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ABSTRACT

We consider the question of the normal modes of oscillation of an
idealized unlformly charged axially symmetrlc liguid drop about its saddle-
point shape and calculate the frequencies and eigenvectors of these modes
as functions of the fissility parameter x. Both expansions to first order
in 1-x and formulae appropriate for numerical evaluations are derived. For
the range 0.7 < x < 1.0 numerical results for the 4 lowest symmetric and
the L lowest asymmetric modes are tabulated at intervals of 0.02 in x for

ﬁ%é frequencies, normal-coordinate stiffness and inertia constants, and
eigenvectors_(with respect to the coefficients an in an-expansion of the
drop's radius vector in Legendre polynomials). For 0.3 < x< 0.7 the
results obtained are of limited accuracy, and in this range only graphs
of the frequencies of the 3 lowest symmetric modes are included.

Some applications of the results are discussed. These include the
transition-state energy levels of collective oscillations, the probability
distributions for the saddle-point states of motion, and the penetration
of the‘fission barrier. The formula for the penetrability of a cubic
barrier is derived by uée of the WKB approximation. The calculated (purely%

imaginary) frequency for motion in the fission direction, which affects

the penetrability of the fission barrier, is compared as a function of x

with existing experimental data on fission widths, spontaneous-fission
lifetimes and the variation of fission cross sections with excitation
energy. The comparison, which is made without the use of any adjustable
parameters, indicates that the calculations are capable of reproducing the
correct order of magnitude of the fission-direction frequency. The data
are at present not sufficiently accurate to provide a sensitive test of the

theory.
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I. INTRODUCTION ,

0f fundamental. importance in the study of any physical system is the
uestion of small oscillations about the system's peositions of equilibrium.
q J
In the normal fission process there are three relevant equilibrium posi-

5

tions: (1) the initial either spherical or slipghtly deformed grouﬁd atate
.of the compound nucleus, (2) the intermediate highly deformed saddle point
and (3) the final either spherical or slightly aeformed ground states of
the fwo fragments at infinity. Both the initial ground state of the ccm-
pound nucleus and the final ground states of the two fragments at infinity
are positions of stable equilibrium. The small oscillaticns about these
spherical or slightly deformed shapes have been extensively studied By
expanding the drops'vradius vectors in spherical harmonics.

On the other hand, the normal modes of oscillation about the
remaining position of equilibrium-—-the unstable highly deformed saddle-
point shape —are more complicated and- have not previously been worked out,
except for certain of the lower modes in the limit of nearly spherical
saddle-point shapes (ljg) or in other approximations (gfg). The present
‘paper considers the normal modes of osciilation of an idealized uniformly
charged axially symmetric liquid drop about its saddle-point shspe and
calculates the frequencies and eigenvectors of these modes as functions of
the fissility parameter x, The fissility parameter specifies the relative

magnitudes of the Coulomb- and surface energies and is defined explicitly.by

___Coulomb energy of sphere
~ 2(surface energy of sphere)

X

The determination of the saddle-point normal modes is important in
the study of the fission process for at least three reasons. First, the
quantizéd energies of these oscillations are of interest in connection with
the spectrum of gquantum states of a nucleus near its saddle point, i.e. at
its transition state. Second, the knowledge of these modes helps determine
probability distributions for the states of mbtion near the saddle point,
which can be used as initial conditions for classical dynamical calcula-
tions of the division of charged drops. Finally, the (purely imaginary)
frequency for unstable motion in the fission direction is related to the

probability of penetrating the fission barrier, and consequéntly to fission
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widths, spontaneous-fission iifetimes and the dependence of fission cross
sections on excitation energy. |

| The plan of the paper is as follows: In Section II we discuss the
drop's Hamiltonian in the neighborhood of the saddle point, With particular
emphasis devoted to the k'he*ic energy. For both the kl“etlc and potentlaL‘
energles near the saddle po-nt, expan51ons to first order in l-x (i.e,
expansions valid Por nearly sphPchal saddLemp01nt shapcs) are obtalnedu
in addition %o formulae appropriate for r umerlcal evaluatlon . Secticon IIT
oontinﬁés with the calculation fh@ ormalumode frﬂquen01eq and eigen-
vectors. AHClud¢ng both expan51ono to first order in 1-x and the results of
detailed pumerlcaL computations. The three reasons enumeraced above for' '
studylng the normal modes are discussed as appilcatlons of the re%ults in
Section IV which includes a comparison with ex1st1ng experlmental data

The paper is summarized in Section V.

| II. THE DROP'S HAMTLTONIAN IN THE NEIGHBORHOOD
' CF THE SADDLE POINT

Fof the detérminétion of the normalvmodgs of oscillation about a
position.of equilibrium it ig sﬁfficient to calculate the Hemiltonian in
the harmoplc approx1mat on, i.e. to retain in a Tayior expansion of the
kinetic and potential energies gbout,the eguilibriqm position only terms
that arevquadratic in the coordinates and velocities (or momenta). Whereaé
for arbitrary deformations the. Hamiltonian of ‘a nucleus undergoing fission
depends explicitly upon the partlculai model that is used, at least the
structure of the drop's Hamlltonlan_;n the neighborhood of the saddle point
is completa 'y model independent. Bécause_of this, much of what is said in
the‘p+esgnt paper dqes not depegd upen ouf specialization to the liquid-
drop models ~although'the'npmerical rﬂsults would be somewhat different had
anqther modei been employed, the same general procedure could be followed
in determining(the modes of collective oscillation, and the'qualitative
considerstions conéerning them would remain unchanged,

‘ We shall not discuss here the important question of how well the
llquld drop model should be expected to represent the collective motlon at

the saddle point. . Instead we refer the reader uo.Ref,-(g) for some general
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corments on the validity of the liquid-~drop model for discussing fission,
and to Ref. (Q) for a discussion of the disappearance of single-particle
shell effects with nuclear deformation. The general situation is that
detailed agreement should not be expected between theoretical results cal-
culated on the basis of the liquid-drop model and experimental values for a
particular nucleus. On the other hand, the liquid-drop model would be
expected to represent adequately the average behavior of nuclei throughout
the periodic table, '

In the liquid-drop model the potential-energy part of the Hamil-
tonian is simply a sum of surface and Coulomb energies. Once the boundary
of the drop is specified the potential energy is uniquely determined and
may be calculated in a standard way. On the other hand, the kinetic-energy
part of the Hamiltonian is not uniquely determined by specifying the drop's
boundary and its time rate of change. One must in addition specify the
nature of the hydrodynamic flow of the fluid inside the drop, i.e. the curl
(rotation or vorticity) in the system. Thus a thorough treatment of the
saddle-point normal modes even within the liquid-drop model would require
the study of the system for various types of hydrodynamic flow, consistent
with one and the same motion of the boundary. As the natural_first step we
consider here. the case of hydrodynamic flow that is completely irrotational.

The present treatment is restricted to the case of deformations that
are axially symmetric., This excludes the possibility of discussing various
modes of motion that are of direct physical interest, for example gamma-
like vibrations and the bending or "wriggling" of the saddle-point configura-
tion. The restriction to axial symmetry is motivated primarily by compu-
tational simplicity——especially the Coulomb energy of a non-axially
symmetric drop is far more difficult to evaluate numerically than the
corresponding quantity for an axially symmetric drop. However, since the
Hamiltonian near the saddle point contains no interaction terms coupling
the axially symmetric and non-axially symmetric distortions, the normal
modes considered here would be unchanged by the inclusion of non—axially.
symmetric distortions,

Furthermore there are many phenomena in fission that are not expected
to depend significantly upon‘deviations from axial symmetry. Thus the

spectrum of axially symmetric collective states at the saddle point, the
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penetration of the fission barrier, and such quantities as the division of
mass, the fragments' translational kinetic.energies and their excitation
energies can all,Be discussed without recourse to non-axially éymmetric . ¥
distortions. On the other hand, a conéideration of non-axially. symmetric
distortions would be required for a discussion of such phenomens as the . v
spectrum of non-axially symmetric colléctive.states,at the saddle.point
and the angular momenta of the fragments at infinity (which are affected
by bending and wriggling vibrations) and should also be included when
discussing fragmenp angular distributions (since bending, wriggling and
gamma-like vibrations cdntribute components of angular momentum along the
symmetry axis). ‘ L ‘

The deformation of the drop is described here by an expansion of the
drop's radius vector as a .function of angle 6 and time t in Legendre
polyﬂomials: | ‘

“R(e,t) = ———————-[l + ) gxn(t) Pn(cos eﬂ” o, (1)
Ala(t)] n=1 .

where the special choice of N 18 is made throughout. We adopt a system
of natural units in which the radius vector R(6,t) is meéasured in units of
the radius R. of the initial sphere. The volume-preserving normalization

0
constant.k[a(t)] is given’explicitly by'(z)

= 1% - () aaa (2)
v Z (2n+l) o nz=l m‘\;‘l Zz: | £ mn ‘ .). _
where the coefficients (ﬂmn) are the integrals of the product of three
Legendre polynomials: . R
(oam) = [ py) BG) ) aw (3)
-1 .
With the inqlusion of Q. as one of the N generalized coordinates purely

1
center-of-mass displacements of the drop can be described,

-

_The klnetlc and potential energies in the neighborhood of the saddle

p01nt are. written in the harmonic approx1matlon as.
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and

We denote the time derivative of Qﬁ by'dm etc, and the saddle-point value
of O% by am etc., Since the saddle-point shapes are symmetric all Oﬁ for
0odd values of m are zero. We shall discuss later the calculation of the .
inertia (or effective-mass) matrix M; the elements of the stiffness (or

elastic) matrix K are given by

Z
mn BCX aa
: m’' n

~Because the saddle-point shapes are symmetric it follows that all
an and all Khn'for which m is even and n is odd or vice versa are zero,
Thus neither the kinetic nor the potential energies near the saddle point
contain interaction terms coupling thebsymmetric and asymmétfic distortions.

The primary reason for our choice of the above parametrization ig
that in terms of it (with N = 18) theishapes, energies and certain other
propérties of saddle-point configurations have recently been calculated by
Cohen and Swiatecki (§) as functioné of the fissility paramefer X ovér the
range 0.3 < x < 1.0. ‘In fact in terms of this parametrization‘both the
even aﬁ and the matrix K that together define the potential energy in the
neighborhood of the saddle point are already known for this range of x.
[However, as discussed in Ref. (8) the specification of a saddle point in
terms of this parametrization is only moderately successful for x < 0.7
and is of uncertain accuracy, at least in some respects, for x < 0.5. This
difficulty in correctly specifying the saddle point would be expected to
lead to inaccuracies in the calculated freéuencies and eigenvectors for
x < 0;7.] Another advantage of this parametrization is that in terms of it
(with N arbitrary) both the inertia matrix M and the stiffness matrix K
(and hence the frequencies and eigenvectors) can be easily calculated to

first order in 1l-x,
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The coordinate system is of course in general completely arbitrary,
provided only that it is capable of adequately describing the deformations
under consideration. The results obtained for the frequencies and the ¥
actual displacements associated with the normal modes are invariant with
respect to such a change of coordinates. On the other hand, the inertia - o
and stiffness matrices and the.values of the compnnents of the eigenvectors
are not invariant under a chénge of coordinate system, It is desirable to
use a parametrlzatlon in which the normal coordlnates correspond as closely
as p0551ble to the orlglnal coordinates. For the coordlnate system we
have chosen this is the case when x is close to 1 but not for bmaller'
values of x. : ‘ o ‘

For an ideaiizéd dropléﬁ there are an infinite numbér of normal
modes of oscillation. However, since our parametrization contéiné only
18 generalized coordinates there appear in our calculation only 18 modes
of oscillation. One is intérested phyéically in the lower modes, and it
turns out (at least for x > 0.7, where the saddle-point shapes do not have
thin necks) that these modes can be accurately calculated with only 18
coordinates (see Appendix A). Of course our results for the higher modes
of 0501llatlon (say in partlcular the 17th and 18th) will in general be
somewhat in error.

