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ABSTRACT

"The crossing and Hermitian analyticity properties.of multiparticle
scattering functions are derived within an'S-matrix framework. -The normal
connection between spin and statistics.-is then shown to follow.from a certain
property of the paths of continuation connecting crossed and Hermitian
conjugate points. The analyticity propertiesvassumed‘afe that the pole
singularity at a location .corresponding to the exchange. of a physical
particle.is-associated,with;one-particle-exchange-type Tandau diagrams

(i.e. there is no superimposed pole singularity not associated with a

Iandau diagram of this type) and that certain discontinuity functions

have the pole-factorization property that they would have if they were

given by a formula. of the Cutkosky type. Also, confluences of infinite

‘numbers of Landau singularity surfaces are assumed not to invalidate

results established for the various ILandau surfaces considered. individually.
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I. INTRODUCTION

An. earlier é;matfix proof~of'the'n0rméi connection bétween'sPin an&
statistics-giVen by this authofl depended-én an aséumptibnvthat seif-éonjugate
combinations:df particle andLaﬁtipérticle amplitudes were iﬁ principle
observable.  The aésumptioﬁ isfobjectionableibecause‘i%lhas ﬂd»experimenﬁal
basis 'in the case of charged particles, and in fact conflicts with a
conjecturedfsuﬁéréselection’fule,g |

In‘thatieriginal paper the beginnithOf a second proof'not'dépending

on this special aSsﬁmption,was»also given;B' This alternative proof
‘depended on an apparent conflict Bétween sbnormal statistics and the

-Qroséing‘ahd Hefmitian anélyticity properties of scattefing”fuhctions. The-

c}ossing‘propertyrbf (multiparticle) scattering functions is the property

‘whereby “the scattering function describing one reaction.is connected by

analytic continuation to the scattering-funcﬁion describihg«dertaih othér

’reactions; called croésed reactions. The Hermitian analyticity property

‘is the property-ﬁhereby'the scattering function representing a given -

process-is'analytiCélly connected to the complex‘conjugate of the
scattering ‘function for the transposed process, at certain real boundary
points.

This second argument was noﬁ a.fﬁll.proof, because ‘it was

{

-incomplete on’%wo.counts; fIn the first place'the‘statisticsfinvolved

was the sign chahge under -interchange of variables describing relative
antiparticlés,.Wﬁéreas‘the spin-étafisﬁics Cbnneétiéntinvolﬁes tﬁe sign
change under;interphénge of'two'variabieS'describing’particieé;of‘the
samé‘fype (identicalApaftiCiéé); And ih'thé second place3thevrequifed
properties of Crossihg'éﬁdvﬂermitién analyﬁidity‘weréUnoﬁ derived, but

simply assumed.
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The first defect was partially remedied in a later paper,” where
it was shown that a certain assumption on the'phase'factors occurring in
the gluster'decompositiOn expansion.implied that the sign change ‘under
interchange of identical-particle variables was the same as the sign
éhange undér‘the interchangé~of'conjugate-particle variables. This

assumption on the phases was that they be such that the disconnected
contributionsfto a unitarity-equation be :equivalent to a product of the
unitarity -equations in.the various disconnected sectoré-considered 5y
themselves.' This assumption, although'reasonable,'is~replaced in the
present work’by‘direct.physicél reqpirements.v

The main object, however, of the present paperris to give proofs
_of‘the crossing and Hérmitian analyticity properties. The work is a

5

.development of a line of rapproach initiated by Gunson” and explaed by

Olive,6’7 and is based on an exploitation .of the pole-factorization .
propérty of'scattering‘functions, .This:is‘the‘property whereby the
residues -of ﬁoles:of scattering functions at certain points in.the
physical regions of multiparticle processes are given essentially as

the products-of scattering functions for-certain‘other reactions involving

~fewer particles. -More specifically, the work -is an elaboration of an

-8
unpublis hed work;oflthismauthor An.which was developed the procedure,

79

subsequently adopted by .others, whereby the paths of continuvation to

crossed (or Hermitian conjugate) points ‘are defined by distorting -certain

paths'originally~lyingfin'the_physical region of the larger process,
and running between different parts of the pole manifold_'Sv = up2 s
into paths lying . completely within the pole manifold Sv = pPe . These

latter paths épecify the mass-shell continuations between the relevant
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79 to ‘exploit this

points., The present work goes beyond earlier attempts
idea.in that it covers all possible reactions and all ILandau singularities.
The work of Refs. T treated only the simplest reactions and. ignored all : -
but the but the trivial normal-threshold singularities, and the work:.of
Ref, 9 referred to a simple reaction with special mass ratios.-

Having .established the requiréd crossing and Hermitian analyticity
properties we give ‘a new version of ‘the remainaer-of'the proof of the
normal connection between spin and statistics. This new version is ‘more

354 It avoids completely

simple and direct than the one given earlier.
-the intreduction of the notion of 'a phase change induced by an interchange
of conjugate variables (variables’that refer to relative antiparticles).
The need to introduce :this ‘notion was a disagreeable feature of'thev‘
éarlier’proofs, for this phase change, unlike the sign change under the
interchange of like variables (variables referring to identical particles),
apparently has no direct physical significance. And in order to deal with
the interchange of unlike variables, certain 'stipulations had  to be |
-ihtroduced.relating‘the phases in the cluster decomposition equation to
special orders of variables. -The present p?oof'circumvénts;these
difficulties. - |

-This new proof of spin and statistics, which is given:in Section VIiL,
is largely independent éf‘the details offfhe work preceding:it. That sectioﬁ
.is:thereforevdesigned to be largely self-contained.  It'depends;in fact,
only .on a very gross.feature. of the proof -of the pole-factorization
theo;em, and on a:rather:trivialasbundingvpropertyuof'the paths\cohnecting

crossed reactions and Hermitian conjugate poirts.
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under‘the interchange of like variables-(variables representingﬂidentical
particles). Moreover the sign (change) under interchange of a particular
type of variable is a universal quantity that is independent both of the
particular scattering function in which the variables appear, and of the
particular location of the variables among the:arguments of these functions.

The fact that parastatistics is precluded here is a direct
consequence of our basic assumptionl‘that the observables of the'theory
are squares oflamplitudes. This is not true in parastatistics models."
Thus the work -of these subsections is not to be construed as a general
disproof of parastatistics but rather as a proof that, within the
framework adopted, in which observables are squares of amplitudes, the
continuationiof'the scattering function, through a region near physical
points, from an original region of definition to some region where like
variables are interchanged must give back the original function, apart
from a sign that depends only-on the type of particle involved.

Having established that interchange of  like variables leads to a
sign (change) o, +that depends only.on the type of particle p , one
may then ask what the wvalue of this sign is. The normal connection between

spin and statistics is the relationship

2]

a, = (-1 ® ,

where jp is the spin of particle p .

€
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Séction III  is devoted to the proof of some physical region

'anaiyticity\properties;of‘functionS'repreSented by bubble diagrams. -These

functions are functions of the kind occurring in unitarity equations, and

are formed by integrating products of scattering functions and their

-conjugatesrover:the physical phase space associated with certain internal

particles. -The singularities of any such:function are sheown to be

- confined to a certain corresponding subclass of Landau surfaces. The

singular parts of the surfaces are not always the positive = o parts,

however., The rules that determine which parts of the Landau -surfaces

‘are singular, and the "ie rules for -continuing areund these surfaces

are derived.

-The fact that the singularities of these functions:are confined

‘to Iandau surfaces is a result somewhat similar teo one obtained by
'1:’7011:’:1:nghor’ne,ll‘L - The -rYesult of Polkinghorne ‘does not refer specifically

to the physical region, however, and the possibility of noen-ILandau

(i.e. second type) singularities arises. -The ie rules derived here

for ‘detouring around physical region singularities generalize results

‘about physical region singularitieS'recently~Obtained by ‘Landshoff and

15

Olive.

Section'IV .is devoted teo a general probf'of'the pole-factorization

T

theorem. The original S-matrix proof by O0live was for a simple case and

was based on an assumption (called a theorem) that has fecently;beeh
shown by Bransoﬁl63to be not valid in general., Branson's countergxamplé
alse contradicts an assumption made'in'an.eariier'proof‘by'this author;l7
That assumption was that almost all singularities lying on the "pole
manifoldsﬁ Sv"=' upg ‘are associated with "pole-type" (i.e., one-particle=-
exchange ‘type) Iandau diagrams, Fhese being landau diagrams that can be
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reduced by contraction to connected ILandau diagrams having just two vertices
and just a single internal line connecting these two vertices.- Branson

has shown that other types of singular Landau surfaces can lie at
2

-Sv = pp . Our earlier assumption.is therefore weakened to the assertion
that almost all pole.[or-worse] singularities lying on the manifold
Sv = upg ‘are associated with pole-type Landau diagrams. (That the

assumption in Ref. 17 should be weakened in this way was already suggested
there. ) .

This‘fpble‘assumption" is a fundamental assumption in the present
work., It is believed that it can be verified by an examination of the
nature of the possible Landau singularities lying at Sv‘ = p_ , but
this verification is not attempted here.

The derivation of the pole-factorization theorem given in Section IV
is:different .from the one given in Ref, 17. The form given here is useful
because essentially the same technique can be used to derive the general -
normal-threshold discontinuity equation, as will be discussed -in a later
paper. Also, the present.derivation is given in greater detail than the
earlier one and covers particles with . spin (a trivial extension in the
M=function formalism). More important, the phase factors -occurring in the
cluster decomposition are taken into account. These will play an important
role in the discussion of spin and statistics.

Section V contains a proof of the Hermitian analyticity property.
The "pole assumption" is again fundamental, and now it is extended to
points lying outside the physical region. The essential idea of the proof
is to consider a larger process from which the scattering-function of
‘interest can be extracted as a factor in the residue of a product of

6,7,8

poles. The unitarity equation for the larger process af a point



UCRL-16816

=,

corresponding to-null energy-momentum vectors for the reaction of interest
is effectively continued to the pole positidn by exploiting the fact that
most contributions to the larger process do not contribute to the residue.

The arguments in Section V deal individually with-.individual Iandau
surfaces. There isba tacit assumption that results that hold for the
Landau surfaces individually will hold for them coliectivelyo In
particular it is assumed that no natural boundaries formed from confluencés.
of infinite numbers of ILandau surfaces invalidate results thaﬁ are valid
when the surfaces are considered individually.

In Section VI the reader is first referred to the proof of crossing
given in Ref. 17. That proof is then"exﬁended in such a way as to obtain
a compatibility condition on the paths of continuation connecting'crossed
andAHermitian-conjugate points. This compatibility.condition, which
says-essentially that the Hermitian conjugate points for: crossed reactions

are comnected by the complex- conjugate of the crossing path, plays .a. key role in

-the proof of spin and_statistics° It is also shown that this compatibility

requirement carries over to the case in which the paths-oficontinuation
Jump across various cuts, rather than detouring around "them, provided the
pole-factorizétion property- carries -over to the relevant discontinuity
functions, as it would do if these functions were given by a Cutkosky
rule, ”

The proof -of the normal connection between spin and statistics is
given in Section VII. It is quite simple. It is noted that the . residue
function in the polenfactorization property was obtained from a

corresponding pole term.in the unitarity equation for the process in which
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the pole :appears, and that the phase factor in the residue formula-is
.consequently precisely the phase factor of this contribution to unitarity.
In special cases this contribution to unitarity. is just one of the ‘ VAR
absolute-value-squared contributions to a "forward scattering" process,
apart from some signs coming from interchanges of certain.identical
particles. Thus the phase factors in these pole contributions are
determined by the statistics of certain particles. - The residue functions
-associated with crossed reactions, which are connected by analytic
continuation, are compared and shown to have a sign incompatibility in
case any scattered particle has abnormal statistics.

In Section”VIII ‘the phase factor in the crossing relation is
shown 'to be unity for the functions ‘MC(K): these particulaf‘functions,
wiﬁhout any added phase factors, give, when continued along the paths of
'dohtinuation-ConneCtingscrossed regions, the scattering functions for the
various crossed process.

To obtain this result a special stipulation relating phases in the -
decomposition -equation to order  of variables is inveked. This stipulation
is, in effect, used in the proof:of spin.and statistics given by Lu and
Olive. Since this stipulation is of a formal rather than physical nature
it renders that proof, like the proof of Ref. 4, not completely satisfactory
-from the pure S-matrix view point.

This stipulation, -though objectionable as an element of a proof
-of spin and statistics, is quite naturaland is adopted in the final

specification of the formalism. It eliminates an.indeterminant factor :
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-in .the crossing relations ‘and also places conditions -on the phases induced

by -interchange -of variables associated\with:different particles. In
particular it implies, as is shown in Section'VIII,_fhat the interchange
of adjacent conjugate variables induces ‘the same sign change as the

interchange‘of'the corresponding. like -variables.
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W= T (v) e - @)
’ N . . . dhi
S }
The Li(vi)‘;is a matrix ‘in the spin space of particle i thatrtransforms sﬁ'
~spin.functions ‘from values coordinated £é a rest frame 'Zi of particle
i to values coordinated to the general coordinate frame .. For a
particle of'spin-”% R
B = 0y
= (o;v;)°
 %
= v M)
= (Gi 'vl“)
v
° 3
= vy + gy
% %4
= cosh = + (g-v s1nh.72;-)/|vi|
'ov : o] -5
= (vi +mlf.+_cfv)=(2'yi +2) 28 (2.8)
where vy +1s the covariant velocity-vector-
, % ' ' _ 5
v, = »;/l(p;-p;)%] (2.9) |

.and
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sinh @, = 'l’i" . (2.10)

1

‘The matrix LiJ(vi) for particles of spin J > 3> is.obtained by

extracting ‘by means . of Clebsch-Gordan coefficiénts the spin- j part of
. 1
a tensor product of 2j .factors 'Lz(vi);, (See Eq. Clk of Ref. . 12). .
The rule for contractien.of the spin indices in.(2.6) is not

always ‘the matrix rule:.of contraction of adjacent. indices. -The exact .

rule is given in Subsection & below.

L, Covariance Property. From the assumed relativistic invariance of -

probability -correlations one derives the covariance property
M(K'; K") = ASQ'l M(AK'; - AK") ; (2.11)
where

AK = {A-Qi,,rr}i,.ti} e - (2.12)

Here A 1is any.element of the real, orthechronous, proper, homogeneous

”Lorentz-group.*ﬁz -, and ,AS -is-a corresponding 'pi-independent spin-
‘space transformation (see Ref..12). To obtain (2.11) the weight factor

p(k) has been taken to have covariant form. In particular we take

Lo= = = 2 1| —p e ers(” - u), 2.13
X f 1 f (en) (p;") 2n 8(p;~ - ;") (2.13)

where ‘£' 4is the sum.over discrete indices.
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5. Physical Irrelevancy.of Order -of Variables. The experimental result

labeled by the set X = (pi, mi,.ﬁi] -is assumed to be completely
-specified by the values of the arguments P;» Mg, and ti . In
particular, no additional information having to do with the ordering of
‘the variables 'is needed to determine the experimental result.  This
assumption, in .c¢onjunction with our quantum postulate of Ref. 17, means’
that in the integration (2.13) one should. include ‘only once the
contribution from each value of 'K , considered as an.unordered set of
variables.

6. Fundamental Analyticity Property.of M TFunctions. We ‘introduce the

-following definitions.,

Definition 2.1.. A function F(pi) defined only over a subset W .of

‘the space .of complex numbers pi will be said to be an analytic function
of the p, at point P of 'W if and,énly-if‘for>every mapping pi(zj)
from an open set .in a space of complex numbers zZs into W the
functions F'(Zj) = F(?i(zj)) are analytic functions of the s .in
the usual sense at all points '{Ej] satisfying '{pi(Ej)} = P for

which the functions pi(zi) are analytic at {Ej}_,

Definition 2.2 . A point X is a set (pi, ti} . It is distinguished
from an argument K = {pi, mi, ti}-.

Definition 2.3 . F(K) .is analytic at a point 'K will mean that the

functions F(K) corresponding to the various values of the spin indices
‘mi are all analytic functions of the momentum-energy vectors pi at
point K of W, where W is the set of points K -over which F(K)

is defined.

..'\

3

~a

N

!
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A consequence™ of the covariance property (2.11) is that if
M(K) is énalytic at a point K then M(X) can be extended to a function
that is analytic at all points. K of the set geﬁerated from K by
application‘of any element of the proper homogeneous complex Lorentz

P .
group L (C) , which is the subgroup of L(C) continuously. connected

to the identity. The property of M(K) of being analytic at a point

- K 1is therefore Lorentz invariant. This. is not the case for the

S-functions,  since the functions'_L(V) have singularities whose
positions depend on the coordinate frame, as is seen from (2.8). The
M ,functions have, in this sense, simpler analyticity properties and
are the more éonvenient functions to use in a relativistic theory based
on analyticity.

T. Expressions for Observables. It is advantageous to express observables

directly in terms of - M functions, rather than passing to S functions,
for in this way manifest covariance is maintained. Let 85 be the
spacelike four-vector satisfying

s,°s, = =1 (2.14a)

and

s, = O  (2.1bb)
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that specifies the axis relative to which the spin quantum number m, is

measured. Equation (2.14) says that s; is purely spacelike in any rest

. frame of particle i ., With M functions one uses ih place of the usual

spin projection operators I&(mi,‘si) rather the covariant spin operators

~ . 1 . - PRI
Pi(mi,- 545 vi). .For spin - 5 particles
~ OB , o NERT:
Py (mgs s, vi) = (Bvy -myosg)eog
(2.15)
_ (1B By GB
= Gv"-my sy )Uiu ’ '
where
GM = (1, - 0) , (2.16)

and g "is the usual Pauli spin-matrix vector. Notice that the

%i(mi,- S5 vi)' in (2.15) reduces the usual j =% projection operator
in a rest frame of particle i'. For J > 5 the %i(mi,- Sy vi) is-
obtained by extracting by means of Clebsch-Gordan coefficients the

L

spin - J part of the symmetrized tensor product of 2J spin-3 spin

operators Pk(mk,- Sy Vi) subject to-

z mk = mi .

The 2j upper dotted (undotted)indices of the ﬁ;lﬁ are combined to
give the (2j + 1) - valued upper dotted (undotted) index of ﬁiaB
(more details are given in Ref. 12).

Bach spin index m, of M(K'; K") and M*(K'; K") is defined to
be lower dotted or lower undotted according to whether it is contracted in
the calculation of observables with an upper dotted or upper undotted

index of P ap

1 . Define, accordingly, a quantity hi :
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Ay = +1 if the spin index m, of M(K’; K") s undottgd, (2.172)

A= -1 af the spin index m, of M(K'; K") is dotted . (2.17b)
‘Define " e, by

e, = +1 if particle i is fimal, S (2.18a)

¢, = -1 if particle i is initial . | | | (2.18b)

Then m, is the projection of physical spin angular momentum on the

"physical" spin direction
= €. N, s. , S (2.19)

where s, 1is the "mathematical" spin vector 54 appearing in
f&(mi, - 8y vi). The result (2.19) follows from the covariance pfdpéf%y””
(2.11) and the requirement that spin angular momentum plus orbital
angular momentum be a conserved quantity (see Ref. 12).

In certain other formalisms the initial and'fihal particlés afe
associated with kets and.brés respectively and one alﬁays'gets
ei Li =+ l». This special condition does not naturally occur in the
development of the M function formalism from basic physical posﬁulates,
and it is advantageous not to introduce it. For in the development  of

‘the theory we shall be led to analytically continue our functions to
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regions where :ei is reversed., Under analytic continuation the trans~
formation property (2.11), hence the index type, and hence N
necessarily remainsunaltered., To resoelve this conflict with a-condition
':ei.xi = +:1 new‘functionS'Would have ‘to be introduced into the ‘theory.
This unneccessarily -complicates the formalism and leads to possible phase
-ambiguities. It therefore is better never to introduce ‘the artificial
condition ei‘%i = +4:1., Then a single function will describe both
‘the direct and. crossed reactions. However, the connection between the

physical spin vector siphys

and the mathematical spin vector s will
be reversed under -continuation to crossed channels. This:relationship
between the physical and mathematical spin vectors is completely analogous

te the -one that will be obtained for the momentum-energy -vectors.,

8. Contraction Rule in the Definition of M(X'; K'). In the generai

development of the theory the M Functions are originally defined by
‘their connection to observables’through contractions with the covariant
spin operators, and Eq. (2.6) emergies as a consequence. The index

my of S(K'; K") turns out to be contracted with the adjacent index .
of L(V') .or L(V') .if .%i e, = +1, and the nbnadjacent‘index
 otherwiseo The %i~ caﬁ be specified at will be specifying the index
of PP ith which the index m, of “M(K'; K") is. contracted in the
calculation . of -observables.

9. Unitarity for ‘M Functions. One can specify the.conventions for

%i so that the . ei Ai for each individual particle, whether occurring
~initially or finally, is a fixed sign depending.only on the particle
‘type. (This specification relates initial particle.to final particle--
not to final antiparticle; the crossing concept is.not,involved,) It

the Ki are specified in this way then unitarity takes the form
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S M(K'; X) G(V) M(K"; K) -.a(vt) 8(K'; K') = 0 , - - (2.20)
& ,
where
6(v) = 1 §(v) = fe(™ ~ (2.21)
i
and
~ ‘_ N2
For spin-: particles,
Gy(vy) = v = v°-vo , (2.23) -

while for spin j > % the al(vi) Ais~obtained-byvextracting‘by means
of Glebsch-Gordan coefficients the spin-j part from a tensor product
of 2j spin & matrices (2.23). Thus ai(vi) ‘is-of degree 2j, 1in

the vectors-‘vi and

]

. C 23 ' :
G- v) = (1T EG) . e

10. Momentum-Energy Conservation. The M;functiQns are nonzero only

at points satisfying
Z p', = Zp", . - (2.25)

This conservation-law constraint is equivalent to the statement of

translational invariance if space and time are intreduced by Fourier
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transformation. In order to give finite effects, an :M function:must
have 'a .conservation-law .8 function (2-1()h §(pr'iie-2 p"i)..as a-factor.

11, M(K) Punctions. We define M(K) [without the semicolon] by |

M(K) = M(K', - K") = M(K' ;K"), (2.26)
where -

(- K")~ (2.27)

il
—
[
o]
[ A
\a
B
.
[
ct
N

For later convenience the order -of writing -the variables of (- k") is
reversed relative to K" . (See Subsection 18 below and Section VIII.)
The momentum-energy arguments of M(K) will be called the "mathematical"

momentum-energy vectors ki, where

“k, = €, p, : ' ; (2.28)
and. ei is +1 or ---1 according to whether particle i is final or
‘initial. In terms- of the ki the momentum-energy conservation law

~-® function becomes

(2n)u>8”(z ki) = (2ﬁ)4‘84(z p'; -Zp") . (2.29)

12, Cluster Decomposition. M(K) ‘is assumed to satisfy the .cluster

4
property

M) = L M (K), » (2.30a)
- M

te
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“ Where

My(K) = oy T () (2.300)

Here Kﬁs is the sth subset of the pth partition of* K . The first

(and only) subset of the first partition of X is K itself,
kK, = K, | (2.30¢)

and the function Mi(K) is asserted ‘to have no conservation-law . function
aside from the overall one given by (2.29). The o, are phase factors
depending .on the ordering. of variables of K and of the Kbs ‘but not on
‘the values of the momentum-energy arguments k, . The phase of Ml(K)

is defined by
a, =1 . B  (2.304)

The other phase factors Qb must eyidently depend - on .the orders -of the
variables. They are asserted to be restricted by the following two
conditions:  E2. Let 'Kps be an ordered set of variables consisting of
the variables of the sth subset of the pth partition of the ordered set
K. Let K be some-ordered subset of the variables of X.. Suppose
there are two partitions p=a and p =D -of 'ﬁ; and also two
partitions p = a vénd p=>b of thé set 'K, such that the;e'tWO
rartitions of K coincidevwith thé,corresponding partitions of K over

the set K » and coincide with each .other -over the remaining variables.

