follows from the 

equation of continuity that the velocity field v is solenoidal, i.e. 

V•v=V2cp=0 

The total kinetic energy of the flow of fluid arising from changes in 

the boundary of the drop is 

Y =p J v2 aT=PJ(v) 2 dT  

where p denotes the drop's mass density and dT an element of volume. In 

terms of our natural system of units in which masses are measured in units 

of the total mass M0  of the drop and distances in units of the radius 

of the original spherical drop, 

p = 3/(Lt) 

By use of the vector identity 

V .  () = (v) 2  + 	v2 	, 

the relation Vp = 0, and Gauss' divergence theorem to transform from a 

volume to a surface integral, we obtain for the kinetic energy the usual 

hydrodynamic result: 



UCRL-16786 

J cvc.dS 

where dS denotes an element of surface area. 

It is notationally convenient to introduce the function F(r,t) so 

that the equation 

F(r,t) = r - R(e,t) = 0 	 (ii.) 

defines the surface of the drop. In terms of this function the element of 

surface area is 

dS = (VF)R2  d 

where dR denotes an element of solid angle and for an axially symmetric 

drop becomes simply 2t d, where i = cos e, upon integration over the 

azimuthal angle. 

The kinematical boundary condition is that the total derivative 

with respect to time of the function F be zero (9), 

(5) 

By use of the above results we Obtain for the kinetic energy of an 

idealized axially symmetric drop 

'=f) 	 . 	(6) 

From Eqs. () and (1) it follows that 

R 	Ir 	 1. 	 P 

Ln J 	
, 	 ( 1) 

ni 	 n 

where 7. is •given by Eq. (2) and. where from it we obtain by dIfferentiation 
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1 	2 	
N N 

= 	
[+i an  + ni 
	

(2mn) aa] 	. 	( 8) 

The only unknown quantity appearing.in expression (6) forf is the 

vlocity potential T. Since cp is a harmonic function that must remain 

finite at the origin it can be approximated in terms of the known solu-

tions rP2  of Laplace's equation, i.e. 

= 	
b[a(t),(t)j rP2 (cos e) 

Because the velocity v is obtained from cp by spatial differentiation it 

follows that the coefficients b are linear in the N generalized velocities 

. Thus 
m 

= 	b[a(t)] rP(cos e) 	, 	 (9) 
rn=l £=l 	

10 m 

where the unknown coefficients b are to be determined from the kinematical 

boundary condition (5). 
In general an infinite number of terms would be required in the 

expansion of cp to represent the velocity potential exactly, even though 

the number N of generalized coordinates is finite. However, it turns out 

in practice that as long as L is somewhat greater than N the final results 

are independent of L to the desired accuracy, at least for x > 0.7, where 

the saddle-point shapes do not have thin necks (see Appendix A). For the 

calculations reported here L was chosen equal to 30. 

By substituting Eq. (7) for F/t and Eq. (9) for cp into (6) and 

interchanging the order of summations we obtain 

N N 
M 

n=l m=l mn m n 

where 

M = 	l bJ R 2  P2 	- B(-)] d 	 (10) 
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and where R is given by (i), 7. by (2) and X/a by (8). This is a 

general result which can be used to calculate the inertia coefficients for 

any axially symmetric shape that is specified by the N coefficients a in 

the expansion ofthe drop's radius vector in Legendre polynomials. For 

our purposes the result is evaluated only for saddle-point shapes. 

From Eq. (10) it is not manifestly clear that the inertia matrix is 

symmetric. The requirement that M in fact be symmetric (10) can be used to 

establish a relationship involving weighted sums of the coefficients 

but in practice 3the relationship is not very useful. On the other hand, the 

required symmetry of M does provide an important check on the numerical 

accuracy of the calculated nondiagonal inertia-matrix elements. 

The determination of the unknown coefficients b will now be dis-

cussed. Spat'il differentiations ofEqs. (4) and (9) give respectively 

N  
VFe 	a

j dP
—fle 

-'er 	).r 	n n=1 

and 

=± l b r2 [2 r 

Unit vectors in the radial and 0 directions are denoted respectively by e r 

and e 0 . Substitution of these two results and Eq. (7) for F/t into the 

kinematical-bounda±y-condition equation (5)\  leads to 

 dP 
bR 	

-() 	
a(a)Ja £ [ Pm  I 

Since this equation must be satisfied for arbitrary motions of the drop's 

boundary (i.e. for arbitrary values of the a) it is equivalent to the 
following N equations: 

E R22 	- 	a 	1)  b - IPm - 	= 0 , m = 1, 2, ..., N. (11) 

1 	 dP2(cos e) 
Use has also been made of the relation .P2 (cos e) 	- 	dO 	, where 
denotes an associated Legendre polynomial. 
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When the boundary-condition equations (11) are applied to symmetric 

shapes the coupling between the terms representing the even and the odd 

Legendre polynomials disappears, which means that ifor symmetric shapes if m 

is even all b for odd values of 2 are zero, and if m is odd all b for 

even values of 2 are zero. 

1. Determination of M to First Order in l-x 

We now specialize our above results for M to the case of saddle- 
mn 

point shapes that differ only slightly from a sphere. Since most of the 

remaining formulae are evaluated for saddle-point shapes we shall simplify 

the notation where there should arise no confusion and write a n rather than 

a etc. 
n 

To first order in u = l-x only one of the coefficients a n that 

specify a saddle-point shape is nonzero.; this coefficient is given by (7, 

11-1.3) 	. 	. 	 . 	 . 

a2  = - u 

However, for the first part of this subsection we shall retain a2  rather 

than u as an independent variable. The other quantities that we need are 

given to first order in u by 

R = 1 + a 
2  P 

 2 

and 
2 

, 

where 

m=n 
= 

mn 0 ,mn 

Substitution of the above results intoEq. (ii) gives upon. simplification 
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[OP, + (2-1)2 a2PP2  a2P 	
] 	 (m 

- a2P0 2m) = o 

This equation is reduced to a linear combination of Legendre polynomials by 

use of the following rules for the product of two ordinary or associated 

Legendre polynomials (14,15): 

	

______________ 	 _____________ 	3(2+1) (2+2) 3(2-1)2 	 ____________ 	____ 

	

______________ 	 2(2+1) 	____ 

	

P2P2 
= 2(22-l)(22~l) 	-2 + (22-l)(22+3) P2 + 2(22+l)(22+3) p2+2 

and 

E1 l 
	3(2-1)2(2+1) 	 32(2+1) 	32(2±l)(2+2) 

2 = (22-l)(22+l) P22 + (22-1)(22+3) 2 - (22+l)(22+3) P2+2 

By solving to first order in u (or a2 ) the equations that result from 

equating to zero the coefficients of the individual Legendre polynomials we 

obtain 

b m 
	7(m1)(m2 m-2) 	

2 
7(m+l)(m -m-3) ui 

u5 

	

2  = 
- 2(m-2)(2m-l)2m~1) 	2,m-2 	m 	3(2m-l)(2m+3) 	j 2m 

7(m+l) 2  
- 2(2m+l2m+3) u )( 	2,m+2 

We now substitute this result for b into Eq. (10) and evaluate the 

indicated integrations to first order in u; this gives for the inertia-

matrix elements the general formula 

M 	
- 	3(7)(m-1)(3m-2) 	

+
[1 	

7(m+l)2 	I mn 	2(m-2)(2m-3)(2m-l)(2m+l) 	m-2,n 	m (2rn+l) 	+ (2m-l)(2m+3) 
	
mn 

3(7')(m+l)(3m+1 ) 
+ 2m(2m+l)(2m+3)(2m+5) u 
	 (12) 
m2,n 	

,  

in natural units of M0R02 . Evaluation of this result for the lower 

Legendre-polnomial distortions yields 
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M22 	M2 	M26 	... 	 (1+3u) 

M 	M 	M 	
1 

Tm= 	
#2 	141 	16 	•.. 	 2U 

M 
 

M62  M61 	M66 	.. 	 0 

1 
211 0 

11 25 	 70 
ii u

29 

70 	 1 	313 
(1+gu) 

and 

	

M11  M13 	M15 	... 	 1+ 	 1 	 0 u  

	

7 	1 112 	26 
31 	

M33 	M35 	... 	 (i~ 5u) 

	

M51  M53  M55 	... 	 0 	 (14u) 

The above result for M22  has been derived previously in Ref. (15) if com-

paring formulae it should be noted that although the coefficients in the 

radius-vector expansion are defined differently there, the difference is 

unimportant to first order in u. In Ref. (16) the result for M 22 is given 

incorrectly. 

It is seen that the diagonal inertia-matrix elements are of order 

and that the elements adjacent to the diagonal are of order u1 . This 

result generalizes to the statement that the elements of M sym  and M asym  
n situated n positions from the diagonal have leading terms of order u. 
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2. Numerical Calculation of M for Arbitrary Values of x 

For arbitrary distortions there are no easy solutions to Eqs. (11) 

for the coefficients b. Furthermore for a finite value of L it is in 

general impossible to satisfy Eqs. (II) exactly. In such cases there are 

three schemes by which the coefficieits b can be determined so that 

Eqs. (ll)are satisfied approximately see for example Ref. (11)]. The 

first is the method of collocation, in which the coefficients are chosen 

so that Eqs. (11) are exact at L specified points on the dropts surface 

(say equally spaced in 4'. The second is the method of least squares, 

in which the coefficients are selected so as to minimize the integrals over 

the drops surface of the squares of the deviations of Eqs. (11) from zero. 

The third is Galerkins weighting-function method, where the coefficients 

are determined by multiplying Eqs. (ii) by L linearly independent weighting 

functions and integrating over the dropts surface. If the weighting 

functions are chosen tobe the first L Legendre polynomials P0 , P1 , ..., 

then this method is equivalent to requiring that the deviations from 

zero of Eqs. (11) contain no harmonic components of order less than L. 

Test calculations with each of the above three schemes were per-

formed, and all three were satisfactory when x was not too far below 1. 

However, as functions of decreasing x the inertia matrices calculated by 

col1ocatiOnandby Galerkin t s weighting-function method became asymmetric 

(and cbnsequéntly incorrect) much more rapidly than those calculated by 

least squares. Therefore the latter method was used for the actual 

calculations. 

The coefficients b are consequently chosen to minimize the 

functions 

m' b, ..., b)=f 

{ 	

R 2  (2%RP, - 	al) 
b - [Pm  

m=l,2, ...,N 

which would be identically zero if the boundary-condition equations (11) 

were satisfied exactly. The requirements that the functions f be minimum 

are 
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-- = 0 	, 	k = 1, 2, ..., L 	, 	rn = 1 1  2, .; ., •N 

which lead to the systems of equations 

Ab=C 	, 	k=l,2, ...,L 	 rn = 1 1  2, ..., N, (13) 

where 

+1 

A 

 =f [R2 (kPk 
- 	a 

si)] [R2 	- 	

r 	
a 	

)=l 	1 
and 

+1 

= 	[- 	
- [P -  Pk L  n n 	m 	5am  

The quantities Ak, and C were evaluated nerically with96-point 

Gaussian quadrature formulae (18). The systems of equations (13) were then 

solved by use of a Gaussian-elimination method to yield the coefficients 

b. After the coefficients b were determined the elements of the inertia 

matrix were obtained by evaluating Eq. (io) with a 96-point. Gaussian-
quadrature formula. 

In this way an attempt was made to calculate the inertia niatrix M 

for the saddle-point configurations over the entire range 0.3 < x < 1.0 

for which saddle points are known in a Legendre-polynomial parametrization. 

