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ABSThACT 

The crossing and Hermitian analyticity properties of niultiparticle 

scattering functions are derived within an S-matrix framework. The normal 

connection between spin and statistics.is  then shownto follow.from a certain 

property of the paths of continuation connecting crossed and Hermitian 

conjugate points. The analyticity properties assumed are that the pole 

singularity at a location corresponding to the exchange of a physical 

particle is associated with one-particle-exchange type Landau diagrams 

(i.e. there is no superimposed pole singularity not associated with a 

Landau diagram of this te) and that certain discontinuity functions 

have the pole-factorization. property: that they would have if they were 

given by a .formula.,of the Cutkosky'type. Also, confluences, of infinite 

numbers of Landau singularity surfaces are assumed not to 'invalidate 

results established for the various Landau surfaces considered individually. 
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I I. INTRODUCTION 

An earlier S-matrix proof of the normal connection between spin and 

statistics given by this author 1  depended on an assumption that self-conjugate 

combinations of particle and antiparticle amplitudes were in principle 

observable The assumption is objectionable because ithas no experimental 

basis in the case of charged particles, and n fact conflicts with a 

conjectied superse1ection rule. 2  

In that origInal paper the beginning of a second proof not depending 

on this special assumption was also given. 3  This alternative proof 

depended on an apparent conflict between abnormal statistics and the 

crossing and. Hermitian anàlyticity properties of scattering functions. The 

rossingprope±.tyof (multiparticle) scattering functions is the property 

whereby the scatteringfünction describing one reaction is connected by 

analytic continuation to the scattering function describing certain other 

reactions, called crossed reactions. The 'Hermitian analyticity property 

is the property whereby the scattering function representing a given 

process is analytically connected to the complex conjugate of the 

scattering function for the transposed process, at certain real boundary 

points. 

This second argument was not a.full proof, becuse it was 

incomplete on'two counts. In the first place the statistics involved 

> 

	

	
was the sign change under interchange of variables describing re1ative 

antiparticles, whereas the spin-statistics connectioninvolves the sign 

change under interbhange of two variables describing particles, of the 

same type (identical particles). And in the second place the ieuired 

properties of crossing and Hermitian analyticity were not derived, but 

simply assumed. 
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The first defect was partially remedied in a later paper, 3  where 

it was shown that a certain assumption on the phase factors occurring'in 
p 

the cluster decomposition expansionimplied that the sign change under 	 I 
interchange of identical-particle variables was the same as the sign 	

4 / 

change under 'the interchange 'of conjugate-particle variables. This 

assumption on the phases was that they be such that the disconnected 

contributions 'to a unitarity equation be equivalent to a product of 'the 

unitarity equations 'in'the various disconnected sectors considered by 

themselves. This assumption, although'reasonable, is'replaced in the 

present workby direct physical requirements. 

The main object, however, of 'the present paper, is to give proofs 

of the crossing and Hermitian analricity properties. The work is a 

development of a line of .aproach initiated by Gunson 7  and expld by 

Olive, 
6, 7 

and is based, on an exploitation of the pole-factorization 

property of scattering 'functions. This 'is 'the 'property whereby the 

residues'of poles of scatteringfunctions at,:certain points:in the 

physical regions of multiparticle processes are givenessentially as 

the products of scattering functions for 'certain other reactions involving 

'fewer particles, More specifically, the work is an elaboration of an 

unpublished workof ,thisauthor inwiiich was developed the procedure, 

subsequently adopted by others, 7' 9  whereby the paths of continuation to 

crossed (orHermitian conjugate) points'äre defined by distortingcertain 	
a 

paths originally 'lying ' in the physical region of the 'larger process, 

and running'betweendifferent parts of the pole manifold S = 
	

2 

into paths 'lying 'completely 'within the pole manifold S = 1L . These 

latter 'paths specify the mass-shell continuations between the relevant 
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points, The present work goes beyond earlier attempts 7' 9  to exploit this 

idea in that it covers all:possible reactions and all Landau singularities. 

The work of Ref'::7; treated only the simplest reactions and ignored all 

but the hut the trivial normalthreshold singularities, and the work Of 

Ref. 9 referred to a simple reaction with special mass ratios. 

Having established the req .uired crossing and Hermitian analyticity 

properties we give a new version, of the remainder of the proof of the 

normal connection between spin and statistics. This new version is more 

simple and direct than the one given earlier. ' 	It avoids completely 

the introduction of the notion of a phase'cbange induced by an interchange 

of conjugate variables (variables that refer to relative antiparticles). 

The need to introduce this notion was a disagreeable feature of the 

earlier proofs, for this phase change, unlike the sign.change under the 

interchange of like variables (variables referring to identical particles), 

apparently has no direct physical significance. And in order to deal with 

the interchange of unlike variables, certain stipulations had to be 

introduced relating the phases in the cluster decomposition equation to 

special orders of variables. The present Iroof circumvents these 

difficulties. 

This new proof of spin and statistics, .which is given: in Section 1111, 

is largely independent of the details of the work preceding it, That section 

is therefore designed to be largely selfcontained. It depends4n fact, 

only on a very gross feature of the proof of the polefactorization 

theorem, and on arather trivial-sounding prbperty. of the paths connecting 

crossed reactions and Herinitian conjugate points 
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under the interchange of like variables (variables representing identical 

particles). Moreover the sign (change) under interchange of a particular 

type of variable is a universal quantity that is independent both of the 

particular scattering funôtion in which the variables appear, and of the 

particular location of the variables among thearguments of these functions. 

The fact that parastatistics is precluded here is a direct 

consequence of our basic assumption 1  that the observables of the theory 

are squares of amplitudes. This is not true in parastatistics models. 

Thus the work of these subsections is not tobe construed as a general 

disproof of parastatistics but rather as a proof that, within the 

framework adopted, in which observables are squares of amplitudes, the 

continuationof the scattering function, through a region near physical 

points, from an original region of definition to some region where like 

variables are interchanged must give back the original function, apart 

from a sign that depends only on the type of particle involved. 

Having established that interchange of like variables leads to a 

sign (change) o that depends onlyon the type of particle p , one 

may then ask what the value of this sign is. The normal connection between 

spin and statistics is the relationship 

12 

2j 

where j 	is the spin of particle p .
eld 
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Sction III is devoted to the proof of some physical region 

analyticity properties of 'ftnctions represented by bubble diagrams. These 

functions are functions of the kind occurring .in uitarity equations, and 

are formed by integrating products: of scattering functions and their 

conjugates over the physical phase space associated with certain internal 

particles.. The singularities.of any such;.function are shownto be 

confined to a certain corresponding subclass of Landau surfaces. The 

singular parts of the surfaces are not always the positive, a parts, 

however. The rules that determine which parts of the Landau surfaces 

are singular, and the i€ rules for continuing around these surfaces 

are derived. 

The fact that the singularities of these functions are confined 

toLandau surfaces is a result somewhat similar to one obtainedby 

14 	. 	. 
Polkinghorne. 	The result of Polkinghorne does not refer specifically 

to the physical region, however, and the possibility of onLandau 

(i.e. second type) singularities arises. . The ie rules derived here 

for detouring around physical region singularities generalize results 

about physical region singularities recently.obtained by,Landshoff and 

15 Olive., 	 . 

Section IV is devoted to a general proof 'of the po1efactorization 

theorem. The original S-matrix proof by Olive7  was for a simple case and 

was based on an assumption (called a theorem) that has recently been 

shom by Bransohl6  to be 'not valid,in general. Branson's counterexample 

also contradicts'an asumption made in'an earlier proof by this author 7  

That assumption was that almost all ingularities:1ying,.on the "pole 

manifold" 	. = 
	are associated with 'po'letype" (i.e., one-paticle- 

exchange type) Landau diagrams, these being Landau diagrams 'that can be 
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reduced by contraction to connected Landau diagrams having just two vertices 

and just a single internal line connecting these two vertices. Branson 

has showa that other types of singular Landau surfaces can lie at 	
) 

Our earlier assumption is therefore weakened to the assertion 

that almost all pole [orworse] singularities lying on the manifold 

S = ii 	are associated with pole-type Landau diagrams. (That the 

assumption in Ref. 17 should be weakened in this way was already suggested 

there.) 

This "pole assumption" is a fundamental assunption in. the present 

work. It is believed that it can be verified by an examination of the 

2 
nature of the possible Landau singularities lying at S= 

	
, but 

this verification is not attempted here. 

The derivation of the pole-factorization theorem given in Section IV 

is'different..,from the one given.in Ref. 17. Theform given here is useful 

because essentially the same technique can be used to derive the general 

normal-threshold discontinuity equation, as will be discussed in a later 

paper. Also, the esent derivation is given in greater detail than the 

earlierone and covers particles 'withspin(a'trivial extension in the 

Mfunction formalism). More important, the phase factors occurring in the 

cluster decomposition are taken into account. These will play an important 

role in the discussion of spin and statistics. 

Section V contains a proof of the Hermitian analyticity property. 

The "pole assumption??  is again fundamental, and now it. is extended, to 

points lying outside the physical region. The essential idea of the proof 

is to consider a larger process from which the scattering function of 

interest can be extracted as a factor in the residue of a product of 

6' poles.' The unitarity equation for the larger process at a point 
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corresponding to null energy-momentum vectors for the reaction of interest 

is effectively continued to the pole position by exploiting the fact that 
ft 

most contributions to the larger process do not contribute to the residue. 

The arguments in Section V deal individually with individual Landau 

surfaces. There is a tacit assumption that results that hold for the 

Landau surfaces individually will hold for them collectively. In 

particular it is assumed that no natural boundaries formed from confluences 

of infinite numbers of Landau surfaces invalidate results that are valid 

when the surfaces are considered individually. 	- 

In Section VI the reader is first referred to the proof of crossing 

given in Ref. 17. That proof is then extended in such away as to obtain 

a compatibility condition on the paths of continuation connecting crossed 

and Hermitian conjugate points. This compatibility condition, which 

says essentially that the Hermitian conjugate points for: crossed reactions 

are connected by the complx. conjugate of the crossing Path, plays a. key role in 

the proof of spin and statistics. It is also shown that this compatibility 

requirement carries over to the case in which the paths of continuation 

jump across various cuts, rather than detouring around them, provided the 

pole-factorization property carries over to the relevant discontinuity 

functions, as it would do if these functions were given by a Cutkosky 

rule. 

The proof of the normal connectionbetween spin and statistics is 

given in Section VII. It is quite simple. It is noted that theresidue 

function in the pole-factorization property was obtained from a 

corresponding pole term in the unitarity equation for the process in which 
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the pole lappears, and that the phase factor in the residue formula is 

consequently precisely the phase factor of this contribution to unitarity. 

In special cases this contributionto unitarityis just one of the 

absolute- -value-squared contributions to a "forward scattering" process, 

apart from some signs coming from interchanges of certain.identical 

particles. Thus the phase factors in these pole contributions are 

determined by the statistics of certain particles. The residue functions 

associated with 'crossed reactions, which are connected by analytic 

continuation, are 'compared and shown to have a sign incompatibility in 

case any scattered particle has' abnormal statistics. 

In Section"VIII the phase factor in the crossing relation is 

shown' to be unity, for 'the functions 'M(K): these particular functions, 

without any added phase factors, give, when continued along the paths of 

continuation connecting crossed regions, the scattering functions for 'the 

various crossed process. 

To obtain this result a special stipulation relating phases in the 

decomposition equation to order of variables is invoked. This stipulation 

is, in'effebt, usedin the proof of spin and statistics givenby Lu and 

Olive. Since this stipulation is of a formal rather 'than' physical nature 

it renders that proof, like the proof of Ref. 4, not completely satisfactory 

from the pure S-matrix view point. 

This stipulation, though objectionable as an element of a proof 

of spin and statistics, is quite natur.1and is adopted in the final 

specification of the formalism. ' It eliminates an .indeterminant factor 
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in the crossing relations 'and also places conditions on the phases induced 

by interchange of variables associated with different particles. In 

particular it implies, as is shown 	SectionVill,. that the interchange 

of adjacent conjugate variables induces 'the same sign change asthe 

interchange of the corresponding like variables. 
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L(V) = H L.(v.) 
	

(2.7) 

The L.(v) : isa.matrix:in the spin space of particle i tbattransforms 

spin functions from values coordinated to a rest frame E. of particle 

i to values coordinated to the general coordinate frame E,. For a 

particle of spin. 

L(v) 	L 2 (v) 

.1 	 . 

(Cri. 1 

a (a. 

0 . 	 . 
(v. +a°v) 

	

cosh - 	+(a.v sinh - 	)/ IvI 

	

2 	 2

(v. °  +.i + .v)(2v. °  +2' 2  , 	 (2.8) 

	

where v. is the covariant velocity vector 	. 

V. = p1/I(p1pI 	 (2.9) 

and 
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sinh a. 	Iv.! 	 (2.10) 
I" 	 1 

Thematrix L. 3 (v) for particlesof spin j >is.obtained by 

extracting by means of Clebsch-Gordan coefficients the spin- j part of 

	

atensor product of 2j factors 	2 (v.):. (See Eq. C1ofRef..12). 

The rule for contraction of the spin indices in.(2.6)is not 

always the matrix rule of contractionof ad.jacent indices. The exact 

.ruleis givenin Subsection8 below. 

4 Covariance Property. From the assumed relativistic invariance of 

probability correlations one derives the covariance property 

	

M(K'; K") = 	M(AK t ; AK"), 	 (2.11) 

where 

AK = (Ap.,m.,t.) . 	 (2.12) 

Here A is any element of the real, orthochronous, proper, homogeneous 

•Lorentz .group : L, aild .A  is a corresponding p1-independent spin-

space transformation (see Ref. 12). To obtain (2.11) the weight factor 

p(k) has been taken to have covariant form. In particular we take 

= 	 = zt 	f 	e(p ° ) 2 5( 2 - 	2) , 
	(2 13).14i K 	f 	i 

where E t  is the sum over discrete indices. 

4 
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5. Physical Irrelevancy .  of Order of Variables. The experimental result 

labeled by the set •K = (p., rn, ti 'is assumed to be completely 

specified by 'the values of the arguments p, Tfl. 	and t . In 

particular, no additional information having to do with the ordering of 

the variables is needed to determine the experimental result. This 

assumption, in óonjunction withour quantum postulate of Ref. 17,  means 

that in the integration (2.13) one should. include only, once the 

contribution from each -value of 'K , considered as an unordered set of 

variables. 

6, Fundamental Analyticity'Property.of M Functions. ' We 'introduce the 

following definitions.  

Definition 2.1.. 	A function F'(p.) defined, only over a subset W of 

the space of complex numbers p. will be said to be an analytic function 

of the p at point P of W if and, only if for every mapping p.(z.) 

from an open set in a space of complex numbers z into W the 

functions Ft( z. ) 	F(p(z.)) are analytic functionsof the z ,  in 

the usual sense at all points '[i.) satisfying '(p.(z.)) = P for 

which the functions p.(z.) are analytic at (z.) . 

Definition 2.2 . . A point K is a set (pt, t.) . It is distinguished 

from an argument K. = 
	m., t.} 

Definition 2.3 . F(K) is analytic ata point K will mean that the 

functiOns F(K) corresponding to the various values of'the spinindices 

m. are all analytic functions of the momentum.energy vectors p 1  at 

point K of W, where W is the set of points 'K over w1fLch F(K) 

is defined. 
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A.consequence 
8 
 of the covariance property. (241) is that if 

M(K) is analytic at a point K then M(K) can be extended to a function 

that is analytic at all points K of the set generated from K by 

application of any element of the proper homogeneous complex Lorentz 

group L (c) , which is the subgroup of L(C) continuously, connected 

to the identity. The property of M(K) of being analytic at a point 

K is therefore Lorentz invariant. This is not the case for the 

S functions, since the functions L(V) have singularities whose 

positions depend on.the coordinate frame, as is seen from (2.8).. The 

M functions have, in this sense, simpler analyti.city properties and 

are the more convenient functions to use in a .relativis 

on analyticity. 

7. Expressions for Observables. It is advantageous to 

directly in terms of M functions, rather than passing 

f or in this way manifest covariance is maintained.. Let 

bic theoiy'based 

express observable,s 

to S functions, 

s. be the 
i 

spacelike four-vector satisfying 

s. , s. 	= -1 
i i 

and 

(2.1a) 

s..p. 	= 0 
	

(2.11ib) 
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that specifies the axis relative to which the spin quantum number m. is 

measured.. Equation (2.14b) says that s. 
1 
 is purely spacelike in any rest 

frame of particle i • With M functions one uses in place of the usual 

spin projection operators P.(m., s.) rather the coriant spin operators 

s O., v.), For spin - 	particles 

ii P. km1.,- s 	1 1 L, 
V.) = 	V. - m. s.)a. 

1 	 1 	11 	1 

= 	(
1 	It 	F- 	c 

	

- v. 	- m. s. ). 