In the following subsectlon we dlscuss the calculation of the
inertia matrlx M and in Subsection II, B the stlffness matrlx K. Once the:
1nert1a and stlffness matrices have been determlned the frequenc1es and .

eigenvectors of the normal modes can be readily obtained'in'a standard way. -
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A. The Inertia Matrix M

We denote by Vo= X(E’t) the velocity of fluid flow inside the drop
at position r = (r,@) and timevt. (Because we consider only the case of
axial symmetry we do not indicate explicitly the dependence of r upon the
azimuthal angle.) Since the hydrodynamic flow isbassumed irrotatioﬁal
(VX v = 0) the velocity-veétor can be written as the gradient of a

velocity potential ¢, i.e.
= = W(z,t)

The fluid is further assumed incompressible; it therefdre follows from the
equation of continuity that the velocity field‘x is solenoidal, i.e.
v.xzvchzo R

The total kinetic energy of éhé flow of fluid arising ffom changes in

the boundary of the drop is.
I = % ph/'v dT = b/ (V@) dT s

where p denctes the drop's mass density and 47 an element of volume., In
terms of our natural system of units in which masses are measured in units
of the total mass M of the drop and distances inm units of the radius RO

0
of the original spherical drop,

©
n

3/ (bn)

By use of the vector identity

2 2
Vo(eve) = (W) + o Ve
2 o ‘ '
the relation V'@ = 0, and Gauss' divergence theorem to transform from a
Volume to a surface integral, we obtain for the klnetlc energy the usual

hydrodynam1c result:
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J’=%pf‘cpvcp-rd§ S

where dS denotes an element of surface area.
It is notationally convenient to introduce the functlon F(r t) 50

that the equatlon

F(r,t) =r - R(6,t) =0 - (%)

defines the surface of the drop. In terms of this function the element of

surface area is

as

~

2
(VF)3 dQ ,

where dQl denotes an element of solid angle and for an axially symmetric
drop becomes simply 2n dp, where u =‘cos'e, upon integration over the
azimuthal angle, '
The kinematical boundary condition is that the total derivative
with respect to time of the function F be zero (9),
DF - BF « ‘ BF L
By use of the above results we obtain for the kinetic energy of an

idealized axially symmetric drop
1 :
103 'S | OFY L2
s -i[3) [o-Ew - ©
-1

From Egs. (4) and (1) it follows that

] @, (7)

where A\ is given by Eq. (E) andfwhere from it we obtain by differentiation
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A\

N | %:)—\%—[(Z—E_:i—)a + z Z (ﬁmn Ola] . C (8)

n m=1 £

Nl

The only unknown quantity appearing in expression (6) fors? is the
velocity potential ¢. Since ¢ is a harmonic function that must remain
finite at the origin it can be approximated in terms of the known solu-
tions rzPﬁ of Laplace's equation, 1i.e.

5 bztg(t),g(m +*p (cos o)

Because the velocity v is obtained from @ by spatial differentiation it
follows that the coefficients bﬂ are linear in the N generalized velocities

& . Thus
m

||fv1r

fj brz[g(t)] r'p (cos 6) &, (9)
m=1 £

where the unknown coefficients b? are to be determined from the kinematical
boundary condition (5).

In general an ihfinite number of terms would be required in the
expansion of ¢ to represent the Vélocity potential exactly, even though
the number N of generalized coordinates is finite. However, it turns out
in practice that as long as L is somewhat greater than N the .final results
are independent of L to the desired accuracy, at least for x > 0.7, where
the saddle-point shapeé do not have thin necks (see Appendix A). For the
calculations reported here L was chosen equal to 30.

By substituting Eq. (7) for OF/dt and Eq. (9) for ¢ into (6) and

interchanging the order of summations we obtain

where
K

3% m
— b
A 4=1 zQ/

_l,

]  (10)-




-10- UCRL-16786

and where R is given by (1), A by (2) and %ax/aanﬁ by (8). This is a
general result which can be used to calculate the inertia coefficients for
any axially symmetric shape thaﬁ.is specified by the N coefficients an in
the expansion of sthe drop's radius vector in Legendre polynomials. For
our purposes the resqlt is evaluated only for saddle-point shapes.

From Eqg. (loy“it'is not manifestly clear that the inertia matrix is
symmetric, The requirement that M in fact be symmetric'(lg) can be used to
establish a relationship involving'weighted sums of the coefficients b?,
but in practice!the relationship is not very useful, On the other hand, the
required symmetfy of M does provide an important check on the numerical |
accuracy of the calculated nondiagonal ihertia—matrix elements,

The determination of the unknown coefficients bi will now be dis-

cussed. Spaéiél‘differentiations of Egs. (4) and (9) give, respectively.
.

) 1 N dPh
N = fevr AT Z Otn ae '%9
L83 n=l
and
N L ‘ (4P | :
m £-1 £ ‘.
s ggi-ggi u T [ﬂPz ~r +(E§')Ea] "

Unit vectors in the radial and ¢ directions are denoted respectively by e

: Y
and 29' Substitution of these two results and Eq. (7) for BF/at into the

]-d = 0.
m

Since this equation must be satisfied for arbitrary motions of the drop's

kinematical-bounda%yfcondition equation (SL leads to

i% g% 0 -2 [ o ( dP, §§ dPn)] : §§ [
b, R |aRp, -| == al =/l - ) |P -R
mel = 4 £1de |z mide moogm Lm

oA
da
m

boundary (i.e. for arbitrary values of the dﬁ) it is equivalent to the

following N equations:

L : N \
£-2 1 1) . m oA
}: R (KXRPg - P, }: a Pn) b, - [Pm - Rlso ] =0 , m=1,2, ..., N, (11)
£=1 n=1 m
dP,(cos 6)
. 1 £ m
Use has also been made of the relation P)(cos 6) = - ——35 — » Where P,

denotes an associated Legendre polynomial.
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When the boundary-condition equations (11) are applied to symmetric
shapes the coupling between the terms representing the even and the odd
Legendre polynomials disappears, which means that/fdr'symmetric shapes if m
is even all b? for odd values of £ are zero, and if m is odd all bﬁ for
even values of ¢ are zero.

1. Determination of M to First Order in 1l-x

We now specialize our above results for an to the case of saddle-
' point shapes that differ only slightly from a sphere. Since most of the
remaining formulae are evaluated for saddle-point shapes we shall simplify
the notation where there should arise no confusion and write an rather than
'& etc. |

n

To first order in u = 1l-x only one of the coefficients an that

specify a saddle-point shape is nonzero; this cocefficient is given by (1,

11-13)

However, for the first part of this subsection we shall retain a, rather

than u as an independent variable., The other quantities that We need are

given to first order in u by {

A =1 s
and
O = E_a o)
%;“5 2 2m
where

i 0 ,m#n

Substitution of the above results into:Eq. (11) gives upon.simplification
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o 1 11.m g 2 :
{sz + (4-1)2 PP, - 0Py Pﬂ] by." (Pm,' 5 azpo Bom| = ©

ingls

1

This equation is reduced to a linear combination of Legendre polynomials by °

use of the following rules for the product of two ordinary or associated

Legendre polynomials (1h,15):

3(£-1) z(z 1) 3(z 1)(z'2)
PoPy = 2(2z 1)(zz+1) t Zi- 1;(2z+3) Pyt z(zzil)(2;+3)‘Pz+2
and
Pl gt 3(£-1) £(4+1) ®, - 38(4+1) P, 34(e+1) (4+2)
274 (24-1)(24+1) (2£ 1)(24+3) T (24+1)(24+3)

By solving to first order in u (or @) the equations that result from

2
equating to zero the coefficients of the individual Legendre polynomials we

obtain
m 7(m-1) (n°-3m-2) T(m+1) (0 -m-3)
by =- 2(m-2) (2m-1) (2m+1) ° 5z,m-z +'EI[ 3(2; 1)(2m+3) u] 6£m

A 7(m+1)2
T 2(zm+1) (2me3) - 2,m+2

We now substitute this result for bi ihtoIEq. (10) and evaluate the

indicated integrations to first order in u; this gives for the inertia-

matrix elements the general formula

3(7)(m-1)(3m-2) 3 7(m+1)"
Mm = 2(m-2){(2m-3)(2m-1) (2m+1) v 6m‘—2,n * 5K§H:IY[]' (2m- l;(2m+3 u] 6mn

3(7) (m+1) (3mih) |
2m(ém+§)22m£3)?2m+5) 6m'+2,n ’ (12)

in natural units of MOROZ' Evaluation of this result for the lower

Legendre -polynomial distortions yields



-13- UCRL-16786

3 1
My, M, M lo(1+3u) su 0
1 25 70
. M, M, Mg 2u 51+ 2) 529"
70 . 3h3
Mo, Mg Mg 0 Pl 6(l+165)
and
x o " /,.28 1 ' :
20, . 0
Mll M13 M15 .o 1+ 5u gu
: 7 112 26
M M M .. Lu —(l+———u) =
asm_ [ 3t 33 739 NEE TS 99
" ' ‘ 26 3., .28
, 20, —2(1
Moy Moy Mgy oo 0 99" TR

The above result for-M22 has been derived previously in Ref. (l2)5 if com-

paring formulae it should be noted that although the coefficients in the
radius-vector expansion are defined differently there, the difference is

unimportant to first order in u. In Ref. (16) the result for M_, is given

22
incorrectly. _ .

It is seen that the diagonal inertia-matrix elements are of order
uo and that the elements adjacent to the diagonal are of order ul. This
result generalizes to the statement that the elements of Msym and Masym

situated n positions from the diagonal have leading terms of ofder un_
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2. "Numerical Calculation of M for Arbitrary Values of x

' For arbitrary distortions there are no easy solutions to Egs. (11)
for the coefficients b@. Furthermore for a finite value of L it ié in ¥
general impossible to satisfy Egs. (11) exactly. In such cases there are

" three schemes by which the céefficiéh%s b? can be determined so thét .
‘Egs. (11) are satisfied approximately [see for example Ref. (1)7. The
first is the method of collocation, in which the coef%icients are chosen
so that Egs. (ll) are exaét at L specified points on the drop's surface
(say equally spaced in u)% The second is the method of least squares,
in which the coefficienté are selected so as to minimize the integrals over
the drop's surface of the squares of the deviations of Egs. Cll) from zero.
The third is Galerkin's weighting—function method, where the coefficients
are determined by multiplying Egs. (il) by L linearly independent'weighting
functions and:integrating over the drop'slsurface. If the weighting ‘

functions are chosen to  be the first L Legendre polynomials'P. P

s PR
PL-l’ thep"thig method is;squivalent to réqﬁiring that the degiations from
zero of Egs. (11) contain no harmonic components of order less than L.

Test calculations with each of the above three schemes were per—

formed, and all three were satisfactory when x was not too far velow 1.
However, as functions of decreasing x the inertia matrices calculated by
collocation and by Galerkin's weighting-function method became asymmetric
(and conseguéntly inéorrect) much more rapidly than those calculated by

least squares. Therefore the latter method was used for the actual

"calculations.
The coefficients bj are consequently chosen to minimize the ‘ .
functions ' . ‘ ' '
+1 o
: L N 2
mo.om - m,. [ ) £-2 S 1} . m O\ .

: = - ‘ - - d
£ (), by, ..., bp) f R INRP, - P, ) a Pl o, [Pm R(S&—} ",

o g £=1 ; n=1 . . om u

which would be identically zero if the boundary-condition equations (11)
were satisfied exactly. The requirements that the functions fm be minimum

are



s
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of
_$=O ) k=1,2, ..., L~ , m=1, 2, o N ’
ob
k
which lead to the systems of equations
L. | )
L Ak,@ b,Z:Ck P k=1,2, ..., L , m=1,2, ..., N, (13)
where
+1
: N N .
k-2 1 1 £-2 1 1 1
A, _=J [R (kak -P L o n” {R (sz -P, y o P H du
- n=l 1 . n= B
-1 ‘
and
+1 N 3
mo k-2 1 & 1 O\ :
Ck = / R k?x.RPk Pk L ,ozn Pn” [Pm R ga—] du.
: -1 n=1 m

The quantities Akﬂ and CE were evaluated numerigally with 96-point
Gaussian quadrature formulae (18). The systems of equations (13) were then
solved by use of a Gaussian-elimination method to yield the coefficients
bi. After the coefficients b$ were determined the elements of the inertia
matrix were obtained by evaluating Eq. (10) with a 96-point Gaussian-
quadrature formula,

In this way an attempt was made to calculate the inertia matrix M
for the saddle-point configurations over the entire range 0.3 S_xlf.l.O
for which saddle points are known in a Legendre-polynomial parametrization.
The resﬁlts ocbtained are highly accurate in the range 0.7 < x < 1.0, i.e.
for the Bohr-Wheeler family of saddle-point shapes (g,;z). However, as X
was decreased below 0,7 there occurred a very rapid les in accuracy of the
numerical procedures employed, particularly as regards the matrix Masym
corresponding to asymmetric deformations. For the Frankel-Metropolis
family of saddle-point shapes (8,13), i.e. for x < 0.7, the calculated values
of M**™ are in serious error, and those of M are somewhat doubtful.

The transition from high numerical accuracy for x‘2_0.7 to low
accuracy for x < 0.7 1s related to the fairly rapid change in the properties

of saddle-point shapes at x x~ 0.67. This change is as follows: For x > 0.67
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saddle-point shepes are cylinder-like with large necks and'may be well
specified by the first few terms in an expansion of the drop's radius
vector in Legendre polynomials. For x & 0.67 the shapes are dUmbbellflike
with thin necks and require many terms in a radius-vector expaﬁsion fer
their specification (8). S -

‘The thin necks and the fairly large number of impdrtapt an eoeffi;
cients required for x < 0.7 have the following effects on the accuracy. In:
the expansioh (9) of the velocity potential most of the individual COeffi-{
cients bg become comparable in magnitude but of alternating sign so that
the velocity potential and finally the inertia-matrix elements themselves
are determlned as the dlfferences of many very large individual terms
Furthermore- the matrix A of Eq (13) becomes extremely 1ll-cond1tloned and
is influenced greatly by roundoff errors. This is to be contrasted w1th
the situation when x > 0.7, .where only a .few of the coefficients b? are
important and can be accurately determined, :

However, the presence of a thin neck affects asymmetrlc distortions
much more than symmetric ones, since the former involve a flow of mass
through the neck whereas the latter do not. For this reason the calculated
values Qf M sy are still somewhat reliable even for X < 0.7 even though

the values of.M ym are in serious error,. -.
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B. The Stiffness Matrix K

From the inertia matrix we nothurn_ouf attention to the stiffness
matrix K. In the following subsection we discuss the determination of K
to first order in l-x and in the subsequent subsection the numerical

evaluation of K by Cohen and Swiatecki.