The results obtained are highly accurate in the range 0.7 < x < 1.0, i.e. 

for the Bohr-Wheeler family of saddle-point shapes (8,13). However, as x 

was decreased below 0.7 there occurred a very rapid loss in accuracy of the 

numerical procedures employed, particularly as regards the matrix M asym  

corresponding to asymmetric deformations. For the Frankel-Metropolis 

family of saddle-point shapes (8,13), i.e. for x < 0.7, •  the calculated values 

ofMasym are in serious error, and those of M 	 are somewhat doubtful. 

The transition from high numerical accuracy for x > 0.7 to low 

accuracy for x < 0.7 is related to the fairly rapid change in the properties 

of saddle-point shapes at x Ri 0.67. This change is as follows: For x > 0.6 



-16- 	 UCRL -16786 

saddle-point shapes are cylinder-like with large necks and may be well 

specified by the first few terms in an expansion of the drop's radius 

vector in Legendre polynomials. For x 0,67 the shapes are dumbbell-like 

with thin necks and require many terms in a radius-vector expansion for 

their specification (8). 
The thin necks and the fairly large number of important a coeffi-

cients required for x < 0.7 have the following effects on the accuracy. In 

the éxansion (9) of the velocity potential most of the individual coeffi-

cients b become comparable in magnitude but of alternating sign so that 

the velocity potential and finally the inertia-matrix elements themselves 

are determined as the differencesof many very large individual terms. 

Furthermore the matrix A of Eq. (13) becomes extremely ill-conditioned and 

is influenced greatly by roundoff errors. This is to be contrasted with 

the situation when x > 0.7, whre only a few of the coefficients b are 

important and can be accurately determined. 	 . 

However, the presence of a thin neck affects asymmetric distortions 

much more than symmetric ones, since the former involve a flow of mass 

through the neck whereas the latter do not. For this reason the calculated 

values of M 	 are still somewhat reliable even for x < 0.7 even though
sym  

the values Of.MaT  are in serious error.......... 	. 	. 
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B. The Stiffness Matrix K 

From the inertia matrix we now j urn our attention to the stiffness 

matrix K. In the following subsection we discuss the determination of K 

• 

	

	to first order in l-x and in the subsequent subsection the numerical 

evaluation of K by Cohen and Swiatecki. 

1. Determination of K to First Order in l-x 

To first order in u = 1-x the stiffness matrix K can be obtained 

by performing straightforward differentiations of the known expansions of 

the surface and Coulomb energies in terms of the Legendre -polynomial 

coefficients a. The potential energy of the drop relative to the potentiai 

energy of the initial sphere is given in units of the surface energy of the 

initial sphere E 	by 
S 

= (B - 1) + 2 x (B - 1) 

where (7,12,19) 

B= 1 + rl (n-1)(n+2) a 2  - 	
il rl 	

(2mn) 2aa + 

and 

B = 1 - 5 	
(n-l) a

2  - 	 (2mn) a2aa + 

	

n=l (2n+l) 	 n=l m=l 2=1 

the coefficients (2mn) are defined by (3). [If comparing with the formulae 

of Ref. (19) note that the coefficients an  used there are defined differently 

and that the coefficient a1  has been eliminated by conserving the position 

of the dropts center of mass.] 

The elements of the stiffness matrix are calculated by performing 

second partial differentiations of the potential energy 'V with respect to 

the coordinates a and evaluating the resulting derivatives at the saddle 

point. We find to first orderin u that 
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K 	
= 	2(3)(5)(7)(m1)m2(2m5) u 	+ [(m-2)(m-l)(2m+9 .)  

mn 	(2m.3)2(2m-l)(2m+1)2 
	m72.,n 
	(2m±1)2 

- (2)2(3)(5)(m1)(m2+m+l) I 

	

(2m-1)(2m+1) 2 (2m+3) 	] 
mn  

- 2(3)(5)(7)(m+l)(m+2)2(2m1) 	
, 	 ('u) 

	

(2m+l) (2m+3)(2m+5) 	
- m+2,n-, 

in natural units of E 	Evaluation- of this formula for the lower 
S 

Legendre-polynomial distortions gives, in notation analogous to that used 
sym for 	and 	 - 	 - 

/32 

	

/ Q - 
 

-u u 	 0 

32 	34 	20 	 9800 
- 	 - 	

U 	
- 	

U- 	 . . 

KS 

	

- 9800 	)-i-20 	860 
0 	 U 	 1859u 5577   

and 

	

12  
0+Ou -u - 	 0 

12 	30 	l0 	•- 	5000 
25)-i-lU 

asym - 	 - 	 - 	 - 

- 	 -.- 	5000 	228 	280 
0 	 251i-l' 	121 	4719

u  

As was true with the inertia matrices, the elements of K 
sym 

 and 
asym 

situated n positions from the diagonal have leading terms of order 
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2. Numrica1 Calculation of K for Arbitrary Values of x 

As mentioned earlier the stiffness matrix K has already been calcu-

lated as a function of x by Cohen and Swiatecki in connection with their 

determination of saddle-point shapes (8). For a given value of x the stiff-

ness matrix was obtained numerically by fitting a quadratic expression in 

the a coordinates to values of the potential energy in the neighborhood of 

the saddle point, which was itself determined by an iterative scheme for 

locating the extremum in a local quadratic representation of the potential 

energy. Because of the loss of significant figures arising from the sub-

tractions of the values of the potential energy in the neighborhood of the 

saddle point the accuracy of a stiffness matrix determined in this way is 

somewhat limited. The available stiffness matrices are sufficiently 

accurate to permit the calculation of the final quantities of interest 

(frequencies, normal-coordinate stiffness and inertia constants, and 

eigenvectors) to about three figures for the region 0.7 < x < 1.0 but 

are somewhat less accurate for 0.3 < x < 0.7 (where the inertia matrices 

are also of reduced accuracy). 
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III, THE NORMAL-MODE FREQUENCIES AND EIGENVECTORS 

Once the inertia and stiffness matrices are obtained as discussed 

above the frequencies and eigenvectors of the normal-mode oscillations are 

determined in a standard way(20), The homogeneous system of N linear 

equations 

(K 	2 M) v = 0 	 (15) 

possesses a solution if and only if 

det (K - 2 M) = 0 	 (16) 

Solution of this equation yields the N frequencies U, ri = 1, 2, 	, N .  

Then for a given U) the corresponding eigenvector v 	is determined, apat 

from an arbitrary normalization factor, by solving the reduced inhomogeneous 

system of N-1 linear equations in N-i unknowns obtained from (15) by dis- 

carding one of the equations and setting one of the elements of v 	equal 

to unity. The normalization factor is chosen here so that 

N 	1 2  [(n
v 	= i , n = 1, 2, .., N 	. 	 (17) 

m=1L 	i 

Because of the separation of both the inertia matrix and the stiffness 

matrix into symmetric and asymmetric components it is not necessary to 

solve explicitly the above systems of equations. Instead we can solve for 

the frequencies two uncoupled systems of dimensions N/2 and for the eigen-

vectors two uncoupled systems of dimensions (N/2) - 1. Thus each eigen-

vector of the original system has N/2 elements that are identically zero 

according to the rule v 	 = 0 if either n is even and m is odd or n is odd 

and m is even. 

The determination of the eigenvectors is equivalent to determining 

the transformation from the original a coordinates to the normal coordi-

nates, which we designate by P n'  n = 1 19  2, . ., N. Explicitly the normal-

coordinate transformation is 

a - a=V 
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where a denotes the N-dimensional -column vector with elements all a2 , ..., 

a ; the vector a is defined analogously, andV is the square matrix of 

dimension N whose columns are the eigenvectors v () , v (2) , •.., v (N)  

The eigenvectors satisfy the orthogonality relations 	 - 

K v (n) = K ö. 	 (18a) 

and 
(rn)' M v 
	

M8mn 	
(18b) 

where (m)'  is the- (row vector) transpose of the column vector v(m).  The 

quantities Kn and M represent respectively the stiffness (elastic) constant 

and inertia constant (effective mass) corresponding to the nth normal mode. 

It should be notedthat both K and M depend upon the choice of eigenvector 

normalization and consequently have only relative meaning. On the other 

hand, the freqtieicy 	 - - 

Cin = (KIM)2 

is of course independent of the normalization. 
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A. Frequencies and Eigenvectors to First Order in 1-x 

The solution to first order in u = 1-x of the determinantal equation 

(16) for the frequencies is very simple. Since the nondiagonal elements.of 

(K - U) M) are of hig1est order u they contribute, to the determinant terms 

of highest order u2  and are therefore irrelevant as regards the frequencies. 

Thus solution of (16) to first order in u yields immediately 

2 
Cl) 	=K/M 
n 	nn nn 

Upon substituting .(i)+) for Knn and (12) for M. and simplifying' we fifld 
nn 

that 

2 - (n-2)(n-l)n(29) - 	 19) 
n - 	3(2n+1) 	 3(2n-1)(2n+l)(2n+3) 	

U , 

in natural units of E(0)/(M0R0). Evaluation of this formula for the.6. 

lowest modes gives 

2 

	

U)1  =O+Ou 	, 

, 

2 30 328 
3 - 7 	21

U  

.2 	136 	1j120 
U) =--. 

9 	9.9:"
U.  

2 = 380 - 8320 
5 	11 	99 

and 
2 840 20928 

6 = 13 	lli.3 

The above result for CD22  has been given previously in Fig, . 48 of Ref. (1); 
2 

however, in the same figure CD  is presented incorrectly. On the other 
23 

hand, the result for c 3  is given correctly in Ref. (2). 

By solving to first order in u the homogeneous system of".linear 

equations obtained by substituting (19), (14) and (12) into'(15) we find 
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for the eigenvectors 

	

= - 
	

+ i 
m 	(2)2(2n1)(2n+l)(12n3n21n30) 	

m,n-2 	mn 

7(n+1)( n+2)(12n5+6 +9ln3+59n2+19 n+120) 

	

+ 	(2)2n(2n+1)(2n+3)(12n3+68n2+87n-32) 	
m,n+2 

By evaluating this formula for the lower modes and separating the results 

into symmetric and asymmetric components we find for the transformation to 

normal coordinates 

7' 	 109 
a2 -u 	 1 	---u 	0 

lliii. 	 17175___ 
a4 	25883 

0 	26)495u a6 	 1197 	 6 

and 

a1 	 1 	9--u 	 1 

1)4 	 58912 
a3 	- 	-- u 	1 	- 23067 u 

1310 0 	69911 	1 

It is noted that for the nth normal mode when the coordinate a 
n 
 is 

displaced by an amount of order u the coordinates a 	and a 	are dis- 
1 	 n-2 	n+2 

placed by amounts of order u ; in general the changes in a 	and a 
n-2m 	n+2m 

are of order um..  It follows from this and the orthogonality relations (18) 
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that to first order in u the normalcoordinate stiffness and inertia con-

stants are simply the corresponding diagonal elements of the original 

stiffness and inertia matrices; thus from Eqs. (iii-) and (12) we have 

K = n.2)(n-l)(2n+9) - (2 3 )(5)( n 1)(n2+n+l) 

n 	(2n+l) 2 	(2n-1)(2n±l) 2 (2n+3) 

and 

I 	7(n+l)2 Mn = nIi+iT 1 + i1)(2n+3) 
U 

B. Frequencies and Eigenvectors for ArbitrarS' Values of x 

For arbitrary values of x the determinantal equation (16) for the 

frequencies was solved by a numerical method in which, for given initial 

guesses for the frequencies, Newton 1 s method was used to iterate until a 

specified accuracy was obtained, The initial guesses were determined by 

extrapolating the results previously calculatedfor higher values of x 

The reduced systems of linear equations for the eigenvectors were 

then solved by use of a Gaussian-elimination method, 

In this way the frequencies and eigenvectors were calculated at 

intervals of 0.02 in x for the range 0,3 < x < 1,0, However, as discussed 

earlier the accuracy of both the stiffness and the inertia matrices, 

particularly the asymmetric component 
Masym 

 of the inertia matrix, is 

poor for 0.3 < x < 0,7. Hence the accuracy of the calculated frequencies 

and ei'genvectors, particularly the asymmetric ones, is also poor for this 

range of x. We therefore present here detailed results only for the range 

0.7 < x < 1,0, where the numerical accuracy is adequate, although graphs 

of the frequencies of the 3 lowest symmetric modes are also given for 

0.3 < x < 0.7. As discussed in Appendix A the calculations for x> 0.7 

have converged sufficiently as regards both the number L of terms retained 

in the expansion of the velocity potential and the number N of generalized 

coordinates, 

Table I summarizes the properties of the normal-mode oscillations as 

functions of the fissility parameter for 0.7 < x < 1,0, The table consists 

of 16 subtables, one for each value of x at intervals of 0,02. The format 
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Table I. Properties of normal-mode oscillations as functions of the fissility parameter 

0 2 2 2 2 2 2 2 
o 4 '° 6 08 1 

055  07  

K2  K4  K6  K8  K K3  K 5  K., 

M4  216 218 M, 213 m 47  

(2) (4) (6) (8) (1) (3) (3) (y) 
02 2 

i  V2 
1 1 1 1 

V
(2) (4) (6) (8) 

V 
(1) 

5'.. 
(3) (5) (7'. 