	

1 	1 1 

where 	 - 

, 	 (2.16) 

and a is the usual P.uli spin-matrix vector.. Notice that the 

P.(m.,- s 1 , v.) in (2.l5)reduces the usual j = -- projection operator 

in a rest frame of particle V. For j > 2  the P.(m.,- s., V.) is 

obtained by extracting by means of Clebsch-Gordan coefficients the - 

spin j part of the symmetrized tensor product of 2j spin-i spin 

operators Pk(mk,_  s., v.) subject to 

Em. = m. 
1 

The 2j upper dotted (undotted)indices of the Pka  are combined to 

give the (2j + 1) - valued upper dotted (undotted) index of 

(more details are given in Ref. 12), 

Each spin index m. of M(K'; K") and M*(K? ;  K??) is defined to 

be lower dotted or lower undotted according to whether it is contracted in 

the calculation of observables with an upper dotted or upper undotted 

index of 	. Define, accordingly, a quantity X. 
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X. = + 1 if the spin index m. of M(K'; K") is undotted, 	(2.17a) 

-1 if the spin index m. of M(K'; K' t ) is dotted . 	(2.17b) 

Define €. by 

+1 if particle i is final, 	 (2.18a) 

= -1 if particle i is initial . 	 (2.18b) 

Then m. is the projection of physical spin angular momentum on the 

"physical' t  spin direction 

51ys = 
	?'•i S i 
	 (2.19) 

where s is the "mathematical" spin vector s. appearing in 

- s, v.). The result (2.19) follows from the covariance property 

(2.11) and the requirement that spin angular momentum plus orbital 

angular momentum be a conserved quantity (see Ref. 12). 

In certain other formalisms the initial and final particles are 

associated with kets and bras respectively and one always gets 

+ 1 . This special condition does not naturally occurin the 
C' 

development of the N function formalism from basic physical postulates, 

and it is advantageous not to introduce it. For in the development of 

the theory we shall be led to analytically continue our functions to 
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regions where e. is reversed Under analytic continuation the trans-

formation property (2.11), hence the index ty -pe, and hence X , 

necessarilyremainsunaltered. To resolve this conflict with acondition 

€, 7'., = +1 newfunctions would have to be introduced into the theory. 
1 1 

This unneccessarily complicates the formalism and leads to possible phase 

ambiguities. It therefore is better never to introduce ithe artificial 

condition e. 7'.. = +1 • Then a single function will describe both 
1 .1 

the direct and crossed reactions. However, the connection between the 

physical spin vector s. phys  and the mathematical spin vector s will 

be reversed under continuation to crossed channels. This relations1p 

between the physical and mathematical spin vectors is completely analogous 

to the one that will be obtained for the momentum-energy vectors. 

8, Contraction Rule in the Definition of M(K'; K"). In the general 

development of the theory the M Functions are originally defined by 

their connectionto observables through contractions with the covariant 

spin operators, and Ea. (2.6) etnergies as a consequence. The index 

ml  of S(K;K") turns out to be contracted with the adjacent index. 

of L(V) or L(V") ; if 7'. € = + 1, and the nonadjacent index 

otherwise. The 7'., can be specified at will be specifying the index 

of P 	with which theindex ci. of M(K; K tt ) is contracted in the 

calculation of observables, 

9. Unitarity for M Functions, One can specify theconventions for 

X. so that the 	for each .indidual particle, whether occurring 

initially or finally, is a fixed sign depending only. on the particle 

type. (This specification relates: initial particle to final particle--

not to final antiparticle; the crossing concept is not involved.) If 

the X. are specified in this way then unitarity takes the form  

0 
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i M(K; c) G(v) M(K?t;  K) -..G(V') (K; K") =. 0 , 	(2.20) 
K 

where 

(v) = II 	.(v.) = [G(v)] 	 (2.21) 

and 

= [L:(v)y2  . 	 (2.22) 

For spin-i particles, 

= 	= v 0  -V. CY, S 	 (2.23) 

while for spin j > - the 1 (v.) is obtained by extracting by means 

of Glebsch-Gordan coefficients the spin-j part from a tensor product 

of 2j spin - matrices (2.23). Thus .(v1 ) 'isof degree 2j. in 

the vectors 'v. and 	. 	. 
.1 

2j. 
.(- v.) = (- 1) 

1 a.(v.) 	. 	. 	(2.24) 

10. Momentum-Energy Conservation. The N functions are nonzero only 

at points satisfying 

z p'. = zP 11
. 	

(2.25) 

0 

This conservation-law constraint is equivalent to the statement of 

translational invariance if space and time are introduced by Fourier 
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transformation. In order to give finite effects, an M function must 

have a conservation-law 5 function (arc) S(z p'. - Z p";) as a factor. 

11. M(K) Functions. We define M(K) [without the semicolon] by 

M(K) = M(K',.- ") = M(K' ;K") , 	(2.26) 

where 

(-RI
f
) 	

- p.,m., 	ti. 	 (2.27) 

For later convenience theorder of writingthe variables of (- k") is 

reversed relative to K" . (See Subsection 18 below and SectionVili.) 

The momentum-energy arguments of M(K) will be called the "mathematical" 

momentum-energy vectors k., where 

k. = €. p. 
1 	1 1 

(2.28) 

and. E is +1 or - -1 according to whether particle :j  is final or 

initial. Intermsof the Ic. the momentum-energy conservation law 

function becomes 

(2(z k 	(25(z p'  - E p") . 	
(2.29) 

12, Cluster Decomposition, M(K) is assumed to satisfy the cluster 

property 

M(K) = 	M (K) , 	 (2.30a) 
p 
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where 

M(K) = a nI&(K ) 
s P 	P 	.1PS 

(2.3ob) 

Here K 	is the sth subset of the pth partition of K 	The firstps  

(and only) subset of the first partition of K is K itself, 

K11 	K 
	

(2.30c) 

and the function M1 (K) is asserted to have no conservation-law 5 function 

aside from the overall one given .by (2.29). The a are phase factors 

depending on the ordering, of variables of K and of the K 5  but not on 

the values of the momentum-energy arguments k. . The phase of I'1J1 (K) 

is defined by 

a1  =1 
	

(2.3od) 

The other phase facto±s ap  must evidently depend on the orders of the 

variables. They are asserted to be restricted by the following two 

conditions: E2. Let K 	be an ordered set of variables consisting ofps 

the variables of the sth subset of the pth partition of the ordered set 

K . Let K be some ordered subset of the variables of K . Suppose 

there are two partitions p = a and p = b of K, and also two 

partitions p = a and p = b of the set K , such that these two 

p. partitions of K coincide with the corresponding partitions of K over 

the set . , and coincide with each.other over the remaining variables. 

That is, for some arrangement of the indices s , 
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K 	= Kas 	 . for 	s 	Sa 	 (20e) 

:Kb s = 	for s 9b 	 (2 .300 

Kas  = •KbsT 	for 	s 	9a = s' - 	> 0 	'(2309) 

where 	is the number of terms of partition p of 'K 	Then the 

a and a in the cluster decompositions of 'K and 'K satisfy,  
P .  

a 	a 
(2.oh) 

ab 

EI3. Let a and b 'denote two initial sets of particles and let .c 

and d denote two final sets Suppose eachof these four sets is 

divided into n subsets Suppose the first n-1 subsets of sets a 

are identical to the first n-i subsets of set b and the first n-i 

subsets of set c are identical to the first n-i subsetsof set d. 

Let ac, ad, bc, and bd be values of p that denote the partitions of 

the four sets of variables a + c, a + d, b + c, and b + d, respectively, 

into n subsets, with the first initial subset of a or b groupe 

with the first final subset of c or d, etc. Then the four . a 
'p 

satisfy 

a 	a, ac 	 (2.30i) 
aad 	abd 

a 
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Postulate E2 asserts that the phase difference between two 

different cluster terms of a given scattering amplitude that differ only 

over, a certain subset of variables is independent of the remaining set 

of variables R over which they are identical. These phase differences 

are observable quantities, according to B2 of Ref. 12. If they were. 

not independent of R then qbservable phenomena would depend on effects 

associated with disconnected bubbles in a manner contrary to the physical 

decomposition principle; phenomena would depend on,TTunconnected 

phenomena, where "unconnected" means unconnected by energy-momentum 

transfer.0 	•. 	 . 	 .. 

Postulate E3.  asserts t . hat the ratio a aca /a.d.o :a,  c o /a. d  takesthe -  

samevalue (unity) that it would take if just the nth subsets alone 

were present. This ratio is an observable quantity (provided the various 

M functionsare all non-zero--otherwise one of the phases canbe defined 

at will). This observable corresponds to aninterference effect in a 

transition from a combination of a and b to a combination of c and 

d . The postulate asserts that this observable quantity is independent 

of "unconnected" phenomena, as required by the physical decomposition 

principle. 

It .iseasy to verify that postulates E2 and E3 imply that, in 

a unitarity equation, the sum of contributions having a given connectedness 

structure (i.e. having a given set of unintegrated conservation-law 

functions) combine to give a product of the connected parts of the 

unitarity equations for the appropriate subsectors. (The connected part 

of the unitarity equation is the part having only one unintegrated 

conservation-law 5 function. The terminology comes from the diagrammatic 

representation discussedin Section iii.) 
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13. Scattering Function M(K). The function 

— 

M(K) 	M, (K)/(2 	8(E k1 ) 	 (2 31) 

is called ascatteringfünction 

iii-. Landau Diagrams. A Landau diagram is a set 

D 	(L., v•, €. 

	

j 	n jn 

consisting. of several directed line segments 	and two or more vertices 

V 	Each V contains end points of three or more of the L. but only 

one end point of any single L. 	The structure of D is defined by the 

set Of numbers e. defined by 

+ = +,l , :ff 
Jfl 	 .3 	n 

= — 1 	if 	L. C. v , 	 (2.32) 
Jn 	 3 	n 

3n 	
0 	otherwise , 

where L. and I,. are the leading and trailing end points of L. 

respectively. With each L. is associated a type of particle t whose 

mass is ,i. . If particles of type t. carry a. units of an additively 

conserved quantum number UaU  then the condItions 

j 	n 	
0 (all n) 	 (2,33) 

are required of D 

41 



URL.l68l6 

-27- 

I 	 The lines L. are characterized as being initial, final, or 
4 

internal according to the following rules: 

L. is final if 
€. 

. 0 for all n , 	 (2.a) 

L. is initial if ej 	d for all n , 	 (2.3)Th) 

L. is internal if neither of the above holds. 	 :(234c ) 

The initial and final lines are called external lines. 

A Landau diagram D(K) is a Landau diagram whose initial and 

final lines can be placed in.one-to-one correspondences with the initial 

and final particles, respectively, associated with the set K 	(K r ,- K"). 

A 	is a connected Landau diagram D(K), 

15. Landau Surfaces'tY[D]. Consider an association 

L 
3  
. (-4 (a., 	

3 p.) 	 (2 .35) 
3  

between lines of a Landau diagram D and pairs consisting of a nonzero 

number a. and a (positive energy) energy-momentum vector p. 	The 

Landau surface Y[D]  is the set consisting of the p.  associated with 

the external lines of all associations (2.35) satisfying the conditions 

p.2 =2 (all j) 	 (2.36a) 

p. C jn = 0 (all n) , 	 (2.36b) 
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kn 	 •((c 	a) (a- 
	

(2. 11.0) 

- 

which is necessarily positive, since D_ 	is tirnelike. The parameters 
w can be interpreted as vectors from an arbitraryorigin to the vertices 

V of :the energy-momentum diagram D associated with ft\t[D] 21 

Since (2.39) is invariant under translations and dilations, every 

point of 1YL[D] is acftLeved by a fivefold continuum of sets (wa ) 

Sets (ui') not exhibiting these degeneracies are therefore introduced: 

Definition 2.8 	A set w') is a set (m) satisfying Z m' = 0 

arid i  E 	Jm' 	u 	11€ i  1 	i 
n 	m 	n 	im 

n > m 

Definition 2.9 . A simple point of '1YL(K) is a point K of 

such that all points of .(K) in some neighborhood of K 

are points of just a single surface 'YYU[Dc(K)]  and such that the 

inverse functions CJ.)'(K) are single-valued, continuous functions of 

K € in some neighborhoodof 

16, Landau Condition for Physical Region Singularities. 

Definition.2.10•. The Landau condition fol' physical region singularities 

is the condition that Mc(K)  be analytic at points K of , (K) - 	(K) 

This condition was derived.in Ref.13 from an asymptotic causality 

condition formulated within the massshell S-matrix framework. 

17. The i€ Rules. The second chief result of Ref. 13 is the "basic 

i€ rule" defined as follows. 

Definition 2.11 	The basic i€ rule is the assertionthat for any 

simple point K of Th(K)ñ(K) there is a neighborhood N(K) of K 
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and a .function MN(K)  defined and analytic at points of 

Im o(Ki?) 	Q] - Th(K), and coincidingwith M(K) in 

(K) 	N()] - 	 The function 	(K) is 

	

a(K;i?) 	z q(K) u'()., 	 (2. 1I1) 

where q(K) and o' 	are the quantities definedin Subsectioii.15. 

Furthermore, the contributions from small neighborhoods of points of 

N(K)(1 P(K)ñ 1h.t(K) 'to a ,sumniation.over physical points can be 

represented by an integration, of MN(K)  over a contour that passes 

around these points by detours into the domain of 'definition of M.(K) 

The MN(K).  is an analytic extension of M(K), and the superscript N 

is 'usually omitted. {Actually, Im o(K;) should, according to the 

result obtained in Ref. 15,  be replaced by:its minimum asthe CD'ri  in 

..(20 1 1),:range over arbitrarily small neighbor1oodsof 'the points u'(K) 

This slight "complication.'does not materially affect. our arguments, and 

it will be ignored0] 

	

The points.of '(K)f 	(K) that are not simple points fafl 

into various classes: 

'Definition.2012, An.almostsimple point of 1c(K)  is a point 

of 1'Y(K) such that in some neighborhood N(K) of 'K there is a 

function. '(K;K, defined and continuous 'in both .K and K', when..both 

K and K' are in 'N(K), such'.that for every 'K in N(K) and K' 

in N('K) (K) 	R(K) 	 . 

= o(K;K') , 

where a (K;K') is as definedin '(21) 
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At an almost-simple 'point 'K of 	(K) 1\ R (K) there is 

evid.ently no conflict between the i€ rules associated with different 

surfaces Th[D(K)] ; the distortions around the various singularities 

are mutually compatible0 

Definition 2,1 . A simplymuitiplicative pointof 	(K) is a physical 

point lying on several l[D (K)] the D(K) of 'each of which is 

obtained from one single larger D(K) by contracting to points all but 

one of various ?tindpendent  parts" contained in it. An independent part 

of a Dc(K)  is a part having an independent dilation parameter, in the 

energy-momentum diagram D associated with frL +[D] 	The various 

independent parts of a Dc(K)  touch ,eachother only at single points, 

and the Feynman loops can all be confined to individual independent 

parts; i.e., no loop need pass through several independent parts. 

Because the dilation parameters of independent parts are 

independent it follows from some algebra that the corresponding 

distortions can be made in independent combinations of the 5 p. The 

i€ rules for all of'the surfaces 017[D(K)]  passing through a.siniply 

multiplicative point can therefore be simultaneously satisfied. Thus 

there is no difficulty extending 'the basic i€ rule to simply multiplica-

tive points of Thd(K) 1 P(K) 

Definition 2,14 'The extended iE rule is the extensionof the basic 

i€ rule to cover combinations of surfaces that are related in the manner 

of surfaces at almostsimple or simply multiplicative points. 

It,is argued in Ref. 13,  on the basis of physical considerations, 

that surfaces 'Tfl[D(K)] in the neighborhood of a point Y\t(K) fl\ Q (K) 

that are not related in the manner of singularity surfaces at an almost- 
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simple or simply mu1tip1icativ. point are in fact completely independent, in 

the sense that they contribute additively to Mc(K) . That is, Mc(K)  in 

the neighborhood of any point of h(K) () (K) can be expressed as a sum 

of terms each containing sets of singularity surfaces related in the manner 

of those at almost-simple or simply multiplicative points. Continuation is 

made by continuing independently in each term. This provides for the 

"physical continuation" past any point of 1Y(K) r\ (K) 

Definition 2.15 	The general i€ rule is the assertion that.in some 

neighborhood N(K) of anypoint K of(K)C\ThJc(K) the function Mc(K) 

breaks up into a finite number of terms to each of which the extended i€ 

rule applies. In particular, for each term the extended i€ rules specifies 

a region of continuation connecting points of [(K)(\ N()] - 1\J(K) , 

and summations over physical points of N(K) are represented by integrals 

along contours distorted slightly ntotbis region. Moreover, the decomposi-

tions in nearby neighborhoods N(K) are "compatible in the sense that the 

distortions of contours can be extended globally by patching together 

distortions allowed in nearby neighborhoods. •A detailed discussion is 

given in Ref. 13. 