1. Determination of K to First Order in 1-x

B To first order in u = .1-x the stiffness matrik K can be obtained
by performing straightforward differentiations of the known‘expansions of
the surface and Coulomb energies in ‘terms of the.Legendre-polynomiai
coeffiéients an. The potential energy of the drop relative to the potential

energy of the initial sphere is given in units of the surface energy of the

(©) 4,

initial sphere ES

w = (BS - 1) +2x (BC - 1) E
where (7,12,19)
B - 14% g% (n-1)(n+2) 02 _ 1
s v TS 2n+l) n 3
and R
N N -
)Y 7;1;1%2) (4mn) @ o + ...
1 m=l f=1 mon

the coefficients (#mn) are defined by (3); (If comparing with the formulae

N N
IZ; Z (4mn) dzotmotn + ...

N N
B =1-5 ). —ﬁﬁ:ilg-a . Ii 5.
n=

[ab]

of Ref. (;2) note that the coefficients qn used there are defined differently
and that the coefficient al has been eliminated by conserving the position
of the drop's center of mass. ]

The elements of the stiffness matrix are calculated by performing
second partial differentiations of the potential energy % with respect to

the coordinates an and- evaluating the resulting derivatives at the saddle

point. We find to first order in u that '~
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_ 236D (m-1n’(en-5) | 4 .+~[(m-z><m-1><zm+9>,
ma ~ (2m-3)%(2m-1) (2m+1)® m-z2,n - (2m+1)®

(@2(3)(5) (m-1) (nsm1) u] -
(2m-1) (2m+1)©(2m+3) ma

L 236N @) (@e2) “(an-1) | g (i)
(2m+l)2(2m+3)(2m+5)2 Sz o

in natural units of;EiO). Evaluation: of this formula for the lower .-

Legendre-polynomial distortions gives, in notation analogous to that used

for MV ana MO

3 L 32
0 - 5— u - 15 w 0
_32, 3208 _ 980
15 - a7 33 5577
KM =
B o _ 9800 u k20 860 .
5577 169 ~ 1859
and
12 -
- == 4 0
30 1ok - 5000
L9 - 1L ¢ 2541 ¢
et LI . S s ]
. 5000 . 228._.2h80 '
2551 Y - 121 T k79 ¢
© As. was ‘true with the inertia matrices,. -the elements of k°¥™ and o
Kasym situated n positions from the diagonal-have_leadingztefms of ‘order

n
u .
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2. Numerical Calculation of K for Arbitrary Values of x

As mentioned earlier the stiffness matrix K has already.been calcu-
lated as a fgpction of x by Cohen and Swiatecki in connection with their
determination of saddle-point shapes (§). For a given value of x the stiff-
ness matrix was obtained numerically by fitting a quadratic expression .in
the an coordinates to values of the potential energy in the neighborhood of
the saddle point, which was itself determined by an iterative scheme for
locating the extremum in a local quadratic representation of the potential
energy. Because of the loss of significant figures arising from the sub-
tractions of the values of the potential energy in the neighborhood of the
saddle point the accuracy of a stiffness matrix determined in this way is
somewhat limited. The available stiffness matrices are sufficiently
accurate to permit the calculation of the final quantities of interest |
(frequencies, normal-coordinate stiffness and inertia constants, and
eigenvectors) to about three figures for the region 0.7 < x < 1.0 but
are somewhat less accurate for 0.3 < x < 0.7 (where the inertia matrices

are also of reduced accuracy).
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I1I. THE NORMAL-MODE FREQUENCIES AND EIGENVECTQRS

Once the 1nert1a and stlffness matrlces are obtalned as dlscussed
above the frequenc1es and elgenvectors of the normal-mode osc1llatlons are
determlned in a standard way (20) The homogeneous system of N linear

equatlons
_(K -w M) v=0 _ (15)
posseseee a sqiution if and only if
det (K -w M) =0 . (16)
Solution of thls equatlon ylelds the N frequen01es ®, ny 0= l 2, ..., N,

n)

from an arbitrary normallzatlon factor by solv1ng the reduced 1phomogeneous

Then for a glven w “the correspondlng elgenvector v is determlned apart'
system of N-1 llnear equatlons in N 1 unknowns obtalned from (15) by dis-=
carding one of the equatlons and setting one of the elements of v equal

to unity. The normalization factor is chosen here so that

Z[(n)} =1, n=1,2, ..., 8 . (17)

m=1

Because of the separation ofAboth the inertia matrix and the stiffness
matrix into symmetric and asymmetric components it is not necessary to
solve explicitly the above systems of equations, .Instead we can solve for
the frequencies two uncoupled systems of dimensions N/2 and for the eigen-
vectors two uncoupled systems of dimensions (N/2) - 1. Thus each eigen-
vector of the original system has N/Z elements that are identically zero
according to the rule vmn = Q if either n is even and m is odd or n is odd
and m is even,

The determination of the eigenvectors is equivalent to determining
the transformation from the original an coordinates to the normal coordi-
nates, which we designate by Bn, n=1,2, ..., N. Explicitly the normal-

coordinate transformation is
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where O denotes the N-dimensional column vector with elements Oy Qs vy

a_; the vector O is defined analogously, and V is the square matrix of

N
dimension N whose columns are the eigenvectors v(l), v(z), .y V(N).
- The eigenvectors satisfy the~ofthogonality relations
V<m) K v(n) =K b&. _ L (18a)
n mn

and ,

V(m-) M V(n), =M 5 , ' (18v)
: " "n mn .
’
where v<m) is the' (row vector) transpose of the column vector v(m). ~The

quantities‘Kn and Mn represent respecti?ely‘the stiffness (elastic) constant
and inertia constant (effective mass) corresponding to the nth normal mode.
It should be noﬁed'that bbth Kn and Mﬁ'depend upon the choice of eigenvector
normalization and consequently have only relative meaning. On the other

hand, the freguency
%_
w =
n (Kn/Mn)

is of course independent of the normalization.
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A. Frequencies and Eigenvectors to First Order in 1-x

The solution to first order in u = 1-x of the determinantal equation

(16) for the frequencies is very simple.. Since the nondiagonal elements. of .

1
(K - @2M) are of highest order u they contribute to the determinant terms
of highest order u2 and are therefore irrelevant as regards the frequencies,
Thus solution of (16) to first order in u yields immediately
< 2

@n 3%SKnn/Mnn

Upon substituting.(;h).fqr Knn and (12) for_Mnn and simplifying: wg,ffna

that . -
© 2 (n 2)(n l)n(2n+9) (n 1) n(lhn +63n3+18n —157n 66) '(i9)"
n -3(2n+1) ' 3(2n-1§(2n+1)(2n+3) ' ’
in natural units of E(O)/( . Evaluation of this formula for the 6.

lowest modes gives

>

1l

O .
+
o

c

l )

&
l
o
oy
Wi
wd

(&
[

21
w2 _ 136 . k2o

9 " 95 %

2 380 8320
5 T 117 99 * o

and

N _ 8k _ 20928
6 T 13 T 143

a
The above result for ®,~ has been given previously in Fig. U8 of Ref. (1);

however, in the same figure ag is presented incorrectly. On the other
2
hand, the result for o, is given correctly in Ref. (2)

By solving to first order in u the hcmogeneous system of linear

equations obtained by substituting (19), (14) and (12) into (15) we find
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for the eigenvectors

3.13n°-141n-54) 0

+190
3-hn2-41n—30)

m,n-2 mn

v(n) _ 7(n-l)n(12nh+l6n
n (2)%(2n-1) (2n+1)(12n

7(n+1)(n+2 (12n +6un +91n +59n +19un+1zo) 0B
(2) 2n(2n+1) (2n+3) (120 +68n°+87n-32) m,n+2

:By evaluating this formula for the lowervmodes and separating the results
intb symmetric and asymmetric components we find for the transformation to

normal coordinates

S 109
- 1 - —== 0
14k LTS5
_r - i
Q, 55 U : 5683 Py
) 26495
a6 0 —I§Hg' 1 66
aﬂd
9
- =u 0
ozl 1 5 Bl
14 _ stz
(01 — u 1
3 " 23067 P3
1310
o 0 u 1
5 ' 699 Ps
It is noted that for the nth normal mode when the coordlnate a is
displaced by an amount of order uo the coordinates a 5 and a +2 are dlS-
placed by amounts of order ul, in general the changes in o and & '
n-zm n+2m

m :
are of order u', It follows from this and the orthogonality relations (18)
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that to first order in u the normal-coordinate stiffness and inertia con-
stants are simply the corresponding diagonal elements of the original

stiffness and inertia matrices; thus from Egs. (14) and [12) we have

_ (n-2)(n-1)(2n+9) (2) (3)(5)(n-l)(n ntl)

K A
. (2n+1) (2n-1)(2n+1) (2n+3

and

v o3 [ | 7(n+l> ]
“n n(2n+lj" (2n-1)(2n+3)

{
B. Frequencies and Eigenvectors for Arbitrary Values of x

For arbitrary values of x the determinantal equation (16) for the
frequencies was solved by a numerical method in which, for given initial
guesses!for the frequencies, Newton's method was used to iterate until a
specified accuracy was obtained; The initial guesses were determined by
extrapolating the results previously calculated for higher values of x.
The reduced systems of linear equations for the eigenvectors were
then solyed by use of a Gaussian=-elimination method.

In this Way the frequencies and eigenvectors were calculated at
intervals of 0.02 in x for the range 0.3 < x < 1.0. However, as discussed
earlier the accuracy of both the stiffness and the inertia matrices,
particularly the asymmetric component Masym of the inertia matrix, is
poor for 0.3 < x < 0.7. Hence the accuracy of the calculated frequencies
and efgenvectors, particularly the asymmetric ones, is also poor for this
range of Xx. We therefore preseﬁf here detailed results only for the range
0.7 <x < 1.0, where the numerical accuracy is adequate, although graphs
of the frequencies of the 3 lowest symmetric modes are also given for
0.3 < x < 0.7. As discussed in Appendix A the calculations for x > 0.7
have converged sufficiently as regards both the number I of terms fetained
in the expansion of the velocity potential and the number N of generalized
coordlnates i o

Table I summarizes the propertles of the normal—mode oscillations as
functions of the flSSlllty parameter for 0. 7 <x< 1. O The table cons1sts

of 16 subtables, one’ for each value of x at 1ntervals of O 02 The.format

©
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Table I. Properties of normal-mode oscillations as functicns of the fissility parameter x.

N “’22 u)1‘2 “’62 mﬁz "Dlz w3z m52 w7z
K, K, Kg Kg Ky K, Ky Xs
N M, My, Mg Mg My My Mg ey
a (2) (%) (6) (8) (1) (3) (5) (7)
(12 V2 V2 Vz N Vl Vl Vl Vl
3 2) (%) (6) (8) (1) ) (5) (73
Cth vl(; vu vu vh -73 vgs v3 \r3
3 (2) (%) (6) (8) (1) (3) (5) (7)
06 v6 v6 v6 VG v5 v5 v5 v5
2 (2) (%) (6) (8) (1) (3) (5) (7)
ozs Vs VB Ve Vs V7 V7 V7 V7
o (2) ) (6) (8) (1) (3) (5) A7)
%0 V1o Vio Y10 Y10 i) Y9 Y9 Vg
3 (2) (%) (6) (8 (1) (3) (5) {7)
%12 V12 Y12 V12 Y12 Vi1 Y11 Y11 Vil
o (2) (4) (6) (8) (1) (3) (5) (7
%, Viu Vi Vi Vik V13 V13 Y13 Y13
A (2) (%) (6) (8) (1) (3) (5) (7)
%6 V16 Y16 Y16 Y16 V15 Y15 Y15 V15
2 (2), (%) (6) (8) (1) (3) (5) (7)
%18 v18 V18 V18 Vi8 V17 V17 Y17 V17
1.00 0,000 15.11 64.62 16k%.7 0,000 4,286 3L4.55 107.3
0.0000 1.259 2.485 3.633 0.000 0.612 1.88k 3.657
1.0000 0.300 0.0833 0.0385 0.0221 1,000 0.1429 0.0545 0.0286
0.0000 1.000 0.000 ' 0.000 0.000 1.000 0,000 0.000 0.000
0.0000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000
0.0000 0.000 0.000 1.000 0.000 0,000 0.000 1.000 2,000
0.0000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1,000
0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ©.000
0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.0000 0.000 0.000 0.000 0.000 0.000 0,000 0,000 0,000
0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.98 -0.051 14,32 61.68 157.9 0.005 k.032 33.26 103.6
-0.0163 1.24h 2.L64 3.610 0.005 0.603 1.8% 3.070
1.0004 0.317 0.,0868 0.0399 0.0229 1.109 0.1495 0.0567 0.0296
0.0438 0.999 -0.0kk 0.001 0.000 0.998 ~0.03k 0.001 0.00C
0.0007 G.047 0.998 -0.054 0,002 0.058 0.999 -0.0ky 0.002
G.0000 0.002 0.038 0.997 -0.07k -6.003 0.038 0.997 <0.068
0.00G0 0.002 0.000 0.060 0.995 0.002 -0.003 0.056 0.995
. 0.000L 0.001 0.000 0.000 0.072 -0.002 0.003 -0.002 0.075
0.0001 0.001 0.000 0.000 0.001 0.003 -0.002 0.005 -0.006
0.0001 0.000 0.000 0.000 -0.001 ~0.002 0.003 -0.00k 0.005
. 9.0000 0.001 ©0.000 0.000 -0.001 0.002 -0,002 0.004 -0.003
-0.00c2 0.000 0.000 0.000 0.000 -0.001 0,001 -0.003 0.002