04 4 V4 V4 V3  V3  V3  

(2) (4) (6) (8) (l) (3) (5) 
V6  

('1) 
06 V6 V6 V6 V5  V5  V5  

(2) (4) (6) (8) (1) () (5) () 
08 V8 V8 V8 V8 V7  V7  V7 

 1
7  

V
(o) (4) (6) (8) (1) (3) (5) 

V 5 
(7) 

alo 10  V10 
9 

V9  9  9  

(i) (4) (6) (8) (1) (3) (5) (7) 
012 V12  V12  V12  V12  V11  V11  V11 

V11 

(o) (4) (6) (8) (1) (3) (5) (7) 
014 V14 V14 V14 V14 V13  V13  V13  V13  

016 V16  V16  V16 016 015 V15  V
15 

 V15  

(z) (4) (6) (8) (i) (3) (5) 
1 

(7) 
018 V18 V18 V18 V18 V17  V17 

 
17  V17  

1.00 -0.000 15.11 64.62 164.7 0.000 4.286 35.55 107.3 

0.0000 1.259 2.485 3.633 0.000 0.612 1.884 3.167 

1.0000 0.300 0.0833 0.0385 0.0221 1.000 0.1429 0.0545 0.1286 

0.0000 1.000 0.000 ' 0.000 0.000 1.000 0.000 0.000 0.000 

0.0000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 

0.0000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0,000 

0.0000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.030 

0.0000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 1.000 

0.0000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 

0.0000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 

0.0000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0.000 

0.0000 0.000 0,000 0.000 0,000 0.000 0,000 0.000 0.000 

0.98 -0.051 14.32 61.68 157.9 0.005 4.032 33,26 103,6 

-0,0163 1.244 0.464 3.610 0.003 0.603 1.886 3,070 

1.0004 0.317 0.0868 0,0399 0.0029 1.109 0,1495 0.0567 0,0296 

0,0438 0,999 -0.044 0.001 0.000 0,998 -0.034 0.001 0.000 

0.0007 0.047 0,998 -0.054 0.002 0.058 0,999 -0.049 0.003 

0.0000 0.002 0.038 0,997 -0.074 -0.003 0.038 0.997 -0,068 

0.0000 0.002 0.000 0.060 0.995 0.002 -0.003 0.036 0.995 

0.0001 0001 0.000 0.000 0.072 -0.002 0.003 -0.002 0.075 

0.0001 0.001 0.000 0.000 0.001 0.003 -0.002 0.005 -0.006 

0.0001 0.000 0.000 0.000 -0.001 -0.002 0.003 -0,004 0,005 

0.0000 0.001 0.000 0.000 -0.001 0.000 -0,002 0.004 -0.005 

-0.0300 0.000 0.000 0.000 0.010 -0.001 0,001 -0.003 0.002 
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Table I (continued) 

0.96 

1.0017 

0.0909 

0.0031 

0.0000 

0.0000 

0.0001 

0.0001 

0.0001 

0.0000 

-0.0002 

0.94 

1.0038  

0 . 1367 

0.0069 

-0.0001 

0.0000 

0.0001 

0.0001 

0.0001 

0.0000 

-0.0002 

0.92 

1.0068 

0.1830 

0.0124 

-0.0004 

-0.0001 

0.0001 

0.0001 

0.0001 

0.0000 

-0.0002 

0.90 

1.0108 

0.2298 

0.0197 

-0.0007 

-0.0003 

0.001 

0.0001 

0.0001 

0.0000 

-0.0002 

-0.102 13.47 58.47 150.6 

-0.0342 1.217 2.122 3.560 

0.331 0.0901 0.0111 0.0236 

0.997 -0.086 0.005 -0.001 

0.082 0.993 -0.112 0.011 

0.002 0.080 0.986 -0.119 

0.003 -0.001 0.121 0.977 

0.002 0.001 0.000 0.119 

0.002 .0.000 0.001 0.001 

0.001 0.000 0.000 -0.002 

0.001 -0.001 0.000 -0.002 

0.001 0.000 -0.001 0.001 

-0.151 12.60 55.00 142.6 

-0.0527 1.179 2.350 3.472 

0.350 0.0936 0.0427 00213 

0.993 -0.127 0.012 -0.002 

0.117 0.985 -0.165 0.023 

0.001 0.120 0.970 -0.217 

0.002 -0.001 0.177 0.951 

0.001 -0.001 0.000 0.220 

0.002 0.000 -0.002 0.011 

0.002 	. -0.001 0.001 -0.006 

0.001 -0.001 0.000 -0.002 

0.001 -0.001 0.000 0.000 

-0.187 11.74 51.66 134.9 

-0.0681 1.133 2.269 3.366 

0.365 0.0965 0.0439 0.0219 

0.988 -0.167 0.021 -0.003 

0.152 0.973 -0.18 0.041 

0.000 0.162 0.907 -0.283 

0.001 -0.006 0.236 0.913 

0.002 -0.000 0.003 0.290 

0.002 -0.001 -0.004 0.018 

0.002 0.000 0.000 -0.009 

0.002 -0.001 0.000 -0.004 

0.001 -0.001 0.000 0.001 

-0.219 10.87 48.16 126.8 

-0.0829 1 . 08  2.161 3.230 

0.378 0.0992 0.0449 0.0255 

0.983 -0.205 0.032 -0.006 

0.185 0.957 -0.268 0.062 

-0.002 0.204 0.918 -0.342 

-0.001 -0.008 0.290 0.866 

0.003 -o.co6 0.008 0.357 

0.002 -0.001 -0.009 0.033 

0.002 0.000 0.001 -0.015 

0.002 -0.001 0.000 -0.001 

0.002 -0.001 0.001 0.000 

0.004 3.690 31.16 98.2 

0.005 0.578 1.853 3.016 

1.231 0.1565 0.0589 0.0307 

0.993 -0.069 0.004 0.000 

0.120 0.995 -0.099 0.009 

0.000 0.076 0.989 -0.134 

0.000 . 	 -0.004 0.108 0.981 

-0.003 0.002 -0.005 0.112 

0.002 -0.001 0.004 -0.001 

-0.002 0.001 -0.004 0.002 

0.002 -0.001 0.003 -0.004 

-0.001 0.001 -0.004 0.002 

0.003 3.372 29.51 93.0 

0.004 0.550 1.796 2.912 

1.362 0.1631 0.0609 0.0316 

0.983 -0.102 0.008 -0.001 

0.186 0.988 -0.116 0.018 

0.005 0.113 0.977 -0.195 

0.000 -0.006 0.157 0.959 

-0.002 0.000 -0.005 0.206 

0.002 -0.002 0.001 0.001 

-0.001 0.002 -0.004 0.002 

0.002 -0.002 0.002 -0.004 

-0.001 0.001 -0.003 0.001 

0.003 3.060 27.63 87.7 

0.004 0.518 1.731 2.846 

1.494 0.1694 0.0627 0.0325 

0.967 -0.133 0.011 -0.002 

0.255 0.980 -0.192 0.032 

0.012 0.148 0.959 -0.255 

-0.002 -0.009 0.207 0.929 

T000 
-0.001 -0.004 0.z66 

0.001 -0.002 0.001 0.008 

0.000 0.002 -0.003 -0.002 

0.001 -0.002 0.003 -0.005 

0.000 0.001 -0.003 0.002 

0.002 . 	 2.744 25.72 82.1 

0.003 0.482 1.651 2.721 

1.626 0.1755 0.0642 0.0332 

0.941 -0.165 0.021 -0.003 

0.329 0.969 -0.236 0.048 

0.024 0.185 0.938 -0.308 

-0.005 -0.012 0.254 0.892 

-0.002 -0.005 -0.002 0.325 

0.001 -0.001 -0.005 0.017 

-0.001 0.002 -0.003 -0.007 

0.001 -0.001 0.001 -0.003 

0.000 0.000 -0.003 0.002 
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Table I (continaed) 