That is, for some arrangement of the indices s ,
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‘ﬁas = K, for  sg 555 (2.30e)
B = Xk for s\<.§b' o (2.30£)
K. = ‘_Kbs, for s:-‘Ea = s' -’Eb >0 (2.30g)
where ~§p 'is the number of terms of partition p ~of ‘.. Then the

ap and '&p”;in the cluster decompositions -of X and X satisfy .

5y
Ta a

=g ~ (2.30n)
%

E3. Let a and Db -denote two initial‘setsfof particles and:let .c

and d denote two final sets.  Suppose each.of these four sets is

‘divided into n subsets. Suppose the firsﬁ n-1 subsets of sets a

are identical to the first n-1 subsets-of set b and the first n-1 ~ ~

subsetsfof set c¢ are identical to the»firgt n-1 subsets-of set a. ..

Let ac, ad, bec, and bd be valuesAof P uthat-denot¢ the_partitions«of

‘the four sets of variables 'a + c, a +d, b+c, and b + d, respectively,

into» n -subsets, with the first initial subset of a or D grogped

with the first,final subset,of c or 4, etg. -Then - the four,,ab

satisfy
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Postulate E2 asserts that the phase differencé befween.two
different cluster terms of a given scattering amplitude that differ only
over a certain subset of variablesvis'independent'bf'the remaining set
of variables R .over which they. are identical.‘ These phase differenéés
are observable quantities, accordiﬁg'to B2 _of Ref. 12. If they were .
not independent of R then observable phenomena.would.depepd'on éffecté
associated with disconnected bubbles in a manner contrary to the physical
decomposition principle; phenomena would depend on "unconnected"
phenomena, where "unconnected' means unconnected by -energy-momentum
transfer., 7

Postulate [5. asserts that the ratio o, /o o /oy takes ‘the
same;vaiuej(upity) that it would take if just the nth subsetS’aléneA» |

were present. This ratio is-an observable quantity (provided the various

‘M functions are all non-zero--otherwise one of the phases can be defined

at will). This observable corresponds to an,interference~effect-iﬁ a
transition from a combination of a and b to a combination of c and
d-. The postﬁlate asserts that this obserwvable quant;ty.is independent
of "unconnected" phenomena; aS'requifed by the physical decomposition
principle.

It is-easy to verify that postulates E2 and E3 imply that, in
a unitarity equation, the sum of contributions having avgiven-connectedhess
structure (i.e. haviné a given set of unintegrated cdnservationelaﬁ~ 5
functions) éombine to give 'a product of the connected parts -of the
unitarity equations for the appropriate subsectors. (The connected part .
of the unitarity equation is the part having only one unintegrated |
conservation-law 8 function. The terminology comes from the diagrammatic

representation discussed in Section IIT.)
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13, Scattering Function MC(K). ‘The function
<
M (K) = (K)/(2n)h»‘-8'u’(2'kﬂ)' | “(2.31)
e - Mi i
2. F
 is'ca1led a-scattering :function.,
1k, ILandau Diagrams. A Iandau diagram .is a set
D=y T ey
consisting.of several directed line segments ’Lj and two or more vertices
V, . Bach 'V, contains -end points of three or more of the Lj:,'but only
.one .end point of any single Ljf, -‘The structure of D  is défined by the
set of humbers 'ejn defined by
. ) s . -+
e, = +1 . —if L.~V ,
Jjn » : J n
€in = -1 if Lj <V, L (2.32)
(€, = 0O .otherwise
Jjn
where Lj+ -and Lj- ‘are the leading and trailing -end points of Lj
respectively. - With*each"Lj':is associated a type of particle 'tj .Wwhese ,
mass is pj‘. -If particles of type tj carry-'aj' units of an additively
v A
-conserved quantum number "&" +then the conditions - o o i

JZ,aJ € = O (a1l n). -~ (2.33)

are required of D .
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,f _ The lines Lj are characterized as being initial, final, or .

intérnal according to the following rules:

L, is final if € S 0 forall n, ' (2.3k4a)
Ly is initial if ‘e, >0 for all n, (2.34)
Lj is internal if neither of the above holds. (2.34e)

- The initial:énd final lines are éalléd externalflines.
A Tandau diagram D(K) is a Landau diagrém whose initial and
final liheé'cah be placed in.one-to-one cdfréspondences with the initial
and finai particles, respectiVely;’assbciated with the set K = (x', - K").
A Dé(K) is a connected Iandau diagram D(K). |

15. Tandau Surfaéesaﬁn[D]. . Consider an association

L, & (aj, pj) | (2.35)

between lines of a ILandau diagram D and pairs consisting of a nonzero
number aj and a (positive energy) energy-momentum vector Py - The

landau surface WM[D] is the set consisting of the p, associated with

- ~ the external lines of all associations (2.35) satisfying the conditions
S .
. 2 2 .
- Py =My (811 3), (2.36a)
Iy ) .
» Py €y, = O (all n), (2.360b)
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N+

%{‘%I E'«%fc%)(%fc%n 5 | (2.40)

&

\

which is necessarily positive, since--ah- ah is timelike. The parameters v
ah can be interpreted as vectors from an arbitrary . origin to the vertices
V. of-the energy-momentum diagram D associated with 1“T[D].21

Since (2.39) is invariant under translations and dilations, every

point of M'[D] is achieved by a fivefold.continuum of sets {ah}*.‘4

Sets {afn} ‘not exhibiting these degeneracies are therefore -introduced:

Definition 2.8 . A set {aﬂn} is & set -{ah} satisfying s m'n~='0

and }: E:i lw'ﬁ; o | le

n>m

| Ie.ﬁl = 1 ;

m in im

Definition 2.9 . .A simple point of Vﬂmé+(K) is a point K of

$Rb+KK) such that all points of iﬁcf(K) in,some’neighborhoo@-of X
are points of just a single surface ‘ﬁhf{Dc(K)],)'and such that the
inverse functions @'n(K) are single-vaiued, continuous functions of
'K € $ic+(K) in some neighborhood;ofv'f .

16. Iandau Conditioﬁ for Physical Region Singularities.

Definition 2.10 . The Landau .condition for physical region singularities
is the condition that M_(K) be analytic at points K of (k) - ™ (x) .
This condition was dériVedfin Ref,ilj from an asymptotic causality

condition formulated within the mass-shell S-matrix framework.

17. The ie Rules. The second chief result of Ref..13 is the "basic

ie rule" defined as follows. . . . . ¥

L)

‘Definition 2.11 . The basic 1ie rule is the assertion that for any

simple point 'K of %ifc(K)f)jp(K) there is a neighborhood N(K) of X -
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and a function MCN(K) defined and analytic at points of

INEK) N Im o(x;K) > 0] - thc(K), and coinciding -with 'Mé(K) in
o+

[ R () N uE)] - ™ C(K) . The function o(K;K) is

il

@) = 5 q () o (®), (e.11)

where -qﬁ(K)‘vand w'n(ﬁ) are the quantities defined in Subsection .15.

Furthermore, the contributions from small neighborhoods of,pointsfof

NE)N PE)N TKfC(K) ‘to a summation over physical points can be

represented by an .integration.of 'MCN(K) .over a contour that passes

raround these points by detours. into the domain of definition of MCN(K) .

The 'MéN(K)= is ‘an analytic extension of MC(K), and the superscript N

~is usually omitted. [Actually, T o(K;K) should, according to the

result obtained in Ref. 13, be replaced by its minimum as the w'n in

(2.41) ‘range over arbitrarily small neighborhoods of ‘the points w'n(f) .

- This slight complication . does not materially affect. our arguments, and

it will be ignored. ]
The points of :ﬁl+é(K)h P (K) that are not simple points fall

into various classes:

‘Definition 2,12 . An almost-simple point of JhL+C(K) ‘is a point K

of %;L+C(K) ‘such that in some neighborhood N(K). of K there is a
function . ¢'(K;K), defined and continuous in both K and XK', when. both
K and K' are in 'N(K), such-that for every ‘K in N(K) and XK'

in TENTRT @) N RE)

o' (KK = o(KK')

where  ¢(K;K') ‘is as defined in (2.41).
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‘At an élmost-simple“point "X -of “(—\"\+C(K)/\ P(K) ‘there is -
‘evidently no conflict between the .ie rules assoeciated with different
surfaces 'n\+[DC(K)] ; fhevdistortionS‘around the various singularities

are mutually compatible.

‘Definition 2,13 ., A simply multiplicative point of m+C(K) is a physical

point 1lying on several ﬂ&L+[DC(K)] the DC(K) of "each of which s
obtained from one single larger DC(K) by contracting to points all but
one of various 'independent parts" containéd in it. . An independent part
of a DC(K) .is a part having an independent dilation paraméter, in -the
energy-momentum diagram D associatedswith 1WL+[DC] . The various
‘independent parts of a . DC(K) touch each .other only at single points,
and the Feynman loops can all be confined to individual independent
parts;'i,e;; no loop need paés‘throﬁgh several independent parts.

Because fhe dilation parameters of independent parts are
independent it follows from some algebra that the corresponding
distortions can be made in independent combinations of the o) p; - ~The
ie rules for all of the surfaces_'?ﬂfIDc(K)] passing through a simply
 multiplicative point can therefore be simultaneously satisfied. -Thus
‘there is no difficulty extending the basic ie rule to simply multiplica-
tive points -of ‘—Y—Yb+C(K) n P .

Definition 2.14 . The extended. i€ rule is the extension of the basic

ie rule to cover combinations of surfaces that are related in the manner
-of surfaces at-almostméimple or simply multiplicative points.
It is argued in Ref..13, on-the basis of physical considerations, £
+ - . . . T+
that surfaces M [DC(K)1 in the neighborhood of a point YW C(K) N @ (x)

that are not related in the manner of singularity surfaces at an almost-
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simple or simply multipligative:point are invfact completely independent,. in
the sense that they contribﬁ£e additiveiy to Mc(Kjv. .Tha£ is,‘ MckK) in
the neighborhood of any point of ‘?RfE(K) f\QP(K) can be expressed as a sum
of terms each containing sets of singularity surfaces related in the manner
of those at almost-simple or simply multiplicative points. Continuation'is
made by continuing independently in each term. This provides for the

"physical continuation" past any point of &;L:(K) N P ) .

Definition 2.15 . The general i€ rule is ﬁhe assertion that.in some
neighborhood N(K) of any point K of‘<P(K)P\ﬁlfc(K) the function MC(K)
breaks up into a finite number of terms to each of which the extended i€
rule applies. In particuiar, for each term the extended 1€ rules specifies
a region of continuation connecting points of [ @ (K)N N(XK)] - WRjE(K) B
and summations over physical points of N(K) are represented by integrals
alpng contours distorted slightly intothis region. Moreover, the decompdsi—
tions in nearbj neighborhoods N(K) .are "compatible in the sense that the
distortions of contours can be extended globally by patching together
distortions allowéd‘in nearby neighbo;hoods. “A detailed diécuséion is
giveﬁ in Ref. 15. | |

Remark 2.1 . It has not as yet been demonstrated that the number -of terms

in the above decomposition is indeed finite. This stipulation constitutes

a special assumption of the present work.

Definition 2.16 . An essentially real path ié a path that remains at reél
points except for arbitfarily small distortions arognd points-df WQJ+C(K)

- made in accofdance with the general ie rules. The physiqal‘fugctionvac(K)
at points of G)(K) - ?RfC(K)' are analyticaily connected byiéssentiélly
real paths, according to the general 1ie rules, and summafions ovef

physical points are represented by contour integrals over -essentially real paths.
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18." Persistence and the Interchange of Like Variables. A variable Vi

is the triplet

i

—
w
-

. B
-
ct
~—

V.
i

Thus

t, = tj , (2.42a)

mgo=omg, (2.42p)
and

k,o k.o >0 . (2.42c)

-1 J )

[Equation (2.42c) is in fact implied by (2.42a), since according to (2.27)
the sign(of ti ‘is'fhe same . as the sign of kio . However, (2;h2c) is
“included for emphasis]. Like variables refer to particles differing.only.
-in ﬁheir energy-mqmentum vectors ki .
The assumption was made (Subsection 5) that a comﬁiete set of
experimental results is labeled by the various ﬁossible sets K considered
as unordered sefs of véfiables. However, the variables of the analytic

function MC(K) must originally be placed in some specific order. Let

‘o

the set of points K for which MC(K) originally represents the physical

P - . -

function be .called ® o _ ' .

¢
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Suppose Kle. q3 has two like variables and suppose these bccupy
positions i and J . Let S’ij .be the operator that exchanges the’

variables.-that occupy positions i and j . The point K2 is defined by

. | K, = Qinl‘,' o C (e.k2)

One may now inquire whether analytic continuvation .of 'MC(K) -along

-essentially real paths from K e ® to K, -is possible, and if so

what significance the so-defined function Mc(Ké) has, if any. The
object of 'the remainder of this section is to show that the physical

significance of the function 'MC(K) must persist when continued along

‘essentially real paths to outside the original region of definition QP_,

and that Mc(Ké)' has, consequently, the samevphysical significance as
M (K)o ‘Tt will further be shown that M_(K,) “must be equal to M (k)

up to a possible sign, and that this sigh must be the same for all M

5functions.in~which:thesevtwo like variables appear, and must moreover be -

independent of the positions of ‘these like varisbles within the sets X .
The sign is ‘therefore a universal quantity depending-only'onﬁﬁhe'typevof
variables interchanged. Once this is proved the remainder of the spin-
statistics problem is to establish the connection between this universal
sign and the spin.of the particles corresponding to the interchanged like
vériables. |

The problem of proVing*fhe universality of* this sign under inter-
change does not generailyvarise in .field theory, because there one
generally assumes that the interchange of like operators gives at most a

change of sign, and that this sign under interchange is independent of
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states upon which ‘the operators.are acting. The reader willing to accept
“the corresponding proposition that the sign under interchange of like
variables is a universal quantity, depending -only on the particle type, may
proceed to Section -III.

Our natural idea of the connéction between physical functions and
analytic functions is that if a certain physical function.is represented
"by a-function analytic in some region, -then this correspondence should
"persist" as the variableS'move through a region where the physical
function is defined and the mathematical function remains analytic; there
should be no break in thg correspondence'so'long as the mathematical
function remains analytic at real points,

‘This persistence property follows, in.fact, from the considerations
of Ref. 13. There the M functions were considered initially to be
'distributions‘defined over test functions of compact support in momentum
spéce. In the case of identical particles these test functions:can,be
initially restricted to those -having supports containing no pairs of
distinet points . related by an .interchange of ‘like variables. This
restriction is imposed to avoid. possible ambiguities associated with
Andistinguishability.

For a given process (specified by. {mi]-and {ti}) a distribution
is defined over this restricted space of test functions. This distribu-
tion is defined’by thé set .of physical transition amplitudes between
initial and final systemé represented by the allowed set of test funcfipns.
According to. B2 of Ref; 12 these physical t?ansition amplitudes are well

defined up to a possible overall phase.,
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It follows from the Work-of Ref. 13 thatvover the support of any
allowed test_function-the»Qistributionvcan be represented by a function
analytic except at points of 47L+C(K) . Furthermore, the functions defined
in the intersection of two support regions must agree up to an overall“phase,
since they both'represgnt tﬁe same physical process gnd hence must give the
same relative for various test functions defined over the
overlap regioﬁs. By patching these functions together ongvobtains a single
function defined over the union of the allowed support regions.» This
function is single valued, since with all but two momenta fixed the .
regularity region is simply connected, It will continue to represent the
single specified physical process even when continued outside of some
original region (P . That is, thg-physical significance persists under
analytic continuation; so0 long as the real path of.continuation»reaches'no
point Qf ﬁ§i+c s where the analyticity property fails.

By the véfyvsame argument the result extends past‘the points of

ﬁNL+C(K), provided continuation is made along the essentially real paths;

one simply patches together the functions over the various support regions,
in each of which the result follows from the work of Ref. 13. Thus the
physical significance of Mc(K) cannot suddenly change; when continued
alongvesséntially real paths Mc(K) continues to represent the correspondingly
continued phys;cal func’f:ion°

The physiéal cogtinuation from Ki to Ké has the effect of exchanging
the-detecfbrs of the two like particles. That this has no effect on the
experimental observables is just'the content_of‘the‘assumptipn of |
Subsection 5: the expefimental results were there assumed to Be

specified by the sets {ki, m, ti} considered as unordered sets:of
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variables, and, in particular, no additionalyinformation having to do with

order of variables is supposed to be needed to identify the experimental .

result. Such information would be required if the experimental results

depended.oniwhich piece of apparatus detected which particle. :
One concludes from the above arguments that if Ki is such that

the overall conservation law is the only one satisfied at 'Ki , so that

' M(Kl) ‘is proportional to Mc(Ki) , then the éxperimental correlations

are unaltered by the replacement of Mc(Kl) by the MC(Ké) obtained by

continuation along any -essentially real path from 'K1 . In particular,

at such a point K , we have
M, (K ) = aM (€ K), | (2.43)

where Mc(e'ij Kl) is defined by analytic connection from X e © along
any essentially real path, and o is a phase factor depending on the

arguments-other'thah spin .indices displayed in
- , -  (2.hh
o qij(K) _ (2.44)

The fact that the a are independent of the spin.indices follows from

the completeness of the set of spin matrices P in spin space:
interference effects between amplitudes labeled by different spin guantum -
numbers are observable (see Ref. 12).

19. The Sign Change Under Interchange of Like Variables. By virtue of

postulate B2 of Ref. 12, linear combinations of amplitudes labeled by

®
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K differing only in the values of ki are observable; these are just
- the usual interference phenomena; This implies, as a generalization of

(2.43), which we now rewrite as

M (K'3K") = o,zij(K';K") Mc(%in';K") ’ (2.15)

that

MC(K'; ,Kn) + Mc(Knl 5 Kn)

(2.46)
_ 1 1, o1 ‘1 Lt 1" o1t
= oz_ij(K » K"K )[Mc(e»in ;K') + Mc(aiJ.K K1,
where K' and X" are sets differing .only by values of the ki .
Substitution of (2.45) into (2.46) gives
-1 t " ; A n " 1
% 5 (k',X"; K") M (K'5 K") + M (K" K")]
= Q. '1(K'—-K”) M (K'; K") g " (2.47)
ij b »c 3
+ Q. -l(K'”' Kn) M (Knl,_Kn) . ’
ij 4 c B

If .'MC(K"'; K") is zero but MC(K';? K") “is not, then ofl(K’, K"; K")
a-l(K';‘K") . If both functions are nonzero, then there are two possible

W solutions of (2.47). The first is

'
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o (K',K";K") = a..(K'; K")
ij . ij
(2.48)

il

nf, " £
qij(K ; K') .
This implies that aij(K'; K“) is independent of K' . On the other
hand, we know that (K'; K") aij(eij K'; K') = 1, since a double
interchange is the identity. The nondependence on X' theﬁ implies
T o " - 1 - -+ . . . O
o 5 (K15 K") o 5 (") 1 (2.50)

The alternative solution to (2.47) gives

.. ,; tt e - nl; R4l
MC(‘cilJK K") ] M (€K K)o , (5.51)
M*C (K'; K”) M*C (K”I; Kn)

This says that MC(ELin) equals M*C(K) up to a phase factor aij(K'; K")
that is independent of K' . This ‘K'-independent phase factor must again
be +1 or -1, és before.

If MC(K) had singularities gt_real points, then  (2.51) would
contradict the ie rules. Thus solution (2.48) must hold for M functions
having singularities at real points. But the unitarity equations demand
there be singularities at least at normal thresholds. Thus only the case

(2.48) is possible, and we have

M (K'3 K") = oyl (K) Mc(Qin'; K") , (2.52) -

where aij(K") is either +1 or -1 .



M.

UCRL-16816
‘;hl-

20, Eguality . of Sign Changes for Interchange of Like Variables. If the

set K' of M(K'; K") = M(K) contains several.like variables. located
at positions ‘i,J,k,°**, then there will be corresponding signs aij(K"),
aik(K"), ajk(K"), etc. These signs must all be equal. To see this let
the exchange E‘/jk be ‘applied to both sides of (2.52). This gives,

suppressing the ‘K" dependence of the a's ,
0y M( E‘,ij) = g % vM(ij E‘;in) , (2.5%)

which With the replacement of K by Eij K and cancellation of ajk

becomes

M(K)

Wl

M( c‘ij Q,jk X)

Il

' e s M( %’jk g’ij s’jk K) (2.54)

Il

Q 5 M(E‘,ik K) ,

since, as may be readily confirmed,

€ x %iij € = i (2.55)
But (2.52), with j replaced by k , together with (2.54) gives
Q.. = O, - (2.56

This implies equations like
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O, = Q. = O . : (2.57)

&

Hence all the a(K") referring to exchanges of this particular kind of

like variables are equal.

21. Order-Independence of Sign Changes Under Interchange of Like Variables.

The sign Q&j(K") is independent of -the order of any like variables
occurring in K" , for the relation (2.52) can be continued along
‘essentially real paths to the point where the like variables of K" are
exchanged. That is, o, .(X") = o,.(& K").

g s ) = oy (8 K

20, Persistence of Unitarity Equation. Initially arbitrary phases can be

specified so that the no-scattering part is unity.

8,(K's K') = B(K's K") . (2.58)
This convention is uniformly adopted in each of the original regions

arising in the proof of the'persisténée property. Thus the unitarity

equation takes the form

M(K's K").+ M*(K"; K*)

- Y M(K'; K) G(V) M¥(K"; K) (2.58b) i

o

il

- L M(x ; K") G(V) M*(K 5 K') :
k

E)
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-at-.all real points connected to a physical point by a Teal path. That is,

the form (2.58) of unitarity "persists.! Of course individual terms
continue -in different ways .around various singularities,. but the entire.
equation nonetheless remains true.:

2%, .8ign Change for Interchange of Related Like Variables. -The sign-

change Q&j(K") for the interchange of two like variables of X' in;
Mé(K'; K") is the same as the sign change 5ij(K') for the interchange
of 'the two corresponding like variables of K", in the:speéial caSeAwhere"
K' and ‘K" are originally equal. One seeS'this’applying‘bothtinterchanges
to the unitarity -equations (2.58). The right-hand sides become the right-

hand sides of unitarity at thé new point. The two terms on the left,-

.which are complex conjugates in the case K' = K" , become the terms on -

the. left of this equation only if aij(K') = &ij(K')-.