Remark 2.1 	It has not as yet been demonstrated that the number of terms 

in the above decomposition is indeed finite. This stipulation constitutes 

a special assumption of the present work. 

Definition 2,16 , An essentially real path is a path that remains at real 

points except for arbitrarily small distortions around points of 

04 	 made in accordance with the genexl ie rules. The physical functions Mc(K) 

at points of 	(K) - r(K) are analytically connected by essentially 

real paths, according to the general i€ rules, and summations over 

physical points are represented by contour integrals over essentially real paths. 
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iS. Persistence and the Interchange of Like Variables. A variable V. 

is the triplet 

V. = 	( Ic.1, m.1, t.
1

) 
1  

Thus 

K = (V.) 
1 

Two variables V. and V. J are called like variables if and only if 

t. 	= t. , 	 (2, 112a) 
1 	 J 

m. = m. , 	 (2.42b) 

and 

k. °  k. °  > 0 . 	 (2.2c) 
•1 	3 

jEquation (2.42c) is in fact implied by (2.42a), since according 'to (2.27) 

the sign of t. is the sameas the sign of k. °  . However, (2,42c) is 

included for emphasis]. Like variables refer to particles differing only 

in their energy-momentum vectors k. 

The assumption was made (Subsection 5) that a complete set of 

experimental results is labeled by, the various possible sets •K considered 

as unordered sets of variables. However, the variables of the analytic 

function M(K) must originally be placed in some specific order. Let 

the set of points K for which Mc(K) originally represents the physical 

function be called 	, 

I 

'V 
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Suppose 	E. P has two like variables and suppose these occupy 
positions .i and j . Let 	be the operator that exchanges the ij 

variables that occupy positions i and j 	The point K2  is defined by 

K2 = 
	ij K, 
	 (2.2) 

One may now inquire whether analytic continuation of M(K) along 

essentially real paths from K1€ 	to K2 . is possible, and if so 

what significance the so-defined function M(K2 ) has, if any. The 

object of the remainder of this section.is to show that the physical 

significance of the function Mc(K)  must persist when continued along 

essentially, real paths to outside the original region. of :definitibn 	., 

and that M(K) has, consequently, the same physical significance as 

M(K) 	It will further be shown that M (i)  must .be equal to M 

up to a possible sign, and that this sign must be the same for all M 

functions in.wh.ich these two like variables appear, and must moreover be 

independent of the .positions of these like variables within thesets K 

The sign:is therefore a universal quantity depending onlyon.the type of 

variables interchanged. Oiice this is proved the retnainder of the spin-

statistics problem is to establish the connection between this universal 

sign and the spin..of the particles corresponding to the interchanged like 

variables. 	 : 

The problem of proving the universality.of this sign under inter-

change does not generally arise in field theory, because there one 

generally assumes that the interchange of like operators gives at most a 

change of sign, and that this sign under interchange is independent of 
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states upon which the operators are acting. The reader willing to accept 

the corresponding proposition that the sign under interchange of 'like 

variables is a universal quantity, depending only.on the particle type, may 

proceed to Section III. 

Our natural idea of the connection between pbysical functions and 

analytic functions is that if acertain physical function is represented 

by a function analytic in some region, then this correspondence shoul3. 

"persist" as the variables move through a region where the physical 

function is defined and the' mathematical function remains analytic; 'there 

should be no break in the correspondence so 'long as the mathematical 

function remains analytic at real points. 

This persistence property follows, in.fact, from the considerations 

of Ref.. 13.  There the M fun'ôtions were considered initially'to be 

distributions defined over test,functions of compact support in momentum 

space. In the case of identical particles these test functions can be 

initiallyrestricted to those'having supports containing no pairs of 

distinct points:related by an.intercbange .of'like variables. This 

restriction is imposed to avoid, possible ambiguities associated with 

indistinguishability. 

For a given process (specified by. [m.) and ti) a distribution 

is defined over 'this restricted space of test functions. This distribu-

tion is defined by the set.of physical transition amplitudes between 

initial and final systems represented by the allowed set of 'test functions. 

According to B2 of Ref. 12 these physical transition amplitudes are well 

defined up to a possible overall phase, 
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It follows from the work of Ref. 13 that over the support of any 

allowed test function the distribution can be represented by a function 

analytic except at points of 	+C (K) , 	rhermore, the functions defined 

in the intersection of two support regions must agree up to an overall phase, 

since they both represent the same physical process and hence must give the 

same relative 	 for various test functions defined over the 

overlap regions. By patching these functions together one obtains a single 

function defined over the union of the allowed support regions. This 

function is single valued, since with all but two momenta fixed the 

regularity region is simply connected. It will continue to represent the 

single specified physical process even when continued outside of some 

original region 	. That is, the physical significance persists under 

analy±ic continuation, so long as the real path of continuation reaches no 

point of Th , where the analyticity property fails. 

By the very same argument the result extends past the points of 

provided continuat±on is made along the essentially real paths; 

one simply patches together the functions over the various support regions, 

in each of which the result follows from the.work of Ref. 13. Thus the 

physical significance of M(K) cannot suddenly change; when continued 

along essentially real paths M(K) continues to represent the correspondingly 

continued physical function. 

The physical continuation from K1  to 1(2  has the effect of exchanging 

the detectors of the two like particles. That this has no effect on the 

experimental observables is just the content of the assumption of 

Subsection 7: the experimental results were there assumed to be 

specified by the sets k., m,, tJ considered as unordered sets of 
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variables, and, in particular, no additional information having to do with 

order of variables is supposed to be needed to identify the experimental 

result. Such information.would be required if the experimental results 

depended on which piece of apparatus detected which particle. 

One concludes from the above arguments that if K1  is such that 

the overall conse±'vation law is the only one satisfied at K , so that 

M(K) is proportional to M(K1 ) , then the experimental correlations 

are unaltered by the replacement of M(K1)  by the M(K2 ) obtained by 

continuation along any essentially real path from 1(1 . In particular, 

at such a point K , we have 

M(K,) = a M(E,.. K1 ) , 	 (243) 

where M(a.. K 
1 
 ) is defined by analytic connection from K, € 	along 

any essentially real path, and a is a phase factor depending on the 

arguments other than spin indices displayed in 

a = a..(K) 	 (2.44) 

The fact that the a are independent of the spin.indices follows from 

the completeness of the set of spin matrices P 	in spin space: 

interference effects between amplitudes labeled by different spin quantum 	 - 

numbers are observable (see Ref. 12). 
'I 

19. The Sign Change Under Interchange of Like Variables. By virtue of 

postulate B2 of Ref. 12, linear combinations of amplitudes labeled by 
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K differing only in the values of k. are observable; these are just 

the usual interference phenomena. This implies, as a generalization of 

(2,43), whichwe now rewrite as 

M(K';K") = a. .(K';K") M cij 	
(K';K") , 	(2.45) 

that 

M(K'; K") + M(K"  ; K") 

(2. 11.6) 

(K', K";K" ) EM ( c 	i 
. .K' ;K" ) + M 

c 	i,j 
( 2. . 

where K' and K"  are sets differing only by values of the k 1  

Substitution of (2.45) into (2. 11.6) gives 

a .1J  .. 

-1 

 (K',K"; K") {M(K'; K") + M(K"'; K")] 

= a..(K'; K") M(K'; K") 	 (2. 11.7) 

+ a. . (K"; K" ) N (K"; K" ) 
13 	 c 

If M(K"; K") is zero but M(K'; K") is not, then a(K', K"; K") = 

a(K'; K") . If both functions are nonzero, then there are two possible 

solutions of (2. 1I7). The first is 
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a (K',K"; K") 	a. .(K'; K") 
13 	 •13 	 -. 

(2.48) 

= c.. (K"; K" ) . 

This implies that a1.(K'; K") is independent of K' 	On the other 

hand, we know that a..(K'; K") 	K'; K") = 1 , since a double
ij  

interchange is the identity. The nondependence on K' then implies 

a..(K'; K") = a..(K") = ± 1 . 	 (2.50) 

The alternative solution to (2. 1I7) gives 

M (. .K'; K") 	M ( 	. .K"; K") 
C 	13 	 C 	13 	

(2.51) 
M* (K'; K") 	=c (K"; K") 

This says that M(,..K) equals M*(K)  up to a phase factor a(K';  K") 

that is independent of K' . This K'-independ.ent phase factor must again 

be + 1 or - 1 , as before. 

If Mc(K)  had singularities at real points, then (2.51)  would 

contradict the i€ rules. Thus solution (2.48) must hold for M functions 

having singularities at real points. But the unitarity equations demand 

there be singularities at least at normal thresholds. Thus only the case 

(2.48) is possible, and we have 

M 
C 	 1 
(K'; K") = a. 3  . 	 1 C 

(K") M (. .3  K'; K") , 
	 (2.52) 

where a 13  . .(K") is either + 1 or - 1 
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20, Equality.of Sign Changes for Interchange of Like Variables. if the 

set K t  of M(K'; K") = M(K) contains several like variables;located 

at positions i,j,k,", thenthere will be corresponding signs a..(K tT ), 

a.k(K) ,  a.k(K"), etc. These signsmust all be eua1.. To see this let 

the exchange 2• k 
 be applied to both sides of (2.52). This gives, 

suppressing the K" dependence of the a's , 

M(jkK) = 	a M(jk 	1 K) 	 (2.73) 

which with the replacement of K by a.k  K and cancellation of ak 

becomes 

M(.. 3. 	
M(K) 

k 

=aii  M( 	2. ak  K) 	 (2.54 )jk  

= 
 ij a.. M( i  K) k 

since, as may be readily confirmed, 

jkij P,jk = 	ik 	 (2.55) 

But (2.52), with j replaced by k , together with (2.74) gives 

a.k = a.. . 	 (2.56 

This implies equations like 
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ak 	a.. = a gj  . 	 (2 , 77)  

Hence all the a(K") referring to exchanges of this particular kind of 

like variables are equal. 

Order-Independence of Sign Changes Under Interchange of Like Variables. 

The sign a.(K") is independent of the order of any like variables 

occurringin KTT , for.the relation (2.72) can be continued along 

essentially real paths to the point where the like variables of K" are 

exchanged. That is, a..(KI) = a.. (2_ gKT?)  i.  
Persistence of Unitarity Equation. Initially arbitrary phases can be 

specified so that the no-scattering part is unity. 

50 (K'; K") = 	(K'; K") 
	

(2.78a) 

This convention, is uniformly adopted in,each of the original regions 

arising in the proof of the persistence property. Thus the unitarity 

equation takes the form 

M(Kt ;  KTT)+ i(K;K!) 

= - 	M(K?; K) (v) M*(K?t ;  K) 	 . (2 .78b) 
k 

= - 	M(K K") (v) 	(K ;K) 
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at all real points connected to a physical point by a èal path. That is, 

the form (2.58)  of unitarity "persists." Of course individual terms 

continue.indifferent ways around various singularities, but the entire 

equation nonetheless remains true. 

23, Sign Change for Interchange of Related Like Variables. The sign 

change a..(K tt ) for the interchange of two like variables of K T  in 

M(K'; K") is the sameas the sign change• ..(K') for the intei'change 

of the two corresponding like variables of 'K", in the special case where 

K 1  and K" are originally equal. One sees thas 'applying both interchanges 

to the unitarity equations (2.58)4  The right-hand sides become the right-

hand sides of unitarityat the new point. The two terms on theleft,. 

which are complex conjngates in the case K' = K" , become the terms' on 

the left of this equation only if a..(K') = a..(K') 

24. Universality of Sign Change Under Interchange of Like Variables. By 

virtue of the result,of the above section the sign change a..(K") is in 

fact independent of 'K" . If one interchanges like variables of 'K' , 

butnot K" , for the case in which K' originally'equals K" , then 

the left-hand side of (2.58) is multiplied by ai.(K") = 	..(K'). Since 

the right-hand side is a sum of positive nunibers each of these must 

undergo this same sign change in order that the equation remain 'valid. 

That is, a. .(K") = a. 
13  

. 	
13 

(K') = a. . 	

13 
(K) = 	. .(K) for all K such  

that M(K'; K) is physical. The sign change is therefore a universal 

number depending on the type of variables interchanged but not ,on the 

position that these variables occupy.in M(K) or on the particular 

M(K) in which the variables occur. 	 - 
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Remark 2.2 . No interchange of variables between initial and final sets 

has been discussed. Interms of the variables :K 	(K',- K") we 

consider only interchanges of variables hang the same type of variables, 

including sign. However, the interchange of two like variables of type - 

t. inthices the same sign change as the exchange of two like variables of 

type 	t. 	This is a rephrasing of the result of Subsection 23. 

Remark 2.3 	The sign change holding for the M(K) must evidently hold 

for the M(K) as well: since the phase factors a in the cluster 

expansion equation are independent of the values of the arguments k 1  

a continuation that interchanges the k. of two like variables can give 

no change in a , and hence the sign changes in Mc(K) must carry over 

toM(K). 

1 
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III. STRUCTURE TRSOREMS 

Some properties of the functions B(K) represented by bubble 

diagrams are derived in this section. 

A bubble diagram B isa collection of directedline segments 

L. and signed circles called bubbles. The L. are direted'leftward 
1 	 1 

and eachone either issues from the left side of some bubble or terminates 

on the right side of some bubble, or does both. In this last case the 

line L. is called an internal line of B . In the other two cases the 
1 

line is called a final or an initial line of B , respectivelye The 

bubbles of B are partially, , ordered by the requirement that each Internal 

line terminate: on a bubble standing left of the bubble when it issues. 

Each line L. of a bubble diagram B represents a variable 

t.) and each bubble b represents a function Fb(Kb 

where K'b  is the set of variables represented by the lines issuing 

from the left of b and K"b  is the setof variables representedbythe 

lines terminating on the right of b . The function M(K) 'represented 

by B is a function of the variables 'represented by the external 

(noninternál) lines of B and is defined by 

MB 	 'Fb(K'b;K"b) if 	(v), 	(LI) 
mt b€B 	 i 

where the summation is over all physical values of the variables 

represented by the internal lines of B , and the product over i runs 

over the indices i of all the internal lines L. of B.. The G.(v.) 

: 	are the spin-space factors (2.22) associated with the internallines L1  , 
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and their spin indices 'are covariantly contracted on corresponding indices 

of the F , The function Fb (K t b  ; K' t ) is either 'Ml(K'b ; K") or 

K;) according to whether the sign of b is plus or 'm 

Remark 3.1.. The summation over physical points is'representedby 

integrations over contours that are distorted about singularities of the 

in accordance with the i€ rules described in the earlier. sections. 

Our first task will be to determine when the distortions prescribed by the 

various relevant jE rules are mutually compatible. 

Remark 3.2 . The decomposition rinciple is, apart frpm the phase factors 

a, graphically exhibited by representing M(K'; K") as a sum of bubble 

diagrams. Each term in the sum consists of a column of plus bubbles such, 

that every line represented by Kt issues from the left of some bubble 

and every line represented by K" terminates on the right of some bubble. 

The summation is over all different ways that the external lines can be 

connected to a column of bubbles. The contributions from certain of these 

terms 'will vanish due to the conservation law and mass constraints. 

Unitarity in.. the one-particle system requires that the "trivial" two-line 

bubble associated with an unscattered line be the "unit" operator 

; k"j, aside from a phase factor that can be defined to be 

unity. (This definition fixes relative initial and final 'phases.) 

Definition 3.1 . With respect to MB(K)  the physical points 	(K) will 

mean the original points of 'definition of MB(K) .. At these points all 

the occurring Ml (K t b  K"b) are evaluated at physical points, or at 

points infinitesimally removed from them in the manner prescribed by the 

i€ rules. Analytic continuations from these original (physical) points 

will be discussed later. 
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Definition 5.2 	A D' rat is a Landau diagram D' that canbe constructed 

by replacing each bubble b of the bubble diagram B by either a connected 

bb 	b Landau diagram D 	or by a point vertexV . The D 	is required to 

be a Db(K)  such that YK, [D(K)]. is a Landau surface corresponding 

to b 

Definition 5.5 	A contraction D D D of a Landau diagram D' is a 

Landau diagram D that can be obtained by shrinking to points certain 

internal line segments L. of D' , and then removing all the line segments 

that terminate:  at their owu origin points. D' is considered a trivial 

contraction of itself. 

DefinitiOn 5,4.  A DCB is a Landau diagram D that.is a contraction 

of some Landau diagram D B If DcB, then B is said to support 

D , and conversely. 

Definition 5 , 5 

(5.2a) 
D(K)cB 

closure of 1(K) 	, 	 (5.2b) 

B(K) S 	U D 	%[ D c  (K) , 	
(5.2c) 

C 	 D(K)c.B  

a closure of ltcB (K)  

(K) = (K :K is a physical point) . 	 (5.2e) 
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EN 

Remark 3,2 . Every MB(K)  contains a factor (27r) 	k) 

Definition 3.6.. 