0,88 -0.238 10.02 1411.76 1187 0.002 2.455 23.76 76.7 

-0.0926 1.017 2.058 3.075 0.003 0.445 1.557 2.586 

1.0158 0.390 0.1015 0.0558 0.0259 1.755 0.1812 0.0655 0.0337 

0.2777 	' 0.976 -0.253 0.057 -0.010 0.915 -0.195 0.030 -0.005 

0.0289 0.219 0.938 -0315 0.087 0.404 0.955 -0.278 0.067 

-0.0012 -0.005 0.250 0.883 -0.395 0.038 0.221 0.911 -0.360 

-0.0006 -0.005 -0.010 0.355 0.808 -0.010 -0.015 0.305 0.857 

0.0001 0.002 -0.011 0.012 0.525 -0005 -0.009 -0.001 0,385 

0.0002 0.003 -0.002 -0.017 0.051 0.002 -0.001 -0.011 3,030 

0.0001 0.002 0.000 -0.002 -0.021 -0.001 0.002 -0.005 .Q3L4 

0.0000 0.002 -0.001 0.000 -0.008 0.001 0.000 0.003 -0.005 

-0.0002 0.002 -0,001 0.001 0.000 0.000 0.001 -0.001 0.001 

0.86 -0.250 9.17 51.31 110.6 0.001 2.171 21.91 71.3 

-0.0999 0.958 1.916 2.898 0.003 0.505 1.559 2.535 

1.0221 0.399 0.1035 0.0464 0.0262 1.870 0.1866 0.0666 0.0351 

0.3276 0,967 -0.281 0.063 -0.016 0.872 .0.225 0,051 .0.008 

0.0505 0,255 0,915 -0.360 0.116 0.585 0.938 -0.319 0.091 

-0.0018 -0.008 2.091 0,840 -0.552 0.061 0.261 0.878 -0.107 

-0.0012 	' -0.009 -0.010 0.399 0.750 -0.016 - 	 -0.018 0.355 0.791 

0.0000 0.003 -0,018 0.020 0.587 -0.007 -0.016 0.003 0.445 

0.0002 0.004 -0,003 -0.025 0.073 0.002 -0.002 -0.019 0.0446 

0,0001 0.003 0.001 -0.005 -0.030 0.000 0.002 -0,006 -0.023 

0.0000 0.003 -0.001 0.002 -0,012 0.001 -0.001 0,000 -0.010 

-0.0002 0,002 -0.001 0.003 0.000 0.000 0,001 -0.001 0,002 

0.84 -0.258 8.31 37.88 102.2 0.001 1.897 19.99 65.6 

-0.1044 0.871 1.770 2.696 0.002 0.363 1.355 2.250 

1.0098 0.405 o,io48 0.0467 0.0264 1.965 0.1914 0.0673 0,0354 

0.3798 0.957 -0.318 0.083 -0.023 0.818 -0.255 0.053 -0.013 

0,0548 0.290 0.886 -0.403 0,148 0.567 0.918 -0.358 0.116 

-0.0026 -0.010 0.337 0.791 -0.481 0.090 0.301 0.839 

-0,0023 -0.015 -0.009 0,451 0.662 -0.025 -0.020 0.504 0,'?13 

0,0000 0,004 -0.030 0.032 0.544 -0.012 -0.026 0.009 

0,0003 0.004 -0.003 -0.037 0.103 0,001 -0,003 -0.033 	- 1,069 

- 	 0.0002 0.003 0.002 -0.007 -0.038 0,001 0.003 -0,000 "0,232 

0.0000 0.003 -0.001 0.003 -0.019 0.000 0.000 0,004 -0,113 

-0.0002 0.003 -0.001 0.004 -0.001 0.000 0.000 -0.001 0.001 

0.82 -0.250 7,445 34,57 93.9 0,001 1.641 18.19 60,5 

-0.1000 0.787 1,617 2.475 0,002 0,321 1.230 2,075 

1.0393 0.407 0.1055 0.0468 0.0264 2.028 0.1955 0.0676 0.0345 

0.4353 0,9411 -0.356 0.106 -0.033 0,752 -0.284 0.067 -0.018 

0,0724 0.328 0.850 -0.441 0,183 0,646 0.894 -0.395 0,145 

-0,0035 -0.012 0.385 0.731 -0.511 0.127 0.344 0.793 -0.486 

-0,0038 -0.026 -0.006 0.505 0,570 -6.032 -0.020 0.457 0.653 

-0.0001 0.001 -0.053 0.049 0.597 -0.018 -0.038 0.020 0,553 

0,0004 0.006 -0,007 -0,050 0.141 0.002 -0.005 -0,045 0,093 

0.0002 0.004 0.005 -0.015 -0,048 0,002 0.005 -0.014 -0,048 

0,0000 - 0.003 0.001 0,005 -0.030 0.002 0.001 0,006 '.0.021 

-0.0002 0,002 -0,001 0,005 -0.001 0,000 0,000 0.001 0.002 
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Table I (continued) 

0.80 -0.220 6.61 31.26 85.5 0.001 1.200 16.30 55.9 

-0.0971 0.697 1.250 2.232 00O3 0.278 1.099 1.871 

1.0512 0.205 0.1055 0.0262 0.0261 2.022 0.1985 0.0672 0.0321 

0.4954 0.929 -0.392 0.131 -0.025 0.669 -0.313 0.083 -0.025 

0.0922 0.367 0.807 -0.275 0.221 0.721 0.866 -0.229 0.177 

-0.0024 -0.012 0.435 0.662 -0.530 0.173 0.386 0.739 -0.514 

-0.0063 -0.038 0.000 0.555 0.468 -0.043 -0.022 0.507 0.565 

-0.0004 -0.001 -0.061 0.072 0.640 -0.029 -0.052 0.037 '0.603 

0.0007. 0.007 -0.012 -0.068 0.185 0.001 -0.006 -0.065 0.128 

0.0003 0.004 0.008 -0.027 -0.058 0.004 0.007 -0.021 -0.059 

0.0000 0.003 0.002 0.006 -0.045 0.002 0.002 0.008 -0.034 

-0.0002 0.002 -0.002 0.008 -0.003 0.001 0.000 0.003 0.002 

0.78 -0.221 5.79 28.09 77.1 0.001 1.178 14.48 49.6 

-0.0875 0.603 1.279 1.970 0.002 0.236 0.962 1.659 

1.0661 0.396 0.1042 0.0456 0.0256 1.984 0.2002 0.0665 0.0334 

0.5615 0.912 -0.431 0.161 -0.061 0.565 -0.342 0.101 -0.033 

0.1222 0.507 0.755 -0.503 0.261 0.788 0.831 -0.461 0.211 

-0.0055 -0.012 0.487 0.580 -0.536 0.235 0.433 0.675 -0.533 

-0.0101 -0.055 0.011 0.604 0.352 -0.053 -0.020 0.557 0.567 

-0.0009 -0.003 -0.083 0.104 0.670 -0.058 -0.074 0.058 0.653 

0.0012 0.011 -0.020 -0.084 0.245 -0.001 -0.011 -0.085 0.176 

0.0005 0.006 0.012 -0.022 -0.063 0.008 0.011 -0.032 -0.073 

0.0000 0.002 0.005 0.008 -0.066 0.003 0.005 0.010 -0.054 

-0.0002 0.002 -0.001 0.012 -0.007 0.000 0.000 0.007 0.000 

0.76 -0.196 5.99 24.86 68.9 0.001 0.973 12.74 55.5 

-0.0739 0.506 1.092 1.707 0.003 0.195 0.822 1.535 

1.0852 0.378 0.1014 0.0539 0.0258 1.853 0.2000 0.0655 0.0323 

0.6361 0.890 -0.469 0.195 -0.081 0.556 -0.370 0.121 -0.025 

0.1580 0.459 0.690 -0.523 0.300 0.836 0.787 -0.588 0.258 

-0.0061 -0.009 0.538 0.586 -0.523 0.305 0.483 0.597 -0.550 

-0.0159 -0.073 0.029 0.645 0.223 -0.057 -0.010 0.607 0.355 

-0.0020 -0.009 -0.109 0.156 0.685 -0.072 -0.097 0.086 0.672 

0.0020 0.016 -0.032 -0.106 0.317 -0.006 -0.021 -0.108 0.233 

0.0010 0.009 0.018 -0.065 -0.058 0.013 0.017 -0.051 -0.085 

0.0000 0.002 0.010 0.009 -0.095 0.005 0.007 0.013 -0.076 

-0.0003 0.001 -0.001 0.019 -0.020 0.000 0.000 0.011 -0.005 

0.75 -0.165 4.19 21.67 60.5 0.002 0.785 10.99 39.5 

-0.0573 0.505 0.899 1.510 0.003 0.154 0.675 1.207 

1.1108 0.359 0.0963 0.0515 0.0233 1.639 0.1959 0.0614 0.0306 

0.7230 0.862 -0.507 0.233 -0.107 0.312 -0.396 0.125 -0.058 

0.2055 0.596 0.609 -0.530 0.340 0.859 0.734 -0.509 0.288 

-0.0061 0.001 0.587 0.372 -0.590 0.386 0.533 0.505 -0.531 

-0.0252 -0.098 0.058 0.676 0.083 -0.059 0.001 0.651 0.225 

-0.0041 -0.020 -0.151 0.208 0.669 -0.107 -0.130 0.131 0.686 

0.0036 0.022 -0.055 -0.123 0.397 -0.015 -0.036 -0.131 0.305 

0.0019 0.014 0.025 -0.102 -0.045 0.023 0.025 -0.077 -0.076 

-0.0001 0.001 0.020 0.005 -0.133 0.011 0.015 0.015 -0.109 

-0.0004 0.000 0.001 0.030 -0.037 -0.002 -0.001 0.021 -0.015 
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Table I (coetinued) 

0.72 .0129 3.38 18.63 52,4 0.003 0.600 9.23 34.0 

-0,0392 0.296 0.700 1,124 0.001 0.112 0.518 0.955 

1.1165 0.305 0.0876 0.0376 0.0211 1.323 0.1866 0.0561 0.0281 

0.8289 0.830 -0.543 0.277 -0.140 0,159 -0.421 0.170 -0.076 

0.2711 0.511 0,503 -0.519 0.372 0.847 0.668 -0.519 0.326 

-0.0043 0.016 0.632 0.239 -0.419 0.178 0.585 0.391 -0.434 

-0.0404 -0.126 0.100 0.690 -0.070 -0.019 0.020 0.686. 0.176 

-0.0087 -0.037 -0.180 0.280 0.617 -0.155 -0.172 0.191 0.671 

0.0066 0.030 -0.089 -0,136 0.496 -0,031 -0.057 -0.161 0.399 

0.0040 0.024 0.032 -0.148 0.005 0.038 0.037 -0.119 -0.062 

-0.0003 0,001 0.036 0.000 -0.171 0.020 0.026 0,018 .0153 

-0.0010 -0,003 0.003 0.045 -0.069 -0.003 -0.002 0.037 -0,337 

0.70 -0.099 2.58 15,54 44.4 0.006 0.447 7.67 23.7 

-0.0238 0.191 	- 0.499 - 	 0.818 0,006 0.075 0,370 0,714 

1.1996 0,240 0.0740 0.0321 0.0184 1.005 0.1689 0,0482 0.0248 

0.9648 0.790 -0.575 0,326 -0.187 0.017 -0.439 0.201 -0,099 

0.3675 0.583 0.368 -0,476 0.392 0.789 0.585 -0,521 0.365 

0.0010 0.034 0.660 0.084 -0.307 0.569 0.635 0.256 -0.433- 

-0.0663 -0.165 0.159 0.670 -0.224 -0.017 0,060- 0.699 -0,070 

-0,0185 -0.060 -0.218 0.382 0.501 -0,209 .0.214 0.264 0.610 

0.0122 0.046 -0,144 -0.126 0.591 -0.066 -0.097 -0.176 0.498 

0.0090 0.041 0.035 -0.212 0.091 0.053 0.046 -0.173 -0,006 

-0,0006 -0,001 0,063 -0.020 -0.210 0.038 0.046 0.016 -0.196 

-0.0024 -0.009 0.011 0.066 -0,121 -0.002 0.002 0.059 -0.078 
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is indicated immediately before the first subtable. The first column lists 

respectively the value of x to which the subtable applies, the volume-

preserving normalization constant 7. = 7'.(a), and the 9 even a which define 

the - saddle point. [The values of an used here were calculated with the same 

computer code that was used in Ref. (8) but with a higher specified 

accuracy; they are therefore in some cases slightly different from the 

corresponding values tabulated in Ref. (8).1 Columns 2 through 5 list the 

properties of the 4 lowest symmetric normal modes (n = 2, 4,  6 and 8) and 

columns 6 through 9 the 4 lowest asymmetric modes (n = 1, 3, 5 and  7). The 

first entry in each of the last 8 columns gives the square ofthe frequency 

in naturalunits of.E(0)/(M0R02); the second and third entfies in each 

column give respectively the normal-coordinate stiffness constant in units 

of E(0) and inrtia constant in units of M0R02 . The final 9 entries of 

each column give the elements of the eigenvector that are not zero from 

symmetry considerations. 

As will be discussed later the stiffness constant K 1  measures the 

restoring force against displacements of thedropts center of mass, and in 

a calculation with infinite accuracy both it and the corresponding frequency 

would of course be identically zero. The small departures from zero of 

the calculated values of K1  and 03i  listed in Table I provide some estimate 

of the accuracy of the present calculations. For many of the entries in 

Table 1 the last figure reported is uncertain by a few units, and in a 

few cases where 4 figures are given the last 2 figures are uncertain. 