#
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Table T (continued)

0.96 -0.102 13.47 58.47 150.6 0.00k 3.690 31.46 98.2
-0.0342 1.217 2.422 3.560 0,005 0.578 1.853 3.016
1.0017 0.33% 0.,0904 0.0k1k 0.0236 1.234 0.1565 0.0589 0.0307
0.0909 0.997 -0.086 0.005 -0.001 0.993 -0.069 0.00k4 0,000
0.0031 0.082 0.993 -0.112 0.011 0.120 0.995 -0.099 0,009
0.0000 0.002 0.080 0.986 -0.149 0.000 0.076 0.989 -0.134
0.0000 0.003 ~0.001 0.121 0.977 0.000 . -0.00k 0.108 0.981
0.0001 0.002 0.001 0.000 0.149 -0,003 0.002 -0.005 0.1k2
0.0001 0.002 -0.000 0.001 0,00k 0.002 -0,001 0.00k -0,001
0.0001 0.001 0.000 0.000 -0.002 ) -0.002 0.001 -0.00% 0.002
0.,0000 0.001 -0.001 0.000 -0.002 0.002 -0.,001 0.003 ~0,00%4
-0.0002 0.001 0.000 -0.001 0.00L ~0.001 0.001 -0.00k 0.002
0.9% ~0.151 12.60 55.00 2.6 0,003 3.372 29.51 93.0
-0.0527 1.179 2.350- 3.472 0,004 0.550 1.79% 2.9hk2
1.0038 0.350 0.0936 0.0427 0.0243 1.362 "0.1631 0.0609 0.0316
0.1367 0.993 -0.127 0.012 -0.,002 0.983 -0.102 0.008 -0.001
0.0069 0.117 0.985 -0.165 0.023 0.186 0.988 -0.146 0.018
-0.0001 0.001 1 0.120 0.970 -0.217 0.005 0,113 0.977 -0,195
0.0000 0.002 -0.00k4 0.177 0.951 0.000 -0.006 0.157 0.959
0,0001 0.001 -0.,00L 0.000 0.220 -0.002 0.000 -0,005 0.206
0.0001 0.002 0.000 -0.002 0.011 0.002 -0.002 0.001 0.001
0.000L 0.002 . -0.00) 0.001 -0.006 -0.001 0.002 -0.004 0.002
0.0000 0,001 -0.001 0.000 -0.002 0.002 -0.002 0.002 -0.00k
-0.0002 0.001 -0.001 0.000 0.000 -0.001 0.001 -0.003 0,001
0.92 | -0.187 11,7k 51.66 134.9 ' 0.003 3.060 27.63 87.7
-0.0681 1.133 2.269 3.366 0.00k 0.518 1.731 2.846
1.0068 0.365 0.,0965 0.0439 0.0249 1,40k 0.1694 0.0627 0.0325
0.1830 0.988 -0.167 0,021 -0.003 _ 0.967 -6.133 0.01k4 -0.002
0.012% 0.152 0.973 -0.218 0,042 0.255 0.980 -0.192 0.032
~0.000k 0.000 0,162 T 0.947 -0.283 0.012 0.148 0.959 -0.255
-0.0001 0.001 -0.006 0.236 0.913 -0,002 -0.009 0.207 0.929
0.0001 0.002 -0.002 0.003 0.290 -0.001 -0.001 -0.00%4 0.266
0.0001 0.002 -0,001 -0.,00k 0.018 0.001 -0.002 0.001 0.008
0.0001 0.002 0.000 0.000 -0,009 0.000 0.002 -0.003 -0.002
0.0000, 0.002 -0.001 0.000 -0,00% 0.001 "-0.002 0.003 -0.005
-0.0002 0.001 -0.001 0.000 0.001 0.000 0.001 -0,003 6.002
0.90 -0.219 10.87 48,16 126.8 0.002 2.7k 25.72 82.1
3 -0.0829 1.078 2.164 3.230 0.003 0.482 1.651 2.721
1.0108 0.378 0.0992 0.0kl9 0.0255 1.626 0.1755 0.0642 0.0332
0.2298 0,983 -0.205 0.032 -0.006 0.94% -0.165 0.021 -0.003
0.0197 '_ 0.185 0.957 -0.268 0.062 0.329 0.969 0.236 0.048
-0.0607 -0.002 0.204 0.918' -0.3k42 0.024 0.185 0.938 -0.308
-0.0003 _-0.001 -0.008 0.290 0.866 -0.005 -0.012 0,254 0.892
0.0001 0.003 -0.006 0.008 0.357 -0.002 -0.005 -0.002 0.325
0.0001 0.002 -0.001 -0,009 0.033 . 0.001 -0.001 -0.005 0.017
0.0001 0.002 0.000 0.001 -0.015 -0.001 0.002 -0.003 -0,007
0.0000 0.002 -0,001 0.000 ~0.00k " o.00r -0.001 0.001 -0.003
~0.0002 0.002 -0,001 0.003 0.000 ’ 0.000 0.000 -0.003 0.002
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Tgble I (continued)

455 23.76 6.7

i 0.88 -0.238 10.02 L 76 118.7 0,002 2
-0.0926 1.017 2.048 3.075 0.003 0.4k5 1.557 2.586
1.0158 0.390 0.1015 0.0L458 0.0259 1.754 0.1812 0.0655 0.0337
. 0.2777 y 0.976 -0.243 0.047 -0.010 C.914 -0.195 0.030 -0,005
= 0.0289 " 0.219 0.938 -0.315 0.087 0.4%0% 0.955 -0.278 0.067
-0.0012 -0.005 0.246 0.883 -0.395" 0.038 0.221 0.911 -0.360
-0.,0006 -0.,00k -0.010 0,344 0.808 -0,010 -0.01k 0.304 G.847
0.0001 0.002 -0.011 0.012 - 0.k2b -0.004 -0.009 -0,001. 0,384
0.0002 0.003 -0.002 -0.017 ° 0.051 0.002 -0.001 -0.011 3.030
0.0001 0.002 0.000 -0.,002 -0.021 -0.001 0.002 -0.005 -G, 01k
0.0000 0.002 -0.00L 0.000 -0.008 . 0.001 0.000 0.003 -6.,005
-0.0002 0.002 -0.001 0.001 G.000 0,000 0.001 -0,001 0.00L
0.8 -0.250 9.17 ¥1.31 110.6 0.001 2.171 21.91 1.3
=0.0999 0.948 1.916 2.898 0.003 0.405 1.459 2.435
1.0221 0.399 0.1034 0.046h 0.0262 1.870 0,1866 0.0666 0.0341
0.3276 0.967 -0.281 0.063 -0.016 0.872 -0.225 0.0k1 -0.008
0.0k05 0.255 0.91h -0.360 0.116 0.485 0.938 -0.319 C.091
-0.0018 -0.008 0.291 0.340 -0.4k2 0.061 0.261 0.876 -0.407
-0.0012 - -0,009 -0.010 0.399 0.7%0 -0.016 . -0.018 0.355 0.791
0.0000 0.003 -0.018 0.020 0.487 -0,007 -0,016 0.003 0, hhk
0.0002 0.00} -0.003 -0.02k 0.073 0.002 -0.002 -0,019 0.0L6
0.0001 0.003 0.001 -0.00k -0.,030 0.000 0.002 -0,006 -0,023
0.0000 0.003 -0.001 0.002 -0.012 0.001 . -0.001 0.002 -0.010
-0.0002 0.002 -0.001 0.003 0.000 0.000 0.001 -0.001 0.002
0.84 -0.258 8.31L ) 37.88 102.2 0.001 1.897 19.99 65.6
-0.104k 0.871 1.770 2.696 0.002 0.363 1.345 2.258
1.0298 0.405 0,1048 0.0L6T7 0.026k 1.964 0.1914 0.0673 0,024
0.3798 0.957 -0.318 0.083 -0.023 0.818 -0.255 ) 0.053 -0.C13
0.0548 0.290 0.886 -0.403 0.148 0.567 0,918 -0.358 116
-0,0026 -0.010 0,337 0.791 -0.482 0.090 0.301 0.839 Liy
-0.0023 -0.015 -0.009 0.451 0.662 ) -0.02k -0.020 " 0.0l
0.0000 0,00k -0.030 0.032 0.5h4k -0.012 -0.026 0.009
0.0003 0.00% -0.003 -0.037 0.103 0.001 -0,003 -0.033 °
- 0.0002 0.003 0.002 -0.007 -0.038 0.001 0.003 -0.0G8
0.0000 0.003 -0.001 0.003 -0.019 0.002 . 0.000 0.00k
-0.0002 0.003 -0.001 0.004 - -0.001 0.000 0.000 -0.001
0.82 -0.250 T7.45 34,57 93.9 0.001 1.641 18.19 60,1
-0.1020 0.787 1.617 2.475 0.002 0.321 1.230 2.075
1.0393 0.hot 0.1055 0.0468 0.0264% 2.028 0.1955 0.0676 0.03uk4
0.4353 0.9hY -0.356 0.106 -0.033 0.752 -0.284 0.067 -0.018
0.0724 0,328 0.850 -0.hk1 0.183 0.646 0,894 -0.395 0.1k5
-0.0035 -0.012 0.385 0.73L -0.511 0.127 0.34h 0.793 -0.486
-0.0038 -0.,026 -0.006 0.505 0.570 -0.032 -0.022 0457 0.653
-0.0001 0.00L -0.,043 0.049 0.597 -0.018 -0,038 0.020 0.553
0.0004 0.006 -0.007 -0.050 0.141 0.002 ~0.005 -0.045 0.093
0.0002 0.00h 0.005 -0.015 -0.048 0,002 0.005 -0,01% ~0.048
. 0.0000 0.003 0.001 0.005 -0.030 0.002 0,00L | 0.006 ~0,021.
-0,0002 o} ‘0.000 0.000 0.001 0.002

.002 -0.001 0.005 -0.001
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Table I (continued)

0.8 -0.240 6.61 31.26 85.5 0.001 1.400 16.30 5h.9
-0.0971 0.697 1.hs0 2.232 0:003 0.278 1.099 1.871
1.0512 0.405 0.1055 0.0464 0.0261 2.0k 0.1985 0.0674 0.0341
0.4954 0.929 -0.394 0.131 -0.0L5 0.669 -0.313 0,083 -0.025
0,094k . 0.367 0.807 -0.475 0,221 0.721 0.866 -0.%29 0.177
-0.0044 -0.012 0.435 0.662 ~0.530 0.173 0.386 0.739 -0,51h
-0.0063 . -0.038 0.000 0.555 0.468 -0.043 -0.022 0.507 0.565
~0.000% ~0.001 ~0,061 0.072 0.640 -0.029 -0.05k4 V 0.037 10,603
0.0007. 0.007 ~0.012 -0.068 0.185 0.001 -0,006 ~0.06k4 0.128
0.0003 0.004 0.008 -0.027 -0.058 0.00k4 0.007 -0.021 -0.059
0.0000 0.003 0.002 0,006 -0,045 0.002 0,002 0.008 -0,034
-0.0002 0.002 -0.002 . 0.008 -0.003 0.001 0.000 . 0.003 0.002
0.78 -0.221 5.19 - 28.09 77.1 0.001 1.178 14,48 49.6
-0.0875 0.603 .1.279 1.970 0.002 0.236 0.962 1.659
1.0661 0.396 0.1042 0.0456 0.0256 1.984 0.2002 0.0665 0.0334
0.5615 0:912 -0.431 . 0.161 . -0.061 0.565 -0.342 0.101 -0,033
0.1222 0,407 0.755 -0.503 0.261 0.788 0.831 -0.461 | 0.211
-0.0054 -0,012 0.487 0.580 -0.536 0.234 0.433 0.675 ~0.533
-0.0101 -0.05k4 0.011 0.60k 0.352 -0.053 -0.020 0.557 0.467
-0,0009 ~0.003 -0.083 0,104 0.670 -0,0:8 -0.07k4 0.058 0,643
0.0012 0.011 -0.020 -0.084 0.2k4 ~0.001 -0.011 -0,08k4 0.176
0.0005 0.006 0.012 -0.0k2 -0.063 0.008 0.011 -0.032 -0.073
0.0000 0.002 0.005 0.008 -0.066 0.003 0,00k 0,010 -0.05k
-0.0002 0.002 -0.001 0.012 | -0,007 0.000 . 0.000 0.007 0.000
0.76 -0.196 4,99 24.86 68.9 0.001 0.973 12.7% hh,5
-0.0739 0.506 1.092 1.707 0.003 0.195 0.822 1.h35
1.0852 0.378 0.101% 0.0439 0.0248 1.853 0.2000 0.0645 0.0323
0.6361 0.890 -0.469 0.195 -0.081 0,446 -0.370 0.121 -0.0kk
0.1580 0,449 0.690 -0,523 0,300 . 0.836 0.787 -0.488 0.248
-0.0061 -0.009 0.538 0,486 -0.523 0.305 0.483 0.597 -0.5%0
-0.0159 -0.073 0.029 0.645 0.223 -0.057 -0.010 0.607 i 0.355
~0.0020 -0.009 -0.109 0.146 0.684 -0,072 -0.097 0.086 0.672
0.0020 0.016 -0.032 -0.106 0.317 -0.006 -0.021 -0.108 0.233
0.0010 0.009 0.018 -0,06h -0.058 0.013 0.017 -0.051 -0.084
0.0000 0.002 ' 0.010 0.009 -0,09k 0.005 0.007 0.013 -0,076
-0,0003 0.001 -0,001 0.019 . -0,020 0.000 0.000 0.011 - -0,00k4
0.7 -0.164 4,19 21.67 60.5 0.002 0.785 10.99 39.4
-0.0573 0,40k 0.899 1.410 0.003 0,154 0.675 1.207
1.1108 0.349 0.0963 0.0415 0.0233 1.639 0.1959 0.061% 0.0306
0.7230 ' 0.862 -0.507 0.233 -0.107 0.312 -0.3%6 0.1k -0,058
0.2054 . 0.496 0.609 -0.530 0,340 0.859 0.73% -0.509 . 0.288
-0.0061 0.001 0.587 0.372 -0.490 0.38 0.533 0.505 -0.531
-0.0252 -0.098 0.058 0.676 0.083 -0.059 0.001 0.651 0.225
-0.00k1 -0.020 -0.1h1 0.208 0.669 -0.107 -0.130 0.131 0.686
0.0036 0.022 -0.055 -0.123 . 0.397 -0.01k -0,036 -0.131 0.305
0.0019 0.01h 0.025 -0.102 -0.045 ) 0.023 o0.o2hk -0.077 -0.076
-0.0001 0.001 0.020 0,005 -0.133 0.011 0.01h 0.015 -0.109
-0.000% 0.000 0.001 o