24, Universality of Sign Change Uhdef'Interchange of Like Variables. By

Yrirtue of the result . of the above section the sign change qij(K”)A,is in

fact independent of K" . If one interchanges like variables of X' ,

but not K" , for the case in which K originally-eqpals K" , then

the left-hand side of (2.58) is multiplied by aij(K") = &ij(K'), Since

the right-hand side is a sum of positive nunbers each‘of‘these must
undergo this same sign change in order that the eqpétion remaih‘valid;
That 1is, o&j(K?) = &AJ(K') = aij(K) = &ij(K) for all X such
that M(K'; K) is physical. The sign change is therefore a universal |
humber depending on the type~bf varisbles interchaﬁged but not on the
position that these variables occupy - in MC(K) or -on the particular

MC(K) in which the variables occur.
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Remark 2.2 . No interchange of variables between-initial and final sets

has been discussed. In-terms of the variables K = . {K',- K"} we o
-consider only interchanges: of variables having the same’type of .variables,
including sign. However, the interchange of two like variables of type
ti indiices the same sign change as the exchange of two like variables of
type - ti . This is a rephrasing of the result of'Subsection-Qj°

Remark 2.3 . The sign change holding for the vMC(K) must evidently. hold

for the . M(K) 'as well: since the phase factors ab in the cluster
expansion equation are -independent of the values of the arguments ki »
a continuation that intérchanges the ki of two.like variables can give
no change in .ap-, and hence the sign changes in MC(K)v must carry over

to M(K) . .

s
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IIT. STRUCTURE THEOREMS
Some properties of the functions B(K) represented by bubble
diagrams are derived in this section.

A bubble diagram B is-a collection of ‘directed line segments

‘Li and signedfcircles called bubbles. The Li are directed leftward

and éach one either issues from the left side of some bubble.or terminates

on ‘the right side of some bubble, or does both. -In this:last case the

‘line ‘Li is called an internal line of B.. In the other two cases the

®

uliﬁe»ié called a final or anﬁihitial line of B, respectively. -The

bubbles of B are partially -ordered by the requirement’thatxéach.internal
line ‘terminate  -on a bubble standing left of the bubble when it issues.

. ﬁEachzline 'Li' of a bubble diagramA B vrepresents'a'vafiablé

-(pi)°m.; ti) ‘and each bubble b represents a function FB(K} '3 K”b):,'

1 b’

whefe';K'bA‘iélthe set of variables represented by the lines issuing

from the left of b and K"b is the set of variables represented by the’

'lineStterMinating-on the right of b .. The function MQ(K) " represented

by:‘viis’a function of ‘the variableS‘representedvby the external
(noninternal) lines of B and is defined by

TMB(K) =) m | ‘Fb(K'b;;K"b)

a;(v;), (3.1)
int beB AT

.

‘where the summation is over all physical values of the variables

represented by the internal lines of B, and the product over ‘i runs
over the indices 1 of all the internal lines L, of B.. The Ei(vi)”

are the spin-space factors (2.22) associated with the internal lines L



UCRL-16816

T

and their spin indicesare covariantly contracted on corresponding indices

. . (] o 1
of the F_ . The function ,Fb(K L 3 K b)

M*l(K"*b ;‘K'*b) according to whether the sign of b is . plus or minus.

ig either -‘Ml(K'b.; K"b) or

Remark 3.1.. The summation over physical points is represented. by

integrations over contours that are distorted about .singularities of ‘the
Fb :in accordance with the 1ie rules described in the earlier. sections.
Our first task will be to determine when the distortions prescribed by the

‘various relevant ie rules are mutually compatible.

Remark 3.2 . The decomposition ﬁrinciple is, apart from the phase factors

ap-,.graphically exhibited by representing - M(K'; K") as a sum of bubble
diagrams. Each term in the sum consists of a column of plus bubbles such.

that every line represented by K' issues from the left of some bubble

and every-line represented by K" terminates on the right of some bubble.

The summation is over all different ways .that the external lines caﬁ be
.connected to a column of bubbles. The contributions from certain of these
térms*will'vanish due to the conservation law.and mass constraints.
Unitarity in. the one«bartiqle system requires that the "trivial" two-line
bubble associated with an'unscattered_line bé the "unit" operator |
Gi(vi)'S(k'i 3 k"i), aside from a phase factor that can be defined to be
unity. (This definition fixes relative initial and final phases.)

Definition 3.1 . With respect to MB(K) the physical points (QD(K) will

mean the original - points of definition of Mg(K),, At these points all

the occurring Ml(K' X" are evaluated at physical points, or.at

p 5 Ky
points infinitesimally removed from them in the manner prescribed by the
i€ rules. Analytic continuations from these original (physical) points

Wwill be discussed later.

[N

-
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Definition 3.2 . A D'c B is a Iandau diagram ' D' that can.be constructed

by replacing each bubble b . of the bubble diagram B by eithér a connected

ILandau diagram ch or by a point vertex V'b . The ch is required to

be a- ch(K) such that WWUf[Déb(K)]. is a Iandau surface corresponding
to b .

Definition 3.3 . A contraction D D D' of a Landau diagram D' is a -

Landau diagram D that can be obtained by shrinking to points certain
- internal line segments Li* of D', and then removing all the line segments
‘that terminate”at their own origin points. D ‘is considered a trivial

contraction of itself.

Definition '3.4.. A D><B is a Landau diagram D that is a contraction
of some Iandau diagram D'« B . If D=>cB, then B 'is said to support

D , and conversely.

Definition 3.5 .~

ME(k) = \J ™ D), - (3.2a)
D(K):;B - ' _
MEB(K) = closure of 1w?(K) ,- 1 (3.2b)
mBw = \J  mip i, (3.2¢)
DC(K)DCB , _ ]
5§LCB(K) - closure of 7néB(K) ,' S © (3.24)
{K :'X 1is a physical point} . - = - (3.2e)°

©
Il
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Remark 3.2 . Every MS(K) _contains ‘a factor (Eﬁ)lL SA(Z ki)

Definition 3.6 ..

) = P21 / et etsx) . (5.3)

Theorem 1. (First Structure Property)
If the functions 'MC(K) are analytic at points 'K of
Q?(K)v- ?ﬁf&(K), and if the general ie rules are valid, then the function
MCB(K) represented by a connected diagram B is analytic at points K of
P - ™) . |

Proof. Define Q(B,K) to be the set of physical points represented by
.the internal lines of B when the variables represented by the external
lines of 'B are fixed at the physical point K . The general ie rules
then imply that the summation over physical points occurring in the
definition of 'MCB(K) can be represented as an integral over a contour
‘that coincides with @{(B,K) except for infinitesimal distortions .into
the appropriate upper or lower half 05 planes near the points of the

sets 'ai;E(Kf) ‘corresponding to the functions MC(K'b';»K"b) or

‘M*C(K"*b 3 K'*b), respectively. -The general ie rules also assure that

P

. . . . . . +
the various distortions associated with various surfaces W [Dc

corresponding to a single bubble b do not conflict with one another.
However, the distortions associated with surfaces "7Kf[ch] corresponding
‘to different bubbles b must also bé compatible if the 1€ rules are to
assure a representation of MCB(K) “in which the contours can be made to
avoid all singularities. We therefore examine the compatibility requirements
on the distortions associated with a set of surfaces Vﬂf{ch] , one for

each bubble b of B-.

'3
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The integration region is constrained by conservation-law and mass

constraints. The conservation-law requirements are automatically satisfied

if the ‘integration variables are taken to be Feynman loop momenta 'hf.e

Variations of these parametefs h_, -are subject, however, to the wvarious

bl
mass constraints d pi2 = 0, where Py is the momentum-energy vector
associated with the internal line Li‘ of B . The variations © pi2 are
given by
o .
°p =2 % P; Byp O Bp | (5.4)
.where L “is the number of times loop  f ‘passes along line Li' in the

positive sense minus the number of times f passes along -Li‘ in the
negative sense.
To calculate the variations & o, one may write, using Egs. (2.41)

and (2.38), and suppressing the prime on W'

I "
=)
™
-1
w .
o'
B
58 ox
™
m C
=
e
€ B -
o'

I
>
ch

o
>
o

(3.5)
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where pjb is the energy-momentum vector of the Jth  internal line

L b. of ch 5. and Ajb . is the difference of the two end points of the

line ij of .the energy-momentum diagram 5;b associated with_vn(T[DCb] .
The variation & ab(K ;' K) for “K  in the neighborhood of a fixed point

K of «“mf[\ch] is then

. , _
8o = L Bp A°®
int j J
= Z : n.fb 6 hf A.-b s (5’6)
int § Y J

b
where njf © 1is the algebraic number -of times loop f passes along line
b

Lj of'the_diagram DC obtained by replacing the bubbles b of B by

the connected Landau diagrams ch . The particular path within ch

taken by the'loop f 'is irrelevant to & 05‘, since the sum .of njfb Ajb

b
around any closed loop of Dc is zero: this sum is Jjust the sum of

vectors around a closed loop of the energy-momentum diagram 5;b .

By the theory of linear -equations the variations & o and & pi2
can be specified in any desired manner by an appropriate choice of the
o] hf unless there is a set of afs,;not all zero, such that
. b b ‘
Z o Byt Lo A5 myp =0 (3.7)
i b,
for all f . Now the vectors Ajb can be exXpressed as
b b b
A, = Q. b. P) (58)

re
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‘éince'both sides represent the vector of 5;b corresponding to the line

L.b _of ch [see Def. 2.4]. »Ehus'(5.7) can be written

a2 3

4
| . , X a', p, nge = 0 ‘ (3.7")

where the sum now runs over.all internal lines Lj, of the D < B .
The. a'i is 0y for internal lines Li of B and a'j is o ajb
for internal -lines ij of ch . :
The Egs. (3.7') are just ﬁhe:Landau loop equations for D, .
Since the conservation-law and mass conditions are satisfied by the
construction, the various i€ distortions associated with the various
WWL+[DCb] are mutually compatible at a point K of @L(B,K) lying on
the intersection of these surfaces 'Tnf[ch] unless the landau equations
are satisfied at K . That is, the required>distortion§ are mutually
-compatible at every point K of QL(B,K) for every'combination of
surfaces Thf[ch], one for each .b- of B, for all points K of
&) - M x) .
| It is-.also required, for analyticity, that the ie distortion to
imaginary values be a continuous function of ﬁhe real point K of QL(B,K) .
If K is a simple point, or almost-simple point, of all the JWL+[K£] P
then égch .Gb(K;K) can be extended to a function c}b(K;K') continuous in
% bothﬁva?iables in a neighborhood of K . The sp@ce of the allowed - & hf
can-be SOived for in terms of the d ob . Since the equations are
B ._ . nonsingular, this space of the ailowed"& hf will be a continuous function

of the & o, and:hence also of the point K in Q(B,X), for simple and

almost-simple points.
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For a simply multiplicative point one can.carry out an analysis
similar to the one above by using a modified bubble diagram: a bubble ”
b of B -in which a simply multiplicative point occurs can be regarded as
a cluster of bubbles connected to each other at single poiﬁts° With each
“bubble -of the cluster there will be a separate 8 ab4. The analysis is
then just the same as before and the results are the same.

The considerations for general singular points can-be reduced to
those for simple, almost-simple, or simply multiplicative points by‘
means of the additivity ‘property asserted by “the general ie rules.,

(The smooth fitting together -of the decompositions defined in neighboring
regions N(K) is assured by the construction given in Ref. 13, as is
discussed there).

| It follows from the above argument that the contours can be
distorted so as to remain . in regions of analyticity for all X in-
QE(K) - ﬁRCB(K) . To prove the theorem one needs, however, also to
establish the analytic character of the surface Q. (B,K). To examine
this question consider the transformation from the Nf -variablesv hf
‘to the.set of 'N& variables -pi2 'and"Nf'~‘Nm ‘other variables  Xj"
where the Nm variables pie -are the squares of ‘the momentum energy .
‘carried by the internal lines of B . At points ¥ “of ®(X) - ﬁﬁLcB(K)
the variations & pi2 and. & ¢, considered as functions of the -8 h

b

are linearly independent.- Thus the & pig are themselves linearly

t

independent. Hence it is possible to choose, for any ‘K 'in $©(K) -“WLCB(K)

and any - K in. R(B,K), a set of Ny - N, veriables x, , linear in the

h.‘f)

implies,22 for ‘K in ® (x) - ﬁﬂbB(K), that every point of W (B,K) is

L ®

so that B(pie, Xj)/alaf ‘is ‘nonzero in a neighborhood of K . This



At

‘A.O

1

UCRL-16816
=53 =

an "interior point" of Q(B,X). In fact, ®(B,K) is an ahalytiC‘manifold,

which means that each point of @L(B,K) is contained in an open set of |

points of ® (B,K) that is the image of an open set in the space of the

N, - N real variables X3 under an snalytic mapping k, = ki(xj) .
Since @{(B,K) is defined as the common zeros of a .finite set of

analytic functions it 1s necessarily a closed set. But a closed set

consisting .of ‘interior points can have no boundary points. -Thus, for K

in ®(x). - :Y—WCB(K),' the set W(B,K) is a closed N, - N dimensional

surface without edges (i.e. a cycle). This surface is confined to a

bounded region in ki space, and is easily shown.to be of finite measure.

Moreover the functions ki(xj) are analytic (in fact linear) in X .

Thus for X in ¥ (X) - %CB(K) , Q(B,K) is a real analytic manifold

of finite measure depending analytically on"the variables of K . Moreover,

as shown earlier, the contour can be distorted so that the integrand is

analytic at.all points XK' on the contour. It therefore follows from

Theorem A of Appendix A that the integral MCB(K) is analytic at points

K of ®(x) - JﬁiCB(K) . Since all the relevant quantities are well ..

defined and depend analytically on the relevant variables it is, of
course, highly plausible that the integral MCB(K) ‘should be analytic,
though the proof is not completely trivial.

————

Definition 3.7:.. A simple point of WWLEB(K) is a point K of 'WbCB(K)

—

such that in some neighborhood N(K)  of X all points of \hch(K). belong

to the MWL[DC] of -only one D >CB;, and.such that the a'j. in (3.7'),

when subjected to the constraint -}: hx’j le = 1., are uniquely defined
J

continuous functions of the K -in N(E)f\ﬁﬁgB(K) .
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Definition.3.8 . %WL¢B+(K) +is the subset. of WWLCB(K) that can be

achieved by restricting the a'j in (3.7') to be positive or negative
for lines Lj of 'Dc “contained in ch's corresponding to plus or
minus bgbbles b of B, respectively. The remaining lines Of"Dc »
which are just the lines occurring in B ‘itself, can be either positive
or negative.

Definition 3.5', WVLCB+(K) = closure of ‘%NCB+(K),;

e —
Definition 3.9 . WMJCB(K) = {K:X is a point of ‘WLCB(K) that. is not

a simple point of iﬁ;éB(K)}:.

Theorem 2, (Second Structure Property)

Tn Theorem 1 the set © (K) - :WLCB(K)f'can be replaced by the set
®x) - T ) - P .

- . Proof, TFor points-on*”“LEB(K) it is not possible to arbitrarily specify
all the variations & o - and . 9§ pi2 . But it may nonetheless be possible

b
to find.variations’that keep . B pi2 = 0 and T Im 3 ab'> 0 , where T
-is the sign of 'bubble. b .of B . This is a sufficient condition . for
‘regularity, since it allows one to keep the contour in the region of
analyticity.
The variations .are subject to the condition (3.7). ‘If X is a

simple point Of.'WHbB(K) ‘then there 'is only one such condition (3.7),
since each such condition gives either another \WL[D] or another.set of
. Q@'s. When there is only.one condition (3.7), all but. one of the
variations {8 pig, S‘Gb} -can be specified, and this remaining. one
-depends -continuously on the specified ones. Suppose for some pair of

b the sign of the ratio of the « of the unique (3.7) differs from

- the ratio of the corresponding Ty, - Consider a variation in which 'the

S
=

o
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o) 9 for one of these b's is the dependent variation and the & % ‘of

‘the other -one of these” b's. is large compared to the remaining independent

ones, which can be considered rélatively infinitesimal. If the B pi2 -are
taken zero, then Eq. (3.7), together with continuity,. assures that

N, Im 8 o >0 1is satisfied for the one dependent variation .3 % Sif it

is satisfied for all the independent ones. Thus the function MCB(K) is
analytic at simple points of Q)(K)f\TﬁéB(K) that are not on ﬁﬁbB+(K) 5
which is what the theorem says. The signs of ths .05 in (3.7) carry
directly over to the corresponding signs in (3.7') because the ajb in
(3.8) are all positive. Theorem 2 goes beyond Theorem 1 vonly.if the
single linear dependence relation (3.7) involves at least one o, -contribu-
tion. Thus the 8‘pi2 ‘contributions will still be lineafly independent

and GL(B,K) will be an . aalytic manifold, just as in Theorem 1.

Definition %.10 . Let Dc ‘be the Landau diagram corresponding to a

—

simple point K of WWbCB+(K) . The corresponding energy-momentum diagram

5&-:is”the diagram obtained by replacing each Lj of DC by. the energy-
s, A, = ', p. . T i > o

momentum vectors 3 a's ps of Eq. (3.7'), with n, & 30 (nb

is still the sign of bubble b .) The G(K;E)» forf“ﬁe is now defined

exactly as in (2.41).

Definition 3,11 . The basic ie rule for the functions MCB(K) is the -

same as the "basic ie rule" defined in Def. 2.11 exceptrthat. MCB(K)
replaces MC(K) and q;LdB+(K) replaces ‘ﬁaﬁg(K)a That is, this rule
asserts that M;B(K) is analytic at points of the upper half o(K;K)

plane near a simple point K of :%ECB+(K), However, there is one proviso:
ét least one 1ine of the diagram DC must correspond to an internal line

of some bubble of B ; the basic i€ rule for the function MCB(K) asserts

(oy definition) nothing about the case in which every line of D, is a line of B .
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Theorem 3. (Third Structure Theorem)
If the assumptions of Theorem 1 are satisfied then the basic ie
rule for the function MCB(K) is valid.

Proof., The arguments leading to (3.6) and .(3.7) give, similarly,

d g = Z . n, dh
int 3 95 4
= Z n.,dh,a'.p
int 5 9T T
B b
= §:< Q, p, m, B h, + A, n,. . dh
int 4 L1 OIT O E % Tt £
)3 ). :
= , o, p, n,.dh, + —  dh
int i i i it i b Q% 511f T
2
= Z B . ai 8 p. T z (xb 8 Gb 5 : (5"9)

. . i
int i b

.where now the hf include also the momentum-energy vectors -carried along
some pathsvsimilar'to Feynman loops, but unclosed, that enter Dc_ at
certain external vertices and leave at. others. These vectors provide for
‘the variations of the external variables, and will be called the external
rarameters hf . The actual paths “they take along the lines of Dc are
not relevant to our argument;

The basic i€ rule to be broved refers only to simple points K-
of q3(K)f\ﬁﬁ;B(K) . At these points‘therevis only one'eQuation .7")
and consequently all the d pig and & ob except one can be fixed
arbitrarily by appropriate choice of the internal & hf , as mentioned in

Theorem 2, Therefore if we shift 'G(K;f) into the upper half plane by

variations of the external B hf then the internal © hf can be adjusted

i

w*
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so that all" 8 pi2 and all but one of the 8 o “vanish. This last d 9 s
when multiplied by» a% 5 must therefore be shifted'into the upper half
plane, since ¢ 1s, But then by a»slight adjustment of the internal S_hf
theAremaihing ab qb ban also be shifted into their upper half planes,
keepipg the .§ pi2 = 0 . This achieves the required resulf of'ﬁoving
all ﬁb éb into their:gpper half planes, Which are the regu%arity'regions,
while keeping all the & pi2 = 0.

This grgument aepends on the assumption that Dc contains some
line that is an internal line of the Landau diagram ch' corresponding to
some bubble b of B, since otherwise the contributions & o, in (3.9)
a;l vanish., If Dé has only the lines Li that are the lines occurring
already in"B itself thgn cqntinuation past the singularity is not
possible in general, In fact, thé phase-space»factor'in _MCB(Kj_ vaﬁishes
at such a point. Thus the'physicai function MéB(K). is zero on one side
of such a singularitymmanifold, On the othér,hand, if DC contains any
line that comes from the interior of any bubble b of B , then theorem 5>

_ ] T
gives ﬁhe rule for continuation paét this singularity surface unless 8 o
1s necessarily Zéro. Thi; circumstancé can occur only if the extefnal
vertices of 5e all coincide, or all lie on a single ling that is parallel
to every external line inbident upon all but~pne of the exfernal vertices°

(The external vertices are vertices upon which external lines end.) In

‘this situation the‘mass:constraiﬁtﬁ;on thevéxternal'lines force all

variations & o to vanish, and hence no rule for continuation past the

_singularity is provided by Theorem 3.



IVo

-58-

‘THE POLE-FACTORIZATION THEOREM

UCRL-~16816

This section is devoted ﬁo a proof -of the pole-factorization

theorem. Some definitions are first introduced.

Definition 4.1 . A pole diagram Dp

is a connected ILandau diagram having

‘precisely two vertices V& and Vﬁ' , and precisely one internal line Lp

Fach vertex therefore confains-exaétly one of the two endpoints of ~Lp :

€
v

€,
Vv

(k.12)

(k.1b)

Definition 4.2 . The sets v and v' defined by a pole diagram Dp' are

the sets of external lines connected to the vertices V& and V&, s

respectively. The v and V' represent the corresponding index sets

<|

v' =

Definition 4.3 .

{i

{i

: iv % O'} 1 #

: eiv, # 0, 1

- 2: P; &5y
ex

- L P&
ex

2
qv = Sv’ .

P}:

pl .

(k.2a)

(4.2b)

(k.3a)
(4.3b)

(k.3c)

at

=
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" Remark 4.1 . - For a pole diagram Db‘ one has TK,+[DP] = W [D. ] =

D
{K:SV(K) = ppe} , Where, pp is the mass gf‘the particle associated with
line Lp of Dp . For 'MC(K) , the condition of analyticity near K of
7h,[D§]/\ @) in Im o(k;K) > 0 implies analyticity near K in

Im SV(K) >0, as is shown by some,simple algebra. For the function Mc*

represented by a minus bubble this region of analyticity is switched to

- Im SV(K),> 0.

Definition 4.k .- A quasi-simple point K €‘WL[Dp]f\@(K3 of a function

of the form

F(K) = % M (X) R (DR
Be . .

is & point - K.€ m[np].f\ Q©(K) such that  F(K), considered as a distribu-

tion over & real neighborhood of X , admits a decomposition into analytié

functioné2

i

CF(K) = (5, (K), W(K))

(L.5)

I

€ -0

lim .[f;(S(K) +ie, W(K)) - £_(8(K) - i, W(K))]'

where f+ and f = are analytic functionS‘of'theif arguments in the

region corresponding real -K in'a neighbbrhood of K and 0ge<n>0,

‘except possibly at points where S(K) = upe and e = O . .The set

W(K) . is some set of arguments such that (?v(K), W(K)> gives a one-to-one
analytic mapping of a neighborhood of K (in the domain of definition of

F(K)) into a bounded open set in (SV,W) .
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Definition 4.5 . A function F(X): of the form (4.,1) is said to have no -
pole [or worse] singularity at a quasi-simple point X e 1WL[DP)I\ ® k)

only if

elimo e, (SV(E)_J: ie,wk) = o. (4.6)

N

Definition 4.6 . The pole assumption P, for a simple-point K of

‘%L+(K) 1ying on ‘Yn[Dp]/\ @ () 'is the assumption that all pole
singularities of functions F(K)  of the form (4.4) are associated with

pole diagrams in the limited sense that if K is a quasi-simple point

E:e TK[DP]/] P(X) of F(K) then F(K) has no pole [or worse] singularity

at X unless some Be ® supports Dp . Furthermore? the ie rule
for the part of F(K) contributing to the residue (4.6) at such a point
K is the same as the .ie rule for the various DP’DC B-e @ s provided
--these ie rﬁles are all the same (i.e., all have the same sign in

Ey Im S, > o).