MCB (K) 	() / (2 	(z k) . 	 () 

Theorem 1. (First Structure Propefty) 

If the functions M(K) are analytic at points K of 

(K) - 	
and if the general i€ rules are valid, then the function 

M(K) representedby a connected diagram B is analytic at points K of 

(K)- 	B(K) 

Proof, Define 	(B,K) to be the set of physical points represented by 

the internal lines of B when the variablesrepresented by the external 

lines of B are fixed at the physical point K 	The general i€ rules 

then imply that the summation over physical points occurring in the 

definition of MB(K) can be represented as an integral over a contour 

that coiiacides with 	(B,K) except for infinitesimal distortions into 

the appropriate upperor lower half cr planes near the points of the 

sets 1j(Kb)  corresponding to the functions MC (K'b'; K"b) or 

; K'), respectively. The general i€ rules also assure that 

the various distortions associated with various surfaces 1u+[Db] 

corresponding to a single bubble b do not conflict with one another. 

However, the distortions associated with surfaces 	+[Db] corresponding 

to different bubbles b must also be compatible if the i€ rules are to 

assure a representation of MB(K)  in which the contours can be made to 

avoid all singularities. We therefore examine the compatibility requirements 

on the distortions associated with a set of surfaces 1L[Db] , one for 

each bubble b of B 
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The integration region is constrained by conservation-law and mass 

constraints. The conservation-law requirements are automatically satisfied 

if the integration variables are taken to be Feynman loop momenta h. 

Variations of these parameters h f  are subject, however, to the various 

mass constraints 5 p2 = 0 , where p.  is the momentum-energy vector 

associated with the internal line; L. of B 	The variations 	are 

given by 

= 2 	P 	if 	hf  , 	
(3.1k) 

where n.. is the number of times loop f passes along line L i, in the 

positive sense minus the number of times f passes along L. in the 

negative sense. 

	

To calculate the variations 	one may write, using Eqs. (2.41) 

and (2.38), and suppressing the prime on CD' 

b 	b a 	= L. 	U) 
b 	 n 	n n 

	

b 	b = 
- 	i 	 . 	€ i 

	
U) 

	

1 	n n n exi 

	

b 	b 
= L. 

 

	

P. 	C. 	U) 
j n intj 	jn 	n  

P 

	

b 	 b 
= 	L 	 i  

intj 	n 	jn 	
n 

= YE b 	b 	
() 

intj 	J 
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where p. 
b 
 is the energy-momentum vector of the jth internal line 

L.b of D b , and A 	 is the difference of the two end points of the 

line L.b  of the energy-momentum diagram D b  associated with 

The variation 5 ab(K ; ) for K in the neighborhood of a fixed point 

K of 1\J[Db] is then 

	

5crb= 	 ,5 p 	A . (K) 
intj 

	

= 	 fl. 	S hf  Aj 	 (3,6) 
intj 

b 
where fljf  is the algebraic number of times loop f passes along line 

L.b of the diagram D obtained by replacing the bubbles b of B by 

the connected Landau diagrams Dcb  • The particular path within D cb  

taken by the loop f is irrelevant to 3 ab,  since the sum of n. f  

around any closed loop of D 	is zero: this sum is just the sum of 

vectors around a closed loop of the energy-momentum diagram Tcb 	

2 By the theory of linear equations the variations and 5 

can be specified in any desired manner by an appropriate choice of the 

5 hf  unless there is a set of a t s, not all zero, such that 

	

aj P  n1f  + 	 •b n
f

= 0 	 () 

i 	 b,j 

for all f . Now the vectors L.b  can be expressed as 

b 	b 	b 
= a. 

	

P. 	, 	 (3.8) 
3 	3 	3 
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since both sides represent the vector of T b  corresponding to the line 

L.b of  Db  [see Def. 2.1. Thus (3.7) can be written 

f a' 	P fl f  = 0 
	

(37') 

where the sum now runs overall internal lines L. of the D c , B 

The a'. is a. for internal lines 	L. of B and a'. i,s a. a. 
1 	 1 	 1 	 3 	03 

b 

for internal lines L.. 	of D 
3 	c 

The Eqs. (3.7') are just the Landau loop equations for D 

Since the conservation-law and mass conditions are satisfied by the 

construction, the various i€ distortions associated with the various 

Y)t+ [Dcb ] are mutually compatible at a point K of k(B,K) lying on 

the intersection of these surfaces 4r+[Db]  unless the Landau equations 

are satisfied at K 	That is, the required distortions are mutually 

compatible at every point K of 	(B,K) for every combination of 

surfaces Yu+[Db]  one for each .b of B , for all points K of 

(K) - 	cB 

It is also required, for analyticity, that the i€ distdrtion to 

imaginary values be a continuous function of the real point K of 

If K is a simple point, or almost-simple point, of all the 1 Yt..I + [ Kb ] 

then each % (K;K) can be extended to a function a'b(K;K')  continuous in 

both variables in a neighborhood of K . The space of the allowed 5 h f  

can be solved for in terms of the 8 a . Since the equations are 

nonsingular, this space of the allowed 5 h f  will be a continuous function 

of the 	, and hence also of the point K in 	(B,K), for simple and 

almost-simple points. 
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For a simply multiplicative point one can carry out an analysis 

similar to the one above by using a modified bubble diagram: a bubble 

b of B in which a simply multiplicative point occurs can be regarded as 
J 

a cluster of bubbles connected to each other at single points. With each 

bubble of the cluster there will be a separate 3 a . The analysis is 

then just the same as before and the results are the same0 

The considerations for general singular points can be reduced to 

those for simple, almost-simple, or simply multiplicative points by 

means of the additivity property asserted by the general i€ rules. 

(The smoothfitting together of the decompositions defined in neighboring 

regions N(K) is assured by the construction given in Ref0 l, as is 

discussed there). 

It follows from the above argument that the contours can be 

distorted so as to remain.in regions of analyticity for all K in 

(K) 	cB t 	To prove the theorem one needs, however, also to 

establish.the analytic character of the surface ..(B,K). To examine 

this question consider the transformation from the N variables h f  

to the set m i of N variables p 2 f and N * N m other variables x. , 
3 

where the N variables p. are the squares of the momentum energy 

carried by the internal lines of B . At points K of 	(K) - 

the variations 3 
Pi

and 	•, considered as functions of the 8 hf  

are linearly irdependent. Thus the 3 p. 2 are themselves linearly 

independent. Hence it is possible to choose, for any .K in 9(K) _B(K) 

and any i in cR(B,K), a set of Hf - N variables x. , linear in the 

hf  , so that 	x.)/hf  is nonzero in a neighborhood of K . This 

implies, 22  for K in cp (K) 	c' that every point of Sk.(B,K) is 
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an "interior point" of 	(B,K). In fact, 	B,K) is an analytic manifold, 

which means that each point of R(B,K) is contained in an open set of 

points of R (B,K) that is the image of an open set in the space of the 

Nf  N real variables x. , under an aialytic mapping k, 	k.(x.) 

Since R(B,K) is defined as the common zeros of a finite set of 

analytic functions it is necessarily a closed set0 But a closed set 

consisting of interior points can have no boundary points0 Thus, for •K 

in 	(K) 	 the set(B,K) is aclosed Nf  N dimensional 

surface without edges (i.e. a cycle). This surface is confined to a 

bounded region in k, space, and is easily shown.to be of finite measure. 

Moreover the functions k1 (x.) are analytic (in fact linear) in K 

Thus for K in 	(K) - 'm(K) , .(B,K) is a real analytic manifold 

of finite measure depending analytically on the variables of K , Moreover, 

as shown earlier, the contour can be distorted so that the integrand is 

analytic at all points K' on the contour. It therefore follows from 

Theorem A of Appendix A that the integral M cB (K) is analytic at points 

K of P (K) 	 Since all the relevant quantities are well 

defined and depend analytically on the relevant variables it is, of 

course, highly plausible that the integral MB(K)  should be analytic, 

though the proof is not completely trivial, 

Definition .7... A simple point of 'YY1 5 (K) is a point 	of 1vt,B(K) 

such that in some neighborhood N(K) of K all points of 1YuB(K)  belong 

to the 	D I of only.  one Dc•:DCB , and: such that the c. in (3 , fl), 

when subjected to the constraint 	c'. pj = l, are uniquelydefined 

continuous functions of the K in ( 
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Definition..3.8, 	B+(K) is the subset 	B(K) that canbe 

achieved by restricting the a'. in (37') to be positive or negative 

for lines L. of D contained in D 's corresponding to plus or 

minus bubbles b of B, respectively. The remaining lines of 'D , 

which are just the lines occurring in B itself, can be either positive 

or negative 

Definition ,5', 	B+(K) 	closure of yB+(K). 

Definition 3,9 	1&B(K) = [K:K is a point of 	B(K) that is not 

a simple point Of 

Theorem 2,, (Second Structure Property) 

In Theorem 1 the set 	(K) 	 can be replaced by the set 

(K) 	cBt 	cB  
Proof. For points on 	B(K) it is not possible to arbitrarily specify 

all the variations S cband  5 p 	 But it may nonetheless be possible 

to find, variations that keep S p. 	0 andIm S 	> 0 , where 

is the sign of 'bubble. b of •B This is a sufficient condition for 

regularity, since it allows one to keep the contour in the region of 

analyticity0 

The variations are subject to the condition (3.7) , If  T  is a 

simple point of1411B(K)  •then there is only.one such condition (37), 

since each such'condition gives either another 'lfrL[D] or another set of 

a's When there is onIy..one condition (37), all but. one of the 

variations 	 ) can be specified, and .this'remainin.one 

depends continuoisly.on the specified ones. Suppose for some pair of 

b the sign, of the ratio of 'the .... the unique (307) differs from 

the ratio of the corresponding 11 0 Consider a variation in which'the 
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S ab  for one of these b's is the dependent variation and the S 	of 

the other one of these' b's is large compared to the remaining independent 

ones, which can be considered relatively infinitesimal. If the 5 p. 2 are 

taken zero, then Eq. (3o7), together with continuity, assures that 

Im S ab > 0 is satisfied for the one dependent variation .5 a
b if it 

is satisfied for all the independent ones. Thus the function McB (K) is 

analytic at simple points of Q(K)1Vtr(K) that are not on 

which is what the theorem says. The signs of the a in (3,7) carry 

directly over to the corresponding signs in (3.7') because the a 

(3,8) are all positive. Theorem 2 goes beyond Theorem 1 only if the 

single linear dependence relation (3 , 7) involves at least one ab 'contribu-

tion. Thus the 5' p 1 2  contributions will still be linearly independent 

and R (B,K) will be 	aalytic manifold, just as in Theorem 1. 

Definition 3,10 . Let D be the Landau diagram corresponding to a 

simple point K of 	B±(K) . The corresponding energy-momentum diagram 

is the diagram obtained by ±'eplacing each L. of D by the energy 

momentum vectors. L 
	
p. of Eq. (3.7'), with Tb ab 	0 

is still the sign of bubble b .) The a(K;K) fort fl is now defined 

exactly as in (2,41.). 	 . 

Definition 3,11 . The basic i€ rule for the functions MB(K)  is the 

same as the "basic i€ rule" defined in Def. 2,11 except that MB(K) 

replaces M(K) and 	B+(K,) replaces 'c(K)'o  That is, this rule 

asserts that MB(K) is analytic at points of the upper half a(K?) 

plane near a simple point K of %(K). However, there is one proviso: 

at least one line of the diagram D 'must correspond to an internal line 

of some bubble of B ; the basic ie rule for the function MB(K)  asserts 

(by definition) nothing about the case in which every line of D is a line of B 
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Theorem 3. (Third Structure Theorem) 

If the assumptions of Theorem 1 are satisfied then the basic ie 

rule for the function McB (K) is valid. 

Proof. The arguments leading to (3.6) and (3.7) give, similarly, 

n. 5hL. 
intj 	3f 	f 3 

= 	 n 
j  Sh o'.p. intj 	f 	f 3 

=aj P1  flf5 f + 	
b 	

hf 
 if 

ab  
=a P1  n f  S h + 

=Ce 	p. + 	 ' inti 	1 	1 	 b 

where now the hf  include also the momentum-energy vectors carried along 

some paths similar to Feynman loops, but unclosed, that enter D at
C. 

certain external vertices and leave at others. These vectors provide for 

the variations of the external variables, and will be called the external 

parameters hf 	The actual paths they take along the lines of D are 

not relevant to our argument. 

The basic 1€ rule to be proved refers only to simple points K 

of cNK)r1tB(K) . At these points there is only one equation (3,71) 

and consequently all the 5 p. and 5except one can be fixed 

arbitrarily by appropriate choice of the internal 5 hf  , as mentioned in 

Theorem 2. Therefore if we shift oK;K) into the upper half plane by 

variations of the external 5 hf  then the internal 5 hf  can be adjusted 
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so that all 8 p 1 2  and all but one of the 8 ci, vanish. This last 8 cr, , 

when multiplied by c , must therefore be shifted into the upper half 

plane, since o is. But then by a slight adjustment of the internal 8. hf  

the remaining a ab  can also be shifted into their upper half planes, 

keeping the 8 p1 2 	0 	This achieves the required result of moving 

all 
T
b b into their upper half planes, which are the regularity regions, 

while keeping all the 8 p2 = 0, 

This argument depends on the assumption that B contains some 

line that is an internal line of the Indau diagram D b corresponding to 

some bubble b of B , since otherwise the contributions 8 ab  in (3.9) 

all 'vanish. If DC  has only the lines L. that are the lines occurring 

already in B itself then continuation past the singularity is not 

possible in general. In fact, the phase-space factor in MB(K)  vanishes 

at such a point. Thus the physical function M  (K) is zero on one side 

of such a singularity-manifold. On the other hand, if D contains any 

line that comes from the interior of any bubble b of B , then theorem 3 

gives the rule for continuation past this singularity surface unless 8 a 

is necessarily zero. This circumstance can occur only if .the external 

vertices of T all coincide, or all lie on a single line that is parallel 

to every external line incident upon all but one of the external vertices. 

(The external vertices are vertices upon which external lines end.) in 

this situation the mass constraints on the externallines force all 

variations 8 a to vanish, and hence nb rule for continuation past the 

singularity is provided by Theorem 3. 
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IV. THE POLE-FACTORIZATION THEOREM 

This section is devoted to a proof of the pole-factorization 

theorem. Some definitions are first introduced. 

Definition 4,1 	A pole diagram D is a connected Landau diagram having 

precisely two vertices V and V , and precisely one internal line L 

Each vertex therefore contains exactly one of the two endpoints of L 

	

€ 	= pv 	+1 , 

	

= -1 pv 	 (.ib) 
, 

Definition 4.2. The sets V and V T  defined by a pole diagram D -  are 

the sets of external lines connected to the vertices V and V 
V 

respectively. The v and V I represent the corresponding index sets 

	

=(i 	C 	 # 0 , i 	p) , 	 4.2a)
iv  

	

v' = (i 	# 0 , i 4z p) . 	 (4.2b)
iv  

Definition 43 •. 