.030 -0.037 -0.002 -0.001 0.021 -0.015
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Table I (continued)
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0.600

0.72 -0.129 3.38 " 18.63 52.4 0.003 9.23 3k.0
-0.0392 0.29% 0.700 1.12k 0.00k 0,112 0.518 0.955

1.1465 0.305 0.0876 0.0376 0.021% 1.323 0.1866 0.0561 0.0281

0.8289 0.830 -0.543 0.277 -0.1%0 0.159 -0.h21 0.170

0.271h4 T0.541 0.503 -0.519 0.372 0.847 0.668 -0.519

-0.0043 0.016 0.632 0.239 -0.419 0.478 0.585 0.39%

-0.0k0b -0.126 0.100 0.6%0 -0.070 -0.049 " 0.020 0.686,

-0.0087 -0.037 -0,180 0.280 0.617 -0.155 -0.172 " 0.191

- 0.0066 0.030 -0.089 -0.136 0.496° © -0.03%1 ~0.057 -0.161

0.0040 0.02h 0.032 -0.148 0.005 0.038 0.037 -0.119

-0.0003 0.001 0.036 0.000 . -0.171° 0.020 0.026 0.018

-0.0010 -0.003 0.003 0.0L5 -0,069 -0,003 -0.002 0.037

0.70 -0.099 2.58 15.54 Lh b 0.006 0.h47 7.67 28.7
-0.0238 0.191L 0.499 0.818 0.006 0.075 0.37C. 0.71%

1.199%6 0.24% 0.0740 0.0321 0.0184 1,005 0.1689 0.0482 0.0248

0.9648 0.790 =0.575 0.326 -0.187 0.017 -0.439 0.201 -0.C99

0.3675 0.583 0,368 -0.476 0.392 0.7% 0.585 -0.521 0.365

0.0010 0.034 0,660 0.084 -0.307 0.569 0.635 0.256 -0.433

-0.0663 -0.165 - 0.159 0.670 - =0.22h -0.017 0.060" 0.699 -0.070

-0.0185 ~0,060 -0,218 0.382 0.501 -0,209 -0.214 0.26h 0.610

0.0122 0.046 -0, 1hk .=0.126 0.591 -0.066 -0,097 -0.176 0.498

0.0090 0.041 0.035 -0.212 0.09L 0.053 0.046 -0.173 -0.006

-0.0006 -0.001 0.063 -0.020 -0.210 0.038 0.046 0.016 ~0.196

-0.002k -0,009 0.011 0.066 -0.121 -0,002 0.002 0.059 ~0.078
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is indlcated.immediately before the first subtable. The first column lists
respectlvely the value of x to which the subtable applies, the volume-
preserving normallzatlon constant x (a), and the 9 even a which define
the -saddle point. [The values of a used here were calculated with the same
computer code that was used in Ref. (8 but w1th a higher specified
accuracy; they are.therefore in some cases.sllghtly different from the
corresponding values tabulated in Ref, (§).] Columns 2 through 5 list the
properties of the L lowest symmetric normal modes (n =2, hh 6 and 8) and
columns 6 through 9 the L4 lowest asymmetricvmodes (n=1, 3, 5 and 7).

first entry in each of the last 8 columns gives the square of the frequency
in natural units of- E(O)/( ); the second and thlrd entrles in each
column give respectlvely the normal coordlnate stlffness constant in units
O 02. The flnal 9 entries of
each»column give the elements of the eigenvector that are not zero from

of E( ) and inertia constant in unlts of M

symmetry considerations.

As will be dlscussed later the stlffness constant: K measures the
.restorlng force against dlsplacements of the.drop's. center of mass, and in
a calculation with infinite accuracy both it and the corresponding frequency
w. would of course be identically zero. The small departures from zero of

1
the calculated values of Kl and @, listed in Table I provide some estimate

of the accuracy of the present calculations. For many of the entries in
Table I the last figure reported is uncertain by a few units, and in a
few cases where L figures are given the last 2 figures are uncertain.

The squares of the 6 lowest frequencies in natural liquid-drop units
are shown as functions of x in Fig. 1. (Short-dashed lines are used in this
and in the following figures to indicate results that are of questionable
accuracy.) The magnitudes of the 6 lowest frequencies in MeV are shown in
Fig. 2 for nuclei along Green's approximation to the line of beta stability
(g&). In converting from liquid-drop units to MeV the values of Myers and
Swiatecki have been used for the constants of the semiempirical mass
formula (6). '

The new mass formula of Myers and Swiatecki attempts to isolate that
portion of the mass associated exclusively with nuclear- shell structure
from the purely liquid-drop portion of the mass and as such is believed to

represent a fairly accurate determination of the constants of the semi-

9
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empirical mass formula. This mass formula takes into account also the
dependence of the surface energy on nuclear composition (i;e;-the{difference
N-Z between neutron and proton numbers) and the dependence of the Coulomb
energy on the. diffuseness of the charge distribution. As a result of the
inclusion of a composition dependence in the surface energy, the ‘fissility
parameter x is no longer proportional simply to ZZ/A but dependsjalso
explicitly ﬁpon N-Z. When the Myers-Swiateckil constants are used the

fissility parameter is given by

X =

2 | .
51.77 [1 19| ) ] |

Similarly the unit of frequency multiplied by # is

2
L

L ) N-z%1 2
| h[Ego)/(MOROZ)F; 232 [l _Ll_'79( A } ] Mev . (21)
* 2

~Since, the even-numbered modes_consist of a lineaf combination of the
even Legendre polynomials, they corresgondrto deviations from‘the.saddle
point that pfeserve inversion symmetry and reflection symmetry at a plane
through the origiﬁ perpendicular to the symmetry axis; conversel& the odd-
numbered modes destroy these symmetries. Each of the lower modes has a
direct physical interpretation, which we will now discuss in turn.

The lowest asymmetric mode (n = 1) is a pure center-of-mass shift
of the drop; its restoring force against displacements and its frequency are
‘consequently zero for all values of x.

The lowest symmetric mode'(n_= 2) is an unstable motion in the
"fission" direction, leading=either‘£o the division of the drop or to the
return of the drop to a pre-saddle-point configurétion. Since for this
mode the square of the frequency is negative (zero for x = 1) the frequency
itself is purely imaginary. The magnitude of @, (which we denote by ‘ab‘)
determines to a large extent the probability that a nucleus with a given
amount of energy concentrated in the fission direction will penetrate the
fission barfier. Small'valueé of {a%ﬁ'ﬁoﬁrespond to reiatively flat
barriers with émall penetrabilities Where?éilérge'values'corréspond to

relatively thih barriers with large penefrabiliﬁiés;"From Fig. 2 we see that
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0 05 .0

MuB-9713

Fig. 1. S'quarfcs))of the26 lowest frequencies in natural liquid-drop
units of Es /(M RO } as functions of the fissility parameter x.
The portions of tThe curves indicated by the short-dashed lines
are of questionable accuracy. The solid points give the loca-’
tions of ‘the known zeros (at x = x_.,.= 0.39), and at x = 0) of
the n = 3 curve., In addition the Tésults obtained for n = 4 and
n = 5 in the two-spheroid approximation (3) are shown for x < 0.5

by the dot-dashed lines.
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Fig. 2. Magnitudes of the 6 lowest frequencies in MeV for nuclei
along Green's approximation (21) to the line of beta stability
as functions of the fissility parameter x, The values used for
the constants of the semiempirical mass formula are those -of
Myers and Swiatecki (6). The portions of the curves indicated
by the short-dashed lines are of questlonable accuracy. The

- solid p01nt gives the location of the known zero (at x = Xpa =
0. 39h) of the n = 3 curve. In addition the results obtained
for n = 4 and n = 5 in the two-spheroid approximation (3) are

~shown for x < 0.5 by the dot-dashed lines.
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as a function of decreasing x the magnitude of ﬁd% initially increases from
0 at x = O to a local maximum of about 0.7 MeV at x = 0.82 and then decreases
to a local minimum of about 0.45 MeV at x ® 0,68, This is followed by a
very rapid increase in qhd%1 as X is deereased further; fer example at

x = 0.5 it is already almost 5 MeV. This implies that.the fission barrier
for a very: ‘light nucleus should be exceedingly penetrable and consequently
that the flSSlon cross section for such a nucleus should vary relatively
slowly with excitation energy in the neighborhood of the fission barrier.
Furthermore because of the large pfob'ability of fissioning at excitation
energies below the top of the barrier, experimentally determined barrier
heights for the lighter nuclei would be expeéted to be incorrect unless
proper account were taken of barrier penetration.

The lowest nonzero asymmetric mode (n = 3) is a mass-asymmetric
oscillation of the‘drop. It is seen from Fig. 2 that the frequency of this
mode decreases from about 2.5 MeV at x = 0 to about 1 MeV at x. = 0.7, In
addition we know from Ref. (8) that w32 remains positive as long as x is

greater than x = 0'39h’ but that QDSZ becomes negative and the mass-

BG
asymmetric mode is conseguently unstable for x < Xpa This known value of
x at which &gzﬁchanges sign is shown by a solid point in each of Figs. 1,
2 and 3. The second known zero of e at x = O is also indicated by a

3
s0lid point in Fig. 1. This result follows because at x = O the saddle-

point shape consists of two touching spheres and therefore has zero neck
radius. Since the 1nert1a constant for a flow of mass through a neck or an
aperture of zero radlus is ‘infinite (i,g&) the corresponding n = 3 mass-
asymmetric frequency is iero. |

For smaller values of x the freqnencieS'for n =4 and n =5 have been
previously estimated on the basislof a two-spheroid paraﬁetrization'of
fission shapes (i), and for x < 0.5 these estimates are also included in
Figs. 1 and 2; For small values of x the n = L4 mode, which is the lowest
stable symmetric mode, corresponds to an in-phase stretching and contraction
of the two halves of the saddle-point configuration.- Similarly the n = 5
distortién-asymmetrie mode cof?espends %o:én'out—bf4phése stretching and
contractlon . ) » ‘

We note in Flg l that apart from W e and w 2fthe'general behavior

1 72
of the' frequencies when plottedﬂln;natural liquid-drop units is to decrease
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initially with decreasing x and then to remain fairly independent of x. On
the. other hand, we see in Fig. 2 that when plotted fn MeV ﬁhe frequencies
increase rapidly for very low values of x. This follows ‘from dimensional
analysis: note the Ai in the denominator of Eq. (21) for the magnitude in
MeV of the natural liquid-drop unit of frequency.

We present in Fig. 3 the dependences on fissility parameter of *the
stiffness constants for the 6 lowest modes, and in Fig. -4 those of the
corresponding inertia constants. Recall that both the stiffness and inertia
Eonstaﬁts depend explicitly upon how the eigenvectors are normalized
[Eq. (17)]. As an illustration of this statement note in Fig. 4 that with
our choicg of normalization the inertia éohstant Ml correspondiné to center-
of-mass shifts does not remain constant at 1 but instead varies with x.

On the other hand, it is often worthwhile to examine the relative values
of the stiffnéss and inertia constants. For example at low values of x

the inertia cbnstant M. for motion in the fission direction is séen to be

much smaller than the ither normal-coordinate inertia constants. -Physically
‘this is because at low values of x the fission mode consists primarily of

-8 contraction or pinching in of the drop's neck and consequently displadeé
Véry little mass. This is to be contrasted with the erroneous but often-
made assumption that the fission mode is for all values of x a separation

of the centers of mass of the twé halves of the drop. As x approaches O

the amount of mass displaced in the fission mode approaches O and conse-

2
Information regarding the eigenvectors is presented in Figs. 5a and

quently w,“ approaches - = (see again the n = 2 curve in Fig. 1).