Definition 4.7 . The stability condition on physical-particle masses is

the condition that the mass of any (physical) particle is -lesg than the
sum of the masses of ény_set of particles into which .is allowed by
selection rules to decay. Thus any (nontrivial) bubble b that represents
a nonvanishing Mi(K%) must have at least two initial lines and at least’
two final lines. And correspondingly, each vertex . Vh of any Landau
diagram must contain the leading end points-of at least two lines and the
trailing end points of at least two lines: ' formal Landau diagrams not

satisfying this condition are spurious and can be ignored.

S
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Theorem 4 (Pole-Factorization Theorem)

 ‘.Assumptions:

(1) ‘Unitarity [Eq. (2.20)] |
ﬂ'(2) Cluster Decomposition [Eq.. (2.30)]
(3) Iandau CdnditionS'for'Physical Region' Singularities [Def. 2.10]
(4) Basic ‘ie Ruies [Def. 2.11]
(5) sStability Conditions for Physical-Particle Masses [Def. L.7]

Consequences: Let X be a simple point of ”W%+(K) lying on “Wx[Dp](\ ® (x)

such that ‘the .pole assumption P

) is valid at ‘K. Then M (K) has a
c

pole singularity at K whose residue

r® = 1m (&) - %9) u_(K) o)
K - K 5 |
‘Re 8,(K) =]
Im SVV(K) >0
r(K) = i« MC(KQ) a£<vﬁ)'Mé(Kv') . _ (1.8)

" The sets *Ki -and - Kv" are the sets of. variables associated with the -
-lines, both-internal and external, incident on vertices V& and Vvy'
v respectively, of DP(K) . The indices associated with particle p are
~-covariantly contracted with the corresponding indices of as(vp) , which

is the spin matrix (2.22) . The factor « ‘is

o = a, /oy 9, | _ | (1.9)

where Up is the sign induced by interchange of two like variables p .,
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and: Qé and Q% are the phase factors occurring in the decomposition

MK, = o M (K) M (K,,)

+

o Ml(K) Gp(vb) 8(k'P 5 k"p) “(4.10)

P #a,b P

L o T oMK ) .

Here K&v' is the set of variables consisting of all those in either Ki
or ’Kv, . This set is just the set K plus two variables, one for an
initial particle p and one for a final particle p . That « is
independent of the order of variables in Kﬁv' is assured by 2.

Proof. The functions M(K'; K") and M*(K”*; K'*) will be represented
by plus and minus boxes, res?ectively, with £he sets of lines issuing
from the left and terminating on the right.of these boxes being the lines
representing the sets K!' aﬁd K"_ respectively. Then the cluster
property is the assertion that the plus (minus) box is equal, apart from
the phases ap » to a sum of bubble diagrams,.each‘consisting of a column
of plus (minus) bubbles, with the sum being over all ways of connecting the

given external lines to a column of bubbles. In this notation unitarity

takes the form shown in Fig. 1.

in
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‘Fig. 1. Unitarity in box notation. The external lines
7 are suppressed and a summation over all possible sets of
internal lines is understood. The unit operator I is

a product of factors G(Vi).s(kli ; k”i) .

Multiplication of M(K). by unitarity gives the equation represent-

ed by Fig. 2.

Fig. 2. Result of multiplying M(K) by unitarity.
‘The terms on the left of Fig. 2 that support ‘Dp will be
classified with the aid of the following two lemmas,thich.depend upon

the ideh of "key bubble':

Definition 4.8 . A key bubble (relative to Dﬁ) of a bubble diagram

B s a bubble b of B ‘such that every path.in B from a line in the

set v ‘defined by Dp to a line in.the set v’ defined by Dp passes

“through b .

Lemms -1, ‘If ‘B supports Db “then B has a key bubble (relative to Dp) o

Proof, "B supports Dp“ means there is a D < B ‘having an internal line

T such that the contraction to points of all other internal lines of D

gives 'DP s with I of D bécoming Lp of 'Dp°° Every pathfin>'D from
v to v' must pass along 1L, for if there were one not passing along L

then the contraction would give a path in Dp' from v to  v' not passing
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along .LP" which is not possible. Since every path from v :to v' passes
along L , each of these path passes also through any='g. sucﬁ=that ”f is -
an internal or external line of the ch replacing T of B.. At least
one such b must eXist,vand any such b is a key bubble.

This argument proves,. in addition to the lemma, the resﬁlt'ésserted
in the following cordllary,
Corollary. Any L of De B that becomes.'the Lp of DP= D < B 'upon
contraction of the other lines of D  is an ihternal or external line of

the ch replacing some key bubble of B..

Convention 4,1 ., In this section all trivial (two-line) bubbles will be

t

considered absent: the unscattered particles of M(K) will be represented

by single lines containing no bubbles.

Convention 4.2 . Bubble diagrams that correspond to functions B(K) ‘that
vanish because of combinations of mass constraints, conservation laws, and

stability conditions will be considered not to exist.

.Definition 4.9.. A direct path connecting two bubbles is a path that
touches ghese two bubbles at, but only at, its two end points.

Temma 2, A VB.-that supports. Dp .has precisely.-one or two key bubbles
(relative to Dp,, always). -In the first case no L of any D & B :can
become the iLP .of Dp:> D< B wunless L 1is an internal line ofvthe
ch that replaces the one key bubble, In the second case the two key

_bubbles are connected by a -line 'L of B:. Moreover, the removal of L >

from B disconnects the part of the diagram connected to v from the

o

part connected to v'. This line L of B becomes LP of 'DprCLB “upon

contraction of the rest of the diagram. No other L of any D< B can

P

become the LP of a Dp:> D € B, in this case of two key bubbles. -
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Proof., By”lemma‘l there is at least one kejﬂbubble, _If there is. precisely
one key bubble then any L of D&« B that becgmes the Lp of Dp:: D<B
upon contraction is ah internal or external ling,of the Dc replacing this

key bubble, by the corollary of lemma 1. If L were an external line of
b

'Dc then it would have to be an internal line of B  itself. _But then

the bubble of B lying on the other end of L would also be. a key bubble,

contradicting the supposition that there is only one key bubble, Thus L

b

must be an internal line of the Dc that replaces'the one key bubble,

-in this case of just one key bubble.

If there is more than one key bubble, then pick two. These two are
cohnected by some path in B , since B. must be connected in order to
suppo?t the connected Dp .- This path can be taken to be a direct path,
by réﬁoving closed loops. :If this direct path touches some other bubble
b', then any'path from b’ to any external line, L_e » of B must pass
thrpugh-one of the two key bubbles. Otherwise Le could be connected to
any-spepified external line of B Dy a path passing through at most one
key bubble;- one cou;d pass via Db' directly to the last of these two
'bubblesQlying on some original pathlto that specified external line. But
then a;l.external lines_of B would belpng to the same set, v or v',
to Whichlthat Le belongs, since a path from v +to V' must pass through
all,géy'bubb;es,-by definition. But, by virtue_of our definitions, all
external lines of B cannot belong to a single one of the two sets 'v‘,or
v' , and hence‘any path from any b' to anyl Le must pass through one of
the two key bubbles.

This implies, in turn, th@t.every b' lying on any direct path
connecting the two key bubbles-must‘stand to the right of one.of these

two key bubbles and must stand to the left of the other of these two key
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bubbles; otherwise the rightmost of the b''s could have no initial lines
orﬁthe leftmost of the b''s could have no final lines, which is not
possible because of the conservation;law requirement. Thus the two key
. bubbles must be ordered, with one standing td the right of the other, and
this is (trivially) true also if thére is no b' , since the connecting
path is then simply a single line segment Lj , which is dirécted., If br
is a key bubble that stands right of a key bubble bz , then all the lines
of br lying oh direct paths connecting br to bz must be final lines
of br (which issue from the left of br)’ since otherwise either bé or
some b’  on some path from b£ %o bz would have to stahd right of br 5
contrary to assumptibn or to the above result.

If b is a key bubble of B its removal must give a diagram
B-Db in whiéh’thézpaffs connected to v and v', reépectively, arélr
relatively disjoint. The external lines of b belonging to these two
parts Will'be éailed bv and bv' respectively. They are disjoint, and
all external lines of; b must beldng'to their union, sinée every one of
these ‘lines is connected in B - b to some external line of B s by';
virtue of the féét'ﬁhat"each bubble of B has both initial and final lines.

A1l externalfiines of b, lying on direct paths fo.SOmé other

(fixed) key bubble b, must belong to a single one of the two sets brv

£
? : ) .
or brv 3 otherwise v and v' would be connected by a path that passes
through bg but not through br » which is impossible, since br is a

key bubble. Moreover, éll the externél lines of br not lying on any

direct path to the (fixed) key bubble b, must belong to a single one of

£
v oyt .
the two sets brv or brv ;3 otherwise v and Vv' could be connected by

a path passing thfough bf but not through bz , Which is impossible

&®
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since bz is a key bubble. Thus the set of lines of br lying on direct
: 1
paths to Vbﬂ -constitute one of the two-sets._brv or ‘brv " . This set

consists of only final lines of ?br if br stands right of bz . "On the
other hand, we have

Proposition 1. An Internal line .. of a diagram ch replacing & key *

!
bubble b of B can become an‘~Lp' of D§:><:B ~only if bv - and bv
both .contain both initial amd final lines of B .

o . 9
Proof. The removal of I must disconnect bv‘ from bv Jin ch 5

since otherwise v and v' would not become disconnected by the removal.
Al .

.of 'L, as-is required if L “is.to become-an Lp ~of Dp::C:B o If bv

YRi

.or bv consisted of only inifial lines or only final.lines then the-

‘energy-momentum carried by 'L- “would have to be the energy-momentum carried

by:this set of initial . or final lines. - This conflicts with the. stability

requirements unless bv consists: of a single line. But this possibility

is precluded by ‘the requirement that vertices of Iandau diagrams must
contain end poinfs of thrée or more lines, together with the mass, conserva-

tion, and stability conditions and the positive - o condition imposed on

“the ch by definition (3.2).

'; Combining'PTopdsition 1 with the result stated just before it

we conclude that an L of -D<B . that becomes Lp ~of Dp cannot be an

internal line of the ch replacing the key. bubble br or, by exactly
similar arguments, bz . Thus any 'L of D< B that becomes LP .ofu'Dp
must be an external line of some key bubble, hence an internal line of

B, -in this case in which.there is more than one key bubble.
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If there is more than one key bubble then the I -of D that
becomes ‘I_ ..of ‘Dp -can oply’be an internal L .of B+, as just shown,
The two bubbles on.either -end of this internal line of B are both key
‘bubbles. -Since the line 1L connecting them'becomes 'Lp ~of 'Dp;, its
removal must leave the parts of the diagram conneced to v and V'
rela‘tively-disjoint° . This proves the lemma for the case of precisely two
key bubbles, since the existence of another L that becomes and Lb of
'DP<: B would imply -the existence of: other key bubbles. It remains to be
shown that there can be no other key bubbles.

Let \br and bz be the right-hand and left-hand.key bubbles on
“the two ends of some. I, of B  that becomes Lp -of Dp s .in the case of
"more than one key bubble. Suppose there is another key bubble. -If this
other key bubble stands right of 'br “then the lines of 'br “lying on the
direct paths'to.thisvothef key bubble 211l lie on the right:side of ‘br
‘and constitute .one of the two sets bfv or brv' . The single line L ,

. Which is the only-line. of ‘br lying .on the :direct path to bﬂ , also
constitutes one of the two sets b?v--or _bfv1 s and in-fact the other one
of these two sets, since it lies-on the left of br', Thus L is the

;only‘final line of ‘br', This contradicts stability. Thus this .other key
‘bubble cannot stand right of b . Nelther can it stand left of Py
Nor can it stand to the right of bz and to the left of 'br , since this
‘would imply“the-existence of a direct path between br and bz that
parallels L., and hence precludes the possibility that I becomes Lp of

D .as required. Thus there can be at most two key bubbles. This concludes

the proof -of lemma 2.

®
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Lemma 2 allows a.classification of the terms on the left of Fig. 2
that can support .Dp-o First there are terms having only one key bubble.
This single bubble can belong to any one of the three columns. Theh there
are the various terms having two key bubbles connected by a line of B,
the removal of which separates B into two disjoint parts, one connected
to the set v and the other connected to the set v' . And this line
must become the I, .of Dp upon .contraction of the rest of the diagram.

The various terms supporting Dp are indicated in Fig. 3.

Fig. 3. Decomposition of left side of Fig. 2 into the
six possible types -of terms that support bﬁ plus a

remainder term R that does not support Dp . The line
terminating at the top or bottom of a box is suppose to

end. on some (nontrivial) bubble within that box.

The protruding products of little plus and minus boxes in the first
and third terms are just the identity, by virtue of unitarity, and.can be

dropped.

For the next terms we make use of the identity shown in Fig. L.
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Fig. 4. Modified form of unitarity equation. The singled=-

- out line emerging from the leff side of the unitarity equation
can come either from some nontrivial plus bubble, from some
nontrivial minus bubble, or from the incident lines of the
right. Terms of this third kind cancel the unity on the right -

of unitarity, leaving the equation represented in Fig. 4.

The equation represented by Fig. L alqus the line leaving the
lower minus box of term four-éf Fig, 3 to be shiftéavfo the lower right
plus box. Then unitarity can be used to cancel the-protruding‘products of
plus and minus boxes. An equation similar to thaturepresented in Fig. L
allows the fifth and sixth terms to be cancelled. Extraction qf the

connected part then gives Fig. 5.

O - % - ciaEa

Fig. 5. Result bf applying unitarity in lower-order. sectors

to Fig, 3. The subscript ¢ denotes connected pért° The
phases ab s heréjaSSﬁmed to be unity, are discussed in

the text.,

The résult claimed in the theorem now follows essentially from the
fact that first and third terms in Fig. 5 are analytic in the upper and
lower half SV planes respectively, as far as the pole contribution is

concerned. The detailed argument is as follows: Near a simple point K

e
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of ﬂqb[Dp]f\Q>(K) the first term of Fig. 5 is (after the conservation-law
8 function is factored out) the limit of a function analytic at points

K near K ?n the upper 5alf Sv plane, according to the basic .ie rule.
The second term, which has a factor 2xn S(Sv - p?) coming from the phase=
space factor (2.13), can be decomposed into a sum of two functions, one
analytic at points K near K in the upper half Sv plane and the othef
analytic at points K near K in the lower half Sv plane. These two
functions both have pole singulari ties at Sv = upe, but are otherwise
analytic at points X near K , since the two M. function factors can
have no s@ngularities at a simple point K .

Since the éum of the first two terms of Fig. 5 can be decomposed
into fﬁgctions_apalytic in the upper and lower half Sv planes the same
must be true of the sum of the'second two terms. These decompositions
into upper»and lqwer half parts are unique up to a function analytic at
X 5 5y virtue of‘TheQrem_C of Appendix C. Thus the residue at K of the
sum over all four terms in Fig. 5 'of ~either the upper or the lower half-
plane parts must separately be zero. However, the residue at K of the
sum. of the last two terms is zero for the upper-half-plane parts by virtue
of thevpole assumption Pi ) which says that this sum isthe limit of a
funcfion analytic in the lower half plane, so far as tbe pole contribution
is concerned. Thus the residues of the upper-half-plane-parts of the first
two tems of Fig. 5 must cancel. This gives just the desired result (4.8),
apart fromztheAeffect of the phasé factors‘ ab o

To complete the proof tbe-case _05 # 1 nmust bg considered, .Then
one must be careful about the switching of lines on the boxes of Fig. 3

by means of Fig. 4. The equation to be used is shown in Fig. 6.
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Fig. 6. Diagram indicating unitarity.-in the lower sector.
Note that the left-hand column of the first term has an

extra unscattered line that is not present in the fourth
term in Fig., 3. The other two columns also contain extra

unscattered lines. These lines induce phase changes,

In order to bring the foﬁrth'téfm in Fig. 3 into a form where |
Fig. 6 .can be applied it must be multiﬁliéd by the phase factorS'ap from
the“decomposition law that multibly*; a contribution to the left-hand
term in Fig. 6 énd divided by the phase factorsthat multiply  this
.contribution in Fig. 3. By virtue of E2 and Ei this ratio of phases
is.a single Phase fhat is independent of the particﬁlar contribution
considered. .Itvié*in fact just o, times the o = of (M.ld), as is

shown in Appendix B. After multiplication by this phase one can apply

Fig. 6, which gives the product of the -two plus bubbles appearing with the

phase that'they have in the second term of Fig. 6. This phase is just the
o of (4.10). Dividing now by the unwanted phase @ o, _one obtains the
required (L4.9).

Concluding Remarks

(1) If the point X were a simple point of both 7%;:(K) and ﬁ&LCB+(K)
for all B occurring in the third term of Fig. 5, then the second part of
the pole assumption Pi would not be neéessary; one could use Theorem 3

instead.

e
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(2) It will be assumed in what follows that -."W,+[Dp] N @ (K) hasa dense
set of simple points so that the pole~factorization property is valid for
almost. all points of VVK+[DP] N @ (x). This assumption should'ultimately

be confirmed by a study of the locations of the ILandau surfaces Wil .
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V. HERMITIAN : ANALYTICITY

Hbrmitiah analyticity-iS’the property.of écatteringrfunctioné
whereby Mé(K';‘K") 'and.,--M*C(K"%;'K'*) are:aifferent béundary‘vélﬁes
_of aasihgle analytic function. The central idea.of the present prooffis
to Justify, within a strictly mass-shell framework, an effective,continua-
tion:in external masses. | |

- Instead of the original M_c one considers the ‘Mc‘-of a "larger"
process, the external lines of which are those:® a diagram constructed by
‘connecting to each :line :Li cof ‘the bubble’representing'the ofiginal N%
an . "outer bubble" ?i 5 which'iS'conﬁected to other bubbles only along
2

e

: Li . The ‘MC -of ‘the larger process will have poles at 'Si = “i

corresponding*to;these,linesv'Li-,.and-will contain the original Mc as a
factor .of the residue of the product  of these poles.

- The unitarity -equation. for the larger proceSs:Will be considered
at a point Pb -where all Si = 0., -Certain contipuationS'will then be
made to points P where all 5y = gig , and the residue of the product
of the poles-e}_camined°

The unitarity-equations at “Pb will consist of a-sum of terms each
represented by a bubble diagram. According to our basic pole assumption
:Pi a function represented by a bubble diagram B -can have a pole
singularity at Si = gie only if 'this diagram will support a corresponding
‘pole diagram. In order to have a pole in .each of the Si the diagram must
support each of the corresponding pole diagramé, -Thus, according to

lemma 1 of Theorem 4, the function represented.by the connected bubble

diagram B .can-have pole singularities  in each of the set of channel

energies Si only if for -each i , individually, the removal of some sirgle

b
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bubble bi'lof B completely disconnects the external lines of one of the
two complementary sets associated with -S:.L ‘frbm those of the other of these
two sets;

Definition 5.1 A line of a bubble diagram is said to be directly connected

to another line if and only if these two lines end on a-common bubble. A

-set of lines, consisting of -one or more lines, is said to be directly

connected . to another set of lines if and only if some line of one set is

directly connected to some line of the other set. A bubble is sald to be

directly connected to-:a line that ends on it, or to a set coﬁtaining'a.line
that ends on it.

Definition 5.2 . The bubbles of. a bubble diagram B that represents a

contribution to unitarity can be classed as initial or final according to

whether they contain end points of initial or final lines of B,
respectively,

Convention (5.1). In this section trivial two-line bubbles will be

considered "inserted into the unscattered lines of ‘each factor. of a unitarity

-diagram, so'that no bubble touches both initial and final lines of the

diagram. Accordingly, each bubble is either an initial bubble or a final
bubble, - but not both. And each line is either initial, final, or internal.

Temma 1. Let B be a connected bubble diagram representing a term in a

‘unitarity equation. Suppose the initial lines <9 of B are divided into

Ll oT,
n >1 disjoint sets 491', and. the final lines ' of B are divided

~into n diSjoint sets QF ;0 And suppose B ‘is such that for each i 3

individually, there is a bubble bi of B such that the removal of bi

from B completely disconnects the set fF iﬂd <9i from the complementary
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set ZF—\)<9 - Zﬁj_ \J <91 . Then the internal lines of B can be divided
into n disjoint sets Iiv, plus a remainder set IR , such that for each
.1 eilther
(a) Ii is directly :connected to every line of 'Zﬁi. but to no line of .
79 - Epi s Or
(b) Ii is directly connected to-every line of - (&i but to no line of.
J. I, |
The set .Q,i is defined to be :Fi or <91 in cases (a) and (b),
respectively, and Ii contains every internal line directly connected to
EL i c (A - B is the set of elements belonging to A but not to. B)
Proof. If for some i the set <9i is directly connected to the set
g9 - <9Ai (necessarily by an initial bubble) and also the set <¥; is
directly connected to the set T . 291’ (necessarily by a final bubble),
then thé removal of mno single bubble can completely disconnect .Z?j. V <§i
from YV d. <¥j_ \Y) F<9i . Thus the stipulations of the lemma assure,
for each 1 , either that <9i is not directly connected to 49 - cDi
or that €§ 5 s not directly connected to €¥-= 1 i -If for any i
onlyvone of these two conditions is satisfied then we define e,i to be
the set & 4 °F 0'4’"1 that is not directly connected to 3 - s9 ; or
29 - iﬁi s respectively, and define 'Ii to be the set of all internal
lines of B directly connected to lines of C’i . On the other hand, if
both conditions are satisfied, for some i , then we have two sets Q.i and
Q’iiv’ one €9i and one :ﬁi 5 and two corresponding sets Ii and I'i .
In this latter case it is impossible that I‘i - Ii and Ii - I'i

bqth be nonempty. If I'i - Ii is nonempty then bi must lie at one end

or the other of this set in order that the removal of bi completely

e
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disconnect €', from TV - e, \JIE‘-i . And if .Ii;.- T, is ‘nonempty
then b-i must ,lie.bh 6ne end or the other of Ii - I'zi 0 Both these.:
sets’ ’béing ’nonempty.-would ‘thereforé reciuire both thaf bj; either toucjh'

4. . or - '..But ‘not <9 and that b, either touch <9 or CX"
i i 4 i i

. = ~ . o .
but not <! 1 This is impossible, and hence one . of the two sets

I, - I, or I, -I', disempty, We adjust the definitions so that

1

T, - I'. is empty, which defines the I, for this case. The definition

i i

is uhique ’becﬁause I1 - I’i and i'i - Ii cannot both be empty, as this

would make '.Ii = I-’i , and the. diagram would not be connected.