- 	II . 	= 	k. 	, 	 -i-.3a) 

	

ex 	 i€V 

- 	
= 	k. = - 	(.3b) 

	

ex 	 i€V T  

s 	
= 	= 	

. 	 (lc) 
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Remark 11 . For a pole diagram D one has 	D = 1t,[D] = 

(K: S (K) 	t 2 ) , where 	is the mass of the particle associated with 

line L of D 	For M(K) , the condition of ana1rbicity near K of 

'j [D.] r\ P (K) in Im a(K;i) > 0 implies analyticity near RK in 

Im s(K) > 0 , as is shown by some simple algebra. For the function M* 

represented by a minus bubble this region of analyticity is switched to 

- Im s(K) >.0 

Definition -i- 	A quasi-simple point K e 1'ttD] ñ (K) of a function 

of the form 

• 	 F(K) 
= 	€ 	

MB(K) 
B 	

• 

is a point 	e it[D].ñ 	(K) such that F(K), considered as adistribu.. 

tion over a real neighborhood of K , admits a decomposition into analytic 

24 
functions 

F(K) = f(S(K), w(K)) 

e7) 

= 	urn 	[f~ (S(K) + ie, w(K)) - f(S.(K) - 1€, w(K))] 

where f 
+ 

and f are analytic functions of their ai'gunients in the 

regioncorresponding real •K ma neighborhood of K and 0 < € < > 0, 

except possibly at points where S(K) 
=p 

and 'e = 0 	The set 

w(K). is some set of arguments such that (s(Ic),  w(K)) gives a one-to-one 

analytic mapping of a neighborhood of K • (in the domain of definition of 

F(K)) into a bounded open set in (s,w) 
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Definition 4.5 • Afunction F(K). of the form (li-.)-i-) is said to have no 

pole [or worse] singularity at a quasi-simple point K € 14t[D) f (K) 

onlyif 

urn 	.c r (s(i) t i E , W 	o . 	 ( 4.6) 

Definition 4,6 . The pole assumption 	for a simple-point K of 

lying on 14t[D] (1 	(K) is the assunition that all pole 

singularities of functions Y(K) of the form (li-.)-i-) are associated with 

pole diagrams in the limited sense that if •K is a quasi-simple point 

K . e 	[D] 	(K) of F(K) then F(K) has no pole [or worse] singularity 

at K unless some B € supports D Furthermore, the ie rule 

for the part of F(K) contributing to the residue (4.6) at such a point 

K is the same as the i€ rule for the various DC Be , provided 

these i€ rules are all the same (i.,e., all have the same sign in 

V 
>0), 

Definition 4 .7 	The stability condition on physical-particle. masses.is  

the condition that the mass of any (physical) particle is less than the 

sum of the masses of any, set of particles into which :.5 allowed by 

selection rules to decay. Thus any (nontrivial) bubble b that represents 

a nonvanishing 	(Kb) must" have at least two initial lines and at least 

two final lines. And correspondingly, each vertex V of any Landau 

diagram must contain the leading end points of at least two lines and the 

trailing end points of at least two lines: 'formal Landau diagrams 'not 

satisfying this condition are spurious and can be ignored. 
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Theorem 4 (Pole-.Factorization Theorem) 

Assumptions: 

Unitarity [Eq. (2.20)] 

Cluster Decomposition [Eq. (2.30)] 

LandauConditions for Physical Region Singularities [Def. 2.10] 

Basic i€ Rules [Def. 2,11] 

Stability Conditions for Physical-rtic1e Masses [Def. 4,1 

Consequences: Let K be a simple point of 14'L(K) lying on 1[D]\ (K) 

such that the pole assumption P
1  is valid at K . Then M (K) has a  C 

pole singularity at IC whose residue 

r() = 	•lini 	.. (s(ic) 	
p 
2) M(K) 

ReS(K) =? 
Ilp 

ImS(K)>0 

is 

r(K) = i a M.(K) 	(v) M(K) . 	 ( 4.8) 

The sets K 	
Vt 

and K 	are the sets of. variables associated with the 
V  

lines, both internal and external, incident on vertices 	and 

respectively, of D(K) . The indices associated with particle p are 

.covariantly contracted with the corresponding indices of G(v) , which 

is the spin matrix (2.22) 	The factor a is 

a = aa  / 	:ap 	 ( 4.9) 

where ci is the sign induced by interchange of two like variables p , 
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and a and Cbare the phase factors occurring in the decomposition 

M(K1) = aa M,  (Ky ) IvL(K,) 

+ a, M1 (K) G(v) (k' ; k" 
p ) 
	 ( li.io) 

+ 	z 	a II 
pa,b P 	

(K ) 

Here K 	 is the set of variables consisting of all those in either K
VVI 

or K, . This set is just the set K plus two variables, one for an 

initial particle p and one for a final particle p . That a is 

independent of the order of variables in K, is assured by E2. 

Proof. The functions M(K'; K") and M*(K* ;  Kt*) will be represented 

by plus and minus boxes, respectively, with the sets of lines issuing 

from the left and terminating on the right of these boxes being the lines 

representing the sets K' and K" respectively. Then the cluster 

property is the assertion that the plus (minus) box is ëq .ual, apart from 

the phases a , to a sum of bubble diagrams, each consisting of a column 

of plus (minus) bubbles, with the sum being over all ways of connecting the 

given external lines to a column of bubbles. In this notation unitarity 

takes the form shawn in Fig. 1. 
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Fig. 1, Unitarity in box notation. The external lines 

are suppressed and a summation over all possible sets of 

internal lines is understood. The unit operator I is 

a product of factors G(vj3(k', ; k".) 

Multiplication of M(K) by unitarity gives the equation represent.' 

ed by Fig, 2, 	

FTI 
Fig.2, Result of multiplying M(K) by .  unitarity. 

The terms on the left of FIg. 2 that support D will be 

classified with the aid of the following two lemmas, which depend upon 

the ide of ! tkeybubble": 

Definition 4.8. A key bubble (relativ to D) of a bubble diagram 

.B is a bubble b of B such that every path in B from a line in the 

set v defined by B to a line in the set V T  defined by D passes 

through b 

Lemmal. If B  supports D then B has a keybubble (re1atieto D) 

Proof, B siiipports D means there is a D c B having an internal line 

L such that the contraction to points of all other internal lines of D 

gives D , with L of D becoming L of D . Every path in D from 

: 

	

	
v to V must pass along L, for if there were one not passing along L 

then the contraction would give a path in B from V to V T  not passing 

6 - 

1+ 1 
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along L , which isnot possible Since every path from V .to V 1  passes 

along L, eachofthese path passes also through any. b such that L is 

an internal or external line of the Db  replacing T of B . At least 

one such b must exist, and any such b is a key bubble. 

This argument proves, in addition to the lemma, the result asserted 

in the following corollary.  

Corollary., Any L of B = B that becomes the L of D 	D B upon 

contraction of the other lines of D is an internal or external, line of 

the Db  replacing some key bubble of •B 

Convention Ll.l 	In this section all trivial (twoline) bubbles will be 

considered absent: the unscattered particles of 'M(K) will be represented 

by single lines containing no bubbles 

Convention 4.2 	Bubble diagrams that correspond to functions B(K) that 

vanish because of combinations of mass constraints, conservation laws, and 

stability conditions will be considered not to,exist 

Definition 49 	A direct path connecting two bubbles is a path that 

touches these two bubbles at, but only at, its'two end points 

Lemma .2. A B 'that supports D has precisely..one or two key bubbles 

(relative to D., always) In the first case no L of any D ' B can 

become the 'L of D => D C B unless L is an internal line of the 

D c b that replaces the one key:bubble In the second case the two key 

bubbles are connected by aline 'L of B.' Moreover, the removal of L 

from B disconnects the part of the diagram connected to v from the 

part connected to VV.,  This'lirie L of B becomes L of DCB 'upon 

contraction of the rest.of the diagram. No other L of any D B can 

become the L 
p 	p 

of a D - D C.B, in this case of two key bubbles. 
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Proof0 By lemma 1 there is at least one key bubble0 If there is precisely 

one key bubble then any L of D B that becomes the L of D B 

upon contraction is an internal or external line of the Db  replacing this 

key bubble, by the corollary of lemma l If L. were an external line of 

then it would have to be an internal line of, B itself. But then 

the bubble of, B lying on the other end of L would also be. a key bubble, 

contradicting the supposition that there is only one key bubble0 Thus L 

must be an internal line of the D eb  that replaces the one key bubble, 

in this case of just one 'key bubble,, 

If there is more than one key bubble, then pick two. These two are 

connected by some path in B , since B. must be connected in order to 

support the connected D 0 This path can be taken to be. a direct path, 

by removing closed loops. If this direct path touches some other bubble 

b, then any path from 'b to any external line, L. , of B must .pass 

through one of the two key bubbles0 Otherwise Le  could be connected to 

any 'specIfied external line of B by a path passing through at most one 

key bubble: one could pass via b directly to the last of these two 

bubbles lying on some original path to that specified external line. But 

then aIl.external lines, of .B would belong to the same set, V or 

to which that 'L belongs, since a path from V to v must pass through 

all key bubbles, by definition. But, by virtue o± our definitions, all 

external lines of B cannot belong to a single one of the two sets V or 

v , and hence any path from any b to any Le  must pass through one of 

the two key bubbles. 	. . 	 . 

This implies, in turn, that.every b. lying on any direct path 

connecting the two key bubbles must stand to the right of. one of these 

two key bubbles and must stand to the left of the other of these two key 
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bubbles; otherwise the rightmost of the b e 's could have no initial lines 

or the leftmost of the bVts  could have no final lines, which is not 

possible because of the conservation-law requirement. Thus the two key 

bubbles must be ordered, with one standing to the right of the other, and 

this is (trivially) true also if there is no b' , since the connecting 

path is then simply a single line segment L. , which is directed. If 

is a key bubble that stands right of a key bubble b 2  , then all the lines 

of br  lying on direct paths connecting br  to b2  must be final lines 

of b 	(which issue from the left of b ), since otherwise either b or r 	 r 	 2 

some b' on some path from br  to b2  would have to stand right of b 

contrary to assumption or to the above result. 

If b is a key bubble of B its removal must give a diagram 

B - b in which the parts connected to V and V t  , respectively, are 

relatively disjOint. The external lines of b belonging to these two 

V t   
parts will be called b and b 	respectively. They are disjoint, and 

all external lines of b must belong to their union, since every one of 

these lines is connected in B - b to some external line of B , by 

virtue of the fact that each bubble of B has both initial and final lines. 

All externaL lines of br  lying on direct paths to some other 

(fixed) key bubble b 2  must belong to a single one of the two sets brV  

or bV ; otherwise V and V' would be connected by a path that passes 

through b2  but not through br  which is impossible, since br  is a 

key bubble. Moreover, all the external lines of br not lying on any 

direct path to the (fixed) key bubble b 2  must belong to a single one of 

the two sets brV  or 	; otherwise V and V t  could be connected by 

a path passing through br  but not through b 2  , which is impossible 
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since b2  is a key bubble. Thus the set of lines of b lying on direct 

paths to b2  constitute one of the two sets •bV  or  bV' 	This set 

consists of only final lines of b if br  stands. right of b2  . on the 

other hand, we have 

Proposition 1. An internal line L of a diagram Dc  b replacing a key 

bubble b of B can become an L 
p 	p 

. of D C.B only if bV  and  bV 

both contain both initial and final lines of B 

Proof. The removal of L must disconnect b 
v. 	v 	b 

from b 	in D , 

since otherwise v and v' would not become disconneöted by the removal. 

of .L , asis required if L isto bccomean L 
p 	p 

of D cB0 If bV 
•  

or bV  consisted of only initial lines or only final lines then the 

energy-momentum carried by L would have to be the energy-momentum carried 

by;this set of:initial.or final lines. This conflicts with the stability 

requirements unless bV  consists of a single line. But this possibility 

is precluded by the requirement that vertices of Landau diagrams must 

contain end points of three or more lines, together with the mass, conserva-

tion, and stability conditions and the positive - c condition imposed on 

the Db  by definition (3.2).. 

Combining Proposition 1 with the result stated just before it, 

we conclude that an L of Dc-B  that becomes L of D cannot be an 

internal. line of the D 	replacing the key bubble br  or, by exat1y 

similar arguments, b . Thus any L of D C.  B that becomes L of ,  D 

must be an external line of some key bubble, hence an internal line of 

B, in this case in whichthe'e is more than one key bubble, 

/ 
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If there is more than one key: bubble then the L of D that 

becomes 'L of D can only be aninternal L of B, as just shown. 

The two bubbles on either end of, this internal, line of B are both key 

bubbles. Since theline L connecting them becomes L 'of D, its 

removal must leave the parts of the diagram conneced to V and V 1  

relativelydisjoint, .This proves the lemma for the case of precisely two 

key bubbles, since the existence of another L that becomes and L of 

D 	B 'would imply the existence, of other key bubbles. It remains to be 

shown that there can be no other key bubbles. 

Let b and b2  be the right-hand and left-band.key 'bubbles on 

the two ends of some. L of B that becomes L 
p 	p 

of D , . in the case of 

more than one key bubble. Suppose there: is'another key'bubble. If this 

other key bubble stands 'right of'br then the lines of br  lying on the 

direct paths 'to this other keybubble all lie on the rightside of br 

and constitute one of the two sets b rV  or brV 	The single line L.., 

which'is the onlyline. of br  lyingon the direct path to b 2  , also 

constitutes one of the two sets b V 
 or b V 	

and in fact the other one r 

of these two sets, since it' lies on the left of b
r 	Thus L is the 

only final line. . of br 	This contradicts stability. Thus this .other key 

bubble cannot stand right of 'br, Neither can it stand left of b 2  

Nor can it stand to the right of b and to the left of br  since this 

would imply the existence of a direct path between br  and b thatli  

parallels L, and hence precludes the possibility that L becomes L of 

D .as required. Thus 'there can be at most two key bubbles. This concludes 

the proof'of lemma2. 
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Lemma 2 allows a.classification of the terms on theleft of Fig. 2 

that can support D 	First there are terms having only one key bubble. 
p 

This single bubble can belong to any one of the three columns. Then there 

'4- 

are the various terms having two key bubbles connected by a line of B , 

the removal of which separates B into two disjoint parts, one connected 

to the set v and the other connected to the set V t  . And this line 

must become the L 
p 	p 

of D upon contraction of the rest of the diagram. 

The various terms supporting D are indicated in Fig. 3. 

H~ 1+  

	

+ + 	 1 	-  _1 	+ EIJ 
 

• 

 
H L+I-J 	I•+I•-I+I 

	

___ 	LTTh 
+ R H 

Fig, 3. Decomposition of left side of Fig. 2 into the 

six possible types of terms that support D plus a 

remainder term R that does not support D 	The line 

terminating at the top or bottom of a box is suppose to 

end on some (nontrivial) bubble within that box. 

The protruding products of little plus and minus boxes in the first 

and third terms are just the identity, by virtue of unitarity, and can be 

1. 	 dropped. 

For thenext terms we make use of the identity shown in Fig. -i-, 
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F+J - 	= 0 
Fig. 4., Modified form of unitarity equation. The singled-

out line emerging from the left side of the.unitarity equation 

can come either from some nontrivial plus bubble, from some 

nontrivial minus bubble, or from the incident lines of the 

right. Terms of this third kind cancel the unity on the right 

of unitarity, leaving the equation represented in Fig. i-i-, 

The equation represented by Fig. i-i. allows the line leaving the 

lower minus box of term four of Fig. 3 to be shifted to the lower right 

plus box. Then unitarity can be used to cancel the protrudingproducts of 

plus and minus boxes. An equation similar to that represented in Fig. 4 

allows the fifth and sixth terms to be cancelled. Extraction of the 

connected part then gives Fig. 50 

ED 	+ 	T 	
± R = 0 

Fig, 5. Result of applying unitarity in lower-order, sectors 

to Fig. 3. The subscript c denotes connected part. The 

phases a ., here assumed to be unity, are discussed in 

the text. 

The result claimed in the theorem now follows essentially from the 

fact that first and third terms in Fig. 5 are analytic in the upper and 

lower half S planes respectively, as far as the pole contribution is 

concerned. The detailed argument is as follows: Near a simple point K 
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of 	 P(K) the first term of Fig. 5 is (after the conservation-law 

function is factored out) the limit of a function analytic at points 

K near K in the upper half S ,, plane, according to the basic •ie rule. 

The second term, which has a factor 2t o(SV - 2) coming from the phase-

space factor (2.15),  can be decomposed into a sum of two functions, one 

analytic at points K near K in the upper half S, plane and the other 

analytic at points K near K in the lower half S, plane. These two 

functions both have pole singularities at S = jt 2, but are otherwise 

analytic at pointa K near K , since the two M function factors can 

have no singularities at a simple point K 

Since the sum of the first two terms of Fig. 5 can be decomposed 

into functions analytic in the upper and lower half S planes the same 

must be true of the sum of the second two terms. These decompositions 

into upper and lower half parts are unique up to a function analytic at 

K , by virtue of Theorem C of Appendix C. Thus the residue at K of the 

sum over all four terms in Fig. 5 •.of either the upper or the lower half-

plane parts must separately be zero. However, the residue at K of the 

sum of the last two terms is zero for the upper-half-plane parts by virtue 

of the pole assumption P1  , which says that this sum is The limit of a 

function analytic in the lower half plane, so far as the pole contribution 

is concerned. Thus the residues of the upper-half-plane-parts of the first 

two teuns of Fig. 5 must cancel. This gives just the desired result (4.8), 

apart fromthe effect of the phase factors 

To complete the proof the case a 	1 must be considered. •Then 

one must be careful about the switching of lines on the boxes of Fig. 5 

by means of Fig. ii-, The equation to be used is shown in Fig, 6. 
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MEN 

MEN 
H-IJ 

+ _ 

rH 
= 0 

Fig. 6. Diagram indicating unitarity in the lower sector. 

Note that the left-hand column of the first term has an 

extra unscattered line that is not present in the fourth 

term in Fig, 3. The other two columns also contain extra 

uxiscattered lines. These lines induce phase changes. 