5b. ©Shown are the distortions from the saddle point associated with the 6
lowest normal modes for x = 0.9, 0.8 and 0.7. In,each case the saddle-point
shape is indicated by a dashed :line; the shapes obtained by displacing the
appropriate normal coordinate by +0.2 and by -0.2 are indicated'féspectively

by dark and by light solid lines.
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Fig. 3. The normal-coordinate stiffness constants for the 6 lowest
modes as functions of the fissility parameter x. The portions ~
of the curves indicated by the dashed lines are of questionable
accuracy. The location of the known zero (at x = Xpg = 0'39h)
of the n = 3 curve is shown by the solid point,

-
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Fig. 4. The normal-coordinate inertia constants for the 6 lowest
modes as' functions of the fissility parameter x. The portions
of the curves indicated by the dashed lines are of questionable
accuracy. Note that the scale is discontinuous: the n = 1
curve is plotted on a scale reduced by 10.
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IV. APPLICATIONS AND COMPAR;SON,WITH‘EXPERIMENTAL DATA

The present calculations are directly applicable to the discussion of
the motion of an idealiied fissioning nucleus near its saddle point. In
terms of the normal coordinates and their conjugate momenta the Hamiltonian
near the saddié point is simply a sunm of harmonic-oscillator Hamiltonians,

i.e.

H_-Ho% Voo

j-
=
1=

The stiffness constants K inertia constants Mn and normal coordinates Bn
for the 8 lowest normal modes have been tabulated in the preceding section.
The motion of the system near the saddle point consists of a super-
position of the motions of the independent harmonic oécillators.l We have
seen thét the two—and in some cases three —lowest oscillators have zero or
negative stiffness cOnstants and therefore correspond £0‘unbounded motions:
The n = 1 mode is.a shift of the drop's center of mass, and the n = 2 mode
represents unstable motion in the fission direction. For x < XBG = 0.391+
the n = 3 mass-asymmetric mode is also unstable, The remaining oscillators

have positive stiffness constants and therefore correspond to bounded

motions.
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A. Transition-State Energy Levels of Collective Oscillations

The frequencies of the stable oscillétors afe relevant as regards the
spectfum of Quantum states of a nucleus in the vicinity of ité*saddle'ﬁoint
(23), i.e. at its transifion state. Reference (24) contains an early dis- ‘
cussion“of the concept of é transition state, where it is employed in con-
nection Qith the rates of molecular reactions. In general the transition-
state method consists of dividing a system of N degrees of freedom intc 2
systems at its saddle point: a system having a single degree of freedom |
that represents unstable motioen (proceeding toward molecular reaction,
fission etc., depending upon the physical situation) and a second system
associated with the remaining N-l'degrees of freedom. '(The'second system
can be obtained by assigning in the original system a fixed value to the
normal coordinate representing unstable motion, e.g. in our case by
setting Bz‘equal to 0.). The total wave function for the original system is
the product of the wave function for the first system in 1 degree of
freedom. and the wave function for the second system in the remaining N-1
degrees of freedom. It is therefore of interest to discuss the various
properties of the feduced'system‘of N-1 degrees of freedom. Its quantum
energy levels are of particular interest; for the reduced system they
represent stationary states, but of course are decaying states of the
original system, .

The transition-state spectrum of a nucleus of course contains many
levels with which we are not concerned—single-particle excitations, non-
axially symmetric collective vibrations and rotational states. For the
discussion of these levels a model with more degrees of freedom than are
considered here would be required. However, axially symmetric collective
vibrations at the transition state EQEEQ be discussed in terms of the present
calculations. For example from Fig, 2 we see that for a typical heévy
nucleus the energy of the n = 3 mass-asymmetric oscillations would be
expected to be slightly greater than 1 MeV. As more experimental informa-
tion about trans;tion—state.spectra ﬁecomes available it should be possible
to identify among the low-lying levels of various nuclei their mass-
asymmetric modes and associated rotational bands, and to compare the

experimental values of hw3 with the predictions of the liquid-drop model.
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Various aspecﬁs of transition-state sﬁéctra, including thelr experi-
mental determination through measurements of fragment angular distributions,
have recently been discussed in Refs. (5) and (25). In Ref. (5) some
estimates of the'liquid -drop mass -asymmetric and bending fréquencies are
also made on the basis of prescrlbed deviations from approximate spher01dal'
saddle-p01nt shapes, their estimates for w, are somewhat larger than the

3

results of our calculations.

B. Probability Distributions for the Saddle-Point States of Motioh

In addition to the energies of its quantum states, it is desirable
to know at the moment a nucleus passes - through the vicinity of its saddle
innt (i.e. at the moment when the fission coordinate 62 is zero) the -
probabilities that the bounded normal coordinates are displaced from their.
equilibrium values by given amounts and that their conjugate momenta Have
specified Qalues. |

By making the standard assumption of the transition-state method
(24,26) —that statistical equilibrium is established by the time the system
arrives in the vicinity of the saddle point—one can derive extremely
simple expressions for the gquantal probabilities that the normal coordinates
and their conjugate momenta have given values. The resulting expressions

are Gaussian distributions in the coordinates and.momenta_(i,gzjgg):

f—

n

P(8,) = (xC) 72 exn(-8 °/c )

and

N~

P(p,) = (xC_ ")~ eXp(-pnz/Cn'), x

n

where the temperature-dependent constants Cn and Cn' are given explicitly by

Ay Hay 20/K -, 0 >> AW
n n n n
Cn_ = R—"‘" coth —2—®——' — ) - ‘
n rw /K , o 8 <K rw
n’ ' n o n
and

AW 2M 0 s 0 >> Hw
¢’ =M ir’lw coth [ =2 n n

n 20

M_H® , 8 << fw
n n n
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The nuclear temperature ® is a function of the internal nuclear excitation
energy at the saddle pointi Note that fér7high temperdtures the above
gquantal expressions reduce to the classical results, whereas in the low-
temperature limit they.reduce to the distributions for the quantal zero-
point motions of harmonic oscillators. ) )
By tracing out dynamically a drop's division and the separation of its -
fragments to infiﬁity one could convert the above probability distributions
for the initial states of motion near the saddle point .into probability dis-
tributions for the final states of motion of the fragments at infinity,
These correspond to such observable fission-fragment properties.as their
division of mass, their translational kinetic energies and their excitation
energies. Since the stiffness and inertia constants and the frequencies
have been calculated in the previous sections, probability distributions
for the initial states of motionbare completely known., This would make it
poséible to compare directly ﬁhe measured and predicted probability distri-
butions without the use of any adjustable parameters, provided only that
the appropriate dynamical calculations connecting the initial and final
states of motion-were performed, - Such an approach has been carried through
with moderate success for the fission of nuclei lighter than about radium,
where saddle;point shapes are sufficiently dumbbell-like to permit the ﬂ
neglect of the dynamical descent from the saddle point to scission (3), but
for heévier elements the appropriate dynamical calculations remain an open

guestion.
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C. Penetration of the Fission Barrier

Whereas for the bounded oscillations the calculated frequencies -are

relevént as regards the transition-state'spectrum and the probability dis-
tributions for the initial states of motion, for the unstable fission mode-
the (purely imaginary) frequency a% determines the degree of penetration of
the barrier agsinst fission. Because of its connection with barrier pene-

tration, ., can be determined experimentally from measurements of fission

5
probabilities. Several different types of such measurements can in fact be
used, e.g. fission widths, spontaneous-fission lifetimes and the variation
of fission cross sectidns withbexcitation energy. .

The basic formula for the fission width I'_, follows directly from the

£
transition-state theory of reaction rates (11,29):
. Y
* 'Nf(E') ' «
P(E") = =—5— I )
: 2np(E-)

where p(E*) is the density of levels in the compound nucleus at an excitation
energyLE* (relative to the ground-state energy, which includes the .sum .of

all relevant zero-point energies of the ground-state configﬁration) and
Nf(E*) is the effective number‘of open channels at the saddle-point.configura—
tion. (It is understood in this discussion. that the levels are to have the .
appropriate quantum numbers.) The effective number of channels Nf(ﬁ*) is the
sum over the individual levels in the transition-state spectrum of the
probabilitiés_for penetrating the fission barrier when the specific levels

are excited, i.,e.

N(E) = XlL PAE X)) (23)
where Xi is the energy of the ith quantum state at the.saddle point for the
nonfission degrees of freedom (relative to the energy of the lowest state,
which includes the sum of the relevant zero-point energies at the saddle
point). .
The exact determination of the penetrability Pi(E*,Xi) would in
general involve the solution of a nonseparable Schrddinger equation in many

dimensions. However, if - the coordinate for motion in the fission direction
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were not coupled with the remaining coordihafes (i,e,'if the<Hamiltohian'
could be written as the sum of‘a ﬁefm that dépends only upon the'fiséion
coordinate and a second term that depends'dnly'upon the nohfiSsion'cobrdi-
nates) the problem would separate into a one-dimensional barrier-penetration
"problem in the fission degree of freedom and into a second prbblem iﬁvolving
the remaining (nonfission) degrees of freedom. TheAsolution of the first
problem would determine the penetrability, and the sdluﬁion of the second
the.energies Xi of the guantum stateé,vwhich would be identical étvthe
saddle point and at the ground state by virtue of their (assumed) indepen-
dence of the fissibn coordinate. In particﬁlar the éum'of the zero-point
energies associafed with the nonfission degreés of freedom would not change
from the ground state to the saddle point. The diagfam ih,Fig. 6'illustrates
these and other energies that we'shall discuss. ”

In order for the fission coordinate to be regarded as uncoupled for
the purpose of calculating penetrabilifies, it is necessary that iﬁ be
effectively uncoupied.ih the region from the ground_state to the'position
where the system emérges after having péssed through the fission barrier.
When x is clbse to 1 this is in factAépproximately the case. However, for
arbitrary values of x the fiésion degree of freedom is ggg_uncoﬁpled from
the rest: we have seen for example that the frequencies and eigenvectors of
the normal modes at the saddle point are in genéral significantly different
from those at the ground state’ '

Inherent in all existing discussions of fission-barrier penetration is
the implied assumption that the fission degree of freedom is uncoupled from
the other degrees of freedom. -With the above reservations in mind we will
also make this assumption here. It should be stressed, however, that the
relationship between the solution of the. resulting one-dimensional problem
and an exact solution of the original multidimensional problem is unknown
and represents an important question that should be thoroughly investigated.

For a given one-dimensional potential-energy fission barrier and also
a given dependence of the effective mass on deformation, the penétrability
Pi(E*’Xi) is determined by solving Schrddinger's equation in one dimension.
For certain simple barrier shapes and effective masses, closed forms for the
penetrability can be obtained either exactly or by use of the WKB approxima-

tion. For example if it is assumed that the fission barrier is everywhere
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An illustration of the ‘relevant energles for a system in which the
flSSlon coordlnate is uncoupled from the nonf1581on coordlnates
The open circle denotes the ground -state energy, whlch is made up.
of the sum of all the relevant zero-p01nt energies of the ground—
state conflguratlon, i.e. Zhwg for the flss10n degree of freedom

and the sum Y f-of the zero-p01nt energles for the nonf1331on

’degrees of freedom The ground- state energy serves as the reference

line from Whlch the total ex01tatlon energy E brought into the
nucleus is measured. However the total energy relative to the

*
mlnlmum of the potentlal energy curve is obtalned by addlng to E

the zero-point energy 2hwg in the flss1on degree of freedom To

obtain the total energy ‘E in the fission degree of freedom Whlch

1s the quantlty relevant for barrler penetratlon, one must subtract :
from the sum E + 2hw the ex01tatlon energy X in the nonfission
degrees of freedom For a chosen point along the fission direction
the energy E is shown d1v1ded 1nto the potentlal energy V at that {
p01nt and the klnetlc energy T 1n the fission degree of freedom

The potentlal energy f1551on barrler of height B is 1deallzed here

as cublc in shape For an uncoupled system the sum Z s of the

zero-p01nt energles for the nonf1ss1on degrees of freedom does not

‘A’change durlng the process ‘and consequently need not be con31dered
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parabolic and that the effective mass is constant the penetrability is given

exactly by (1,29,30)

*
Pi(E ,xi) = 1 _ s (24a)
1 + exply(E)]
whefe
2n(B - E
r(e) - 2B =E) : o (2)
the energy € isldefined by
€ = \’ﬁwzl )

and we will use this notation for the remainder of our discuseion (A

varlety of symbols has been used to denote thls same quantlty, including

nw, , B, T
curv’ 1mag b f
sulting Flg 6 ‘the combination B < E represents the energy deficit in' the

‘and s1mply w.) As can be qulckly verified by con-

fission degree of freedom relatlve to the top of the barrier and is equal to
B + Xi - ?ha%s - E ; In many cases the truevshape of the fission barrier is
approximately parabolic near its maximum, and for such cases Egs. (24)
should be fairly accurate as long as E is not significantly less than B. On
the othef hand, when E is very small, as in spontaneeus fissien, Eq. (2kb)
would be expected to be somewhat in error.