 Having defined the I, We must now prove them disjoint. o I

_ corre'spor'idihg.'to two initial sets lé,i = 491 " must evidently be

disjoint., For if they contained a common line then the initial bubble
connected to this line would direétly connect these two sets € i = Lgi o
But the defining characteristic of these sets Q,i = 491 is that no

initial bubble connect a line of <9i to & line of <V - ‘91 . Similarly

3o Il “ 'Cdfrespoﬁding ‘to two final sets 8'1 = ?i are disjoint.
Finally the I:L ‘corresponding to an initial E‘,i = 31 must be
'di_sjoint from the Ij corresponding to a final 83 = ?A"JJ . TFor

sup'pvosé“ ‘Iii: n IJ were nonempty. The bubbié | bi ‘would then h%tvel tov lie
on one end: or the ;‘)ther -of the s,eé Ii /\‘Ij.' s in order that its re;moval |
disconnect <9 1 from q;‘j . Suppose, firét, that b, were a final
bubble;”dix.'ectly_coflnected' ;to"t ‘if‘j ‘= E‘,j , and hence not directly l

connected to ? 3 ';vIn ordetr that its removal completely disconnecﬁ the
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lines -of _iﬂi from these .of &‘-'iPi:%it‘must be true that Zﬁi -is not
.directly -connected within B +to 2@ - qﬁiv. For any bubble directly
‘connecting them could not be bi., since bi ‘is not directly connected to;

qﬁzi:, But.if the:lines. of QB i are not originally directlyAconnected_to
‘those of i& - iFi then we must have qy-i = €,'i,, since ei = ‘Di:.
There is, then, a set I'i s and the set I'i- Ii -is nonempty, by construction.

»Thus bi must Iie one one end or the other of 'I?i - Ii”’ as mentioned before.

This means that bi must either be a final bubble directly connected to

e;’i = QFi ‘or it must be an.initial bubble not -directly connected to
g, = Ji - This contradicts the assumption that b, was a final bubble
directly connected to Q¥j = ej" hence directly connected to no lines

of 2& - q?gj,.

Suppose, alternatively; that bi were an.initial bubble directly
. connected fo £ = <9.-. Again we must have F. - &' ana I', - I.
; i. A ) i i , i 71
_nonemptyo .Thus again 'bi would have to be either a .final bubble directly
connected to‘ EL'i = ﬁ:i or an.initial bubble not directly connected to
Q,i = <91_, -This.is'agéin contradictqryo ‘Thus I, N Ij must be empty,
Which‘proveS'the.lémma.
It follows from the definition of ‘;i that the.energy carried by
the inte?nal'set UIi vis;eqpal to the energy carried by the external set
e’i . Moreover, the energy carried by the set of all interﬁal particles
'is the sum of the energies-carried by all of the final sets cx;i {or by

all of ‘the initial sets <9_i)o Thus the energy carried by the set oo

lemms=-1  is ‘ER = Z-qio-,.where rqio is the energy part of the vector
9 ‘that is the energy-momentum carried by ZPi minus the.energy-momentum
carried by <9i , and the sum is over those i for which e,i = éDi"
The point Pb is taken to be a point where 9 = 0 for all 1 . Thus

ER -is zero at Pb . This means vIR is empty at 'Pb'.

»e
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Lemma 2. A connected diagram B  such that the IR of lemma 1 1is empty
has either £. = ‘91 for all i or £, = %i forall i .
Proof. No bubble can be directly connected to a line of an Ii correspond -~
ing to an ELi = <Sé and also to a line of an 'Ij corresponding to an
ELj = i?j . For any initial bubble directly connected to a line of Ii

cannot be diréctly'connected to any internal line not in Ii s by virtue of
the definitién Qf Ii . Similarly any-finallbubble directly connected to
a line of Ij cannot be diréctiy connectgd to any internal line not.in Ij o
Thus;, since ;i N Ij jis empty, neither gn initial nor a final bubble can be
directly cgnngcted both to a line of ii and to a line of va o

Let Ci be the set of bubbles of B directly connected to any line
of agy I_i corresponding to an E:i = §Qi . And let .Cj be-tﬁe se£ of
bubbles»of B .directly conn;cted.toany line of any Ij corresponding to
an Q,j = f¥j . According to the above result the sets _Ci and Cj are
disjointe if 'iR is empty then every bubble of B must be in either Ci
or Cj . And moreover no line of B can comnect a bubble of Ci to a
bpbbiérof 'Cj . Since B 'is connected it fqllOWS'that~either Ci or Cj
must be empty.
Lemma~3. If the IR of lemma 1 is empty, then all the bi of B in
lemma 1 must be oﬁe and the_samé bubble b = Db' ,
Proof., It was:shown-aﬁ:the.end of le@mall that bi cannot be directly

connected to Eli . The same argument show that bi must be directly

connected to the oﬁher one of the two sets igj_'or ‘Qi .
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Consider, in view of*lemmaué,-the'case in which all e&. = e&i-.
Then each ‘bi " is-an initial bubble directl&'coﬁnected to <91 . If ’bi
is airecfly‘connéctéd.also to either <9j or ‘Ij"then b, = bj"’ for
“the removaljof‘no other bubble could thén;disconneét'either ‘Sj or qﬁj
from <91.,- But bi must be ‘directly connected to some <9j or 'Ij with
'j £i for B ‘to be coﬁngéted: -if 'bi wefe‘diréctiy'connected to no ‘93
or ‘.Ij with j # i then the part of B commected to Y,V J  could
not be connected to the'resﬁ,of B, since 5IR -is empty. |
| By . this argument :bi must .in fact be'direéﬁly éonnected to either
'Ij 'Qr «93 ,for<every g .For'if‘it-were-direcéhy'connected to one«of
'these»two setéfonlyifor a‘proper'subset .J of the Jj's , then the replace~
ment of ‘bi ﬁto give back B could not recohnecﬁ the part of B rcqhneéted
to the 2?5 &)<95 for -J in J 'to.the>re3t of B-. Thus either 'Ij .or
493 ,is:directly connected to ‘bi for.-every ,j and one has Pi = bj
for -every 35; The case invwhich;ail | é&. = <9i is essentially the
same. This completes :the proof.
| Accofdihg'to.thé above‘leﬁmas:and'discussion thevuﬁitarity"equaﬁions
(for the larger process) at P, has only two kinds of terms that will
contributé, when -continued to 'P, to the residﬁe'of'the product: of all
the poles. The.first is the kind in which all Ci - %Fi and the
second isthe kind in which all Eli = <3i . .The sums -of the terms of _

‘these two kinds are represented by the tWO’diagrams-of Fig. T.

L
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First Kind Second Kind
At A

‘Fig. T.- Diagramsvrepresenting'the sums of terms. of. the
first and second kind. In this figure n , the number
of outer bubbles, is 4. The small boxes represent the
sumsAof'sets of bubbles of the indicated sign connecfed
to, and only to, the indicated set - &, . The large
rectangle.consistsvéf thersum of‘all séts of bubbles of
thg indicated sign such that the overall diagram'is
cognectede and such that the removal of some single bubble
b! of this rectangle disconnects each set iFi V ggi
from every other one. Only connected diagrams are included
- because we consider here only the connected part of the
unitarity equation, which is itself a valid equation, since
the disconnected parts themselves give valid equations, by

virtue of postulates E2 and E3.

The sums of terms of the first and second kinds will be denoted by
A+ and A~ 5 respectively. The functions A+ and A~ will be continued
from B, -to points P" ana P , respectively, by detouring around

singularities of the terms of these functions in accordance with the basic

ie rules for the various functions MCB(K) constituting these terms. Near

“the points - PJ-c the pole terms indicated in Fig. 8 become dominant.



* UCRL-16816

30 -

Fig. 8. DiagramS'representing‘theidominant pole,contfibutions
‘near ‘fiv, -The multipole -contributiens come from-insertion

. of the pole contributiens into the key bubble b' of one of
'the»l@rgg'?ectangle,--The subscripts O denote connected
parts; and. alseo the poésibleﬂlimitations’in-the'set;of'diagrams
-arising from the fact_thaf'the_terms occurring -in -Ai are

those;preseﬁt'at :Pb~,

Figure 8 can:be considered to:represehﬁ'thefresidué;of‘the product
, + C .
of the poles at P~ ., then the plus:and minus ‘lines represent the - factors
. 1

nf-i'gg(vi)n In particular the residues have ‘the forms

A ot s 2

r o= M= (k) ;? [=1G;(v) B2 (k)] (5.1)

+, ,

‘where “the @i'(Kﬁ) ‘are 'the functions represented by the:outer boxes of
‘the right- and left-hand diagrams .of Fig. 8 and Mic(K) represent :the

original Mé(K’;‘K")‘-andnitS'conjugate 'M*C(K"*P'Kr*)f°
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The unitarity equation at P, is At e +4% - 0 s where 20

-is the sum of the terms of the unitarity equation appearing,inineither 'A+

o5 8t By

one adds the function AO ~and obtains, according to unitarity, the result

= A" ; and function .- A" is then continued to P~ . _One has in thi s way

a path of continuation leading from = “to. Po, to P s but there is a

"jump" across a certain cut at Ib-. The discontinuity across this cut at

. o -
Pb -is A,
Following the method of ‘Ref. 8, we now attempt to shift (distort)

this path of continuation ‘P P. P  to a new path P P' P~ that lies

0] 0
completely in the manifold Si“ = MiE for all iA. ?hiS‘Will be done by
constructing a set‘éf'manifolds 'Si = Aaig and gradually -increasing the
ai2 from zero to uig . The original path ~P+-PO P~ touches Si = 0
(all i) at .Pb » As one increases the 'aig the part of the path in
Si'g'aig ;s shifted: into the manifold 'Si = -ai2 while the part: of the

- original path ‘P&-Pb’P" in Si ;.Q;E is left as originally. The original
path P"P. P°  then defines the end points of the part of the path lying

0

at constant ai .
In this distortion of the path there is the jump originally'at

PO to consider, If the singularities of the function 'AO are confined,

locally, to a .finite number .of singularity manifolds, then AO can be

continued to a. (continually shifting) point on the shifting path. Then

one simply adds -at thi s point the jump defined by:the continued function

AO . When.one arrives finally at the situation where all ai2 = _ui'e and

considers‘the‘residue-of'the product of poles, this jump will not contribute,

since Ao, by construction,is the set of terms not having .all the requisite
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pbleso The pole assumption .Pi is now considered extended to nonphysical
points, as will be discussed momentarily.>”

In the process of distortion, various singularities may be met by
-the shifting path. One can perhaps-disfort the path away from them.
Alternatively -one can jump across the cut trailing such a- singularity s

by adding the discontinuity across the cut, just as one did at P It

0 *
‘the singularities of this :discontinuity function are confined to a finite
number singularity manifolds, then the function can be continued to a
(continually shifting) point P, on the shifting path. Then in-the
analytic continuvation from P to P~ -along the shifting path .one simply
adds ‘at the point ‘PS “this .discontinuity funqtiono ‘The contribution. from
such a .discontinuity will not affect the residue at aig = pig unless
the discontinuityahastall.the required poles.

To discuss Which_singularities have-cuts'having~discontinuities

having the requisite poles some definitions will be introduced.

Definition 5.3 . D'« D 1is a Landau diagram D' +that can be constructed

by replacing some of the vertices Vh.,of ‘D by connected Landau diagrams

n
‘D o
c

Remark 5,1 ;_ It is easily -confirmed that if D' dis a D'< D +then D

‘is'a contraction D >D' " of D' and conversely (seér'Defy.B;B),

Definition 5.4-, D.><D- is a Iandau diagram D. that is a contraction

1 1
D1 = D' of some Landau diagram D'< D .. D supports Dl . means DiD <D.

Lemma .1D. A Iandau diagram D supports a pole diagram Dp only-if - D has
a key vertex Vb such that every path:in D connecting a line in the set
of external lines. v -defined by Dp to a-line in the conjugate set '
passes ‘through V?.f' Such a vertex Vb is called a key vertex of D

(relative to DP),

'L}
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Proof. The proof is essentially identical to the proof of lemma 1 of

Theorem k4.

-

Definition 5.5 . The pole assumption Pé is the assumption that the

discontinuity across the cut connected to a singularity surface W of a

function MCB(K) represented by a connected bubble diagram B has no pole

[or worse] singularity at 'ﬁL[Dp] unless the surface M is a surface
Yo [D] such that D < B supports the pole diagram 'Dp [or possibly some
other pole diagram D‘p with \ﬂL[Dp] = ‘ﬂ@[D'p]] » In this sense, all
pole singularities at ‘ﬂm[DP] are associated with the pole diagram DP'a
Remark 5.2 ., Pole assumption P, .is similar to pole assumption fi . It

2

is more general in that it is not restricted to physical points - Q)(K) ..

[ The functions MCB(K) and the sets “[D] are, of course, now
analytically extended to include points not in - @ (X) °] Aside from this
1 o would be very similar if the

discontinuiﬁy across ‘a surface YW[D] were given by a Cutkosky rule., This

;

would make the discontinuity function essentially a bubble diagram function

MB'(

. K) represented by a bubble diagram B' obtained by replacing each’

vertex of D< B by an appropriate bubble. Then pole assumption Ii P
generalized to nonphysical points, would say that the discontinuity function
has no pole [or worse] singularity unless D< B supports Dp .« By no

pole [or worse] singularity we mean, here, no singularity that affects the

residue of the pole.

The quantity of interest to us is the residue of the product over

2

i of the poles at 'Si = ui . The only singularities having discontinuities

contributing to this residue are, according to pole assumption Ib s those

associated with diagrams D supporting each of the corresponding pole



UCRL-16816

. =86-

-diagrams D:i'o According to Lemma 1D a Landau diagram D can.support 
a pole diagram Dpi only if ‘it contains ‘a .corresponding key vertex V@i ;
Thus the :earlier arguments now show that -AO will not contribute‘tq the
residue at either physical or nonphysical péints°

- The contributions to Af and A  are represented by bubble

‘diagrams B -each having only one key bubble L' . If DC B supports

D,bl then the key vertex ‘Vél of D must be a vertex of the diagram

ch7 replacing b' in the construction .of D frem 'B-; the removal of
a vertex from the Déb ..of a ‘nonkey bubble cannot effect the required
separation, since the removal of the entire bubble does not. Thus,.for i
a B representing a term in A" or ‘A" , which:we write as B € A* 5
any key vertex of any .D<CJB'eUAt must be a vertex of the diagram Dc v
replacing b' in~the:construCtion.of D frem. B, It then:.follows that
any DT B e Ai containing all the required key -vertices Vii can :be
chstrucﬁed by replacing the bubbles in one of the terms indicated in
Fig. 8 by ILandau diagrams ch and then contracting certain.lines. At
points 5, < gi?‘(all i) all the lines L; explicitly shown.in Fig. 8
must be contracted to points, since the correspondiﬁg mass constraints are
not satisfied at these points. The required key vertices',V£i are then
Jjust these éqntractgdilines Li °

The Landau'diagrams D associated with the singularities having
all the required poles have, according to the above arguments, a very
special structure. They consist of n + 1 "independent"-parts:conﬁecte&

only at key vertices. For each positive i < n :there is one:"outer"

independent part having the external lines ‘iFi \’(Bi » and precisely one

LY
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of the n key vertices. For i = .0 there is the one inner part, which
has no external lines but which has all n 'key vertices., These n + 1
parts are independent in the sense used in Section I : they haVe~independent
dilation parameters, and the Feynman loops can be confined to individual
independent parts. Because of this, the Iandau surfaces are just the
Landau surfaces for these independent parts. That is, the singularity

surface Th[D] 'is just a sum of singularity surfaces 7thi] , where each

surface’ TWIDi]' is a surface in the variables associated with just one of

the n + 1 independent parts. As a consequence, the path of continuation

at fixed 5, = aig can be considered to be a product of paths 'Pa(ai) 5

one in the variables associated with each of the 'n + 1 independent pafts.

* For the outer parts there are mass constraints on each of ‘the external

2

lines, and there is one additional "mass" constraint Si' = ay

associated with the vertex Vﬁl . For the inner part there is a "mass"
constraint Si = aig' associated with each vertex Vfl . As the a;

increase, the motion of the singularity surfaces th[Di] ‘can be viewed

as the motion of the Landau singularity surfaces for the individual parts

under a continuation in the "masses" a; . ‘These "masses" a; are, of
course, not physical-particle masses, but rather variables of the larger

process.,

Consider now Pf(ai) P'O(ai)’P“(ai), the part of the shifting path

of continuation lying in the surfaces 'Si = ai2 , At a; = O “the two

end points rﬁ(ai) and P*(ai) of this part of the path coincide with the

+
point Pb . Then, as the ai increase, the points 'P“(ai) start moving

along paths,deﬁermined by the original paths Pb P" and PO P~ . These
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original paths lie in the physical region of the larger process and their
‘detours around the physical region singularities are specifiéd'by the basic
ie rules for functions ‘MCB(K),

0 0
will be taken to be identical. Then =£f(ai) P'o(e,) Fla), becomes ‘a

Apart from these ie detours, the two paths 'P. P’ and P P

.closed loop, except for the small 1ie gap between the two endpoints
;Iﬁ(ai) and :P-(ai)o Thus the only singularities that can get inside this
‘loop are.eithér physical region singularities that have, for some value of
‘thg iai" enteredvthrough this gap, or singularities that have emerged from
the cuts‘traiting7physical region singularities that have enteréd through
the gdp,_ B

One follows the motion.of these singularities by a-continuation in
the "masses"’ ay Assuming, temporarily, that the paths can be kept away
from the various singularities whose diécqntinuities contribute to the
residue, one arrives finally at a, & p, (al1 i), and éonsiderS'the'residue

of the product over all i of the poles at Si = uig.a At the pointé

P and * P~ one has ‘the residues v and r” ‘given . in (5.1) and.indicated
in Fig. 8. By construction; continuation along the path -1-"+ P?O_.P= takes
+ e
r to -1 .
As Just discussed, I>+ P' P is effectively a product -of paths
‘Pi s with one path :P& in the variables associated with -each factor in

(5.1). Each factor in rt ~is, accordingly,. continued along the

corresponding path :P& . Uhder'this:continuationl rt goes to rh B

e
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h, . - v
(v,) F; (%) 5 (5.2)
which we know to be - r .

Consider the paths P, corresponding to the outer sets {Pi"U (Di .
-The path .PO P can, as we shall verify below, be chosen such that it crosses

no singularity in these variables. In this case the outer paths ‘Pi can'

' be shrunk to points, which means that
o h B + , .
FOK) = F(EK) . (5.3)

Moreover, in this case in which PoP crosses no singularities in the outer

variables, the terms contributing to the outer factors in Fig. 8 are the-

‘same at Pb"and' P . Hence the subscript zero can be replaced by the

subseript ¢ denoting connected part. Then unitarity (Fig. 2) gives

. ) o
Fy (Ki) + Ty (Ki) =0 . (5.4)
These equations convert the eﬁuation rh = -1 into
h, - 5
M, (k) = -m (K) , : (5.5)

which is just Hermitian analyticity. The path of continuation. h , which
is constructed by the procedure described aboVe, is called the path of

Hermitian analyticity.
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The phases «o of the pole-factorizatipn theorem are.incorporafed
into the functions Ft(K) . That the phases of the various contributions
to (5.4) are then such as to. ensure its validity, by virtue of unitarity,
follows from the fact that the various contributions to unitarity associated
with different connected‘structures, hence different conservation-law .
functions, must satisfy separately the unitafity equations, by virtue of
postulates E2 and E>. The argument is similar to the one given in
conjunction with these phases in the proof of the pole-factorization theorem,
and need not be given again.

Equation (5.3) is walid provided P, P is chosen so as to cross no

0

singularities in variables associated with the outer processes. This can be
aqhieved,'for'instance, by taking the outer processes to be simple téof
particle‘scattering processes, and holding fixed, in the continuvation from
Py to. P, the total energies Ei .of'these outer processes. The 'masses'
a; are ya?ied by varying the momenta. of the particles of the oute: processes.
The only possible Iandau singularities in the variables associated with these
oqter5two-particle processes are normal-threshold singularities at constant
Ei" vThis follows from a simple enumeration of.possible physical region
Iandau diagrams for a two-particle pfocessa These singularities at constant
Ei will not be crpssed because the ‘Ei are held fixed (at values not at a
normal threshold).

When the path P P, P°, which lies at physical points of the
larger process, is shifted to P Py P~ , which lies at 8, = uig , the
values of (at least some of ) the momentum vectors q; associated with lines

Li must become complex (at some points on the new path). This is because

the part -of the path associated with the variables of the inner process is
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forced to pass through the region below the physical threshold of the inner

process, and such regions cannot be realized with real qi . These-complex

values of the a; can and will be obtained by performing appropriate complex

Lorentz transformations on the corresponding-outer parts; that is, the
complexification of 9 will be obtained by a complex Lorentz transformation

on all the vectors of the ith outer part. Since the singularity structure -

- is not altered by a (real or complex) Lorentz transformation, the fact that

a is complex will not reflect itself in the part of the path associated
with the variables .of the outer process; one can consider part of the path
associated with the Quter parts to lie at real values of the energy-momentum
vectorf, as far as the singularities in these parts themselves allow this.

In.the'above-discussion it was assumed that the paths of continuation
can be distorted. so as to .stay away from.all_singularity surfaces-that -
contribute to the multipole residue. That this'is possible follows in most
céses from dimensional considerations: a one dimensional curve is, generally
too "thin" to get trapped by a finite set of singularity surfaces. For
instance, we know that contours of integration of real dimension n .in a
space of complex dimension n can,get trapped at a point to give a
singularity of an integral. But ‘then for n >1 a one .dimensional curve
will in general not be trapped: it can slid¢ away from the usuwal pinch
configuration in n-l directions.

One can confirm this in a simple example: Consider the surfaces
zq = 0, zl +‘a_.= 222 and the curve X, = - €, X, = O,vyl = T, Yy = T ,.
where o > ¢ >0 . The curve intersects the real plane at a point lying

in the region R of the real plane bounded by the restriction to real

points of the two surfaces. As « approaches zero this region @{) shrinks
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to a point. But the curve can be moved away from the pinch, by shifting

it, for example, to the curve X, = -€ + g(T-E),»x2 = 0,7y, = T,
Yo = 7T -2 vhere g(7) is zero for |[t].>1 vand'greater than € near
T = 0., -

This ‘dimensional argument .does not cover all cases, however. For
example, a curve might get trapped between two surfaces that reduce to a
single surface .at a pinch configuration, for then the situation is essentially

.one dimensional. Though such possibilities can prdbablylbe ruled out, we
do not pursue this tack, for in any case thé curve might get pulled‘inté‘

an unphysical sheet by some singularity surface. -In order to avoid this,
the path of continuation will be taken to jump -across the cuts trailing
certain singularities, rather than detouring around them. In particular,

if a singularity moves across the path of continuation then one can define
the discontinuity function in the situation before the'sihgularity leaves
‘the physical sheet, or is pinched against another singularity. The path of
continuation can then be taken to jump across the cut, by adding the
discontinuity. function at the cut. If these cuts ‘are part of the boundary
of the physical sheet then the path of continuation will remain'always'on
the physical sheet. -The definition of the physical sheet given in Refs. 1
and 12 was in terms of essentially this same procedure.of continuation in
external "masses", though there it was Justified by comparison to perturbation theory,
rather than by mass-shell considerations, as was done here. Wé shall return
to a.discussion of this matter after discussing the rules for constructing

the paths connecting crossed reactions.

s
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VI. A CONNECTION BETWEEN PATHS OF

CROSSING AND HERMITIAN ANATLYTICITY

| A derivation of the crossing property of'scattering fﬁhctioné is
given in Ref. I7, and it will not be repested here. This section gives an
extension.of that_argument'that leads ‘to an:iﬁportant connéctiéh between
thebpaths connecting'crdssed reaction and Hermitiah conjugéte points.‘ Thié
connection will play a key roie'in the proof of the nofmai cbnnection between
spin and statistics given in the next section.