The squares of the 6 lowest frequencies in natural liquid-drop units 

are shown as functions of x in Fig. 1. (Short-dashed lines are used in this 

and in the following figures to indicate results that are of questionable 

accuracy.) The magnitudes of the 6 lowest frequencies in MeV are shown in 

Fig. 2 for nuclei along G re en t s  approximation to the line of beta stability 

(21). In converting from liquid-drop units to MeV the values of Myers and 

Swiatecki have been used for the constants of the semiempirical mass 

formula 

The new mass formula of Myers and Swiatecki attempts to isolate that 

portion of the mass associated exclusively with nuclear shell structure 

from the purely liquid-drop portion of the mass and as such is believed to 

represent a fairly accurate determination of the constants of the semi- 



-31- 	 UCRL -16786 

empirical mass formula. This mass formula takes into account also the 

dependence of the surface energy on nuclear composition (i.e, thedifference 

N-Z between neutron and proton numbers) and the dependence of the Coulomb 

energy on the diffuseness of the charge distribution. As a result of the 

inclusion of a composition dependence in the surface energy, the fissility 

parameter x is no longer proportional simply to Z 2/A but depends also 

explicitly upon N-Z. When the Myers-Swiatecki constants are used the 

fissility parameter is given by 

= 	(z2/A) . 	
. ( o) 

51.77 [1 - 1.79(] 

Similarly the unit of frequency multiplied by ±1 is 
1. 

( 	
2 1. 23.12 [1 - 1.79() 	

2 

[E O ) /(MR 1 2 = 	 A2 	
vIeV  

Since, the even-numbered modes consist of a linear combination of the 

even Legeridre polynomials, they correspond to deviations from the saddle 

point that preserve inversion symmetry and .reflection symmetry at a plane 

through the origin perpendicular to the symmetry axis; conversely the odd-

numbered modes destroy these symmetries. Each of the lower modes has a 

direct physical interpretation, which we will now discuss in turn. 

The lowest asymmetric mode (n = 1) is a pure center-of-mass shift 

of the drop; its restoring force against displacements and its frequency are 

consequently zero for all values of x. 

The lowest symmetric mode (ia= 2) is an unstable motion in the 

"fision' T  direction, leading either 'to the division of the drop or to the 

return of the drop to a pre-saddle-point configuration. Since for this 

mode the square of the frequency is negative (zero for x = 1) the frequency 

itself is purely imaginary. The magnitude of ( 2  (which we denote by 

determines to a large extent the probability that a nucleus with a given 

amount of energy concentrated in the fission direction will penetrate the 

fission barrier. Small values of I2I  correspond to relatiyely flat 

barriers with small peretrabilities whereas large values 'correspond to 

relatively thin barriers with large p.enetrabilities.. From Fig. 2we see that 
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Fig. 1. Squarsof the 26 lowest frequencies in natural liquid-drop 
units of E' 0)/(MR0  ) as functions of the fissility parameter x. 
The portios of he curves, indicated, by the short-dashed lines 
are of questionable accuracy. The solid points give the loca-
tions of the known zeros ('at x = XBG.= 0.39 and at x = 0) of 
the n = 3 curve. In addition the results obtained for n = Ii- and 
n = 5 in the two-spheroid approximation (3) are shown for x < 0.5 
by the dot-dashed lines. 
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Fig. 2. Magnitudes of the 6 lowest frequencies in MeV for nuclei 
along Green t s approximation (21) to the line of beta stability 
as functions of the fissility parameter x. The values used for 
the constants of the semiempirical mass formula are those 'of 
Myers and Swiatecki (6). The portions of the curves indicated 
by the short-dashed lines are of questionable accuracy. The 
solid point.gives'the location, of. the known zero (at x = XBG = 
0 .394) of the n = 3 curve. In addition the results obtained 
for n = 4 and n = 5 in the two-spheroid approximation (3) are 
shown for x < 0.5 by thedot-dashed lines. 
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as a fun'ction of decreasing x the magnitude of iiu)2  initially increases from 

0 at x = 0 to a local maximum of about 0.7 MeV at x 0.82 and then decreases 

to a local minimum of about 0.45 MeV at x -_ 0.68. This is followed by a 

very rapid increase in 11ho 2 1 as x is decreased further; for example at 

x = 0.5 it is already almost 5 MeV. This implies that.the fission barrier 

for a very light nucleus should be exceedingly penetrable and consequently 

that the fission cross section for such a nucleis should Yary relatively 

slowly with excitation energy in the neighborhood of the fission barrier. 

Furthermore because of the large pobability of fissioning at excitation 

energies below the top of the barrier, experimentally determined barrier 

heights for the lighter nuclei would be expected to be incorrect unless 

proper account were taken of barrier penetration. 

The lowest nonzero asymmetric mode (n = 3) is a mass-asymmetric 

oscillation of the drop. It is seen from Fig. 2 that the frequency of this 

mode decreases from about 2.5 MeV at x = 0 to about 1 MeV at x = 0.7, In 

addition we know from Ref. (8) that u 2 remains positive as long as x is 

greater than XBG = 0.394
, but that c,u 	 becomes negative and the mass- 

asymmetric mode is consequently unstable for x < XBG• This known value of 

x at which 
2  changes sign is shown by a solid point in each of Figs, 1, 

2 and 3. The second known zero of 	at x = 0 is also indicated by a 

solid point in Fig. 1. This result follows because at x = 0 the saddle-

point shape consists of two touching spheres and therefore has zero neck 

radius. SInce the inertia constant for a flow of mass through a neck or an 

aperture of zero radius is infinite (3,22) the correspond.ing n = 3 mass-

asymmetric frequency is zero. 

For smaller values of x the frequencies for n = Ii. and n = 5 have been 

previously estimated on the basis of a two-spheroid parametrization of 

fission shapes (3), and for x < 0.5 these estimates are also included in 

Figs. 1 and 2. For small values of x the n = mode, which is the lowest 

stable symmetric mode, corresponds to an in-phase stretching and contraction 

of the two halves of the saddle-point configuration. Similar)y the n = 5 

distortion-asymmetric mode corresponds to an out-of-phase stretching and 

contraction. 

We note in Fig 1 that apart from c0l2  and w2 2  the general behavior 

of the frequencies when plottedin natural liquid-dropunits is to decrease 
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initially with decreasing x and then to remain fairly independent of x •  On 

the other hand, we see in Fig. 2 that when plotted in MeV the frequencies 

increase rapidly for yery low values of x. This follows from dimensional 

analysis: note the A2  in the denominator of Eq. (21) for the magnitude in 

MeV of the natural liquid-drop unit of frequency. 

We present in Fig. 3 the dependences on fissility parameter of ble 

stiffness constants for the 6 lowest modes, and in Fig. 1i those of the 

corresponding inertia constants. Recall that both the stiffness and inertia 

constants depend explicitly upon how the eigenvectors are normalized 

[Eq. (17)]. As an illustration of this statement note in Fig. 1  that with 

our choice of normalization the inertia constant M1  corresponding to center-

of-mass shifts does not remain constant at 1 but instead varies with x. 

On the other hand, it is often worthwhile to examine the relative values 

of the stiffness and inertia constants. For example at low values of x 

the inertia constant M2  for motion in the fission direction is seen to be 

much smaller than the other normal-coordinate inertia constants. Physically 

this is because at low values of x the fission mode consists primarily of 

•a contraction or pinching in of the drop's neck and consequently displaces 

very little mass. This is to be contrasted with the erroneous but often 

made assumption that the fissioh mode is for all values of x a separation 

of the centers of mass of the two halves of the drop. As x approaches 0 

the amount of mass displaced in the fission mode approaches 0 and conse-

quently w approaches - co (see again the n 	curve in Fig. 1). 

Information regarding the eigenvectors is presented in Figs. 5a and 

5b. Shown are the distortions from the saddle point associated with the 6 

lowest normal modes for x = 0.9, 0.8 and 0.7. Ineach case the saddle-point 

shape is indicated by a dashed line; the shapes obtained by displacing the 

appropriate normal coordinate by +0.2 and by -0.2 are indicated respectively 

by dark and by light solid lines. 
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Fig. 3. The normal-coordinate stiffness constants for the 6 lowest 
modes as functions of the fissility parameter x. The portions 
of the curves indicated by the dashed lines are of questionable 
accuracy. The location of the known zero (at x = XBG = 0.39)) 
of the n = 3 curve is shown by the solid point. 
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Fig, 4. The normal-coordinate inertia constants for the 6 lowest 
modes as functions of the fissility parameter x. The portions 
of the curves indicated by the dashed lines are of questionable 
accuracy. Note that the scale is discontinuous: the n = 1 
curve is plotted on a scale reduced by 10. 
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IV. APPLICATIONS AND COMARISON WITH EXPERIIvNTAL DATA 

The present calculations are directly applicable, to the discussion of 

the motion of an idealized fissioning nucleus near its saddle point. In 

terms of the normal coordinates and their conjugate momenta the Hainiltonian 

near the saddle point is simply a sum of harmonic-oscillator Hamiltonians, 

i.e. 

N. ' 	p 2 
K 	
2n 

nn 	M.  
n=l 	 n 

where the conjugate momenta are given by 

p =M 
n 	n n 

The stiffness'constants K , inertia constants M and normal coordinates 
n 	 n 	 ' 	n 

for the 8 lowest normal modes' have been tabulated in the preceding section. 

The motion of the system near the saddle point consists of a super-

position of the motions of the independent harmonic oscillators.' We have 

seen that the two—and in some cases three—lowest oscillators have zero or 

negative stiffness constants and therefore correspond to unbounded motions: 

The n = 1 mode is.a shift of the dropts  •center of mass, and the n = 2 mode 

represents unstable motion in the fission direction. For x< XBG = 0.394  

the n = 3 mass-asymmetric mode is also unstable. The remaining oscillators 

have positive stiffness constants and therefore correspond to bounded 

motions. 	 .' 	' 
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A. Transition-State Energy Levels of Collective Oscillations 

The frequencies of the stable oscillators are relevant as regards the 

spectrum of quantum states of a nucleus in the vicinity of its saddle point 

(23), i.e. at its transition state. Reference (2 11) contains an early dis-

cussion of the concept of a transition state, where it. is employed in con-

nection with the rates of molecular reactions. In general the transition-

state method consists of dividing a system of N degrees of freedom into 2 

systems at its saddle point: a system having a single degree of freedom 

that represents unstable motion (proceeding toward molecular reaction, 

fission etc., depending upon the physical situation) and a secord system 

associated with the remaining N-i degrees of freedom, (The second system 

can be obtained by assigning in the original system a fixed value, to the 

normal coordinate representing unstable motion, e.g. in our case by 

setting P 2 equal to o.). The total wave function for the original system is 

the product of the wave function for the first system. in 1 degree of 

freedom and the wave fUnction for the second system in the remaining N-I 

degrees of freedom. It is therefore of interest to discuss the various 

properties of the reduced system of N-1 degrees of freedom. Its quantum 

energy levels are of particular interest; for the reduced system they 

represent stationary states, but of course are decaying states of the 

original system. 

The transition-state spectruth of a nucleus of course contains many 

levels with which we are not concerned—single--particle excitations, non-

axially symmetric collective vibrations and rotational states. For the 

discussion of these levels a model with more degrees of freedom than are 

considered here would be required. However, axially symmetric collective 

vibrations at the transition state could be discussed in terms of the present 

calculations. For example from Fig. 2 we see that for a typical heavy 

nucleus the energy of the n = 3'mass-asymmetric oscillations would be 

expected to be slightly greater than I MeV. As more experimental informa-

tion about transition-state. spectra becomes available it should be possible 

to identify among the low-lying levels of various nuclei their mass-

asymmetric modes and associated rotational bands, and to compare the 

experimental values ofca3  with the predictions of the liquid-drop model. 
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Various aspects of transition-state spectra, including their experi-

mental determination through measurements of fragment angular distributions, 

have recently been discussed in Refs. (5) and (25).  In Ref. (5) some 

estimates of the liquid-drop mass-asymmetric and bending frequencies are 

also made on the basis of prescribed deviations from approximate spheroidal 

saddle-point shapes; their estimates for co 3  are somewhat larger than the 

results of our calculations. 