For the important case 1n which the low-lying transition- state levels
are widely separated and also E + Ehwgs < B the probabilities for penetra-
tion through the higher levels are negligible in comparison with the lowest
" level that has the appropriate quantum numbers, and the sum in (23) reduces
to a single term. Thus for the case of fission through a parabolic barrier

with widely separated transition-state levels Eq. (22) becomes

* 1
r.(E) % ; - " ;o (25)
2n(B + X - s, - E )

L

*
2np(E ) (1 + exp
€

where XL is the energy of the lowest quantum state at the saddle point for

the nonfission degrees of freedom that has the appropriate quantum numbers.
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* :
When E  + %ﬁwgs is somewhat smaller than B + X_. the exponential term is

L
large in comparison with unity, and (25) assumes the form

2n(B + X - 3K E*)

-2n(B + - 2o - A

- % €Xp L = . (26)
2np(E ) €

*
Ff(E )~

However, when the excitation energy is very small, say zero as in
spontaneous fission, Eq. (26) can be improved in two ways. First of all the
transition-state method, which is based upon statistical arguments, cannot
be expected to produce the exact fission width for very small excitation
energies. However, when the excitation energy is O“we know for an uncoupled
system the exact WKB result (39): the spontaneous fission rate Ff(O)/h is
equal to the product of the penetrability and the number of times per unit
time wés/(ZK) that the barrier is assaulted. Thus the width for spontaneous
fission through a parabolic barrier is approximately
T -2n(B - Bro_ )

SR

s gs
rf(o) -

25 (27)

We have set XL equal to O gince for spontaneous fission in an uncoupled
system the lowest state at the saddle point has the appropriate quantum
numbers; the total energy E in the fission degree of freedom is consequently
. |
We note that the result (26) of the transition-state method would

formally include the case of spontaneous fission provided that for zero
excitation energy the average level spacing D(0) = 1/p(0) be interpreted as
the distance ﬁbgs between the levels of the fission degree of freedom
rather than the average distance between the levels in all the degrees of
freedom. For cases in which Eq. (26) is applicable this interpretation in
fact represents a good approximation for D(0). Recall that in the derivation
of Eq. (26) it was assumed that the levels are widely separated at the
saddle point (and consequently for -an uncoupled system also at the ground
state). In these cases the ground-state energies for the nonfission degrees
of freedom are comparable with or larger than ﬁbgs and do not seriously
alter the average value of D(0).

‘ If the fission coordinate were truly uncoupled from the remaining

coordinates wgs would be simply the frequency -of the ground—state oscilla~
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tions in the fission degree of freedom, This is of course in practice not
the case, and as pointed out above the true detérmination‘of the fission |
rate would in general involve a more detailed analysis. However;.to the
extent that the system can be regarded as approximately uncoupled and Eq.
(27) can be regarded as approximately applicabie, the frequency of the
ground-state second-order spherical-harmonic (beta) vibrations can be used
as a rough: estimate of wgs. In the liquid-drop model the fregquency of

these oscillations is given exactly for all values of x by

1

8 EREERGOY N |
w =[§(1 = x)] [ES /(MORO )} . - (28)

For typical heavy nuclei of interest in fission the values of ﬁbgs obtained
from this formula are slightly greater than 1 MeV.

For the benefit of those making a comparison with other'sources we
would like to point out that the pre-exponential factor of Eq. (27) differs
from the corresponding factor of at least three other writers. The result
of Ref. (;L) includes an additional factor of 5 which is supposed to repre-
sent "the degree of degeneracy of the oscillation leading to instability."
However, of the 5 coordinates corresponding to second-order spherical-
harmonic distortions, 3 repré%ent rotational degrees of freedom (say the 3
Euler angles) and 1 represents a non-axially symmetric (gamma) vibration.
This leaves only 1 degree of freedom (a beta vibration) for motion in a
direction leading toward instability, and the reason for having a factor of
5 in the formula is not clear to us. In Ref. (k) the frequency of barrier
assaults is inadvertently set equal tO'angS rather than wgs/(zn). Finally
in Ref. (31) the pre-exponential factor of Eq. (26) is determined experi-

* - .
mentally when E  1is equal to B + X - %ﬁwgs and is then assumed to represent

L

also the pre-exponential factor for the case of spontaneous fission in -
v * *

Eq. (27). Because of the neglect of the variation of p(E ) with E their

7 S

result is about 10 | times as large as ours.:

In addition to differences in the pre-exponential factor, Eq. (27)
differs from the corresponding formula of most other writers in that it
includes explicitly the Zero-point energy'%hwgs in the fission degree of
freedom. The importance of taking this energy into account has been
stressed-in Ref. (;é); However, in fact other spontaneous-fission-rate

formulae implicitly includé the zero-point energy since the barrier heights
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in these formulae are defined experimentally and ccnsequentlyvrelatiVe to
the zero-point energy rather than relative to the local minimum of the’
potential-energy curve. '

The second improvement that can be made in Eq. (26)" stems from the -
departure of the fission barrier from a parabola‘at very low energies,
Although the true shape of the barriér is not known, there are nevertheless
two firm guidelines that one should follow when choosing a shape for it:
the barrier should be parabolic near'its'topj‘ and it should have a local
 minimum corresponding to the ground-state equilibrium configuration. The
cubic shape is the simplest form which satisfies these two physical
requirements, and we therefore determine the pehetrability for spontaneous
fission on the basis of a cubic barrier whose height is B and whose second
derivative at its top is the negative quantity K2 The effective mass Mé
is assumed to be deformation independent. It should be emphasized that
there is no evidence that the true shape of the fission barrier actually is
cubic (except when x is close to 1, where the leading terms in an expansion
of the potential énergy give rise to a cubic barrier), but for spontaﬁeous
fission the asaumption that it is cubic is intrinsically more reasonable
than the assumption that it is parabélic.

By use of the WKB approximation‘one can write the penetrability of a
cubic barrier in the form of Eq. (24a), where y(E) is expressed in terms of
eleméntary transcendentai functions and the complete elliptic‘integrals of
the first and second kinds, ~This is done in Appendix B for arbitrary values
of the total cnergy E in the fission degree of fréedom‘from 0 to B. From a
consideration of the two‘limitingiforms of this equation for energies near
the bottom and near the top of the barrier it is possible to arrive at a
simple but yet very accurate expre551on for Y(E ) that is valid for all

values of E between O and B, viz.

e Ep el - @

This formula reproduces>correctly the exact values and first derivatives at
both E = O and E = B; ' for arbitrary values'of E between O and B the results
calculated from this formula for the quantity Y/("‘—% of Fig. 7 differ from

exact WKB 1esultQ by less than O, 002 Therefore unless extreme accuracy is
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required Eq. (29) can be used rather than the more complicated exact result
given in Appendix B, Graphs of Y(E) for both a parabolic and a cubic
barrier are presented in Fig. 7. We also indicate by a dashed line the
result that would be obtained for a cubic barrier by neglecting the
logarithmic term in Eq. (29); for values of (E/B) < 0.3 this is an improve-
ment over the result for a parabolic barrier but for larger values of E/B
it is poorer. . ‘

For spontaneous fission‘through a cubic barrier the fission width

] . (30)

If an even simpler expression is desired the logarithmic term can be

can therefore be written approximately as

r(o)mmgséx N ER —'.1- x| Ly, ln> B
£ 2n Py 7 5e *gs T3] e |

neglected; this produces a formula that‘represents an ilmprovement over the
corresponding_result for a parabolic barrier [Eq.»(27)] and yet differs
from it only by the replacement of the 2x in the exponential by 36/5.

Since for a given nucleus tne quantity‘€ characterizes the‘curvature
of the barrier at its maxinum value (and in addition the associated '
effective mass) it is a single number, completely independent of the
ex01tatlon energy E . (Thls 1s of course .provided that the barrier itself 1s.
not affected by a change in E. ) The use of Eq. (30) to estimate the value
of this number from a measured spontaneous f15$1on lifetime is perhaps more
reasonable than the customary procedure of dedu01ng ¢ from a formula based
on a. parabollc barrler [Eq. (27)] and then remarklng that its value for
spontaneous fission is expected to be smaller than its value for induced
fission at energies near the top of the barrier,

To summarlze We have taken as a point of departure the standard
formula for the flss1on Wldth that follows from the transition-state theory
of reaction rates, and have tried to develop it systematically for a system
in which the fission degree of freedom is uncoupled from the remaining
(nonfission) degrees of freedom. For such a system we specialized to the
case of widely separated levels for the nonfission degrees of freedom and

gave the results for I for two . types of barriers: the usual parabolic

f
barrler and a cubic barrler Wthh is the more reasonable one espec1ally

for spontaneous fission. We would llke to stress again, however that in
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T. The penetrability exponent y divided by (ZﬁB/e) as a func-
tion of the total energy E in the fission degree of freedom
divided by B. The solid straight line shows the result for a
parabolic barrier [Eq. (24b)]. The result for a cubic barrier
as calculated from the exact equations (32) of Appendix B is
given by the solid curved line; the simple approximate equation

"(29) yields a result that cannot be distinguished on a graph of

this scale from the one shown. The dashed straight line shows
the approximate result for a cubic barrier obtained by neglect-
ing the logarithmic term in Eq. (29).
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general the fission coordinate is not uncoupled from the nonfission coordi-
nates, and consequently the solution of the coupled multidimehsional barrier-
penetration problem represents a question of central importance in fission
theory and should be studied in detail.

The above formalism for f1551on widths has been used to deduce values
of € for a variety of nuclei from the available experlmental data on fission
probabilities. (Appropriate analyses made in conjunction with the original
experiments are reproduced verbatim. This includes any corrections for the
effects of finite counter resolution; except where originally made the data
have not been corrected for such effecté,) The assumption 1s made in each
case that the transition-state levels are Qidely separated so that only the
lowest level conﬁributes, although'inepractice this is not alwéys a good
assumption. The deduced values‘of_e = lhmz‘ are converted from MeV to
natural liquid-drop units by use of Eq. (21), and the fissility parameters
corresponding to ‘the various nuclei are determined from Eq; (20). The
experimental values obtained in this way are compared in Fig. 8 with the

calculated dependenee:of 1& on X.

.| |
We shall now summarize the various types of experimental measurements
used to accumulate the data of Fig. 8. For a nucleus whose fission barrier
is larger thah'its neutron binding energy, € can be determined directly from
Eq. (25) by'measuring the average fission width Ff(E*) and the average level
spacing D(E*) l/p(E ) ‘at slow-neutron energies and determlnlng the com-
bination ‘B + XL - Eﬂggs from an analysis of the fission cross-section
curve at higher neutron energies (32,33).
From measured values for the spontaneous-fission lifetime [equal to
#i divided by Pf(O)] and the combination {B - %ﬁwés the quantity € can be
Hfound from Eq. (30), provided that an independent estimate of hmgs is
available [see for example Eg. (28)]. We have used the data of Refs. (31)
and (33).
- The measurement of the slope of the fission cross-section curve at
E* =B + XL - %ﬁbg: can be used for a nucleus whose barrier height is less
than or not much larger than its neutron blndlng energy so that neutron
em;551on_can be neglected, The . flss10n cross section o (E ) can be written

as

Gf(E*>f=_Gr(E*) Ff(E*)/Ft(E¥)i.‘ , (31)
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where o, (E ) is the total 1"eeu,t:Lon cross sectlon and‘F'(E*) isthe total
decay w1dth which consists principally of the ‘width fdr clectremagneuic
de-excitation. If the reasonable assumptlon is made *hat T (E ) varies more
rapidly with the ex01uat10n energy E than either a, (E ) or F (E ) and that
the exponentlal term in F (E ‘ varles more raplduv than *he leveW density

p(E ), then it follows from Eqs (25) and (3L\ that

L plat
dog(B + X - 30 ) 0
dE 2 €
plat | i ¥ : . ‘ s
where of is the value of cf(b~) at the plateau corresponding to fission

through the lowest level. This method is used to analyze data both for
neutron-induced fission (34,35) and for the (d,pf) reaction (36).

For nuclei in which fission cross-section measurements have been made
at energies somewhat below the top of the fission barrier, es for example in
photofission (§Z), € can be deduced by measuring the logarithmic slope of
the fission cross-section curve. - The same arguments as above applied te

(26) and (31) lead to

d log f . o log e

€ ’ "L TTTgs

*
-dE

We consider finally the case of a nucleus whose fission barrier is
much larger than its neutron binding energy. For excit ation energies com-
parable to the barrler height the total decay width I (E ) is then prlmdr¢hy
the width P (L ) for the em1551on of neutrons, Therefore provided o (E )
is known, the ratio Iy (E )/P (E ) can be determined from Eq. (31) by
meas&rlng the flSSlon cross secblon o (E ). The dependence of T (E /Fn(E%)
on B can then be analyzed to yield an estimate of €, This procedure is
followed in Refs. (38) and (39), where & conventional expression is used for
Fn(E*) and where Ff(E*) is calculated according to Egs. (22), (23) and (24);
the transition-state energy levels X, are assumed to be distributed according
to a Fermi-gas level-density formula.