Thesﬁasic'idea’in the'SAﬁatrix derivation‘of crossing properties-is

similar to'thé-one used in the above derivation of Hermitian anélyticity:A
one considers a "1argér,process"’haviﬁg pole singularities with residues

containing the scatteiing=functions of interest as factors. -In the study

wof crossing, the larger process 'is selected so that its physical region,

which is a connected set, intersects the "pole manifold" s, = upg in

twb different»disjoiﬁt regions, with these two regions corresponding=to the
two aifférent‘signs,of the energy part .of the vector k? whose square is
é;=. Let K and K be points of s, = Mpe 1ying in these two different

regions. The corresponding -residues are

(k) = toM (k) E ()M &) (6.1)
and ' . | o
r®) = ia Mc-(i‘v)‘”é’p(;p) u_ (%),) (6.2)

réspectiVely, by virtue of Formula (4.8).



UCRL-16816
._9.[,__

The sets K, and K; both refer ‘to thé same subset Vv of the
external particles of the larger reaction, and the sets K?, and E;,
both refer to the same cqmplementary subset _v’ of”the particles of the
‘larger ;’-eactiono The additional particle rgferred to by‘bpth'»K§ ‘and
'Kv’ s and,gésoéiafed with the pole at K, is denoted by p . The additional
particle réferred‘to by Dboth ﬁ; and ‘f;, , and associatedeith’the.pole

at K ,.is denoted by S . Since the poles at K and X lie»on disjoint

2

parts of the manifold Sv = .pp the two particles p and E mneed not

be identical,.though'their'masses are-equ;l, Indeed, the energy conservation-
léw requirement‘déﬁandS'that the particles p 'and 5 have the opposite
initial-final stéﬁus:and 5e-thgrefore particlesﬂcafrying~opposite units
of allladditive-quantum numbefs. . The pértic;es_ r and f. are -called
coﬁjﬁgateAparficles, ér relative antiparticieso Use is made in this
vargumentlof fhé'bonverse lee-fagﬁérizétiqn"theorem, which asserts, under
'thersamg'éssumptions, thét}if-there'ié 3 pole at Sv = HPQ' in.the.physical
region:then there must be a .corresponding physical_particle contributing to
-unitarity summations;  if there were no such particle then the 8 - function
contribution'needéd forvthe.pole:would be absent. , |
Let C° be a path from K to K that runs through the physical
region of the larger process, passing around singularities in accordance
with physical region .ie -ruléé, Féllowing'the pfocedure of Ref., 8, we
distort (if possible)'this_path"co into a path C 'between K and K
lying in the mass shell Sv = ppg » The continuation of r(K) from
'K to X along path C ‘is designated by ~r(KC)v; By virtue of the

definition of C we have
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r(k°) = r(® , - | (6.3)
or equivalently,

X ey [ C c
i MC(K$ ) Gp(vp ) MC(KV,-)

_ i_aMc(Kvﬁp(%;p) M () . | (6.4)

In the distortion of the original path Co into the path C one

must, as in the case of Hermitian analyticity, avoid singularities having

discontinuities with nonzero residue at Sv = ubg .. The necessary

distortions are examined by using an effective contiruation in the mass of

the pole particle. That is, the various paths of continuation intermediate

between C° and C are divided into three segments with the middle segment

2

‘at constant Sv = ap . The path Co is carried to C by increasing

a from zero to “p . The distortions required of the middle segment are
those needed to avoid those Lahdau singularity surfaces of ‘the larger
process thét‘become ILandau singularity surfaces of one of the two subreactions
associated with the residue when ap reaches pp . The discontinuities
acrOSS‘the cuts associated with the remaining singularities will not
contribute to the residue, by virtue of pole assumptibn Pé‘,
| The two end points of the middle segment lie on the portions of the
original path,‘CoY.leading from.the zero point - to K and K  respectively.

As ap increases these end points detour around any encountered singularities

in the manner specified by the physical,regidn ie rules.
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In the procedure just sketched the pole-factorization property was-
applied to Jjust one particle of some original regection of interest; the
other particles were taken to be particles-of the larger reaction. The
crossing paths associated with these other particles can be constructed by
applying this same procedure to each of these particles separately. -However,
to standardize the construction and obtain a éonnection to paths of Hermitian
analyticity we shall apply the pole-factorization property simultaneously
to all of the particles of the original reaction of- interest. That is, the
larger process will be chosen to be one having é pole singularity for each
particle of this original reaction, so that the scattering function for
this reaction occursas a factor in fhe residue of the product of all these
poles, much as in the case of the derivation of Hermitian analyticity,

Just as in the preceding case of Hermitian analyticity £he
continuation in the ap now starts from a point where all the ap , and
also all their associated kp » are zero. There are paths in the physical
region of the larger process leading from this starting point to the
regions associated with each of the n different crossed reactions
associated ﬁith;original reaction. Each of these n paths passes around
any encountered singularities in accordance with the physical region ie
rules, If Cio"is a path in the physical region of the larger process
leading from the starting point zero to the point ‘Ki assoclated with the
ith one of the crossed reaction, then Cijo = Cio-- Cjo is a path in the
© physical region of the larger process leading from Kj to Ki . (Sums of
paths are read from right to left.) The result of distorting Cijo into

the mass shell ap‘: My, (211 p) in such a way as to avoid singularities that

contribute to the residue of the product of the poles is denoted by Cij° Since
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c,.°+c.° =¢.°, (6.5)

and since the distortions are such as to avoid the relevant singularity

surfaces, we have also

Cij + Cjk ~ Cij s o - (6.6).

where the = sign in (6.6) means equivalence with respect to continuation
of the residue r(K) of the product of poles. Equation.(6.6) expresses
thgucgmpatibility'of the various crossing paﬁhs C that connect the
var@gps grosseéqreaction ?egiqns.

E_As diggussed in the preceding sectiqn; aﬁd also in Refo 17, the
pole assumptiop fé impligs‘that’the_singularity surfacesithat have gutsil‘
haying discontinuities contributing td the residue are just th¢ Landau
surfaces corresponding po the individual scattering functions Qf'the
residue, but with the external mass up shifted to ap o (Only the
landau surfaces are extended off the mass shell, not the M functions.)
Because of this spedialicharacter of'thé relevanf singularity surfaces
the parts of the paths of continuation af constant'.ap cag'be considered
to be products of pafhs, with one factor for each process.referred tO'by
the residue. The distortion of each individuval path is then followgd by
foliowing the motion of the Landau surfaces,corresponding to ﬁhe appropriate
process, as the ap .ingrease from zero to gp'e Only those_Landau surfaces
nee@ be avoided that are not forced to be nonsingular,-by:the_ppsitive-a _
requirement on the Landau singularitiesqentering the}physical region Qf the

larger process.-
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The parts of the paths C,. cijo, and cio referring to the

inner process will be represented by thevcorresponding'lower case quantities.,

Then the part of (6.6) referring to the inner process reads

Cij t Oy = Cyy (6.6")
where =~ means equivalence with respect to analytic continuation of any
function whose singularities are confined to those Laﬁdau surfaces of the
inner procgss that are restrictions to ap = up of the surfaces avoided
in the distortions of the ¢ 5 into the mass shell. Equation (6.6') is
certainly valid if in these distortions one retains the original structure
of the paths wherein a single central point is connected to each.of the
variolls crossed reaction points., If it is possible to distort all the
paths Cijo' into the mass shell so that the relevant singularities are
avoided, then this structure can certainly be retained. The case in which
it is not possible to distort the paths so as to avoid all the relevant
singularities will be discussed later.

For each path -cio there is a complex conjugate path Eio that
coincides with qio except that it detours around the physical region
singularities in accordance with the i€ rules associated with the conjugate
function. According to the previous section it is the path E&o - cio
that, distorted into the mass sheli, gives the path of Hermitian analyticity
h, that takes the scattering function M(Ki) into - M+(Ki)° The rules

for the distortion of the path Eio - cio into the mass shell to give hi

are the same as ‘the rules for the distortion of the path cjO - ciO into

the mass shell to give cji : one must avoid the points of a .larger

t 13
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process thatylie on the formal extension off the mass shell of the Landau
surfaces of the (inner) réaction of inferest.v'However, one need not avoid
those landau surfaces that are.required to be nonsingular by the positive-¢
requireﬁent on"singulafities that enter the physical region of the larger .
process,

Since the paths ’cio and Eio, leading to the n -crossed reactions
and their Hermitian conjugate points all start from a single point, and |
the rule for distortion of these paths ‘into the mass shell is a uniform one,
the same set of Landau surfaces being avoided in all cases (see below), the
compatibility requirement (6.6') carries over also to paths connecting
Hermitian conjugate points. In particular we obtain relations such as

h, +c.. . s .
SRR 500

R
4
[np

(6.7)

where Egj is the result of distorting ¢..° = o.° -3.°

_ c, into the mass
1J 1 J S

" shell., Equation (6.7) says (reading from right to left) that the path

from Kj to Ki to its conjugate point Rﬁ is equivalent to the path
from Kj to its conjugdte point .KE , to Ei . Here équivaleﬂt means
equivalent with respect to analytic continuation of a function having
singularities only on ILandau suffacés thaﬁ are restfiétions to maSS'gheil‘
ap = u? of_Landau surfacéS‘associéted with the innef pfocess and tﬁat ére
not required to be nonsingular for the lérger processes by the positive—a'
requirements. The scattering function of interest must have its singularities

confined to these surfaces, since it is a factor of the residue of the larger

process, and this factor contains all the dependence on the variables

‘associated with these singularities.

Equation (6.7) is certainly valid if in the distortion into the mass

shell one maintains the structure wherein all the n crossed reaction points
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and their conjugate points are connected to a single centrel point,.
Alternatively, the n croseed reaction points can be connected to one
central point, and the n conjugate points can be connected by conjugate
paths to a conjugéte central point that is connected by a single path to
the unconjugate central point. More generally, Eq. (6,7)‘15 certainly
valid so long as no closed loops:are introduced into the set of paths :
‘connecting the various points. Cases~where closed loeps are present
require some additional discussion, which is given in Appendix D, However,
there is no real need to introduce closed loops.

Because’the Landau structure.isginvariant under Hermitian conjﬁgation
the paths Eij' can be takep to be the cemplex.conjugates of the pafhs
€;j , where ¢ is the path.of crossing for the transposed function. The
relationship of Hermitian conjugateness is‘maintained if the two felated

functions are continued along conjugate paths. Thus from the Hérmitian'

analyticity relationship
: _ + _ T *
MC(Kb) = =M TE®) = -mE*, (6.8)

where MC(Kh) 15 the result of continuing ‘MC(K) .along the path h to
the conjugate point, and the superscript T 'represents transpose,lonev

obtains
m () = - Ty (6.9)

where Mc(th) is the result of continuing MC(K) first along h and

then along ¢ , and MCT(KC)* is the result of continuing MéT(K) along
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its path of crossipg Y » and then complex conjugating. The ¢ and c
are conjugate paths.  ‘Applying (6.7) to the left-hand side of (6.9), we

obtain our principal result,
M) = e TEEE ~ (6.10)

which says that the result of continuing MC(K) first along ¢ and then
along the path of Hermitian analyticity h associated with the crossed
point K giVes‘minusrthe complex conjugate of the function MCT(ﬁg).,

. Equation (6,10) would follow directly from the Hermitian analyticity

relation at the crossed point,

M@ = - T®, (6.11)
if we were in possession of the crossing relationships MC(KC) = MC(E)
and. . MbT(K¢) = MCT(K) .. However, we have so far obtained only the

weaker condition (6.4). -Because (6.4) has'a product of two M functions
there is-an ambiguity in the relative phase and normalization of'VMé(Kc)

7 And there are also the extra phase

@nd;.Mc(ﬁ)‘, as was stressed by Olive.
factors . and _& to be considered. These latter depend on the statistics
of the:particles and will be discussed in the next section.

- -In the discussion of crossing énd Hermitian analyticity given so
far it Was assumed that the various physical region paths can actually. be

distorted into.the ma.ss shell without cutting across any of the singularity

surfaces ‘having cuts with discontinuities contributing to the residuvue. It
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1s conceivable, however, that these singularities might pinch together in
such a way as to make impossible the distortion‘into the mass sheil‘of
some of these paths. |

Rather than distorting'the paths around the various singularities
we can .elect rather to jump acfoss'the associated cuts, by adding the
corresponding discontinuity‘functionsﬂ This was in fact the procedure
adopted for the various cuts whose discontinuities do not contribute to
the residue. For cuts around which it is not always possible to»detour,
the discontinuity across fheicut is defined for values of ap for which
'the‘two.sides are still comnected, and this function is then continued to
a_ = M . |

The discontinuity functions ‘associated with cuts around which it
is. possible to detour, within the mass shell, share with the original
function the-important pole-factorization property, since this préperty can
be continued around these.cﬁts. In particular if a singularity under
consideration occurs in the variables associated with theiinner-reaction,
then one can detour around this cut without changing the functions in the
residue formulas that are associated with the outer processes. . One makes
use here of the relativistic-inQariance property, which allows the momentum-
energy transfered to the outer reactions to be altered without changing
their invariants. Hence ‘the functions associated with these outer reactions
'will remain unchanged under continuation in the inner variables, except for
the dlteration of certain polynomials associated with the expansion of spin
states,:. These polynomials return to their original values when the

- continuation.is brought back to the other side of the cut and hence the
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outer factors return to their original values. The jump in the residue.
function acréss the cut is therefore represented by adding a'certain
discontinuity function to the factor associated with the inner process,
upon whose variables the singularity waé assumedto depend, the outer
factors remaining unchanged., Moreover the discontinuity function for the
factor associated with the inner reaction ié independent of the particular
larger process being-.cor_lsidereda These properties of the discontinuity

function will:.be called the pole-factorization property of discontinuity

functions., It is the property whereby the discontinuity function of the
residue across a cut in the variables associated with a given one of the
functions occurring. in the residue is obtained by adding a discontinuity - -
to that particular one of these functions, this discontinuity being -
independent of the particular larger process under consideration.

The pole-factorization property of discontinuity functions 1is, as
we have just said, automatically satisfied for cuts around which one can
detour without leaving the mass shell. It is algso satisfied for cuts with
discontinuities given by a Cutkosky formula, for then the pole-factorization
property of the discontinuity function is a consequence of the pole-
factorization property of the individuval functions occurring in the Cutkosky
formula.

If the pole-factorization property of discontinuity functions is
satisfied for all the cuts across which the paths of continuvation jump,
then the discussion of crossing and Hermitian analyticity given above is
essentially unaltered. For then there are certain cuts across which the
paths must jump, but the corresponding discontinuity functions are universal
guantities that do not depend upon the particular larger process from which

it is derived. Thus, the discontinuities that must be added as a path
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Jumps across the various cuts will be independent of the particular end
points being -connected by this path, and the compatibility conditions
(6.6') and (6.7) still hold. Furthermore, the property whereby the
Hermitian conjugateness relation ;s maintained when the related functions
are continued along conjugéte paths is also undisturbed by the cuts. .For
in the defining of the discontinuities on the two.conjugate paths one can
use .for the larger processes two Hermitian conjugate reactions. Then the
Hermitian conjugateness property will be valid for the discontinuity
functions calculated at ap < pp 5 and will be carried into the mass shell
by continuation in a to pp . Thus these discontinuities will not
destroy the Hermitian conjugateness propert& and one still obtains (6.9)

and hence (6.10).

s,
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VII. THE CONNECTION BETWEEN SPIN AND STATISTICS

2
b

in the physical region of the (larger) process described by the scattering

The residue of the pole at a point K on thé manifold Sv;'= 5
function MC(K)5 is given according to (4.8) as
() = 1M (K,) G (v ) u( (1A
r(k) = 1iaM (K o\ Mch,), 7.1)
~ .
where Gp(vp) is a metric tensor satisfying (2.24),
~ : 2]
G(-v,) = (1) ® G(v) , (1.2)

and o is a phase factor given by (4.9). This phase factor is important
to ‘our -considerations but the formula (L4.9) will not be needed.
At a physical”point K lying on the cfosSed-region part of the
2

manifold Sv = N the residue of the scattering function for this

same larger process is
r(K) = iaM(X) Gp(v?) MC(K&') . (7.3)

The point K has the same set of variables as K , but the wvalues of the
momentum vector parts have been shifted. The sets of variables K& and
K;, each contain, in addition to certain of the variables of X , a

variable associated with the particle p associated with the pole at X .

Similarly the sets of variables R; and. K;, each contain, in addition to certain
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of the variables of K s a variable associated.with the particle :5
associated with the pole at K . Particle .S is Qalled the antiparticle
-of particle D .

The result of continuing from K a;ong=the mass;shell path- of

continuation ¢ 1is represented by placing the superscript ¢ on the set

of arguments’ K . The path ¢ is:constructed so that r(X°) = r(X) .
This gives
. oy c e
1M (k)G (v,") M (")
(1)

- 13U (R,) G (7)) M () -

Since the point 'K was assumed to lie . on the crossed-region part of the

manifold Sv = .Mpg we have vﬁc = = ;E » which gives with the help of

(7.2), the result

2jp ey Y = cy

(-1) 7 oM (K,") G (v) M (K, ") |

(7.5)
— — ~J -— —
= « MC(KV)GP(VP) M(K,.) -
23

This factor (-1) P 3111 be the origin of ‘the normal connection between

spin and statistics. It is also the origin of the connection between the

intrinsic parities of particles and their conjugate antiparticles, as was

shown -in Ref. 26.

L4
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The relationship between « and O is determined in certain cases

. by the statistics of the particles of the larger procéss,27 .Consider in

particular the fesidue formulas in the speciai cases indicated in Fig. 9.

Fig. 9. Representation of direct and crossed residue

formulas in a special case where the initial and final
particles of the larger process are the same set of
particles. The factors ix and 0 must be added. The
order of incident lines, reading from top to bottom,
will indicate the order of variables of the functions

MC(K'; K") and ‘M(K'; X") .

The phase factors o and O associated with these residues can
be determined from statistics by a direct examination of the derivation of

the residue formula. In the key step of the derivation the contributions

to a unitarity equation represented in Fig. 10 were converted by means of

the unitarity equations represented in Fig. 11 to the residues represented

in Fig. 9.
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Fig. 10. The contributions to the unitarity equations of
the larger process that are converted by means of the
unitarity~equations shown in Fig.ll into the residue

formulas shown in Fig. 9.

o £

-

WP

Fig, 11. Unitarity equations used to convert the pole
contributions to the unitarity equations of the larger
pfoéess shown .in Fig. lOvinto the residue formulas shown
in Fig. 9. That the right-hand sides of these equations
dérrectly'cancel against terms of the unitarity equation
not shown in Fig. 10 is shown in the proof of the pole-

factorization theorem.
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The two terms on the left of the equations in Fig,. 11 are Just
the complex conjugate transposes (Hermitian-conjugates) of‘each»other{
according to the conventions adopted in (2.30d4) and (2.58). It is with
these phase'COnventions'that“the‘Hérmitiah analyticity properties ‘were proved.

Because there :are no extré phases‘on thé‘left side. of the equations
represented in Fig. 11, the phases « and Q@ of the residué functions
~shown in Fig. 9 must be precisely the phasesrof’the-correspdnding'contri-
bution: to unitarity shown.in Fig. 10. This is a key point.

The pleses of the.contributions to unitarity shown in Fig. 10 are
determined by the statistics of the external particles of these diagrams.
In particular, interchange of ‘the pairs of identical particles 4 and 5' in
the first factor of the first diagram of Fig.-lO, and. the pairs -of identical
particlescl, 2, and 3 in>the first factor of the second diagram of Fig. 10,

leads to Fig. 12,

Fig. 12, Result of interchanging. some pairs of identical

particles in Fig. 10.

e,
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The contributions to unitarity shown in Fig. 12 are just absolute=-
value-squared contributions, and these must ﬁave no phase. More specifically,
if the minus bubbles in Fig. 12 represent precisely the complex conjugates
of the corresponding plus bubbles in this figure, then the phase factors
of the terms in Fig. 12 are unity. This stipulation that the minus bubbles

be the complex conjugates of the plus bubbles we record as

wt(E,) = u*(k,) - (7.6a)

and

M & ) M¥E) . o (7.60)
In the passage from Fig. 10 +to Fig. 11 no reordering of the variables of
the connected parts is performed; these functions MC(K';_K”)_ are kept
fixed. Only the orderings of the variables of the larger process on the
left are altered. This interchange induces an'overall sign in accordancé
with the statistics of the particles interchangéd.

From the fact that the phase factors in Fig,_lQ are unity, the
phase factors in Fig. 11, hence Fig. 9, are immediately determined from
the statistics of the five external particles. If the number -of these
particles obeying abnormal statistics [Gi = - (-l)gJi] is odd, then
the quotient a/g is

23, 23

5
- I (1) Y = -(a1) P, C(71.7)
i=1

Iy
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where the equality (7.7) follows from the fact that the sum of the spins
of ‘the particles participating in a nonvanishing reaction is even, by

- 23
virtue of the convariance condition (2.11)., But if a/a is - (-1) p

then (7.5) becomes . : _ .

- (k%) T ) M (K, ©)
- (7.8)

- N (&) EE) )

Continuvation of the right-hand factors in (7.8) along the path of .
Hermitian :analyticity h associated with the crossed point 'E;, converts

(7.8) to

o (6,°) () 1 E,)
(7.9)
- MC(R;) E;(Vb) M*(ﬁ;?-::

where use has been made of (6.10), (6.11), and (7.6).

The functions M : and M* ‘are complex:conjugate functions and the
factor ‘G is the square of a Hermitian matrix. Thus the right side of
(7;9).15 nonpositive and the left side'is nonnegative. .Therefore both

sides must be'zero,.whichwimplie3~immediately'that

'Mc('ﬁv) = 0, (7.10)
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for this case in which an odd number of the external particles of the set

'Ki 3 exblusive of 5 , are abnormal. ?hiseresult was derived  for the
particular case-of an M function with three initial particles -and three
final particles, but the argument holds also for the cases more than three.
Thatvis, any Mc function referring to a process with three or more initial
particles and three or more final particles is zero if any subset of all
but one of these particles has an odd number of particles with abnormal
statistics. This immediately.;mplies that all such M functions referring
to a set of particles éontaining any abnormal particles must vanish except
possibly for M functions referring to an odd number. of particles all of
which are abnormal. This last possibility is rule out by unitarity, since
the nonvanishing process would contribute a term to the sum of positive
terms giving the real part of the M function for a corresponding forward
scattering process, which must,<however, vanish because it involves an even
number of abnormal particles.