In order to bring the fourth term in Fig, 3 into a form where 

Fig. 6 can be applied it must be multiplied by the phase factors ap  from 

the decomposition law that multiply ,  a contribution to the left-hand 

term in Fig. 6 and divided by the phase factorthat multiply this 

contribution in Fig. 3. By virtue of F2 and E3 this ratio of phases 

is a single phase that is independent of the particular contribution 

considered. Itisin fact just a times the a of ()-i-,lo), as is 

shown in Appendix B. After multiplication by this phase one can apply 

Fig. 6, which gives the product of the two plus bubbles appearing with the 

phase that they have in±he second term of Fig. 6. This phase is just the 

a of (4,10), Dividing now by the unwanted phase a, 0  o one obtains the 

required 

Concluding Remarks 

(1) If the point K were a simple point of both 	and 	K) 

for all B occurring in the third term of Fig 7, then the second part of 

the pole assumption P1  would not be necessary; one could use Theorem 3 

instead, 
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(2) It will be assumed in what follows that 1[n] Q (K) has a dense 

set of simple points so that the polefactorization prope±'.ty is valid for 

almost all points of '13t[] / 	(K)0 This assumption shouldultimately 

be confirmed by a study of the locations of the Landau surfaces V1'tJ[D] 
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V. EtRMITIAI'T AIALYTICITY 

Hermitian analrticity is the property, of scattering functions 

whereby M(Kv;Ku) and 	 K') are different boundaryvalues 

of a. single analytic function. The central idea of the present proof, is 

to justify, within a strictly mass-shell framework, an effective continua-

tion:in external masses. 

Instead of the original M one considers the M of a "larger" 

process, the external lines of which are those' a diagram constructed by 

connecting to each 'line 1L. 
3. 
 of the bubble representingthe original Mc 

an "outer bubbi" 
	, which is connected to other bubbles onlyalong 

L. 	The Mc of the larger process will have poles at S
i  = t. 2  

corresponding tothese lines L, andwill contain the original Mc asa 

factor of the residue of the product of these poles. 

The unitarity equation for the larger process will be considered 

at a point P0  where all S. = 0 ,. Certain continuations will then be 

made to points P where all i' = , and the residue of the product 

of the poles examined, 

The unitarity..equations at 'P0  will consist of asum of:terms each 

represented by a bubble diagram. According 'to our basic pole assumption 

P1  a function represented by a bubble diagram B can have a pole 

singularity at S. = p. 2  only if
, 
 this diagram will support a corresponding 

pole diagram. In order to have a pole ineach of the S. the diagram must 

support each of 'the corresponding 'pole diagrams, Thus, according to 

lemma 1 of Theorem 4, the function representedby the connected bubble 

diagram B can'have pole singularities'in eachof the set of channel 

energies S only if for 'each i , individually, the removal of some sirgle 
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bubble b. of B completely disconnects the externa1 lines of one of the 
- 

two complementarysets associatedwith Si  from those of the other of these 

two sets. 

Definition 5.1 	A line of a bubble diagram is said. to be directly connected 

to another line if and only if these two lines end on a common bubble. A 

set of lines, consisting of one or more lines, is said to be directly 

connected to another set of lines if and only if some line of one set is 

directly connected to some line of the other set. A bubble is said to be 

directly connected to a line that ends on it, or to a set co±aining a line 

that ends on it. 

Definition 5.2.. The bubbles of.a bubble diagram B that represents a 

contribution to unitarity can be classed as initial or final according to 

whetherthey contain end poii±s of initial or final lines of B , 

respectively. 

Convention (5.1),  In this section trivial two-line bubbles will be 

consideredinserted into the unscattered lines of each factor of a unitarity 

diagram, so'that no bubble touches both initial and final lines, of the 

diagram. Accordingly, each bubble is either an.initial bubble or a final 

bubble,but not both. And each line is either initial, final, or internal. 

Lemma- 1. Let B be a connected bubble diagram representing a term in a 

unitarity equation. Suppose the initial lines <9 of B are .divided into 

n > 1 disjoint sets <-1 . 	and the final lines 	of B are divided 

into n disjoint sets 	. . And suppose B is such that for each i , 

individually, there is a bubble b, of B such that the removal of b, 

from B completely discOnnects the set W •1\J 	. from the complementary 
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set 	\) 9 	. V .P. 	Then the internal lines of B can be divided 
into n disjoint sets 1. , plus a remainder.set I , such that for each 

i either 

I, is directly connected to every line of • 
	but to no line of 

or 

I. is direcy connected to.every line of 	but to no line of 

The set 	2.-. is defined to be 	or 	in cases (a),and (b), 

respectively, and I. contains every internal line directly connected to. 

(A B is the set of elements belonging to A but not to B) 

Proof. If for some ± the set. c.9 	is directly connected to the s,et 

(necessarily by an initial bubble) and also the set 	is 

directly connected to the set 	 ., (necessarily by a final bubble), 

then the removal of no single bubble can completely disconnect . 

from 	
- '. \J <9. 	Thus the stipulations of the lemma assure, 

for each i , either that 	is not directly connected to 

or that 	is 'not directly connected to 	 If for 'any i 

only one of these two conditions is satisfied then we .define 2... 	to be 

the set 	or 	that is not directly connected to 	 . or 

- 	, respectively, and define I. to be the set of all internal 

lines of B directly connected to lines of C. 	On the other hand, if 

	

both conditions are satisfied, for some I , then we have two sets 2- 	and 

- 	, one <9. and one 	, and two corresponding sets I. and I 

In this latter case it is impossible that I'. - I. and I. - V. 
:i. 	1 	 1 	1 

both be nonempty. If I'. - I. is nonempty then b. must lie at one end 

or the other of this set in order that the removal of b. completely 

V - 



UCRL-16816 

disconnect 	from 	
- 	

And if I. - V. is nonempty 

then b. must lie on one end or the other of I. - V. 	Both these 
1 	1 

sets being nonempty would therefore require both that b. either touch 

or 	but not <9. and that b. either touch 	. or 

but not 	
. 	

This is impossible, and hence one of the two sets 

I. or I, 	I. is empty. We adjust the definitions so that 
1 	1 	 1 	1 

is empty, which .defines the I. for this case. The definition 

is uniQue because I I. and I. - I. cannot both be empty, as this 

would make 1, = I 1  . , and the diagram would not be connected. 1  

Having defined the I. we must now prove them disjoint. Two I. 

corresponding to two initial sets 	
- 	 must evidently be 

disjoint. For if they contained a common line then the initial bubble 

connected to this line would directly connect these two sets 	= 

But the defining characteistic of these sets 	= 	is that no 

initil bubble connect a line of 	to a line of 	- S. 	Similarly 
two I. corresponding:to two final sets 	=are disjoint. 

• Finallr the I. corresponding to an initial 	 9, must be 

disjoint from the I. corresponding to a final= 
	

. For 

suppose I. fl\ L were nonempty. The bubble b, would then have to lie 

on one end or the other of the set I. ( I. , in order that its removal 

disconnect 	from 	Suppose, first, that b, were a final 

bubble directly connected to i 	=
and hence not directly 

connected to 	
, 	

In orde±that its removal completely disconnect the 
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lines of 	from those.of 	 it must be true that 	is not 

directly connected. within B to 	- 	.. For any bubble directly 

connecting them could not be b. , since b. is not directly connected to 

But if'thelinesof 	are notoriginally directlyconnected. to 

those of 	
- 	then we must have 	 '.., since 2. = 

There is, then, a set I' , and the set I'- I. is nonenipty, by construction. 

Thus b. must lie one one end or the other of V. - I., as mentioned before. 
1 	 1 	1 

This means that b must either be a final bubble directly connected to 

, V 	

= 	árit must be an initial bubble not directly connected to 

= 	. This contradicts the assumption that b. was a final bubble 

directly connected to 	= 	, hence dectly connected to no lines 

of  

Suppose, alternatively, that b. were an initial bubble directly 

connected to 	= &•. Again we must have 	= 	. and V. 

nonempty. Thus again b. would have to be either a final bubble directly 

connected to 	
'. = 	or aninitial bubble not directly connected to 

= 	This is again contradictory. This I. ( I. must be empty, 

which proves the lemma, 

It follows from the definition of I. that the energy carried by 

the internalset I. isequal to the energycarried by the external set 

Moreover, the energy carried by the set of all internal particles 

is the suinof the energies carried by all of the final sets 1 	(or by 
all of the initial sets 	Thus the energy carried by the set I of 

lemma 1 is ER  = Eq. •, where q 	is the.energy partof the vector 

that is the energy-momentum carried by 	minus the energy-momentum 

carriedby 	, and the sum is over those ± for which 	
= 

The point P0  is taken to be a point where q ,  = 0 for all I . Thus 

ER is zero at P0  . This means I is empty at 

il - 



UCRL-16816 

-79- 

R 
Lemma 2. A connected diagram B such that the I of lemma 1 is empty 

has either 	. = 9. for all i or 	= 	, forall i 
1 	 1 	 1 	 1 

woof, No bubble can be directly connected to a line of an I. correspond.. 

ing to an 	= cP. and also to a line of an I. corresponding to an 

= 	. For any initial bubble directly connected to a line of I.  

cannot be directly connected to any internal line not in I. , by virtue of 

the definition of I. . Similarly any final bubble directly connected to 

a line of I. cannot be directly connected to any internal line not in I 

Thus, s.ince I f" I. is empty, neither an initial nor a final bubble can be 

directly connected both to a line of I. and to a line of I. 
1 	 3 

Let C be the set of bubbles of B directly connected to any line 

of any I. corresponding to an E. =And let C. be the set of 

bubbles of B directly connected to any line of any I. corresponding to 

an a. = 	. According to the above result the sets C and C. are 

disjoint. If I is empty then every bubble of B must be in either c. 

or C. . And moreover no line of B can connect a bubble of C to a 
3 	 1 

bubble of C. 	Since B is connected it follows that either C. or C. 
3 	 : 	 1 	 3 

must be empty. 

Lemma 3. If the I of lemma 1 is empty, then all the b, of B in 

lemma 1 must be one and the same bubble b = b 

Proof. It was shownat the end of lemmal that b. cannot be directly 

connected to 	, The same argument show that b. must be directly 

connected tothe other one of the two sets 	or 
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Consider, in view of lemma 2, the case in which all 	= 

Then each b. is an initial bubble directly connected to 9. 	If b. 
is directly'connected.also to either 	or I. then b. = b. , for 

the rernol of no other bubble could then disconnect either 	or 4771, 

from 	• But b must be directly connected to some 	or I. with 

j 	i for •B to be connected: if 'b. were directly connected to no 49 

or 'I. with .j 	i then the part of B connected to 	'.\) 	. could 

not be connected to the rest, of B, since 1 is empty0 

Bythis argument b, must infact be directly connected to either 

or 49 for every j 0 For if it were directly connected to one of 

these two sets only for a proper subset •J of the j s , then the replace 

ment of b to give back B could not reconnect the part of B connected 

to the 	. \) S. for j in J to the rest of B 	Thus either 'I. or 

is directly connected to b. for every j and one has b. = b. 

fdrevery j.. The case in'which.all 	
, = 	

is essentially the 

same 0 This completes the proof.  

According to the above 'lemmas and discussion the unitarity equations 

(for the larger process) at P0  has only two kinds of terms that will 

contribute, when continued to P. 	to the resIdue of the product of all 

the poles0 The first is the kind in which all 	
= 	

and the 

second istI-ie kind in whichall 	
, = 

c9.. •The sumsof the terms of 

these two kinds are represented by the two diagrams of Fig0 7. 



UCRL-16816 

+ 	Cb 

ET  iCb 

First Kind. 	 Second Kind 

A 

Fig. 7. Diagrams representing the sums of terms of. the 

first and second kind. In this figure n ,the number 

of outer bubbles, is 4.  The small boxes represent the 

sumsof sets of bubbles of the indicated sign connected 

to, and only to, the indicated set 	The large 

rectangle consists of the sum of all sets of bubbles of 

the indicated sign such that the overall diagram is 

connected, and such that the removal of some single bubble 

b 1  of this rectangle disconnects each set 

from every other one. Only connected diagrams are included 

because we consider here only the connected part of the 

unitarity equation, w1ch is itself a valid equation, since 

the disconnected parts themselves give valid equations, by 

virtue of postulates E2 and E3. 

The suths of terms of the first and second kinds will be denoted by 

A and A , respectively. The functions A and A will be continued 

from P0  to points Pt  and P , respectively, by detouring around 

singularities of the terms of these functions in accordance with the basic 

ie rules for the various functions MB(K) constituting these terms. Near 

the points P±  the pole terms indicated in Fig. 8 become dominant. 
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Fig0 8 Diagratns representing the 1dominant pole contributions 

'near 'P 0 The multipole contributions come from. insertion 

of the pole contributions into the key bubble b' of, one of 

the- large rectangle0... . The subscripts 0 denote connected 

parts and.also the pc.ssible.:limjtations inthe set.ofd..iagrams 

arisingftom the fact. that the terms occurring in At  are 

those present at p'.0 

Figure 8 •can.be considered to represent theresidué:ofthe product 

of the poles at P  .then the plus 'and minus ;lines 'represent the factors 

4: 1 	 In particular 'the residues have the forms 

+ 	'.0 
r 	=..M(K) 	 iG , 1 	[.1(y1) vc1)], 	 (.i) 

where the F(K1 ) are the functions 'represented by the outer boxes of 

the right- and .leftband diagrams of Fig0 . 8 and M±(K) represent the 

original M(K;Ktt) .and. its'conjugate M *c (K;K.* ) 
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The unitarity equation at P0  is A + A + A°  = 0 , where A°  

is the sum of the terms of the unitarity equation appearing in neither A 

nor A . One can think that A is continued from P to P0  ; at P0  

one adds the function A and obtains, according to unitarity, the result 

A ; and function . A is then continued to P 	One has in thi s way 

a pathof continuation leading from P to. P 0  to P , but there isa 

• 	 "jump" across a certain cut at P0 	The discontinuity acros this cut at 

P0  is A° , 

Following the method of Ref. 8, we now attempt to shift (distort) 

this path of continuation P P0  P to a new path p P' 0  P that lies 

completely in the manifold s = 	for all i . This will be done by 

constructing a set of manifolds S. = a. 2  and graduallyincreasing the 

a. 2  from zero to 	. The original path 	p P touches S 	0 

(all i) at P0  . As one incr.eases the a. 2  the part of the path in 

S . a 2  is shifted into the manifold S = a 2  while the part of the 

original path .PP0 	 . P in S..a. 	is left as originally. The.original 

path . P P0  P then defines the end points of the part of the path lying 

at constant a. 
i 

In this distortion of the path there is the jump originally at 

P0  to consider. If the singularities of the function A 0  are confined, 

locally, to a.finite number of singularity manifolds, then A 0  can be 

continued to a. (continually shifting) point on the shifting path. Thei 

one simply adds at tliL s point the jump defined by the continued function 

• 	A0  • When one arrives finally at the situation where all a. 2 = 	.2 and 

considers the residue of the product of poles, this jump will not contribute, 

since A°, by construction,is.the set of terms not having all the requisite 
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poles., The pole assumption P1  is now considered extended to nonphysical 

points, as will be discussed momentarily0 25  

In the process of distoftion, various singularities maybe met by 

the shifting path0 One can perhaps distort the path away from them. 

Alternativelyone can jump across the cut trailing such a singularity s 

by adding the' discontinuity across the cut, just as one did at P0  . If 

the singulalities of this discontinuity function are confined to a finite 

number singularity manifolds, then the function can be continued to a 

(continually shifting) point P on the shifting path0 Then in the 

analytic continuation from P to P along the shifting path one simply 

adds 'at the point P this discontinuity function0 The contribution.from 

such a discontinuity will not affect the residue at a. 2 
= P 

 2 
unless 

the discontinuity has 'all the required poles0 

To discuss which singularities have 'cuts having discontinuities 

having the requisite poles some definitions 'will be introduced0 

Definition 5030 D -D is a Landau diagram flV that can be constructed 

by replacing 'some of the'vertices Vn  of D by connected Landau diagrams 

D'1 0 

C 

Remark 51 	It is easily 'confirmed that if D is a DV D then fl 

•is'a contraction D Dv  of Dt and conversely (see 'Df0 33) 

Definition 54 . D1 -D is a Landau diagram D1  that is a contraction 

D1 	DV of some Landau diagram D' . D '0 D supports D1  means D1  c. D 

Lemma iD., A Landau diagram •D supports a pole diagram D only if D has 

a key vertex V such that every path in D connecting a line in the set 

of external lInes 'V 'defined by D to a line in the conjugate set 

passes through VP 	Such a vertex V is called a key vertex of D 

(relative to D )., 
p 
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Proof. The proof is essentially identical to the proof of lemma 1 of 

Theorem -i-. 