In connection with our above discussion it should be pointed out that
what is customarily determined experimentally from fission cross-section

measurements and referred to as the barrier height is not the ftrue height of
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A comparison of the calculated and experimental values of the
maghitudé of the purely imaginary frequency wz that isvreleyant
for penetration of the fission barrier, as a function of the
fissility parameter x. 1In converting the experimental values of
€ = |ﬁw | from MeV to the natural liquid-drop units of '
[E(O)/(MORO )] the values of Myers and Swiatecki (6) have been
used for the constants of the semlemplrlcal mass formula [see
(20) and (21)]. DNo arbitrary parameters have been adjusted;

the calculated curve has not been normalized to the experimental
points in any way. The portion of the calculated curve indicated
by the dashed line is of questionable accuracy. The data are as
follows (arrows pointing downward denote upper limits):

O Leonard and Odegaarden (ig), slow-neutron fission widths;

0O Bowman and Hoff (ii), slow-neutron fission widths;

V' Bowman and Hoff (ii), spontaneous-fission lifetimes;

A Viola and Wilkins (ii), spontaneous-fission lifetimes;

@® Ileonard (34), slopes of g, Vs B at E* =B+ X - %ﬁmgs for
neutron~induced fission; ‘

V¥ Henkel (35), slopes of g VS B at E* =B+ X, - %ﬁwés for
neutron-induced fission;

® Northrop et al. (36), slopes of o, vs o at E* =B+ X - é‘mgs
for (d,pf) reactions; _ '

A Katz et al. (31), slopes of log o, vs E* at E* somewhat less

f

than B + X - %hwés for photofission;

. Tall error bars with no symbol, Khodai-Jbopari (32), analysis of

*
-0, vs E for proton- and alpha-induced fission.

t
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the barrier. Insofar as the assumption that the fission coordinate is
uncoupled from the other coordinates is valid the experimentally determined
quantity is the barrier height B plus the energy XL of the lowest state at
the saddle point for the nonfission degrees of freedom having the appropriate
guantum numbers minus the zero-point energy %ﬁwgé in the fission degree of
freedom, 1i.e. the combination B + XL - %hmgs that appears in our formulae.
(In the general case of a coupled system the experimentally determined
quantity is this combination minus the sum of the zero-point energies in the
nonfission degrees of freedom at the ground state plus theirlsum at the
saddle point.) 1In addition we should“mention that the combination

B + XL - 2hb is also very frequently referred to 'as the fission "threshold,
However, we prefer to use thls word only in its strict meaning to denote

the minimum amount of energy that must be supplled for a reaction to be
possible energetically. Thus for the'normal\fiseion process the threshold
is a negative quantity whose magnltude equals the energy release,

It should be emphas1zed that once a particular set of constants has
been selected for the semiempirical mass formula [in our case the set of
Myers and Swiatecki (6)1 there remain no adjustable parameters in the
analysis. Tnus fhe calcﬁiatedﬁcurve of Fig. 8 has not been normalized to
the experimental data in any wey. ‘ |

The uncertainties .in most of the experimental values of € are very
large, and the data are unfortunatel& not sufficiently accurate to provide
a sensitive test of the theofyﬁj For e%ample it is seen that for a given
nueleus the values of € obtained;by different methods (and in some cases
even by the same method) differ nidely from one another., At least one
regularlty can nevertheless be observed in the data: the values obtained
from the measured spontaneous—f1ss1on 11fet1mes are approximately the same
for all nucle1 . L T , R

) The general 1mpress1on one gets from the comparison is that the
theory does give the correct order of magnitude of €. It is hoped that
the accuracy of future experimental determinations will be increased to the
point where this can be confirmed and the details of the theory can be
tested. In particular it would be of inferest to determine € experimentally

for some very light nuclei, for which, as discussed in Subsection III.B,

this quantity is predicted to be exceptionally large.

13

o



-59-  UCRL-16786

V. SUMMARY AND CONCLUSION

We_haQe attempted the first step in a systématié discuésion‘of tﬁe
dynamics of the fission process—the study of the normal modes Qf_bscilla?v
tion ofvén idealized uniformly éharged drop about itsﬂsaddle-point shape;
For axiélly symmetric drops we have presented the fréquehgiés and eigen-
vectors of the normal modes as functions”of the fissility parametér for'the
range 0.7 < x < 1.0 and alsé, with qﬁeétioﬁable accuraéy, the frequencies
of the symmetric modes for 0.3 < x < 0.7.

We have indicated how the information regarding the normal modes can
be used to discuss (1) certain aspects of the transition-state spectrum,
(2) the probability of finding the system in a given state of motion when
it is in the neighborhood of the saddle point and (3) the penetration of
the fission barrier. Comparisons between the theory and experimental data
were possible only as regards the third item. It was seen that the calcu-
lations are capable of reproducing the correct order of magnitude of the
frequency @, for motion in the fission direction but that the data are not
sufficiently accurate to permit a more definitive conclusion at this time.

There is need for more experimental work on both the first and the
third items. In particular the identities and energies of the saddle-point
quantum states should be determinea, and € = |ﬁb2| should be measured with
greatly increased precision and over a wider range of the fissility param-
eter , egpecially for very small values of x.

Further theoretical work on all three items should be performed. In
connection with the first, the energies of the non-axially symmetric
collective vibrations, rotational states and single-particle excitations
should be worked out. In connection with the third, barrier penetration
for a multidimensional system in which the fission coordinate is not
assumed uncoupled from the nonfission coordinates should be studied, But
to us the major outstanding theoretical problem is related to the second
item; If our basic understanding of the fission process is to progress
theoretically, it 1s now necessary to perform for the heavier elements
the dynamical calculations that provide the relationship between the initial
states of motion near the saddle point and the final states of motion of
the fragments at infinity. This would transform the predicted probability

distributions for the initial states of motion into probability distributions
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for such observable properties of fission fragments as their division of
mass .tranelational kinetic energies‘and excitation energies A direct
comparlson w1thout the use of adJustable parameters could then be made with
the large amount of ex1st1ng data on the flSSlon of elements ‘heavier than
radium, and 1n this way the appllcablllty of the llquld -drop model for dis-

cussing ‘fission could be more reliably ascertained.
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APPENDICES

A. The Convergence of the Calculations as a Function of L and N

The accuracy of the calculated liquid-drop:frequencies_and eigen-
vectors is limited by two factors: (1) the accuracy with which the stiff-
ness and inertia matrices can be calculated and (2) how well the solution
of the reduced matrix problem [Eq. (15)] in N dimensions represents the
solution of the complete infinite-~dimensional problem. We will discuss
each of -these factors in turn. . .

The accuracy of K and M is limited by the precision with which saddle-
point shapes are known., As discussed in Ref. (8) saddle-point shapes are
determined in: a Legendre-polynomial parametrization .very accurately for the
range 0.7 < x < 1.0, moderately accurately for 0.5 < x <.0.7, and with
uncertain accuracy, at least in some respects, for 0.3 < x< 0.5. Thus the
specification of the saddle-point shapes for x < 0.7 introduces an inherent
limitation on the accuracy of K and M and consequently of the frequencies
and eigenvectors for this range of x.

. Since K is the matrix .of second partial derivetives of, the potential
energy evaluated at .the saddle point -its accuracy is wvestricted only. by the
precision with which second derivatives can be determined numerically (see
again the discussion in Subsection II.B.2). On the other hand, the accuracy
of M is intrinsically limited by how well the velocity potential ¢ can be
approximated by a finite number L of terms in an expansion such as (9). For
x = 0.7 a study was made of the convergence as a function of L of the
calculated inertia matrix and of the final calculated frequencies, eigen-
vectors and normal-coordinate stiffness and inertia constants. The results
for the freguencies are shown in Fig, 9. It is observed that in general
the symmetric frequencies converge more rapidly than the asymmetric ones
and that the lower frequencies converge more rapidly than the higher ones.
One can conclude from Fig., 9 that for a given wn the calculations havé con-
verged sufficiently at a value of L that is somewhat larger than n. Analo-
gous results were obtained for the convergence of the other quantities with
L but will not be given here,

A similar study was made for x = 0.7 cf how well the solution of the
reduced matrix problem [Eq. {15)] in a small number of dimensions can be

expected to represent the solution of the complete infinite-dimensional



-63- UCRL~-16786

problem. Equation (15) was reduced to a smaller number of dimensions by
systematically eliminating rows and columns of K and M; the frequencies,
eigenvectors and normal-coordinate stiffness and inertia constants were
then calculated from the resulting reduced equations. -Figure 10 contains
the results for the frequencies. As would be‘expected from the variational
principle the squares of the frequenciés essentially decrease monotonically
with increasing N. In addition we observe that the lower frequencies
converge more rapidly than the higher ones and that the 10 lowest freguencies
appear to have converged sufficiently for N = 18. Analogous results were
obtained for the convergence of the other quantities with N but will not

be given here. )

The cohvergence of the calculations with respect to both L and N
improves progressively as x is increased from 0.7 to 1.0. We can therefore
conclude that for the range 0.7 < x < 1,0, where the saddle-point shapes are
accurately determined "in é Legendre-polynomial parametrization, the calcu-
lations converge as well as dr better than the ones discussed here for
x = 0,7. Hence the détailed results for the 8 lowest modes presented in
Table I (and consequently the results represented by the solid lines in
Figs. 1-4 and 8 and the results of Figs. 5a and 5b) are essentially free
of errors arising from the lack of convergence in either L or N. '

On the other hand, for x < 0.7 there are several sources of error,
and for this region we make no guarantee of the accuracy of the results
reported for the symmetric'frequencies. However, we see in Figs. 1 and 2
that for the range 0.3 < x < 0.5 there is reasonable agreement between the
present résults for a)l+ and those‘calcuiated on the basis of a two-spheroid
parametrization of fission shapes. This.leads one to believe that the
present calculations may be moderately accurate with regard to the symmetfic

frequencies even for small values of x.
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Fig. 9. The convergence of the calculated magnitudes of the frequen-
cies as a function of L for x = 0.7. The quantity L gives the
number of terms retained in the expansion of the velocity
potential ¢ [Eq. (9)].
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Fig. 10. The convergence of the calculated magnitudes of the frequen-
cies as a function of N for x = 0.7. The dimensions of the deter-
minantal equations solved for the symmetric fregquencies and for.
the asymmetric frequencies are each N/2. The dashed line indicates
that the sign of 2 has changed; @ 2 is negative for N > 6
whereas it is posi%ive for N‘S_h. %hus the dependence of w.“ on
N is qualitatively the same as the dependences on N of the remain-
ing squares of the frequencies.
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B. The Penetrability of a Cubic Barrier

.We consider a one-dimensional cubic potential-energy barrier V(B)
defined relative to its local minimum, which is located at P = O, The height
of the barrier is taken as B and the second derivative at its top as the

negative quantity K_; this implies definite values for the coefficients of

o
the quadratic and cubic terms, The equation for our barrier is therefore

v(e) = ¥ [5,18% - U1K,/ (6m)1%8

The deformation coordinate B is related to the normal coordinate BZ of the

text, which is defined relative to the saddle point, by

where N
2

B = (6B/‘K2‘)

is the value of B corresponding to the top of the barrier. The effective

mass M2 for motion in the fission diréction is assumed to be independent of

‘B. (The present results also apply to the case in which M2 is not constant

but for which the dependénce on B of the product of M2 and V - E.is cubic.)
The penetrability P is calculated as a function of the energy E in

the fission degree of freedom (relative to the barrier's lécal minimum; see

the diagram_invFig. 6). In the WKB approximation the penetrability is given

by (L40)

_ 1
1 + exp[v(E)]

P

where for O < E < B the exponent is

2(2m. )2 P2 1
Y(®) = —2— f [v(g) - E]° ap
el Bl v

The limits of integration Bl,and Bz‘are the two appropriate zeros of the

integrand.
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We denote respectively by K(k) and E(k) the complete elliptic integrals
of the first and second kinds. [No confusion should arise oVer our use of
the symbols E for the energy and E(k) for an elliptic integral.] ' In terms

of these functions the above integral for y(E) can be‘expressed as

Y(E) = 5%? [cos P +'(3)-%_sin @1% E(k)
3 v
_[2(E/B) -1 + cos ? ? (3) sin 0] K (x) , (328)
3[005 ¢ + (3)_§‘sin 012
where o '
® = % arccés[i - 2(E/B)] : o (32b)
and 1
W2 1= (3)72 tan o (32¢)

1
1+ (3)7° tan o
The quantity € has the same definition here as in the text:
. ‘ %

There are two limiting cases in which the'result for v(E) simplifies,

When the energy is near the bottom of the barrier we find
“r(E)%-?élél——5[1+1Lln2+3ln3+ln(-}§”-}ii
5€ 36 EIlIB

x g_f.<3 - [',’0'98173 + 0.13889 Ln(%)]E> ; %« 1

Second, when the energy is near the top of the barrier the barrier shape is
approximately parabolic, and, as would be expected, Egs. (32) simplify to

the exact result for a parabolic barrier, which is

< 1

9]

2nB B
ACRE I IR
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By considering these two limiting forms we have arrived at s 51mple
but yet accurate expression for Y(E) that is valld for all Values of E from

the bottom to the top of the barrier, V1;
~v(E) gf B - [1 ‘+'(1 36/5) 1n( )] E>

;’6<B-[1+01273u ln—” } ) v.ogggl

Over the entlre range of E from O to B the values of Y/(E—]é , i.e. the

23

22

gquantity plotted in Fig. T, calculated from th1s equatlon differ from the
exact results of Egs. (32) byvlese'than 0.002. In addition this approximate
formula reproduces correctly the exact values and first derivatives of v(E)

at both E = 0 and E = B.
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