B. Probability Distributions for the Saddle-Point States of Motion 

In addition to the energies ofits quantum states, it is desirable 

to know at the moment a nucleus passes through the vicinity of its saddle 

point (i.e. at the moment when the fission coordinate P 2  is zero) the 

probabilities that the bounded normal coordinates are displaced from their 

equilibrium values by given amounts and that their conjugate momenta have 

specified values. 

By making the standard assumption of the transition-state method 

(24,26)—that statistical equilibrium is established by the time the system 

arrives in the vicinity of the saddle point—one can derive extremely 

simple expressions for the quantal probabilities that the normal coordinates 

and their conjugate momenta have given values. The resulting expressions 

are Gaussian distributions in the coordinates and momenta (3,27,28): 

= (cY2 	
(_Pn 

and 
2 

P(p) = (tC ) 	exp(-p "Cn 

where the temperature-dependent constants C and C' 

	

hw 	 (2e/K 
n 	n 	1 	n 

n K 	2e 
C =—coth - - 

	

n 	 nw/K 
n n 

, 

are given explicitly by 

5>> c) 
n 

O <<iw 
n 

and 

12M 0 	, 	0>> co 
-4 C / = M w coth 	

M U) 	 S << w n 	n n 
n ' n 	 n 

nfl 	 n 
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The nuclear temperature 0 is a function of the internal nuclear excitation 

energy at the saddle point. Note that for high temperatures the above 

quantal expressions reduce to the classical results, whereas in the low-

temperature limit they reduce to the distributions for the quantal zero-

point motions of harmonic oscillators. 

By tracing out dynamically a drop's division and the separation of its 

fragments to infinity one could convert the above probability distributions 

for the initial states of motion near the saddle point into probability dis-

tributions for the final states of motion of the fragments at infinity. 

These correspond to such observable fission-fragment properties as their 

division of mass, their translational kinetic energies and their excitation 

energies. Since the stiffness and inertia constants and the frequencies 

have been calculated in the previous sections, probability, distributions 

for the initial states of motion are completely known. This would make it 

possible to compare directly the measured andpredicted probability distri-

butions without the use of any adjustable parameters, provided only that 

the appropriate dynamical calculations connecting the initial and final 

states of motion were performed. Such an approach has been carried.through 

with moderate success for the fission of nuclei lighter than about radium, 

where saddle-point shapes are sufficiently dumbbell-like to permit the 

neglect of the dynamical descent from the saddle point to scission (3), but 

for heavier elements the appropriate dynamical calculations remain an open 

question. 	 . 	.... . 	 . 
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C. Penetration of the Fission Barrier 

Whereas for the boanded oscillations the calculated frequencies are 

relevant as regards the transition-state spectrum and the probability dis-

tributions for the initial states of motion, for the unstable fission mode 

the (purely imaginary) frequency u determines the degree of penetration of 

the barrier against fission. Because of its connection with barrier pene-

tration, a2 . can be determined experimentally from measurements of fission 

probabilities. Several different types of such measurements can in fact be 

used, e.g. fission wIdths, spontaneous-fission lifetimes and the variation 

of fission cross sectiOns with excitation energy. 

The basic formula for the fission widthr follows directlyfrom the 

transition-state theory ofreactionrates (11,29): 

F (E:) = 	 , 	 (22) 
2tp(E) 

* 
where p(E ) is the.density of levels in the compound nucleus at an excitation 

energy * IE (relative to the ground-state energy, which includes the sum of 

all relevant zero-point energies of the ground-state configuration) and 

Nf(E) is the effective number of open channels at the saddle-point .configura-. 

tion. (It is understood in this discussion that the levels are to have the 

appropriate quantum numbers.) The effective number of channels N f(E) is the 

sum over the individual levels in the transition-state spectrum of the 

probabilities for penetrating the fission barrier when the specific levels 

are excited, i.e. 

Nf(E) = 	i(E* , xi ) 	, 	 ( 23) 

where X. is the energy of the ith quantum state at the saddle point for the 

nonfission degrees of freedom (relative to the energy of the lowest state, 

which includes the sum of the relevant zero-point energies at the saddle 

point). 

The exact determination of the penetrability Pj(E,X) would in 

general involve the solution of a nonseparable Schrödinger equation in many 

dimensions. However, if the coordinate for motion in the fission direction 
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were not coupled with the remaining coordinates (i.e. if the Hamiltohian 

could be written as the sum of a term that depends only upon the' fission 

coordinate and a second term that depends only upon the nonfission coordi-

nates) the problem would separate into a one-dimensional barrier-penetration 

problem in the fission degree of freedom and into a second problem involving 

the remaining (nonfission) degrees of freedom. The solution of the first 

problem would determine the penetrability, and the solution of the second 

the energies X. of the quantum states, which would be identical at the 

saddle point and at the ground state by virtue of their (assumed) indepen-

dence of the fission coordinate. In particular the sum of the zero-point 

energies associated with the nonfission degrees of freedom would not change 

from the ground state to the saddle point. The diagram in Fig. 6 illustrates 

these and other energies that we shall discuss. 

In order for the fission coordinate to be regarded as uncoupled for 

the purpose of calculating penetrabilities, it is necessary that it be 

effectively uncoupled in the region from the ground state to the position 

where the system emerges after having passed through the fission barrier. 

When x is close to 1 this is in .fact approximately the case. However, for 

arbitrary values of x the fission degree of freedom is not uncoupled from 

the rest: we have seen for example that the frequencies and e.igenvectors of 

the normal modes at the saddle point are in general significantly different 

from those at the ground state. 

Inherent in all existing discussions of fission-barrier penetration is 

the implied assumption that the fission degree of freedom is uncoupled from 

the other degrees of freedom. With the above reservations in mind we will 

also make this assumption here. It should be stressed, however, that the 

relationship between the solution of the, resulting one-dimensional problem 

and an exact solution of the original multidimensional problem is unknown 

and represents an important question that should be thoroughly investigated. 

For a given one-dimensional potential-energy fission barrier and also 

a given dependence of the effective mass on deformation, the penetrability 

pi (E* , xi ) is determined by solving Schrödinger's equation in one dimension. 

For certain simple barrier shapes and effective masses, closed forms for the 

penetrability can be obtained either exactly or by use of the WKB approxima-

tion. For example if it is assumed that the fission barrier is everywhere 
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Fig. 6. An illustration of the relevant energies for a system in which the 

fission coordinate is uncoupled from the nonfission coordinates. 

The open circle denotes the ground-state energy, which is made up 

of the sum of all the relevant zero-point energies of the ground-

state configuration, i.e. 	gs for the fission degree of freedom 

and the sum E of the zero-point energies for the nonfission 
nf 

degrees of freedom. The ground-state energy serves as the reference 
* 

line from which the total excitation energy E brought into the 

nucleus is measured. However, the total energy relative to the * 
minimum of the potential-energy curve is obtained by adding to E 

the zero-point energy gs in the fission degree of freedom. To 

obtain the total energyE in the fission degree of freedom, which 

is the quantity relevant for barrier penetration, one must subtract 
* 	1 	 ' 

from the sum E+ 	 gs the excitation energy X in the nonfission 

degrees of freedom. For a chosen point along the fission direction 

the energy E is shown divided into the potential energy V at that 

point and the kinetic energy T in the fission degree of freedom. 

The potential-energy fission barrier of height B is idealized here 

as cubic in shape. For an uncoupled system the sum E f  of the 

zero-point energies for the nonfission degrees of freedom does not 

change during the process and consequently need not be considered 



-.47 - 	 UCRL- 16786 

MU B-1O35O. 

Fig.6. 
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parabolic and that the effective mass is constant the penetrability is given 

exactly by (1,29,30) 

	

P.(E*,x.) = 	1 	 , 	 (2a) 
1 	1 	

+ exp[y(E)] 

where 

- 	
y(E) = 2(B- E) 	

() 

the energy€ is defined by 

	

= 	°2 1 	, 

and we will use this notation for the remainder of our discussion. (A 

variety of symbols has been used to denote this same quantity, including 

E, iw. 	, iiu and simpli 1u.) As can 1e quickly verified by con- 
curv 	irnag

, 	
b 	f 

sultiiigFig 6 thecoiñbination B - E represents the eñêrgy def icit. in the 

fission degree of freedom relative to the top of the barrier and is equal to 

B + 	- - E*. In many cases the true shape of the fission barrier is 

approximately parabolic near its maximum, and for such cases Eqs. (24) 

should be fairly accurate as long as E is not significantly less than B. On 

the other hand, when E is very small, as in spontaneous fission, Eq. (24b) 

would be expected to be somewhat in error. 

For the important case in which the low-lying transition-state levels 

	

* 	I 
are widely separated and also E + 	gs < B the probabilities for penetra- 

tion through the higher levels are negligible in comparison with the lowest 

level that has the appropriate quantum numbers, and the suth in (23)  reduces 

to a single term. Thus for the case of fission through a parabolic barrier 

with widely separated transition-state levels Eq. (22) becomes 

* 	 1 
rf(E ) 	 1 	 * 	 , 	( 25) 

	

123t(B+X -w 	-E )gs  * ) 	I 	L 2tp(E ) ç 1 + exp I 

	

I 	L 
where XL is the energy of the lowest quantum state at the saddle point for 

the nonfission degrees of freedom that has the appropriate quantum numbers. 
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* 	1 
When E + u 

gs 	 L 
is somewhat smaller than B + X the exponential term is 

large in comparison with unity, and (25)  assumes the form 

r 	 1 	 * 

	

* 	 I-2Tc(B+X -n 	-E) 

	

rf(E ) 	1 * exp I 	L 	gs 	 (26) 
2itp(E) 	L 

However, when the excitation energy is very small, say zero as in 

spontaneous fission, Eq. (26) can be improved in two ways. First of all the 

transition-state method, which is based upon statistical arguments, cannot 

be expected to produce the exact fission width for very small excitation 

energies. However, when the excitation energy is 0 we know for an uncoupled 

system the exact WKB result (30): the spontaneous fission rate f f(0)/ is 

equal to the product of the penetrability and the number of times per unit 

time U)g5/(2t) that the barrier is assaulted. Thus the width for spontaneous 

fission through a parabolic barrier is approximately 

1-2t(B  -i 	)I r(o) 	exp[ 	€ 	gs 
	

(27) f 	2rt  

We have set XL equal to 0 since for spontaneous fission in an uncoupled 

system the lowest state at the saddle point has the appropriate quantum 

numbers; the total energy E in .the fission degree of freedom is consequently 

gs 
We note that the result (26) of the transition-state method would 

formally include the case of spontaneous fission provided that for zero 

excitation energy the average level spacing D(0) = .1/p(0) be interpreted as 

the distance Yicu 
gs 
 between the levels of the fission degree of freedom 

rather than the average distance between the levels in all the degrees of 

freedom. For cases in which Eq. (26) is applicable this interpretation in 

fact represents a good approximation for n(o). Recall that in the derivation 

of Eq. (26) it was assumed that the levels are widely separated at the 

saddle point (and consequently for an uncoupled system also at the ground 

state). In these cases the ground-state. energies for the nonfission degrees 

of freedom are comparable with or larger than Yogs and do not seriously 

alter the average value of D(0). 

If the fission coordinate were truly uncoupled from the remaining 

coordinates C0g5  would be simply the frequency of the ground-state oscilla- 
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tions in the fission degree of freedom. This is of course in practice not 

the case, and as pointed out above the true determination of the fission 

rate would in general involve a more detailed analysis. However, to the 

extent that the system can be regarded as approximately uncoupled and Eq. 

(27) can be regarded as approximately applicable, the frequency of the 

ground-state second-order spherical-harmonic (beta) vibrations can be used 

as a rough estimate of Wg5  In the liquid-drop model the frequency of 

these oscillations is given exactly for all values of x by 

°gs = 
	

(i 	x )] 2  [E0)/(M0R02)]4 	. ( 2 8) 

For typical heavy nuclei of interest in fission the values of gs obtained 

from this formula are slightly greater than 1 MeV. 