Definition 7.7 	The pole assumption P2  is the assumption that the 

discontinuity across the cut connected to a singularity surface 	of a 

function MB(K)  represented by a connected bubble diagram B has no pole 

[or worse] singularity at 1t[n] unless the surface 'flt is'a surface 

l'k [D] such that D c B supports the pole diagram D [or possibly some 

other pole diagiam D' 	with 1hjD] 	'flt[D']] 	In this sense, all 

pole singularities at 1'k[D] are associated with the pole diagram D' 

Remark 5.2. Pole assumption P2  is similar to pole assumption P1 	It 

is more genal in 'that it is not restricted to physical points Q (K) 

[ The functions McB(K) and the sets ftt[D]  are, of course, now 

analytically extended to include points not in Q(K) . Aside from this 

difference the assumptions 'P1  and P2  would be very similar if the 

discontinuity across 'a surface ''[D] were given by a Cutkosky ru1e. This 

would make the discontinuity function essentially 'a bubble diagram function 

MB (K) represented by a bubble diagram B 1  obtained 'by replacing each 

vertex of D B by an appropriate bubbled Then pole assumption P1  , 

generalized to nonphysical points, would say that the discontinuity function 

has no pole [or worse] singularity unless Dc B supports D 	'By'no 

pole [or worse] singularity we mean, here, no singularity that affects the 

residue of the pole. 	 ' 

The quantity of interest to us is the residue of the product over 

'i of'the poles at 	 2 	
The only singularities having discont'inuities 

contributing to this residue.are, according to pole assumption P 2  , those 

associated with diagrams B supporting each of the corresponding pole 
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diagrams D 1 	According to Lemma iD a Landau diagram D can support 

a pole diagram D 1  only 'if it contains 'a corresponding key vertex V 1  

Thus 'the earlier arguments now show that A 0  will not contribute to the 

residue at.either physical or'nonphysical points. 

The contributions to A+  and A are represented by bubble 

'diagrams B 'eachbavingon1y one key bubble b 	If DB supports 

then the key vertex V 1  of D must bea vertex of the diagram 

replacing b' inthe construction of 'D from B ; the removal of 

a vertex from the Dcb  of a nonkey bubble cannot effect the required 

separation, since the removal of the entire bubble does not. Thus, for - 

a B representing a term in A+  or A , which we write as B € A± , 

any key vertex of any D cz  B '€ + A must be a vertex of the diagram 

replacing bl  in the ;construótion. of D from B 	It then follows 'that 

any D B € A± containing all the reiired key vertices V 1  can be 

constructed by replacing the bubbles in one of the terms indicated in 

Fig. 8 by Landaiiidiagrams D c b and then contracting certainlines. At 

points S
i  < p(an i) all the lines L. explicitly shownin. Fig, 8 

must be contracted to points, since the corresponding mass constraints are 

not satisfied at these points. The required key vertices V 1  are then 

just these contracted lines L. 
1 

The Landaudiagrams D associated with the singularities having 

all the required poles have, according to the above arguments, a very 

special structure. Theyconsist of n + 1 "independent" parts'connected 

only at key vertices. For each positive i <n  there is . one "outer" 

independent part having the external lines '• \) &. , and precisely one 
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of the n key vertices. For 1 = 0 there is the one inner part, which 

has no external lines but which has all n key vertices. These n + 1 

parts are independent in the sense used in Section I 	they have independent 

dilation parameters, and the Feynman loops can be confined to individual 

independent parts. Because of this, the Landausurfaces are just the 

Landau surfaces for these independent parts. That is, the singularity 

surface 1 [D] is just a suni of singularity surfaces 1)L[D1 ] , where each 

surface I

1V[D.] is a surface in the variables associated with just one of 

the n + 1 independent parts. As a consequence, the path of continuation 

at fixed S. = a, 2  can be considered to be a product of paths P.(a.) , 

one in the variables associated with each of the n +1 independent parts. 

For the Outer parts there are mass constraints on each of the external 

lines, and there is one additional "mass" constraint S = a 

associated with the vertex VP  . For the inner part there is a mass 

2. 	 .i 	 - constraint S. = a. associated with each vertex V , As the a. 
1 	i 	 P 

increase, the motion of the singularitysurfaces 1''t[n.] can be viewed 

as the motion of the Landau singulari ty surfaces for the individual parts 

under a continuation in the "masses" a. 
1 

. These "masses" a. 1  are, of 

course, not physical-particle masses, but rather variables of the larger 

process. 

Consider now P(a.) P' 0 (a.) P(a 1 ), the part of the shifting path 

of continuation lying in the surfaces S. = a. 2  , At a. = 0 the two 

end points P(a.) and P(a,) of this part of the path coincide with the 

point P0  . Then, as the a. increase, the points 	(a.) start moving 

along paths determined by the original paths P 0  P and P0  P • These 
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original paths, lie in the physical region of the larger process and their 

detours around the physical region singularities are specified by the basic 

ie rules for functions 

Apart from these i€ detours, the two paths 'p  Ft  and P0  P 

will be taken to be identical Then P(a,) P' 0 (a 1 ) P(a.), becomes a 

closed loop, except for the small 1€ gap between the two endpoints 

P(a.) and P(aj0 Thus the only singularities that can get inside this 

loop are .either physical region singularities that have, for some value of 

the a. , entered through this gap, or singularities that have emerged from 

the cuts 'traiting physical region singularities that have entered through 

the gape 

One follows the motionof these singularities by a continuation in 

the "masses"' a. . Assuming, temporarily, that the paths can be kept away 

from the various singularities whose d.iscontinuities contribute to the 

residue, one arrives finally at a. 	(all i), and considers 'the residue 

of the product over all i of the poles at Si = 	At the points 

and p one has the residues ,r+  and r givenin (51)  andindicated 

in Fig o By construction, continuation along the path •P
+ 
 P' P takes 

r 	to 	-r 

As just discussed, P+ P' p is effectively a product of paths 

P. , with one path '.P in the variables 'associated with each factor in 

(5.1). Ech factor in r is, accordingly, continued along the 

corresponding path 'P. . Under this continuation r+  goes to rh , 
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rh 	Mh(K) H 	I '(v.) F!" (K.) , 	 (7.2) 

which we know to be - r 

Consider the paths P corresponding to the outer sets  

The path P0  P can, as we shall verify below, be chosen such that It crosses 

no singularity in these variables. In this case the outer paths P. can 

be shrunk to' points, which means that 

= F,(K.) 

Moreover, in this case in which P 0 
 P crosses no singularities in the outer 

variables, the terms contributing to the outer factors in Fig. 8 are the 

same at P0  and P . Hence the subscript zero can be replaced by the 

subscript c denoting connected part. Then unitarity (FIg. 2) gives 

F.(K.) + r1(K) = 0 

These equations convert the equation rh = - r into 

M 
c 
 h() 	

c = -M (K) , 

(7.) 

(5.5) .  

which is just Herniltian analyticity. The path of continuation h , which 

is constructed by the procedure described above, is called the path of 

Hermitian analy'ticity. 	 . 	 . 
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The phases a of the pole-factorization theorem are incorporated 

into the functions F±(K) . That the phases of the various contributions 

to (7.4)  are then such as to ensure its validity, by virtue of unitarity, 

follows from the fact that the various contributions to unitarity associated 

with different connected structures, hence different conservation-law 

functions, must satisfy separately the unitarity equations, by virtue of 

postulates E2 and E3.  The argument is similar to the one given in 

conjunction with these phases in the proof of the pole-factorization theorem, 

and need not be given again. 

Equation (73) is valid provided P0  P is chosen so as to cross no 

singularities in variables associated with the outer processes. This can be 

achieved, for instance, by taking the outer processes to be simple two-

particle scattering processes, and holding fixed, in the continuation from 

P0  to P , the total energies E. of these outer processes. The "masses T  

a. are varied by varying the momenta of the particles of the outer processes. 

The only possible Landau singularities in the variables associated with these 

outer two-particle processes are normal-threshold singularities at constant 

This follows from a simple enumeration of possible physical region 

Landau diagrams for a two-particle process. These singularities at constant 

E. 1  will not be crossed because the E 1  . are held fixed (at values not at a -  

normal threshold). 

When the path P P0  P , which lies at physical points of the 

larger process, is shifted to p p' P , which - lies at Si = Ili , the 

values of (at least some of) the momentum vectors q .  associated with lines 

L. must become complex (at some points on the new path). This is because 

the part of the path associated with the variables of the inner process is 
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forced to pass through the region below the physical threshold of the inner,  

process, and such regions cannot be realized with real q . . 	These complex 

values of the q. can and will be obtained by performing appropriate complex 

Lorentz transformations on the corresponding outer parts; that is, the 

complexification of q. will be obtained by a complex. Lorentz transformation 

on all the vectors of the ith outer part. Since the singularity structure 

is not altered by a (real or complex) Lorentz transformation, the fact that 

q, is complex will not reflect itself in the part of the path associated 

with the variables of the outer process; one can consider part of:the path 

associated withthe outer parts to lie at real values of the energy-momentum 

vectors, as far as the singularities in these parts themselves allow this. 

In the above disctission it was assumed that the paths. of continuation 

can be distor.tedso as to stay away from all singularity surfaces that 

contribute to the multipole residue. That this:.is possible follows in most 

cases from dimensional considerations: a one dimensional curve is, generally 

too "thin" to get trapped by a finite set of singularity surfaces. For,  

instance, we know that contours of integration of real dimension n in a 

space of comp]ex dimension n can get trapped at a point to give a 

singularity of an integral. Butthen for n >1 a one dimensional curve 

will in general not be trapped: it can slide away from the usual pinch 

configuration in n-1 directions.. 

One can c Dnfirm this in a simple example: Consider the surfaces 

= 0, z 1 	 and the curve x1  = - €, x2  = 0, y1  = 'r, y2  

where a>€>O .. The curve intersects the real. plane at a point lying 

in the region \. of the real plane bounded by the restriction to real 

points of the two surfaces. As Ce approaches zero this region R, shrinks 
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to a point. But the curve can be moved away frbm the pinch, by shifting 

it, for example, to the curve x 1  = 	€ + g(r-2), x2  = 0, -  y1  = 

y2  = T - 2: where g(T) is zerO for F'rIi and greater than € near 

T = 0. 

This dimensionai argument does not cover all cases, however. For 

example, a curve might get trapped betweentwo surfaces that reduce toa 

single surface at a pinch configuration, for•then the situation is essentially 

one dimensional. Though such possibilities can probably be ruled out, we 

do not pursue this tack, for in any case the curve might get pulled into 

an unphysical sheet by some singularity surface. In order to avoid this, 

the path of continuation will be taken to jump across the cuts trailing 

certain singularities, rather than detouring around them. In particular, 

if a singularity thoves across the path of continuation then one can define 

the discontinuity function in the situation before the singularity leaves 

the physical sheet, or is pinched against another singularity. The path of 

continuation can then be taken to jump across the cut, by adding the 

discontinuity function at the cut. If these cuts are part of the boundary 

of the physical sheet then the path of continuation will remain always on 

the physical sheet. The definition of the physical sheet given in Ref s:. 1 

and 12 was In terms of essentially this same proced.ureof continuation in 

external "masses", though there it was justifiedby comparison to perturbation theory, 

rather than by mass-shell considerations, as was done here. We shall return 

to adiscussjon of this matter after discussing the rules for constructing 

the paths connecting crossed reactions. 
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VI. A CONNECTION BETWEEN PATHS OF 

CROSSING AND UERMITIAN ANALYTICITY 

A derivation of the crossing property of scattering functions is 

given in Ref. 17, and it will not be repeated here. This section gives an 

extension of that argument that leads to an important connection between 

the paths connecting crossed reaction and Hermitian conjugate points. This 

connection will play a key role in the proof of the normal connection between 

spin and statistics given in the next section. 

The basic idea in theS-matrix derivation of crossing properties is 

similar to the one used in theabove derivation of Herrnitian analyticity: 

one considers a "larger process" having pole singularities with residues 

containing the scattering functions of interest as factors. In the study 

of crossing, the larger process is selected so that its physical region, 

whichis a conneted set, intersects the "pole manifold" 	
= 	

in 

two different disjoint regions, with these two regions correspondingto the 

two different signs of the energy part of the vector k whose square is 
P .  

Let K and K be points of 	 lying in these two different 

regions. The corresponding residues are 

r(K) = laM (K)(v)c 
	

(6,1) 

and 

r(i?) = I a Mc (Kv )Gp (V) Mc 	 (6.2) 

respectively, by virtue of Formula (1,8), 
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The sets K and. K both refer to the same subset V of the 
V 	-' 	 V 	

-* 
external particles of the larger reaction, and the sets K,  and KV  

bothrefer to the same complementary subset V' of the particles of the 

larger reaction The additional particle referred to byboth K  and 

, and assocfated with the pole at K , is denoted by p 	The additional 

particle referred to by both K  and K, 7  , and associated with the pole 

at K , is denoted by p . Since the poles at K and K. lie on disjoint 

parts of the manifold. S = 	the two particles p and p need not 

be identical, though their masses are equal. Indeed., the energy conservation-

law requirement demands that the particles p and p have the opposite 

initial-final status and be therefore particles carrying opposite units 

of all additive .quantum numbers. The particles p and p are called 

conjugate particles, or relative antiparticles. Use is made in this 

argument of the converse pole-factorization theorem, which asserts, under 

the same assumptions, that ifthere is a pole at S = 	in the physical 

region then there must be a corresponding physical particle contributing to 

unitarity summations; if there were no such particle then the 5 - function 

contribution needed for the pole would be absent. 

Let d°  be a path from K to K that runs through the physical 

region of the larger process, passing around singularities in accordance 

with physical region i€ rules0 Following the procedure of Ref. 8, we 

distort (if possible) this path, C°  into a path C between K and K 

lying in the mass shell S = 	The continuation of r(K) from 

K to K along path C is designated by r(Kc) 	By virtue of the 

definition of C we have 
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r(KC) = r(I)  

or equivalently, 

i a M(KC)G ( v c) M(K , C) 

= i a M(K) 	M(K)  

In the distortion of the original path C 
0 into the path C one 

must, as in the case of Hermitian analytic ity, avoid singularities having 

discontinuities with nonzero xesidue at S = 
	The necessary 

distortions are examined by using an effective continuation in the mass of 

the pole particle. That is, the various paths of continuation intermediate 

between C°  and C are divided into three segments with the middle segment 

at constant S = a 	. The path C°  is carried to C by increasing 

a from zero to it 	The distortions required of the middle segment are 

those needed to avoid those Landau singularity surfacesof the larger 

process that become Landau singularity surfaces of one of the two subreactions 

associated with the residue when a reaches p. 	The discontinuities 
p 	 p 

across the cuts associated with the remaining singularities will not 

contribute to the residue, by viftue of pole assumption P 2  

The two end points of the middle segment lie on the portions of the 

original path C°  leading from the zero point to K and K respectively. 

As a increases these end points detour around any encountered singularities 
p 

in the manner specified by the physical region ie rules, 
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In the procedure just sketched the pole-factorization property was 

applied to just one particle of some original reaction of interest; the 

other particles were taken to be particles of the larger reaction. The 

crossing paths associated with these other particles can be constructed by 

applying this same procedure to eachof these particles separately. •However, 

to standardize the construction and obtain a connection to paths of Hermitian 

analyticity we shall apply the pole-factorization property simultaneously 

to all of the particles of the original reaction of interest. That is, the 

larger process will be chosen tobé one having a pole singularity for each 

particle of this original reaction, so that the scattering function for 

this reaction occurs as a factor in the residue of the product of all these 

poles, much as in the case of the derivation of Herrnitian analyticity. 

Just as in the preceding case of Herinitian analyticity the 

continuation in the a 
p 	 p 

now starts from a point where all the a , and 

also all their associated k , are zero. There are paths in the physical 

region of the larger process leading from this starting point to the 

regions associated with each of the n different crossed reactions 

associated with Original reaction. Each of these n paths passes around 

any encountered siigularities in accordance with the physical region ie 

rules. If C 	 is a path in the physical reg.ion of the larger process 

leading from the starting point zero to the point K. associated with the 

ith one of the crossed reaction, then C 	 = C °  - 	is a path in the 

physical region of the larger process leading from K. to K. 	(Sums of 

paths are read froni right to left,) The result of distorting C.. °  into 

the mass shell a = i (all p) in such a way as to avoid singularities that 

contribute to the residue of the product of the poles is denoted by 	Since 
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+ C° = Ck° , 	 ( 6 

and since the distortions are such as to avoid the relevant singularity 

surfaces, we have also 

].j 
c. 	jk + c 	1  c..

3  , 
	 ( 6.6). 

•  

where the 	sign in (6.6) means equivalence with respect to continuation 

of the residue r(K) of the product of poles. Equation (6,6) expresses 

the compatibility of the various crossing paths C that connect the 

variois crossed reaction regions. 

As discussed in the preceding section, and also in Ref. 17,  the 

pole assumption P2  implies that the singularity surfaces that have cuts 

having discontinuities contributing to the residue are just the Landau 

surfaces corresponding to the individual scattering functions of the 

residue, but with the external mass 	shifted to a . (Only the 

Landau surfaces are extended off the mass shell, not the M functions.) 

Because of this special character of the relevant singularity surfaces 

the parts of the paths of continuation at constant a can be considered 

to be products of paths, with one factor for each process referred to by 

the residue. The distortion of each individual path is then followed by 

following the motion of the Landau surfaces corresponding to the appropriate 

process, as the a increase from zero to p. . Only those Landau surfaces 

need be avoided that are not forced to be nonsingular, by the positive-a 

requirement on the Landau singularities entering the physical region of the 

larger process.- 
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The parts of the paths C.. , C.. °, and C. °  referring to the 

inner process will be represented by the corresponding lower case quantities. 