Thé possibility that abnormal particles occur.in a reaction involving
only two initial or two final particles, but in no reactions involving three
or more .initial and final particles, conflicts with the pole-factorization -
property plus unitarity. (Unitarity guarantees that the transpose process
is nonzero) Thus we conclude that the scattering function MC(K) vanishes
if any of the particles referred to by K obey abnormal statistics:  only

particles obeying normal statistics can react.
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VIII. THE PHASE FACTOR IN THE CROSSING RELATIONSHIP

Having established that allvparticles obey normal statistics we

obtain instead of (7.8) and (7.9) the relationships

M (x)°) 3P(Vp) MC(KV.C)

8 (8.1)
= MC(KV)EP(VP) M (K,.)
and
M_ (k) ?;’p(?p) M (K,6) |
| . (8.2)
= M (K,) € (V) W (K,)
From (8.2) ‘it follows that
e, (&, = PRI (8.3)

That is, the continuation of 'Mé(K$) is equal to Mé(R;) up to a possible
phase factor.

Equation (8.3) can be written as
, e = =\ . _
MK, = M (K) o) - (8.4)

where a(ﬁv); is a spin-independent.phase factor. [The spin independence

of a(ﬁ;) .follows immediately from the covariance conditions (2,11)28]

Insertion of (8.4) into (7.5) gives
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oF,) oF,) = af, K, @)

=
where @ = (1) P a/a.

All our equations are invariant under a transformation of the form
u,(8) — [exp(z £ 1 0,)] w (), (8.6)

where wp is a real number depending only on the particle type p .

The sum in (8.6) is over the particles réferred to by K, and the t
sign is plus for final particles and minus for initial. The numbers ¢p
can be chosen so that for each particié p there is one particular M

function that satisfies instead of (8.4) the more stringent condition

c —
M(X,7) = M(K,) . (8.7)
. RS
That is, the phases @p can be chosen so that a(f;) = 1 , which implies

that for the particular E;, associated with ﬁ; in (8.1) one has also

a(f;,) = 1 . If the phases a and «a in (7.5) were such that Q were
always unity, then the above adjustment of phases to give a(ﬁ;)~ = 1
would make a(ﬁ;,) = 1 for all E;, s, and the crossing relationship

(8.4) would have no extra phése.
In order to discuss the value of Q , certain stipulations regarding
the order of variables must apparently be madée. In field theoretic models

one has a cluster decomposition law that yields

e
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1 Lt co oK1 o " " oo oM )
M(K' 5 Ky oK' 5 K"y Ky etk )
(8.8)
_ ) =T 1 e ®M Yese 1t v
= MC(K.l ; Kl)v MC(K2 ,‘KQ) MC(Kn 5 K n) + .
That is, if the variables in M are ordered according to a particular
cluster term, in the manner shown, then the ap for this particular
cluster term is unity.
That this equation should continue to hold in a pure S-Matrix
29

theory can.be argued as follows. ~ - Let all but one of the sets 'K?i‘ and
K"j ‘be held fixed and let this one remaining set be denoted by A . ‘Then

(8.8) will be written.in the abbreviated form
M(A) = M (A) M+ .o, - (8.9)

where- Il . stands for the product of the remaining factgrs on the right..
[ The M(A)K<on the left is, of course,'a quite different function from the
MC(A)~ on tﬁe.right,]

From our general cluster decomposition property we have instead of.

(8.9) the more general equation

M(A) = A MC(A) I+ eoo , (8.10)

where o, 1is the phase factor: o of (2.30).. Let B be a set of

variables labeling an.amplitude in.the same superselection.class as: the

result labeled by A ., We have then also:
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M(B) = O MC(B).H Foeee , (8.11)
where all other variables are still fixed as before.
Consider now a superposition C = 8A + bB . That is, C 1labels

the amplitude such that
MC(C) = a MC(A) +D ME(B) . (8.12)

According -to the general cluster property one should have, in analogy to

(8:10) and (8:11), also
M(c) = aC:MC(C).H teee (8.13)

This is actually a slight extension of our postulate El of Ref. 12, which,
as stated, referred only to amplitudes labeled by sets K , not to their
superpositions. = But exactly the same physical principle shouid apply to
superpositions. This extension of the postulate EI, which we call'-gll 3
gives (8.13). |

We need also a stipulation that
M(c) = a M(A) + b M(B) . (8.1k)
This requirement -would be rather natural if we weére dealing with a Hilbert

space formalism in which the §S matrix were regarded as a unitarity

mapping of free-particle states onto free-particle states, with these

.13
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free-particle states regarded as tensor products of individual single-

particle states, and in which the ordering of variables specifies the

- ordering of these states. Ofiéourse, since we know that the tensor

products of ‘these states in different orders are”not’all equal, it is not
absolutely clear that (8.14) must be satisfied, since the addition of
extra states might affect different states differentlf, -PrOOfs-of;spin'
and'statistics.that‘dépénd on such extra stipulations are not completely
satisfactory, since it is conceivable ‘that a fheory.with abnormal
statistics might be possible if one were to abandon the extra stipulations;

This might be done in such a-way’ as to leave the phySical'relationships

-of superposition, Lorentz invariance, etc., unaltered.

" However, having proved the normal connection between spin and
statistics without recourse to such.é%ipulations;'our objective now is
to complete the specification of the basic formalism of a propose& o
S-Matrix theory. -The stipulation (8.14) is therefore now adopted.

The sfipﬁlatiéh (8.14) immeéiateiy gives the result s
q = a ;5 R v(8“.‘-15)
as one sees by taking special values a and b satisfying
a:b = - MC<B) : MC(A) . (8.16)

Then the relevant term on the left side of (8.13) vanishes, which -implies,

by virtue of (5,10), (8.11), and (8.14), the result (8.15). The phase

A

-factor «, therefore depends only:.on the superselection class of A, or
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more generally on the superselection classes of the various sets K"i .
In that case, however, one can take the sets K'i to‘be equal to the sets

K"i , without altering « Since the relative phases of the connected

iy
parts 'MC(K"i 3 K"i) and their corresponding no-scattering parts are
fixed to be unity, by virtue of E2, and since the phase of the no-
scattering contribution to M(K"l, K”E,-°°K"u ; K"l, K”E,--'K"u)-'is unity
by virtue of our original conventions on the no-scattering parts (which
we were free to choose), we find that the factor Q = aB is also unity,
and thus.obtain (8.8).

Frpm the fact that the phase factor o& is unity for the
decomposition of the type shown in (8.8) one can conclude that the factors
o and o in Q are independent of the external variables of the process

containing the pole. In particular, if one writes the M(va,) on the

left of (4.10) as

M ) = MK, , X', K'y 5 Ky s Ky K”p) ’ (8.17)
where K"v and K' = contain the initial and final variables of K, 5
and similarly for K , , and K’p and K"p are the variables associated
with the exchanged particle, then according to (8.8) one can say that

o in (4.10) is unity.
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I K;) /

— T | |
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Fig. 13. Decomposition of (8.17) according to (4.10).

The phase @, in (4.10) isthe inverse of the phase change

-induced by moving 'K‘pi through X' , into the position where:(8.8) is

again applicable. But this phase change is:independent-of the variables
associated with the external particles-associatedeith 'Kv' . Here we

are using the: fact that the phase change induced by the interchange of.

-any ‘two adjacent variables,is;independentvof'thesremaining~variables of

the “M  function. This is a consequence -of (8.8) and unitarity. For

'unitafityrensures that the phase change induced by a reordering of the

various final variables is independent of the particular initial variables

(To see this consider the contributions to forward scattering, which is

a sum of absolute values:squared; Thus all contributions must suffer the

same phase change under a reordering of the final external variables).

But then (8,8),ensures'thaf the intérchange of two adjacent final variables
must . induce a phase change that is independent of ‘all of the other |
varisbles, since onecan consider a decomposition in which these two final
variables are'the only two final wvariables bf'one of the individual
factors on the right of (8.8). This factor can appear as a contribution

to various reactions.
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For the analogous calculation of O one uses (8.17) with K§~ in

lace of K ..
P 2 | |

K;. :@K Ky
= 52_ ot : ) KB ‘+ o<b

"
9
! ’
Kz~ | KL Kz

Fig;.fg.':Decomposition of 'analogous to the one ‘in Fig. 13,

but with .5 in place of p. .

Again ag;-= d, and a% is independent of the external variables‘
of KX,, :now one mu;t.commute K"§ through 'K"v ‘to obtain the form
‘where (8.8) is applicable. But then Q .is independent of the external
lines of 'Ki,:, and-one,obtaiﬁS'from the special crossing relation (8;7)
(with'the variables ordered as in Figs. 13 and I?) the general crossing
relation -

Mo, K5 KLS) = MK, 5 K KD (8.18)
That-is, if the phases are adjusted so that (8.18) is validifor one
particular ‘v'i, then it will be valid for every v' .
In terms-éf'the functions; MC(K) defined in (2.26),_the crossing

‘relation (8.18) becomes

*4
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) M_c,(Kv"c) :;"‘,MC(I—{V-’)_’ L (8.19)

which ‘is Just the statement that (- p | m.p , = t.) is equivalent.to

(p 3 mP P t_), with the understanding that” the contlnuation from the

original region of p051t1ve ( p ) to the new region of p031t1ve pp has

been made along the path of continuation c . That is, for the M (K) |

functions the division between initial and final can be drawn arbitrarily:

one has ‘a 51ngle universal M function for all the crossed reactlons, .
. The important fact that the sign change under 1nterchange of

adjacent congugate variableS'is the same as the sign change under the

interchange of the corresponding ‘like variables follows immediately from

(8.8) and the fact that the phase change under -interchange of adjacent

variables:is_independent of the other variables of M. One can cons1der

(88 ) for “two different orderings of the sets -of variables of ‘the M

‘function on the left. Then to one of ‘these sets of variables one adds a

conjugate pair and finds that this pair must commute w1th all variables.
In fact any set of variables of zero quantum numbers must commute with

any other variable, if (8.8) is to be consistent with unitarity.
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IX. CONCLUDING REMARKS - THE STATUS OF ANALYTIC S-MATRIX THEORY

The present work is basically a contribution to the development of .
the S-matrix framework begun in Ref. 1. The assumptions in that work were
stronger than one would like “in several respects. In the first place the
possibility of superselection rules was not encompassed, and there was a
special assumption, B', referring to phase factors. In the second place
the crossing property'was derived from a postulate of physical connection,
Whiéh is an assumption of the general crossing principle without its
specific detailed form. 1In the third place the analyticity postulate,
though expressed éntirely in terms of the unitarity equation, wasAguided
in the definition of the3physical sheet by previous experience with
potential and perturbation-theory models.

The removal of the superselection rule restriction and of the
phase assﬁmption B' was the task accomplished in Ref. 12. The present
work prbvides a derivation of crossing froﬁ weak analyticity assumptidns
of the general type postulated in Ref. 1, but without use of the specific
assumptions fegérdiﬁg the form of physical sheet postulated there. The
nature of thé'construction‘givén here of paths of continuation connecting
crossed and Hermitian analytic points makes it very likely that these
~points will be on the physical sheet as defined there; the constructions
in both cases are in terms of formal extensions of the Landau surfaces
off the mass shell and the requirement that the various region all are
linked together when the external masses are zero. In Ref. 1 the ILandau
surfaces allowed to be singular in the region relevant to the continuation

from the zero mass region were constructed so as to be just those Landau
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surfaces that are 51ngular ‘in the oorrespondlng reglon (defined as the
phy51cal sheet) in perturbatlon theory. In the present construction we
have the condition that those singularities entering the physical region
must be‘just those of perturbat%on theory. It is‘veryvlikely that this
correspondence with perturbation theory at_physical points will ensure the
corfespondence with pertufbation theory throughout the physical sheet, to
the extent that only Landau singularities are allowed in this sheet. A
proof-of‘thie would:provide~a jusﬁification of the,particﬁlar construction :

for the physical sheet defined in Ref. 1. This problem 1is left for a later

‘work.

Once the deflnltlon of the physical sheet given in Refs. 1l and 12
is conflrmed by mass shell considerations the central problem becomes to

derlve a general 1ntegral representatlon for multlpartlcle scatterlng

‘functions analogous'to the Mandelstam representation for the four-partiole

functione.; The flrst part of this problem is to obtain the general
dlscontinoity formulas for cuts -entering the phy51oal sheet. A paper on
this subJect is in preparatlon. That work should provide a basis for a
proof of fﬁe pole assumptlons Pl and Ib that were the basis of the
present workﬁ | |
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APPENDIX A. A Fundamental Theorem on

Analyticity of Integrals

Theorem A'., Let F(K) be defined by

F(K) = ff(K;K) E - S(gi(K;K)) K , (A.1)

i=1

‘where the ‘gi are single-valued real analytic functions of the sets of

real variables K = (kl,‘”,kN) and K = (El".“’izh) . Suppose for

0 all j} ‘is a bounded

K ina set & that Q(K) = (K:g ; (K;K)
set over which ng/afi is of maximal rank m < n, and that f(K;K) is
analytic at points (K;K) of ((K;K):ke ¥, Ke Q(X)) . Then F(K) is
analytic at points K. of & . The analyticity of f£(K;K) and F(K) is
in the sense of Def. 2.1 of Section IT. |
Proof. Let K be a fixed point in '. &Y. . Because the rank of agj/al_{i

50,51 That is,

is maximal the set R(X) is a real analytic submanifold.
for any K in Q(K) there is a real function K‘K(X), defined and
analytic on Aﬁ_K(K), the closure of a bounded open set 'UK_(K), in the space

of points labeled by the set of local coordinates X = {x.,°°°,x_ .},

1 n-m

such 'that K’_K_:(X) maps -U_K(K) onto an open neighborhood (RK(K) .of

K in the space R(K). One can,. in fact, evidently take the X to be
linear functions of the Ei in such a way that B(XJ, g )/BEi = 3(X,¢)/XK
is nonzeroat G = 0 (all gj = 0) for X in a sufficiently small

ﬁK(K) This ensures ®

that the inverse function K'K(X’G) .will be unique
and analytic in both arguments at G = 0 for X in ﬁK(K) The function

K'—(X) is then K'_(X,0).
K( ) K( ,0)
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. The function K’K(X,G)

written as -KRR(X,G;K). It is,

facts that it is analytic in G

.-one -can write

which gives

as the well-defined derivative.

o

oK
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depends also on K and will sometimes be

in fact, analytic in K, by virtue of the

and that G .is analytic in K . For

X

oG

9K

XK'
G

3¢ ok H7

aﬁ: B —

% dKk = dK , .(A.Q)
oG .
& 2 e \ . (A-l})

. Because Q(X) is bounded it is also compact in the induced

topology, in which the neighborhoods in Q(K) are defined as the

intersection of Q(K) . with neighborhoods in the imbedding K “space.

This result is well known.,52

.The basic neighborhoods in ®(K) will be taken small enough so

that each one is contained with its closure in one of. the Q{K(K). This

is possible because of the analytic character of 'KWK(X,G) and its

inverse. In particular, given a point K of Q(X) one can find a

sufficiently small neighborhood AGK(K) of G, =

0 such that K'K(X,G)g{

.is .analytic with an analytic inverse over UK(K) ® AGK(K),BO Thus by

taking the basic neighborhoods in K space small enough so each .is

contained with its closure in the image of -one of the Uf(K) 8 AGK(K),
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we ensure-that the closure of the restriction to R (K) ,of each of these
neighborhoods is in one of the Q?K(K){

The basic heighborhoods in the space of real points K can be
-defined as the open sets bounded by surfaces at rational constant values
of the E& o This provides also a set of neighborhoods in Q(K). For
the basic neighborhoods in ({U() a subset of these will be chosen. In
particular, since for points on R(K) . the g; are analytic functions of
'thg Eg with nonzero the gradients, the basic néighborhoodS'in Q{(K)
can be taken small enough so that the gradients of the surfaces gj =.0
are almost constant over any basic neighborhood in @L(K).55 Then the set
of basic neighborhoods in RKK) -is further restricted by the requirement
that none of these neighborhoods be bounded by a surface corresponding -to
a c;rtain constant Ei if the gradient to this éonstant Ei surface
is "nearly paréllel" to any ‘linear combination of ‘the gradients to the
surfaces gji = 0, at any point K of the neighborhood in question,

[The point here is first that one can certainly find n - m
constantAEg .coordinate surfaces whose gradients are not "near" thé
subspace spanned by the gradients at X +to the surfaces gj = 0, For
let {Vi} be ‘the orthonormal set of normalized gradients to the coordinate
surfaces-lying;afvconstant E& , and’let {Wi} ‘pbe ‘an orthonormal set of
vectors such that the first m of them span the space “W(K) spanned by
the m gradients ng at point X . -Suppose m +.1 of the Vi lie
"near" the spacé W(K), in the sense that, with a .suitable ordering.of
the Vi , Tthe quantity

“m+l n o

)} )y (V- W)™ = 8

izl j=m+l
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is smaller than unity. Then the sum over the complementary set in-. i is

n n

Y Y ) - n-m-s

i=m+2 J=m+1

I

n n ' o :
N .E: 2: (Vi° Wj) = n-m-1 .
i=m+2  J=1
This gives & 21, cOntradicting the assumption.thét m+ 1 of the Vi
lie’near‘the space ﬂﬂ(f), Thus at most m of the Vi can lie near
oW (X), and one can find a set of at'ieast n-m vectors Vv, none of
which is nearly parallel to any linear combination of the gradients to
the surfaces gj = Q . (By nearly parallel we can mean, specifically,
that the lines make‘an'engle of less than n'l degrees). One can choose
aﬁy_bne of these vectors as one_of the .Xi . 'Working up by induction
in m one sees that one can comnlete the set of xi by choosing from
amonggthe set of Ei whose gradientsare not nearly parallel to the
vectors of’ﬂﬂ(f). -Thus one can find'arbitrarily small neighborhoods of
K in @KK) that are bounded only by ‘manifolds correspondlng to k
whose gradlents are not nearly parallel to any vectors of ﬂU(K) And
since QO(K) depends continuously on. K thedcondition can be maintained
for all K in sufficiently small neighborhoods,]

By virtue of the compactness of {(K) .there is a finite covering
of Q{(K)' by neighborhoods of the type specified above. -Since intersections
of finiternumbers of these neighbornoods are also neighborhbods of this
same type, one can find a finite set {Q{G(K)} of these neighborhoods
whose sum is just Q(K), apart from the set of measure zero coming from -

the boundary points of the various Q{Q(K) .
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By virtue of the conditions impbsed on the basic neighborhoods
of ®(x), each @a(K) is contained in one of the QR—(K) The inverse
. image of G%d(K) under the corresponding 'KEK(X) ‘will be called Ud(K).
Let 'Ka(x;K) be the I_{'_K(X,O;K) = -K’_K(X) .that maps ,Ua(K)' onto .

?{@(K)o Then one can write

F(K) =(Z f - £,(%5K) I (%K) X
(04

e R
= Za Fa(K).,
where‘
£ (GK) = .f(ﬁa(X;.K);K) | (A.5)
and |
_ 3K _(X;K)
I (%K) = e A (A.6)
3(X,G)

Some - straightforward .formal manipul_ations give for 'thé derivative

of Fa(K) with respect to K the expression

oF_(K) ) f <afa Ja>' N
- 3K Ua(K) oK
‘ bhﬁa

£, 9y ,s(hﬁa) ? ax , : (A’7)

~

5 _xaﬁam)

where
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'hﬁa(X;K) = EJBQ(X;K) - Cay T 0 . (A.8)
are fhe equations fof the surfaces in X bounding: Ud(K)g The function-
Esﬁa(X;K) is the component of 'fa(X;K) associated with the boundary
surface Ppo of U'a(K)n

The derivative with respect to K is to be interpreted, always,
as the derivative on any variable upon which the ki of XK depend
analyticélly. In particular, if the function is defined only over a
restricted set, then the derivativé is with respect to any appropriate
local coordinate, in fhe sense of Def. (2.1). With this understanding
‘the derivative Bfa/aK exists over the closure of ﬁ&(K) by virtue of
our -original assumption. It is therefore also uniformly bounded overl
'Ua(K).' The derivative of J,, exists in the usual sense, hence also in
the sense of Def. 2.1. It is therefore also uniformly bounded over
Ua(K), The set Ua(K) is bounded and hence the first term on the right
in (A@7)<is finite and, in the sense that it is independent of the phase
of the variation dK, well-defined.

The second term on the right in (A.7) is also finite and well
defined. The function hBa is . analytic in K in the usual sense, hence
also in the sense of Def. 2.1. For any particular»term_ f -one can
transform- to a set of variables in which the E& corresponding to the
surface BQ is one of the X5 - Then -the s(hﬁa) just eliminates this
-one of the dkj in dX . The remaining integral.is finite because
Ua(K)’ and hence BUd(K),qis.pf.bounded ¢xtenta- By virtue of the method

of construction the number of sides B 1is finite and hence so is the
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second term in (A.7). The formal derivative (A.7) is therefore finite
and well-defined.

Since the formal derivative OF/dK given by (A.7) is well-defined,
the function F(K) is analjtic in K +to the extent that the formal
expression actually represents the limit of AF/Z%Z.' For real /K this
- is true. However, for complex K +the meaning of F(K) is not yet
defined.

For complex K near a real Kj € ;9 one can take F(K) to be
defined by (A.L4). The many-variable version of the Cauchy TheoremBu |
then permits the contour for F&(Kb3+ XK) to be taken o consist of a
central part Ud(KO) plus a boundary strip running between 'BUa(KO) and
§Ud(KO + MXK). Using this form for the contour one obtains (A.7) as the
limit of AF/AK for all complex /K . Thus the function F(K) defined
by (A.4) is analytic-at points K, in é? .

For real. K +the various possible ways of choosing the lqcal
‘coordinates and the fUd(K) all lead, via (A.L4), to the same function
F(K), by virtue of the factors Ja » Since the extension to complex. K
via any one of these choices gives an analytic function, the extension
must be independent of the particiilar choice used in (A.L4).

Definition. A .local coordinate patch in @Q(X) will mean the image in

R(X), under an analytic one-to-one mapping K(X), of a bounded open set

*ee.x } . The set. X is the set of

in the space of points X = [xl, S—

local coordinates corresponding to the local coordinate patch. We
further specify that the Xj be a subset of the set of Ej" That this

is possible follows from arguments given in Theorem A'.
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Theorem A, Let Q(K) be the set of real K described in Theorem At,

and let (X:G(K;K) = 0} De the set of all complex K satisfying the
‘same conditions, gj(E;K) = 0 forall j . Suppose Q'(XK) < {K:¢(K;K) = 0)
is the image of Q(K) wunder a mapping K- K' = X + i T'(K;K), where

T'(K;K) is real and continuous over Q(X) ® & with continuous [hence
uniformly bounded] first derivatives with respect:to the local coordinates
‘corresponding to some [hence everyj finite coGering of R(XK) by local
coordinate patches. Suppose R'(K) is close to @ (X) in the sense that
the 'i‘m‘age U,'O‘(K) of Ua(K) is within the region where .'fc'a(x,G) is
analytic with analytic inverse, the relevant minors of ng/aig still
being nonzero. Suppose £(K;K) is analytic at points (X;K) of
((K;x):ke ¥, Ke R'(K)). Then F(K) defined by (A.}), but with v’ (K)
in place of/;Ud(K) is analytic at X in & , provided R'(XK) .is
sufficiently close to ®(K). [This final condition of closeness means
that for some & >0 we have, using the metric in X space,

|T(K;K)| < & for all K in Q(K), for any fixed point K of . .
Though this condition is used in the fdllowing proof, it probably is not
necessary for the validity of the theorem. -The explicit definition of
F(K) is given by (4.9)].