For the benefit of those making a comparison with other sources we 

would like to point out that the pre-exponential factor of Eq. (27) differs 

from the corresponding factor of at least three.other writers. The result 

of Ref. (II) includes an additional factor of 5 which is supposed to repre-

sent "the degree of degeneracy of the oscillation leading to instability.?? 

However, of the 5 coordinates corresponding to second-order spherical-

harmonic distortions, 3 repr6sent rotational degrees of freedom (say the 3 

Euler angles) and 1 represents a non-axially symmetric (gamma) vibration. 

This leaves only 1 degree of freedom (a beta vibration) for motion in a 

direction leading toward instability, and the reason for having a factor of 

5 in the formula is not clear to us. In. Ref. (4) the frequency of barrier 

assaults is inadvertently set equal to 2cu 	rather than w /(2ic). Finallygs  
in Ref. (31) the pre-exponential factor of Eq. (26) is determined experi- 

1 
mentally when E is equal to B + XL - 	

°gs and is then assumed to represent 

also the pre-exponential factor for the case of spontaneous fission in * 	* 
Eq. (27). Because of the neglect of the variation of p(E ) with E their 

result is about 	times as large as ours. 

In addition to differences in the pre-exponential factor, Eq. (27) 

differs from the corresponding formula of most other writers in that it 

includes explicitly the ero-point energy. 	in the fission degree ofgs 
freedom. The importance of taking this energy into account has been . 

stressed•in Ref. (16). However, in fact other spontaneous-fission-rate 

formulae implicitly include the zero-point energy since the barrier heights 
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in these formulae are defined experimentally and consequently relative to 

the zero-point energy rather than relative to the local minimum of the 

potential-energy curve. 

The second improvement that can be made in Eq. (26) stems from the 

departure of the fission barrier from a parabola at very low energies. 

Although the true shape of the barrier is not known, there are nevertheless 

two firm guidelines that one should follow when choosing a shape for it: 

the barrier should be parabolic near its top and it should have a local 

minimum corresponding to the ground-state equilibrium configuration. The 

cubic shape is the simplest form which satisfies these two physical 

requirements, and we therefore determine the penetrability for spontaneous 

fission on the basis of a cubic barrier whose height is B and whose second 

derivative at its top is the negative quantity K 2 . The effective mass M2  

is assumed to be deformation independent. It should be emphasized that 

there isno evidence that the true shape of the fission barrier actually is 

cubic (except when x is close to 1, where the leading terms in an expansion 

of the potential energy give rise to a cubic barrier), but for spontaneous 

fission the assumption that it is cubic is intrinsically more reasonable 

than the assumption that it is parabolic. 

By use of the WKB approximation one can write the penetrability of a 

cubic barrier in the form of Eq. (24a), where y(E) is expressed in terms of 

elementary transcendental fiiiictions and the complete elliptic integrals of 

the first and second kinds. This is done in Appendix B for arbitrary values 

of the total energy E in the fission degree of freedom from 0 to B. From a 

consideration of the two limiting forms of this equation for energies near 

the bottom and near the top of the barrier it is possible to arrive at a 

simple but yet very accurate expression for y(E) that is valid for all 

values of E between 0 and B, viz. 

1(E) 	[B - E _(i 	36/5) E ln(I 	. 	. (29) 

This formula reproduces correctly the exact values and first derivatives at 

both E = 0 and E = B; for arbitrary values of E between 0 and B the results 

calculated, from this,formula for the 'quantity 	of Fig. 7 differ from 

a 

exact WKB results by less than 0.002. Therefore unless extreme accuracy is 
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required Eq. (29) can be used rather than the more complicated exact result 

given in Appendix B. Graphs of y(E) for both a parabolic and a cubic 

barrier are presented in Fig. 7. We also indicate by a dashed line the 

result that would be obtained for a cubic barrier by neglecting the 

logarithmic term in Eq. (29); for values of (E/B) < 0.3 this is an improve-

ment over the result for a parabolic barrier but for larger values of E/B 

it is poorer. 

For spontaneous fission through a cubic barrier the fission width 

can therefore be written approximately as 

ff (0) 	ex{ 	[B - 2)g 	(1 - 36/5) 	
gs 1 s )]} 	(30) 

If an even simpler expression is desired the logarithmic term can be 

neglected; this produces a formula that represents an improvement over the 

corresponding result for a parabolic barrier [Eq. (27)] and yet differs 

from it only by the replacement of the 2c in the exponential by 36/5. 

Since for a given nucleus the quantity E characterizes the curvature 

of the barrier at its maximum value (and in addition the associated 

effective mass) it is a single number, completely independent of the 
* 

excitation energy E . This is of course provided that the barrier itself is 

not affected by a change in E.) The use of Eq. (30) to estimate the value 

of this number from a measured spontaneous -f is s ion lifetime is perhaps more 

reasonable than the customary procedure of deducing E from a formula based 

on a parabolic barrier [Eq. (27)] and then remarking that its value for 

spontaneous fission is expected to be smaller than its value for induced 

fission at energies.near the top of the barrier. 

To summarize, we have taken as a point of departure the standard 

formula for the fission width that follows from the transition-state theory 

of reaction rates, and have tried to develop it systematically for a system 

in which the fission degree of freedom is uncoupled from the remaining 

(nonfission) degrees of freedom. For such a system we specialized to the 

case of widely separated levels for the nonfission degrees of freedom and 

gave the results for rf  for two types of barriers: the usual parabolic 
barrier and a cubic barrier, which is the more reasonable one especially 

for spontaneous fission. We would like to stress again, however, that in 
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Fig. 7. The penetrability exponent i  divided by (2itB/c) as a func-
tion of the total energy E in the fission degree of freedom 
divided by B. The solid straight line shows the result for a 
parabolic barrier [Eq. (24b)]. The result for a cubic barrier 
as calculated from the exact equations (32) of Appendix B is 
given by the solid curved line; the simple approximate equation 
(29) yields a result that cannot be distinguished on a graph of 
this scale from the one shown. The dashed straight line shows 
the approximate result for a cubic barrier obtained by neglect-
ing the logarithmic term in Eq. (29). 
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general the fission coordinate is not uncoupled from the nonfission coordi-

nates, and consequently the solution of the coupled multidimensional barrier-

penetration problem represents a question of central importance in fission 

theory and should be studied in detail. 

The above formalism for fission widths has been used to deduce values 

of € for a variety of nuclei from the available experimental data on fission 

probabilities. (Appropriate analyses made in conjunction with the original 

experiments are reproduced verbatim. This includes any corrections for the 

effects of finite counter resolution; except where originally made the data 

have not been corrected for such effects,) The assumption is made in each 

case that the transitionstate levels are widely separated so that only the 

lowest level contributes, although in practice this is not always a good 

assumption. The deduced values of .€ = 121 are converted from MeV to 

natural liquid-drop units by use of Eq. (21), and the fissility parameters 

corresponding to the various nuclei are determined from Eq. (20). The 

experimental values obtained in this way are compared in Fig.8 with the 

calculated dependence of IW21on x. 

We shall now summarize the various types of experimental measurements 

used to accumulate the data of Fig. 3. For a nucleus whose fission barrier 

is larger than its neutron binding energy, € can be determined directly from 

Eq. (25)  by measuring the average fission width r f(E) and the average level 
spacing n(E ) = l/p(E ) at slow.neutron energies and determining the com- 

bination B + X - 	from an analysis of the fission cross-section 
L 	gs 

curve at highex neutonene'gie (32,33). 

From measured values for the spontaneous -f iss ion lifetime [equal to 

Yi divided by P f(0)] and the combination B - 	the quantity € can be 

found from Eq. (30), provided that an independent estimate of Yio is
gs 

available [see for example Eq. (28)]. We have used the data of Refs. (31) 

and (33). 

The measurement of the slope of the fission cross-section curve at 
* 	 1 

E = B + XL - 	can be used for a nucleus whose barrier height is less gs 
than or not much larger than its neutron binding energy so that neutron 

emission can be neglected The fission cross section af(E) can be written 

as 

af(E) 	 r(E*)/rt.(E*). 	, 	 (31) 
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where a(E*) is the total reaction cross section and rt (E* ) is the total 

decay width, which consists principally of the width for electromagnetic 
* 

de-excitation. If the reasonable assumption is made thatr(E ) 
varies more 

rapidly with the excitation energy E than either a (E ) 
or F (E 

) 
and that 

the exponential term in F f (E) varies more rapidly than the level densfty 

then it follows from Eqs. (25)and  (31) that

plat 
daf(E + XLyj~Dgs)

. 

dE 

where af 
plat 

 is the value of af (L
*
) at the plateau corresponding to fission 

through the lowest level. This method is used to analyze data both for 

neutron-induced fission (34,35) and for the (d,f) reaction (36). 

For nuclei in which fission cross-section measurements have been made 

at energies somewhat below the top of the fission barrier, as for example in 

photofission (37), e can be deduced by measuring the logarithmic slope of 

the fission cross-section curve. The same arguments as above applied to 

Eqs. (26) and (31) lead to 

* dloaf210g 	 1 
 E <B±XL_hmgs * 

dE 

We consider finally the case of a i.icleus whose fission barrier is 

much larger than its neutron binding energy. For excitation energies corn-

parable to the barrier height the total decay width r (E
* 

) 
is then primarily 

the width r(E*)  for the emission of neutrons. Therefore provided 

is known, the ratio Ff (E )/I(E) can be determined from Eq. (31) by 	
* 

measuring the fission cross section af(E 
). 

The dependence of r'f (E )/r(E 
) 

on E can then be analyzed to yield an estimate of E. This procedure is 

followed in Refs. (38) and (39), where a conventional expression is used for 

r(E*) and where rf(E*)  is calculated according to Eqs. (22), (23) and (24); 

the transition-state energy levels X. are assumed to be distributed according 

to a Fermi-gas level-density formula. 

In connection with our above discussion it should be pointed out that 

what is customarily determined experimentally from fission cross-section 

measurements and referred to as the barrier height is not the true height of 
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Fig. 8. A comparison of the calculated and experimental values of the 

magnitude of the purely imaginary frequency u 2  that is relevant 

for penetration of the fission barrier, as a function of the 

fissility parameter x. In converting the experimental values of 

€ = Yo from MeV to the natural liquid-drop units of
21 

[E0)/(M0R02)]2 the values of Myers and Swiatecki (6) have been 

used for the constants of the semiempirical mass formula [see 

Eqs. (20) and (21)]. No arbitrary parameters have been adjusted; 

the calculated curve has not been normalized to the experimental 

points in any way. The portion of the calculated curve indicated 

by the dashed line is of questionable accuracy. The data are as 

follows (arrows pointing downward denote upper limits): 

O Leonard and Odegaarden (32), slow-neutron fission widths; 

o Bowman and Hoff (33), slow-neutron fission widths; 

7 Bowman and Hoff (33), spontaneous -f is s ion lifetimes; 

.A Viola and Wilkins (31), spontaneous -f is s ion lifetimes; 

• Leonard (fl), slopes of . Cr vs E* at  E* = B + XL - 	
gs for 

neutron-induced fission; 

	

* 	* 	 1 
Y Henkel (), slopes of af  vs E at E = B + XL - 	1gs for 

neutron-induced fission; * 	* 
N Northrop et al. (36), slopes of af  vs E at E = B + XL - 	gs 

for (d,pf) reactions; 

A Katz et al. (37), slopes of log a f  vs E* at  E*  somewhat less 

than B + X 
L - 
	gs for photofission; 

Tall error bars with no symbol, Khodai-Joopari (39), analysis of.  

vs E* for proton- and alpha-induced fission. - 
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the barrier. Insofar as the assumption that the fission coordinate is 

uncoupled from the other coordinates is valid the experimentally determined 

quantity is the barrier height B plus the energy XL  of the lowest state at 

the saddle point for the nonfission degrees of freedom having the appropriate 

quantum numbers miiiüs the zero-pdint energy 4°gs in the fission degree of 

freedom, i.e. the combination B + XL - 	
gs that appears in our formulae. 

(In the general case of a coupled system the experimentally determined 

quantity is this combination minus the sum of the zero-point energies in the 

nonfission degrees of freedom at the ground state plus their sum at the 

saddle point.) In addition we should mention that the combination 

B + XL - 	
'gs is also very frequently referred to as the fission !tthreshold. 

However, we prefer to use thisword only,  in its strict meaning to denote 

the minimum amount of energy that must be supplied for a reaction to be 

possible energetically. Thus for the normal' fission process the threshold 

is a negative quantity whose magnitude equals the energy release. 

It should be emphasized that once a particular set of constants has 

been selected for the semiempirical mass formula [in our case the set of 

Myers and Swiatecki (6)] there remain no adjustable parameters in the 

analysis. Thus the calculated. : curve of Fig. 8 has not been normalized to 

the experimental data in any way. 	 - 

The uncertainties in most of the experimental values of € are very 

large, and the data are unfortunatel' not sufficiently accurate to provide 

a sensitive test of the theory.. For example it is seen that for a given 

nucleus the values of € obtaiinèd by different methods (and in some cases 

even by the same method) differ widely from one another. At least one 

regularity can nevertheless be observed in the data: the values obtained 

from the measured spontaneous -f is s ion lifetimes are approximately the same 

for all nuclei. 	 ;.... 

The general impression one gets from the comparison is that the 

theory does give the correct order of magnitude of E. It is hoped that 

the accuracy of future experimental determinations will be increased to the 

point where this can be confirmed and the details of the theory can be 

tested. In particular it would be of interest to determine € experimentally 

for some very light nuclei, for which, as discussed in Subsection III.B, 

this quantity is predicted to be exceptionally large. 

/ 
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V. SUIVIMARY AND CONCLUSION 

We have attempted the first step in a systematic discussion of the 

dynamics of the fission process—the study of the normal modes of oscilla-

tion of an idealized uniformly charged drop about its saddle-point shape. 

For axially symmetric drops we have presented the frequencies and eigen-

vectors of the normal modes as functions of the fissility parameter for the 

range 0.7 < x < 1.0 and also, with questionable accuracy, the frequencies 

of the symmetric modes for 0.3 < x < 0.7. 

We have indicated how the information regarding the normal modes can 

be used to discuss (1) certain aspects of the transition-state spectrum, 

(2) the probability of finding the system in a given state of motion when 

it is in the neighborhood of the saddle point and (3) the penetration of 

the fission barrier. Comparisons between the theory and experimental data 

were possible only as regards the third item. It was seen that the calcu-

lations are capable of reproducing the correct order of magnitude of the 

frequency w2  for motion in the fission direction but that the data are not 

sufficiently accurate to permit a more definitive conclusion at this time. 

There is need for more experimental work on both the first and the 

third items. In particular the identities and energies of the saddle-point 

quantum states should be determined, and € = 1°2I should be measured with 

greatly increased precision and over a wider range of the fissility param-

eter, especially for very small values of x. 

Further theoretical work on all three items should be performed. In 

connection with the first, the energies of the non-axially symmetric 

collective vibrations, rotational states and single-particle excitations 

should be worked out. In connection with the third, barrier penetration 

for a multidimensional system in which the fission coordinate is not 

assumed uncoupled from the nonfission coordinates should be studied. But 

to us the major outstanding theoretical problem is related to the second 

item. If our basic understanding of the fission process is to progress 

theoretically, it is now necessary to perform for the heavier elements 

the dynamical calculations that provide the relationship betweenithei±iit1a1 

states of motion near the saddle point and the final states of motion of 

the fragments at infinity. This would transform the predicted probability 

distributions for the initial states of motion.into probability distributions 
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for such observable properties of fission fragments as their division of 

mass, translational kinetic energies and excitation energies. A direct 

comparison without the use of adjustable parameters could then be made with 

the large amount of existing data on the fission of elements heavier than 

radium, and in this way the applicabilityof the liquid-drop model for dis-

cussing fission could be more reliably ascertained. 
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APPENDICES 

A. The Convergence of the Calculations as a Function of L and N 

The accuracy of the calculated liauid-drop frequencies and eigen-

vectors is limited by two factors: (1) the accuracy with which the stiff -

ness and inertia matrices can be calculated and (2), how well the solution 

of the reduced matrix problem [Eq. (15)] in N dimensions represents the 

solution of the complete infinite-dimensional problem. We will discuss 

each of these factors in turn. 

The accuracy, of K and M is limited by the precision with which saddler 

point shapes are known. As discussed:in Ref. (8) saddle-point shapes are 

determined 'fl: a Legendre-polynomibl.'parametriz'ation .very accurately for the 

range 0.7 < x < 1.0, moderately accurately for 0.5 < ç <.0.7, and with 

uncertain accuracy, at least in some respects, for 0.3< x, 0.5. Thus the 

specification of the saddle-point shapes for x < 0.7 inbroduces an iiheret 

limitation on the accuracy of K and M and consequnt1y of the frequencies 

and eigenvectors for this range'of.x. 

Since K is the matrix of second partial derivatives of the potential 

energy evaluated at,..the saddle point'.its accuracy is 'restricted onlyby the 

precision with whichsecond derivatives.can be determined numerically (see 

again the discussion in Subsection iI,B.2), On the other hand, the accuracy 

of M is intrinsically limited by how well the velocity potential Cp can be 

approximated by a finite number L of terms in an expansion such as (9). For 

x = 0.7 a study was made of the convergence as a function of L of the 

calculated inertia matrix and of the final calculated frequencies, eigen-

vectors and normal-coordinate stiffness and inertia constants. The results 

for the frequencies are shown in Fig, 9. It is observed that in general 

the symmetric frequencies converge more rapidly than the asymmetric ones 

and that the lower frequencies converge more rapidly than the higher ones. 

One can conclude from Fig, 9 that for a given w the calculations have con-

verged sufficiently at a value of L that is somewhat larger than n. Pna10-

gous results were obtained for the convergence of the other quantities with 

L but will not be given here. 

A similar study was made for x = 0.7 of how well the solution of the 

reduced matrix problem [Eq. (15)] in a small number of dimensions can be 

expected to represent the solution of the complete infinite-dimensional 
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problem. Equation (15) was reduced to a smaller number of dimensions by 

systematically eliminating rows and columns of K andM; the frequencies, 

eigenvectors and normal-coordinate stiffness and inertia constants were 

then calculated from the resulting reduced equations. Figure 10 contains 

the results for the frequencies. As would be expected from the variational 

principle the squares of the frequencies essentially decrease monotonically 

with increasing N. In addition we observe that the lower frequencies 

converge more rapidly than the higher ones and that the 10 lowest frequencies 

appear to have converged sufficiently for N = 18. Analogous results were 

obtained for the convergence of the other quantities with N but will not 

be given here. 

The convergence of the calculations with respect to both L and N 

improves progressively as x is increased from 0.7 to 1.0. We can therefore 

conclude that for the range 0.7 < x < 1.0, where the saddle-point shapes are 

accurately determined in a Legendre-polynomial. parametrization, the calcu-

lations converge as well as or better than the ones discussed here for 

x = 0.7. Hence the detailed results for the 8 lowest modes presented in 

Table I (and consequently the results represented by the solid lines in 

Figs. 1-4 and 8 and the results of Figs. 5a and 5b) are essentially free 

of errors arising from the lack of convergence in either L or N. 

On the other hand, for x < 0.7 there are several sources of error, 

and for this region we make no guarantee of the accuracy of the results 

reported for the symmetric frequencies. However, we see in Figs. 1 and 2 

that for the range 0.3 < x < 0.5 there is reasonable agreement between the 

present results for w and those calculated on the basis of a two-spheroid 

parametrization of fission shapes. This.leads one to believe that the 

present calculations may be moderately accurate with regard to the symmetric 

frequencies even for small values of x. 
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Fig. 9. The convergence of the calculated magnitudes of the frequen- 
cies as a functiOn of L for x. = 0.7. The quantity L gives the 
number of terms retained in the expansion of the velocity 
potential (p [Eq. (9)]. 
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Fig. 10. The convergence of the calculated magnitudes of the frequen-
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2 
whereas it is posiive for N < 1 . 	hus the dependence of W2  on 
N is qualitatively the same as the dependences on N of the remain-
ing squares of the frequencies. 
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B. The Penetrability of a Cubic Barrier 

We consider a one-dimensional cubic potential-energy barrier v() 

defined relative to its local minimum, which is located at = 0. The height 

of the barrier is taken as B and the second derivative at its top as the 

negative quantity '2 this implies definite values for the coefficients of 

the quadratic and cubic terms. The equation for our barrier is therefore 

v() = 12 JK 21P - 

The deformation coordinate P is related to the normal coordinate P of the 

text, which is defined relative to the saddle point, by 

, 

where 	
1 

= (6B/K2I)2 

is the value of 13 corresponding to the top of the barrier. The effective 

mass M for motion in the fission direction is assumed to be independent of 

P. (The present results also apply to the case in which M2  is not constant 

but for which the dependence on P of the product of M2  and V - Els cubic.) 

The penetrability P is calculated as a function of the energy E in 

the fission degree of freedom (relative to the barrier's local minimum; see 

the diagram in Fig. 6). In the WKB approximation the penetrability is given 

by (li-O) 

1 
I.  

1 + exp[y(E)] 

where for 0 < E < B the exponent is 

y(E) = 
	f [v() - B]2d

Pi 

The limits of integration l and 	are the two appropriate zeros of the 

integrand. 
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We denote respectively by K(k) and E(k) the complete elliptic integrals 

of the first and second kinds. [No confusion should arise over our use of 

the symbols E for the energy and E(k) for an elliptic integral.] In terms 

of these functions the above integral for y(E) can be expressed as 

I1 	 1
7 

y(E) = 	[cos p + (3)2 sin cp] 2  E(k) 

- [2(E/B) - 1 + cos 	+ (3)2 sin cpl 
K(k) 	, 	(32a) 

	

31cos p + (3) 	sin 	 ) 

where 

cp = 	arccos[i - 2(E/B)] 	 (32b) 

and 

__________ 	 • 	 (32c) 
1 + ()_2 tan cp 

The quantity € has the same definition here as in the text: 

€ 
= 	

°2 =K2/M2)2 

There are two limiting cases in which the result for y(E) simplifies. 

When the energy is near the bottom of the barrier we find. 

1(E) 	{i - 	 [i + in 2 + 3 in  3 + 
ln(IL ] E 

	

- [0.98173 + 0.13889  ln ~ — ]E~ 	E  << 1 
5€ 

Second, when the energy is near the top of the barrier the barrier shape is 

approximately parabolic, and, as would be expected, Eqs. (32) simplify to 

the exact result for a parabolic barrier, which is 

Y(E) -- 21cB  1 - 
Ej 	E  << 



S 
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By considering these two limiting forms we have arrived at a simple 

but yet accurate expression for y(E) that is valid for all values of E from 

the bottom to the top of the barrier, viz. 

y(E) 	 [1+(135)ln )] E} 

KB- [i + O.l2731 mCI)] E} 	 I < 1 

Over the entire range of E from 0 to B the values of i/() , i.e. the 

quantity plotted in Fig. 7, calculated from this equation differ from the 

exact results of Eqs. (32) by less than 0.002. In addition this approximate 

formula reproduces correctly the exact values and first derivatives of y(E) 

at both E = 0 and E = B. 
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