Outline of Proof. The boundaries of the sets Ud(K) map into surfaces

H7 in QR(X), the surface H7 ‘being, by construction, the intersection

of R(K) with a portion of the manifold Eiy' = ‘07 . Here cy is a

(real) rational number and iy means iy . The image of H7 in @' (x)
is H' on which k, —is givenby k, = c_+it', (K/H 3 K). The

R B iy 8 v Fiy v 1y &/Hy 3 K)
symbol RVHy means that K is considered restricted = to H& .
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Each of the real functions t’iy(ﬁyﬁy ; k) can, by virtue of
35

the Weierstrass approximation theoremn, be approximated over Hy’ for
fixed K , to arbitraryvpointwise precision by a real polyhomial ~
t"iy(K;K)". in the variables I{i of K . Indeed all the t'iy(E/Hy 5 K)
having the same index 1 can be approximated by one single polynomial
t“i(E;K), We assume this is done so that the index iy on t"iy(E;K) o
can be interpreted as an i7 . Sometimes, as-in (A.7), PBa is used in
place of 'y +to identify a boundary surface.

. The Ua(K) can be selected so that for -each point K of ®(K)
there is, in R®(K), a coordinate patch N(K) containing K , such that
the Eiy ‘associated with each 1{7 that intersects N(K) .is a member
of the.set of local coordinates X corresponding N(E) . 1f the
original Ua(K) do not satisfy this condition then the Cy can be
slightly shifted so that the condition is satisfied. [Suppose, for
example, that a surface hy(X) = E&y(X) -, = 0 intersects the
intersection ‘Iav of a get of coordinate surfaces ‘xj = 0, where
runs over the set {1,°°°, a < n - m}. And suppose Bhy//axj = 0,
for j = a+ 1l,¢°+, n - m, at some point of Ié'fifhy = 0}, This is
a -typical case where the gradient of 'hy is not independent of the
gradients of some subset of the xj and hence hy cannot be taken as
one of the Xj . There may be a connected set of points in Ia for
‘which this condition on the gradient remains satisfied, but.all points
of this set must lie at Eiy = cyv, Thus a slight shift of cy will
move this entire set of points on '(hy = 0} for which the grandient

condition is satisfied out of the set Ia . A finite number of applications

of this argument will give the required result.]

Ve
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By the Heine-Borel covering theorem the compact R (K) can be
covered by a finite number of coordinate patches of the type specified
above. These real neighbdrhoods N(K) in ®RAK) can be extended to
complek neighborhoods N¥(XK) in (K:¢(K;K) = 0} such that the mapping
K(X) associated with N(K) remains analytic and single-valued over
N*¥(X). We shall require that for some finite covering of @ (K) by these
local coordinate patches N(X) the image in ®'(X) of each N(K) 1lies
in N¥(K). This requirement certainly can be satisfied if ®'(K) 1lies
suffiéientlyvclose to R(X). This condition is far from necessary, however.

The complexification of the neighborhoods N(E)- leads to a
complexification xj - Zj of the corresponding local coordiﬁates.
Because the z, are independent variables over the corresponding N*(K); .
the requirement just imposed ensures that the values of the‘ Eviy on
H'y are independent variables. AIn particular, the E;y assogiated with
the various H'y ‘can be simultaneougl& shifted by sufficiently small
amounts-without moving off the surfacé {X:a(X;x) = o0}.

Because the E'i on H'y are }ndependent variables, in this
sense, a surface QR"(K) < {K:G(K;XK) = 0} can be defined by the mapping
K- KXK' = K+ i T(K;K), where the iy coméonent of T”(Kf/H7 ; K) is
a polynomial t"iy(iyﬂ? 3 K) of the type discusse@ earlier, and where all
components of T (X;K) are, for fixed K , continuous in' K over Q(X)
with continuous [hence uniformly bounded] first derivatives in the local
coordinates of any fixed finite covering of ®.(K).

The surface ®"(K) ‘can be made to lie arbitrarily close to QK'(K>,
Thus: by virtue of the many-variable Céuchy.theoremﬁu the contour can be
taken to run over Q"(K) instead of Q®'(X), without changing the value

of the integral.
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The construction described.above.is.carried out for the original

real K = 'KO in o . For nearby real K the boundaries of the real -
Ud(K) are taken to be defined by the same equations hy = 0 that are
used at K = K, . The boundaries of the images U"a(K) of 'UQ(K), under:

K - K" , are defined by taking the t"i7(K;K) to be independent of K .
This can be done because they are independent variables, in the sense
discussed above.

The function F(K) is defined by (A.4), but with the X in
R&(X;K) replaced by Z"a(X;K), which is the function that maps Ud(K)

.onto U"a(K). In particular, we have

K (z":K)
F(K) = £ (2"3K) & gz
U"G(K) o7
, (A.9)
: . K (2" (X;K);K "
- f £ (" (X3K);5K) O‘( & ) 5%}( ax
u_(K) @ o7

where

M

£_(7"5K) f(i{'a(z";K);K). .

As the real K wvaries from its original wlue 'KO certain of
the boundaries of the Ua(K) may move. The integral Fd(K) can be
considered to be composed of a central part lying over the fixed Ua(KO)
plus a boundary part +that is -~ the strip connecting BU&(KO) to BU&(K).'
By virtue of Cauchy's theorem,Bu applied to the first form in (A.9), the

exact shape of the interior of the contour ‘U”a(K) is not important; it

can be slightly shifted without changing Fa(K).

ry
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Because of this freedom in the choice of contour, the location
of central part of the contour, lying over ,U(Kb)’ cén be preécribed by
taking the function Z"a(X;K) to be independent of K . This function is
then analytic in K and, consequently, so is the part of the integrand
in (A.9) lying over U(KO)u Thus this central contribution to Fa(K),‘
which corresponds to the first term in (A.7), is analytic in X .

For the calculation of the contribution to Fa(K) coming from
the boundary strip near HB& = H7 we choose a seﬁ of local coordingtes
Xy which has an element x5 that is .Eiy . (Wé may need several

such coordinate systems to cover H&', but a finite number will certainly

suffice.) In this coordinate system 7% the equation for H"y is

2", = k", = e +i3". (KX ;K)/H
ooy iy y iy 7(-7’ )/ 7)

1]

"X /H ;K
ZJ7(7’/7 )

36

which, by the theorem on compositions of analytic functions, is -analytic
in X . The meaning of Xy‘/Hy is evident.
The other edge of this boundary strip lies on BU"(Kb) , hence

on the image in ¥ space of Z"a(gx/ Hy(KO);KO)’ which is
A .
z" X /H ;K
G fn s ®)

= 2 %, (z"a{xa[ﬁy(xy/Hy;KO)];KO};K)] :
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The -i7 .component of this equation .is

4/\n e - = by i1 = - .. R 1, )
2, (K s K) = Ee @ 0K ()5 OB LK)
b "o, S = o+ 43 k7d no,
where kiBa(Z-a,K) is the Ba ¥y component of the function Kd(Z a,K)a
This function Q”jy(Xy/Hyu; K) .is analytic in K, and hence so is
Az"., X /o ;K) = 2", (X /H ;K)-2"._.(X_/H ;K .
SO ) = e/ ) R /5 K)
Let 7" represent the set of coordinates other than z", = k",
Y JY 1y
in the set .Z”K,, and let i; be defined similarly. The value of 2"7
on H" has not been specified so far. The point is that the contour in

Z“y can be slightly shifted, keeping 'z"i7(X7/H7 ;5 K) fixed, without
altering the wvalue of Rﬂ(K)o‘ This is because the contribution to Fd(K)
from a piece of the contour confined to H"7 vanishes, because of the
vanishing of dz"i . This result is familiar in simple cases, where the

shifting -of the contour in Z7 space is justified by the Cauchy theorem
in Z} épacea |

Since the exact value of 'Z“y(Xy,/H? ;5 K) is not important, we
shall leave it unspecified, except .to require that the surface R"(K)
be smooth (i.e., continuous with continuous first derivatives with respect
to the variables of some. local coordinate system).

The contribution to Fd(K) from the boundary strip near H"y

is then given (up to a sign perhaps) by
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‘ .af{-(Z'IJ(X./H ;K);K)

: LK)k Py oyt Py o0

jl; £, @, (5, / 8, 5 %)5%) S
4

Y

3T X./H 3 K) o .
' Yy X .7 O x Az", (X./H ; K)dX
3% ‘ . Jy vy 4
Y

X

plus higher=-order terms-.in A K:. -The dependence on K -is “through the

‘analytic function .Az", (X /H 3 K) . Thus the limit A=z", /AKX
vt 37(.. y' Ty’ ) .'17/--

will be well=defined (i.e.,.independent of the phase of ‘A K).  The

analyticity .of F d(K) ‘then .follows by the same arguments that were

used in Theorem A'.
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APPENDIX B, The Phase Factor

in the Pole-Factorization Theorem

1 6 6 1 6 6
2 T -{ 2 + T i
5 3 P 1Y
1Y
8 P D 8

i ) B G h— : 0
5—A " A+t 10 5 t 10

Fig. Bl Fig. Bl'
a c b a' c! b!
2 [ — -7
3 + pP— = 8
L s———l\ . 9
S St /10

Fig., B2
a d a’ ar’ bt

+
\O 03 C
HWO OO0 o

Ul WD R

Fig. B3 Fig. B3'

Fig, Bl - A Contribution to Fig. 3.
Fig. Bl'.- The corresponding contribution to Fig. 6.
Fig. B2. = The connected part corresponding to Fig. Bl.

Fig. B2' - An analogous contribution corresponding to Fig. Bl'.
Fig. B3 =~ A contribution corresponding to Fig. B2, but with a
different intermediate set of particles.

Fig. B3' = An analogous contribution corresponding to Fig. B2'.
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The phase factors in Fig. Bl are gi and Qé whereas thdse-in
Fig, B1' are qi' aqd' qé{ . In order tp»éonvert Fig,-Bito_Eig. é .-one
must mu}tip;y by ai';agf/dlag:. By virtue of Eg this;is equal tQ,

1 P * _ . .
o ae o be /Qéc Q%c s Where _g, b’;?’ and @ label‘the sgts shown\}p
Fig. B2, etc. But by virtue of E3 and E2 this-is in turn equal to

o :times
b

o C R

* * _ B
o"ad O5"|od /aad g T OHad/o%u‘i = 9

where o, . 1is'the o, of Eé. (4.10). Thét<the other corresponding
terms;in%Figs, 3 apd 6 gave‘this same ratio Q- ig assured by E2

and §1 , .$he factor ,Op comesvfrom the interchange of-order qutheA.
two variables ‘p in cf ,that is required .to bring Fig. B2' into the
form where -Eé is épplicable; affer’this interchange c¢' can be

replaced by d4' . Then_lgg is used:to obtain Figs. B3 and B3'.
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APPENDIX €

In Ref. 13 MC(K) is shown to consist of a sum of terms 'Mcl(K)' 
each of which is a 1limit to physical poihts of a function analytic in:a

region containing physicél points as bdundary points, In pafticular

we have
u o] = chi(K) (k) aK
- lim | chi(K + 1 e aM(K)) oK) aK
€ >0 _ .

where K 1is here cbnsidered a point‘in a real vector space of dimension
(3N - 4), and Ai(K) is a point in the.same space. (i.e. local oinear
coordina%es are introduCed). Certain ﬁroperties of such functions Will
now be derived.’ 

Lemma Cl.: Let ﬁiR " be the épace of € test functions with support
confined to R , the closure of the bounded open set R' in the space

R, of n real numbers. Let flo] be a functional of ¢ ‘such that

for any ¢ in &YR

fle] = . lim . ff(x +1ice€ A(x)) o(x) d x , (c1)

€ -0

where x and A(x) are elements of R, the components of A(z) are

X+ 1y, and f(z) is analytic in the strip

1l

entire functions of =z

x+1el(x), xeR 0<e<n>0}.

n
Il
~
N
N
1]

*3
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If o(x) .in fTR .is, at points x of R' the restriction.to R' of

‘a function ©(z) analytic and uniformly'boundeduin
8" = {z :RezeR', |Imz| <p(x)},

where p(x) .is continuous and positive for x in 'R', then
flel =" "lir'n"+ f :f(x +1y(x)+1ice A(z))_,cj)(x 4+ i -y(x))'d(x:+- i .y(x))

e>0" "R-R" | f | .

(c.2)
+ f f(x +-d y(x)) cp(x + 1 y(x)) -.d(x + 1 .y(x))ﬁ,

where the closure of R" is in R' and y(x) -is any continuous real
func_tioh that is zero for x not.in R' ;,.and for x in 'R' gives
a z = x + 1y(x) that is in S 1 S8' . The set of points x + i y(x)
can be considered a contour C . lying over the real points x.. Then

- (C2) can be written in the more ;éompact form

i

lim. f | -f(z +1ice€ A(z))-cp(z) dz

slo] .
‘ €~ 0 C(R - R")

(c.2").

+

f -f(-Z') o(z )dZ ’

C(R")

where C(T) is the part of -C lying. over -T .
Proof. By Cauchy's Theorem, generalized to several variables, Sk (c1)

is equivalent:.to.-
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o] = lim f 2@ + 1€ A) oz) az (c3)

e » ot o S
C

‘since for some €' >0 -and every fixed O < e < €' the functions are

analytic in,the.region-through’which'the contour is shifted. The éoints

on:the boundary. of R', where the . ®(z) are not analytic, give no

contribution because of the boundedness condition on 9(z) . For the

part _C(R") of C ‘the limit e - O . can be taken, since ‘the integrand

is analytic, hence continuous, in € at these points.

Lemma C2. If the conditions of Lemma Cl are satisfied andif |f(z)| is

bounded over the intersection of 'S 'withvsomeiﬁeighborhoodAof ‘R;f R' ,'

then
tlo) - f #(z) o(z) az . (")
C
‘Proof., The boundednéssHof £(z) and ©(z) assures that contribution

.from R' - R" vanishes:as R" - R' .

Corollary 1, If ‘f[e] and ¢ satisfy the conditions of Lemmas Cl and

C2 than. fl@] is finite (noninfinite).
Proof., The right side of (C2") .is finite.

Corollary -2, If in place of Eq. (Cl) we have

tle] = lim f’[f+(x +1ea(x))- £ (x-1ea"(x)] olx) dx
e >0

and if 'fi(z) and @(x) satisfy-the conditions of Lemmas Cl and C2 +then

we have, in place of Eq. (C2"), rather
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N )
ol - [ F@ema- [ £6) k) e .
c* c”

Proof. The manipulations of the proof of Lemma C2 can be carried through

for each term separately.
In the following theorems x 1is'a single real variable
(i.e. n = 1). The set R' will be the real set R' = ({x:|x| <a} .

Theorem Cl. Let fl¢@] be a functional of "¢ such that for any ¢ in

fleo] = lim J/tf+(x +ie) = £7(x - ie)] o(x) ax.,
. e » 0" _

_I..
where the :f° -are analytic in the strips
. v
S = {2 :ReZeR, O0<tImz<n>0}.

Suppose the Ift(z)l are bounded in % N\ N, where N is a neighborhood
of R - R' . Then the vanishing of flo] for all ¢ in ﬁiﬁ implies
that the limits ft(x) exist, are analytic, and are equal, for all

x in R' ..

Proof. By virtue of the second corollary to Lemma C2 one has

o] f f.+<z>cp<z>az~f £(2) o(z) dz (e5)
ot o™ ’

for any @(z) satisfying the conditions of the Lemma Cl, where C and

C are certain (compact) contours from x = -a to X = a
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that lie just above and below the real axis for |x| <a i Let ¥(x) be

¥(z) (z - 2)h .

n

=1
the function ¥(z) = exp[-(a2 - Zg) 1 and let oz ; z')

Then define

rz') f ) ez 2 dz-f £7(2) a2 4z,
=t - ==

where 64— is a contour from a to - a +that lies inside S+ and

above C' for *]XI <a -Db;and C 1is a contour from a to - a that

lies inside 8  and below C for |x| <a -b . For a2 |x| >a -b>0

p— -+
the contours C° are taken to coincide with .- C* , respectively. By
Cauchy's Theorem F(z') = 2xi £ (z') ¥(z') if z' is between ¢t ama
€, and F(z') = 2xi £7(z') ¥(z') if z' is between C~ and C. .

By virtue of the vanishing :of (C5) one also has for z' in . either of

‘these two regions

F(z') J( —-igl—ﬂéil- dz J( £ (Z) wfj) az . (e7) -
| g- (- :

. ' . + -
In view of the analyticity and boundedness conditions on. £ and ¢,
(CT7) implies that F(z') is a single analytic function throughout the

interior of C' .- G . This implies that f (z') and £ (z') are both

equal to F(z')/2ni ¥(2') , and hence are analytic, inside ct.c-
+
Theorem C2., The condition of boundedness on ]f“l in the statement of
. , : . -+
Theorem C1 can be replaced by the condition that .|£(z)| be bounded

+ -
in 8 /1 N by C exp B IIm zl m for some positive wvalues of the constants

CyB . al’ld m .
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Proof, One can_replace in the proof of Theorem Cl the function V¥(3) = exp[-{a“-z"7) =]

by exp[ - A(a2 - 22)-m]_.> And the curve z(x) can be taken to
approach the endpoints at x = F a. along the lines arg (z t a) =% /bm,
Thern for points on the contour sufficiently near 'x = t & the function
|¥(z)] 1is less than exp - A'|Im 2| ™ where A= A[sin(n/hm)]m(Qa)-m/é

If one chooses A so that A" > B then lft @1 is bounded near

x = ta, The same»argumént al;o shows that Ift(z) o(z;z')| is
bounded for z near ta , if z' 4 *a ., But it is the boundedness
of these products, rather than of the Ifil themselves, that is actually
needed, both in Lemma C2 and it; corollaries, and-iﬁ the proof of Theorem
Cl 1itself., Thus the arguments in that proof carry over iﬁmediately to
the présent case. |

Remark Cl. Tﬁeorems similar to C2 have been proved by other authors,37’§8
under the more stringent assumption that f[o] is a distribution. This
distribution aésumptibn demands that f(z) be bounded near Im z = O
by some negative power of lIm Z!A.39 It is not clear that we wish to
impose such a strict requirement on the allowed functionsu‘ In fact, from
the S-matrix view point is is natured to allow all functionals fle] on
ﬁTR ~that can be expressed~as sums of limits of’ana;ytic functions.
Theorem C2 is a step in this direéﬁion. The condition, required in this
theorem, that f %be bounded bty an exponentisl of an inverse power, while
already very ﬁeak, caﬁ be much further weakened by replacing the éopstant
power m by C' exp 13;t lIm zl-m'; Moreover this new m can again be
réplaéed in the same way, and so on. Thus the bound on’ f(z)"Can be
made gxtremely weak.. Whéther the boundedness cordition can be removed

aitogether is still an open question, as far as I know.
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Theorem C. If a functional f[®] has a finite value for all infinitely
differentiable functions @(x) of compact support @L that are
restrictions to @{ of functions analytic in the interior of R, and

if for such ¢ the functional is given by

flo] = lim Jr[f+(x +ie) - £ (x - ie)] o(x) ax (c8)
€~ 0

+
where the functions f~(z) are analytic in the strips
S = {z #RezeR O0<tImz<n >0} (c9)

and are bounded at points of St near the boundary of R by C

exp B lIm z!-m , for some positive valués of constants C,B and m , then
the functions f£Z(z) are unique up-to a common additive function that

is analytic at inferior points of R .

Proof, This follows from Theorem C2 by taking the fi of that theorem
to be differences of possible functions ft of this theorem. The extra
condition in this theorem that ¢ be aﬁalyticvat interior points of @{'
q?es not alter the proofs, since only functions having this property were
used.

Remark C2. The particular boundedness condition used in Theorem C can,
according to the Remark Cl, be greatly weakened; if the need should arise.
Also, class of ¢ for Whiéh (c8) holds can be much further restricted,

if the need should arise.

s
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APPENDIX D

The mass-shell paths Cij conneétihg various crossed reaction and
Hermitian conjugate points are .constructed by following the disfortions
-of paths Cij(ap) as the effective masses ap increase from zero to
ppe . At the start, where all ap = 0, the Qij(ap) all reduce -to a
single common point. As the ap increase the various end points of the
Cij(ap) move élong~definit¢ singularity free paths and the interiors of
the Cij(ap) ‘are distorted so as to avoid a certain set of Landau
surfaces é? .

‘In this continuation in 8, the variousjlcij(ap) 'may be
distorted in such a way that it becomes possible fo find a closed
loop lying in the set of Cij . Since no surfaces of the specified set

59 cross this loop as it develops from a .single boint at ap = 0
to its form at a, = upe one can say that, in a certain sense, none

of these surfaces lies "within" the loop. Thus one might expéct that

the mass=-shell loop should be able to be shrunk-(stayingwﬁthﬂithe'mass shell)
to a point, without crossing'any,of'these surféces, This is in fact,
true, within limits, if the set of surfaces §7 is such that it is
possibie.to construct ‘some function singular on just this set é? o

This result is proved by an application of the continuity theorem
for functions of several complex variablesahO{'First it can be noted that
the actual loop, as it grows from a point to its final fdrm, can, aﬁ
each stage, be approximated to arbitrary preciéion (pointwise) by a

curve that is a boundary of a disc lying on an analytic menifold. In
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particular if the equation for the loop at any particular value of the
ap is given in terms of a set of mass-shell variables Zi' by
z; = zi(e), where - ® 1is a .cyclic variable, then these equations can

be approximated to arbitrary pointwise precisionlLl by the expansion

N
z2. = z% (exp i 0)" c

Zs (exp i @) .

The surface E;(z) i§ a one ( complex) dimensidnal analytic manifold, 0
The curve {E;(z);lzl = 1} rpasses arbitrarily close to the original
curve.,

If the original curve is always confined to a béunded region, as
we shall suppose, and remains at more than some finite minimum distance
from ﬁ& throughout the contribution, which we can suppose, then N
can be hgld fixed over the entire journey from ap = 0 +to ap = “p,°
Since the.boundary,curve (zi(z);]zl = .1} crosses no singularity of
& , neither -can the interior points [zi(z), |z] <1]., by virtue of the
continuity theorem. Thug finally at ap = “p we can shrink the curve
to a point by the transformation lz] - 0.

The above -argument applies within the limit set by the requirement
that a system of analytic local coordinates z, can be found such that
the loop lies within the coordinate patch corresponding to these
coordinates. Though the question can be pursued_furtﬁer it is simpler to
restrict the paths so that no closed loop occurs within the set of

paths.

5
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For the set of analytic functions with singularities lying on
;Q (at .least within the relevant region) we have .in mind .the truncated
or~renormalized‘perturbation theory functions. It remains to be shown,

however, ' that the restriction imposed on 99 by the requirement that

~only positive-r singularities enter ‘the physical region of the larger

process actually forces §Z.to be identical to the analogous set of

singularity surfaces in perturbation theory.
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