Then the part of (6.6) referring to the inner process reads 

c.. + c. 	
c i k 

, 	 (6.6') 

where means equivalence with respect to analytic continuation of any 

function whose singularities are confined to those Landau surfaces of the 

inner process that are restrictions to a = t of the surfaces avoided 
p 	p 

in the distortions of the C 1 . into the mass shell. Equation (6.6') is 

certainly valid if in these distortions one retains the original structure 

of the paths wherein a single central point is connected to each of the 

varioLi.s crossed reaction points. If it is possible to distort all the 

paths c.. 0  into the mass shell so that the relevant singularities are 

avoided, then this structure can certainly be retained0 The case in which 

it is not possible to distort the paths so as to avoid all the relevant 

singularities will be discussed later. 

0  
For each path c. there is a complex conjugate path c. that 

coincides with c 0  except that it detours around the physical region 

singularities in accordance with the ie rules associated with the conjugate 

—o 	0 
function. According to the previous section it is the path c - c 

that, distorted into the mass shell, gives the path of Hermitian analyticity 

h. that takes the scattering function M(K.) into - t(K1 ). The rules 

for the distortion of the path C. - c. 0  into the mass shell to give h 1  

are the same as the rules for the distortion of the path c.0 - c °  into 

the mass shell to give c.. 	one must avoid the 	points 	of a larger 
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process that lie on the formal extension off the mass shell of the Landau 

surfaces of the(inner) reaction of interest. However, one need not avoid 

those Landau surfaces that are required to be nonsingular by the positive-'a 

requirement on singularities that enter the physical region of the larger,  

process0 

Since the paths c°  and 	° leading to the n crossed reactions 

and their Hermitian conjugate points all start from a single point, and 

the rule for distortion of these paths into the mass shell is a uniform one, 

the same set of Landau surfaces being avoided in all cases (see below),-•the 

compatibility requirement (6.6) aarries over also to paths connecting. 

Hermitian conjugate points. In particular we obtain relations such as 

	

h + c.. 	- 	c.. + h. , 	 ( 6.7) j 	13 	13 	I 3 

-0 	—o —o where c, . is the result of distorting c.. 	= c, 	C. 	into the mass 13 	 13 	 3 

shell. Equation (6.7) says (reading from right to left) that the path 

from K. to K, to its conjugate point K, is equivalent to the path 

from K. to its conjugate point K P  to K1 	Here equivalent means 

equivalent with respect to analytic continuation of a function having 

singularities only on Landau surfaces that are restrictions to mass shell 

a
p 	p 

= t of Landau surfaces associated with the inner process and that are 

not required to be nonsingular for the larger processes by the positive-a 

requirements. The scattering function of interest must have its singularitie 

confined to these surfaces, since it is a factor of the residue of the larger 

process, and this factor contains all the dependence on the variables 

associated with these singularities. 

Equation (6.) is certainly valid if in the distortion into the mass 

shell one maintains the structure wherein all the n crossed reaction points 
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and their conjugate points are connected to a single central point. 

Alternatively, the n crossed reaction points can be connected to one 

central point, and the n conjugate points can be connected by conjugate 

paths to a conjugate central point ithat is connected by a single path to 

the unconjugate central point. More generally, Eq. (6.7) is certainly 

valid so long as no closed loops are introduced into the set of paths 

connecting the various points. Cases where closed loops are present 

require some additional discussion, which is given in Appendix D. However, 

there is no real need to intr:oduce closed loops. 

Because the Indau structure is invariant under Hermitian conjugation 

the paths.
j  can be taken to be the complex conjugates of the paths 

cij , where c is the path of crossing for the transposed function. The 

relationship of Hermitianconjugateness is maintained if the two related 

functions are continued along conjugate paths. Thus from the Hermitian 

analyticity relationship 

M(K') = - Mt(K) = - MT(K)*, 	 (6,8) 

where M(K') Is the result of continuing Mc(K) along the path h to 

the conjugate point, and the superscript T •represents transpose, one 

obtains 

M (K) = - M T(K)* 
C 	 C 	 (6.9) 

where M(K1 ) is the result of continuing M(K) first along h and 

then along 	, and. MT(Kc)* is the result of continuing McT (K) along 
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its path of crossing c,. and then complex conjugating. The 	and 

are conjugate paths0 Applying (67) to the left-hand side of (6.9), we 

obtain our principal result, 

M(Kch) = * MT(Kc)* , 	 (6,1o) 

which says that the result of continuing M(K) first along c and then 

along the path of Hermitian .analytiçity h associated with the crossed 

point .K gives minus the complex conjugate of the ±mction MT(KC) 

Eq.uation-(6010) would follow directly from the 1-lermitian analyticity 

relation at the crossed point, 

M() = 	McT()* 	 (6;11) 

if we were in possession of the crossing relationships M (K c ) = M c (K) 

and MT(KC) =. M(K) .' However, we have so far obtained 'only the 

weaker condition (6.4). Because (6,4) has a product of two .M functions 

there is an ambiguity in the relative phase and normalization of M(KC) 

and.Mc(K) , as was stressed by Olive, 7  And there are also the .extra phase 

factors .. a, and a to be considered.. These latter depend on the statistics 

of the;particles and will be discussed in the next section. 	•. 	 . 

In. the discussion, of crossing and Hermitian analyticity given so 

far it was assumed that the various physical region paths can actually be 

distorted into., the mass shell without cutting across any of the singularity 

surfaces having 'cuts 'with discontinuities . contributing to the residue. It 
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is conceivable, however, that these singularities might pinch together in 

such a way as to make impossible the distortion into the mass shell of 

some of these paths. 

Rather tban distorting the paths around the various singularities 

we can elect rather to jump across the associated cuts, by adding the 

corresponding discontinuityfunctions. This was in fact the procedure 

adopted for the various cuts whose discontinuities do not contribute to 

the residue. For cuts around whichit is not always possible to detour, 

the discontinuity across thecut is defined for values of a for which 

thetwo sides are still cormected, and this functionis then continued to 

a 	= 11  
p 	p 

The discontinuity functions associated with cuts around whIch it 

ispossible to detour, within the mass shell, share with the original 

functionthe important pole-factorization property, since this property can 

be continued around these cuts. In particular if a singularity under 

consideration occurs in the variables associated with the inner reaction, 

then one can detour around this cut without changing the functions in the 

residue formula that areassociated with the outer processes. One makes 

use here of the relativistic invariance property, which allows the momentum-

energy transfered to the outer reactions to be altered without changing 

their ,  jnvarjants. Hence the functions associated with these outer reactions 

will remain unchanged under continuation in the inner variables, except for 

the alteration of certain polynomials associated with the expansion of spin 

states. 	These polynomials return to their original values when the 

continuation is brought back to the other side of the cut and hence the 



UCRL-16816 

-103- 

outer factors return to their original values. The jump in the residue 

function across the cut is therefore represented by adding acertäin 

discontinuity function to the factor associated with the inner process, 

upon whose variables the singularity was assutnedto depend, the outer 

factors remaining unchanged. Moreover the discontinuity function for the 

factor associated with the inner reaction is independent of the particular 

larger process being.. considered0 These properties of the discontinuity 

function wi1lbe called the pole-factorization property of discontinui ty  

functions. It is the property whereby the discontinuity function of the 

residue across a cut in the variables associated with a given one of the 

functions occurring, in the residue is obtained by adding a discontinuity 

to that particular one of these functions, this discontinuity being 

independent of the particular larger process under consideration. 

The pole-'factorization property of discontinuity functions is, as 

we have just said, automatically satisfied for cuts around which one can 

detour without leaving the mass shell. It is also satisfied for cuts with 

discontinuities given by a Cutkosky formula, for then the pole-factorization 

property of the discontinuity function is a consequence of the pole-

factorization property of the individual functions occurring in the Cutkosky 

formula. 

If the pole-factorization property of discontinuity functions is 

satisfied for all the cuts across which the paths of continuation jump, 

then the discussion of crossing and Hermitian analyticity given above is 

essentially unaltered. For then there are certain cuts across which the 

paths must jump, but the corresponding discontinuity functions are universal 

quantities that do not depend upon the particular larger process from which 

it is derived. Thus, the discontinuities that must be added as a path 
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jumps across the various cuts will be independent of the particular end 

points being connected by this path, and the compatibility conditions 

(6.6' ) and  (6.7) still hold. Furthermore, the property whereby the 

Herniltian conjugateness relation is maintained when the related functions 

are continued along conjugate paths is also undisturbed by the cuts. For 

in the defining of the discontinuities on the two conjugate paths one can 

use for the larger processes two Hermitian conjugate reactions. Then the 

Hermitian conjugateness property will be valid for the discontinuity 

functions calculated at a < P , and will be carried into the mass shell 
p 	p 

by continuation in a 	
p 

p to .i . Thus these discontinuities will not 

destroy the Hermitian conjugateness property and one still obtains (6,9) 

and hence (6.10). 
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1111. THE COECTION BETWEEN StN ... AND STATISTICS 

The residue of the pole at a point K on the manifold s = 

in the physical region of the (larger) process described by the scattering 

function M(K) is given according to (4.8) as 

r(k) = i a Mc(K) 	( v ) M(K,)  

where G (v) is a metric tensor satisfying (2.24), 

) = (1)3 v 	 p a(v), 	 (7.2) 

and a is a phase factor given by ( 11.,9). This phase factor is important 

to our considerations but the formula (4.9)  will not be needed. 

Ata physical point K lying on the crossed-region part of the 

manifold S 	
2 

V 	
p the residue of the scattering function for this 

same larger process is 

r() = i 	M (? )G ( 	) N (1?,) . 	 (7 , 3) C V pp C V 

The point K has the same set of variables as K , but the values of the 

momentum vector parts have been shifted. The sets of variables K 
V 

and 

each contain, in addition to certain of the variables of K , a 

variable associated with the particle p associated with the pole at K 

Similarly the sets of variables K and K1,, each contain,, in addition'.to certain 
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of the variables of K, a variable associated., with the particle p 

associated with the pole at K . 1rticle p is called the antiparticle 

of particle p 

The result of continuing from K along the mass-shell pathof 

continuation c is represented by placing the superscript c on the set 

of argunients •K 	The path c isconstructed so that r(KC) = r(?) 

This gives 

I a M(Kc)G (c)  M(K,C) 

(7,lj.) 

= i aM(K) a;() M(K',) 

Since the point K was assumed to lie on the crossed-region part of the 

manifold 	= 	we have v c = - v , which gives'with'the help of 

(7.2), the result 

2j 
(-i) P  a M(K) '() M(Kc) 

(7 , 5) 

= a M (WV )  p () 
M (iS,,) 

2j 
This factor (-i) 	will be the origin of 'the normal connection between 

spin and statistics. It is also the origin of the connection between the 

intrinsic parities of particles and their conjugate antiparticles, as was 

sho'm in Ref. 26, 
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The relationship between a and a is determined in certain cases 

by the statistics of the particles of the larger process. 27  Consider in 

particular the residue formulas in the special cases indicated in Fig,, 9. 

z 

3 

3 

2,- 

3 

LI. 

S 

2, 

3 

/ 

Fig0 9. Representation of direct and crossed residue 

formulas in a special case where the initial and final 

particles of the larger process are the same set of 

particles. The factors ia and a must be .added The 

order of incident lines, reading from top to bottom, 

will indicate the order of variables of the functions 

M(K'; K") and M(K K") 

The phase factors a and a associated with these residues can 

be determined from statistics by a direct examination of the derivation of 

the residue formula. In the key step of the derivation the contributions 

• to a unitarity equation represented in Fig. 10 were converted by means of 

the unitarity equations represented in Fig. 11 to the residues represented 

in Fig. 9. 
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2 

3 

.5 

2. 

3 
14 

3 

L. 

.51  

2. 

-3 

Fig. 10. The contributions to the unitarity equations of 

the larger process that are converted by means of the 

unitarityequations shown in Fig.11 into the residue 

formulas shown in Fig. 9. 

PIIIIIIL 	H5 

= 

Fig. 11. Unitarity equations used to convert the pole 

contributions to the unitarity.equations of the larger 

process shown in Fig. 10 into the residue formulas shown 

in Fig. 9. That the right-band sides of these equations 

correctly cancel against terms of the unitarity equation 

not shown in Fig. 10 is shown in the proof of the pole-

factorization theorem. 
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The two terms on the left of the equations in Fig..: 11 are just 

the complex conjugate transposes (Hermitianconjugates) of each other, 

according to the conventions adopted in (2.30d) and  (2.58).  It is with 

these phase conventions thatthe Hermitian analfticity properties were proved. 

Because there are no extra phases on the left side of the equations 

represented in Fig. 11, the phases a. and a of the residue functions 

shown in Fig. 9 must be precisely the phases of the corresponding contri-

bution to unitarity shown in Fig. 10. This is a key point. 

The pIRses of thecontributions to unitarity,  shown in Fig. 10 are 

determined by the statistics of the externa.l particles of these diagrams. 

In particular, interchange of the pairs of identical particles 4 and 5 in 

the first factor of the first diagram of Fig. 10, and the pairs of identical 

particles:l, 2, and 3 in the first factor of the second diagram of Fig. 10, 

leads to Fig. 12, 

IiiiEEEDE 
It 	

'1- 

Fig. 12, Result of interchanging some pairs of identical 

particles in Fig. 10. 
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The contributions to unitarity shom in Fig. 12 are just 'absolute-

value-squared contributions, and, these must have no phase. More specifically, 

if the minus bubbles in Fig, 12 represent precisely the complex conjugates 

of the corresponding plus bubbles in this figure, then the phase factors 

of the terms in Fig. 12 are unity. This stipulation that the minus bubbles 

be the complex conjugates of the plus bubbles we record as 

Mt(K , ) = M*(KV) 	 (7,6a) 

and 

Mt(K) = M*(K) . 	 (.6b) 

In the passage from Fig. 10 to Fig. 11 no reordering of the variables of 

the connected parts is performed; these functions M(K'; KTT.)  are kept 

fixed. Only the orderings•of the variables of the larger process on the 

left are altered. This interchange induces an overall sign in accordance 

with the statistics of the particles interchanged. 

From the fact that the phase factors in Fig. 12 are unity, the 

phase factors in Fig. 11, hence Fig. 9, are immediately determined from 

the statistics of the five external particles. If the number of these 
2j. 

	

particles obeying abnormal statistics 	[a. = - (-1) 	is odd, then 

the quotient a/a is 

5 	2j. 	 2j 
- 	II 	(-1) 1 = - (-1) p , 	 ( 7.7) 

1=1 
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where the equality (7,7) follows from the fact that the sum of the spins 

of the particles participating in a nonvanishing reaction is even, by 
2j 

virtue of the convariance condition (2.11) But if a/a is 	(-i) 

then (7.5)becornes 	 - 

M(KC) 	)M(K , c) 

(.8) 

M(K)G(v)M(K ) 
c V 	p p 	C Vl 

Continuation of theright-band factorsin (7.8) along the path of, 

Hermitiananalyticity h associated with thecrossed point K,  converts 

(7.8) to 

M(Kc)G (_) M * (Kv c ) 

(7 , 9) 

M(K) G (v) 	() ' 

where use has been made of (6.10), (6,11), and (7.6). 

The f'unctions M and M*  are complex conjugate functions and the 

factor G is the square of a Hermitian matrix. Thus the right side of 

(7.9) is nonpositive and the left side is nonnegative. Therefore both 

sides must be zero, .which implies  immediately that 

- 

M(K) = 0 , 	 (7.10) 
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for tl-ñs case in which an odd number of the external particles of the set 

, exclusive of p , are abnormal. Thisresu1t was derived for the 

particular case of an M function with three initial particles and three 

final particles, but the argument holds also for the cases more than three. 

That is, any Mc  function referring to a process with three or more initial 

particles and three or more final particles is zero if any subset of all 

but one of these particles has an odd number of particles with abnormal 

statistics. This immediately implies that all such M functions referring 

to a set of particles containing any abnormal particles must vanish except 

possibly for M functions referring to an odd number of particles all of 

which are abnormal. This last possibility is rule out by unitarity, since 

the nonvanishing process would contribute a term to the sum of positive 

terms giving the real part of the M function for a corresponding forward 

scattering process, which must, however, vanish because it involves an even 

number of abnormal particles. 

The possibility that abnormal particles occur. in a reaction involving 

only two initial or two final particles, but in no reactions involving three 

or more initial and final particles, conflicts with the pole-factorization 

property pliis 'unitarity. (unitarity guarantees that the transposeprocess 

is nonzero) Thus we conclude that the scattering function M(K) vanishes 

if any of the particles referred' to by K obey abnormal statistics: ' only 

particles obeying normal statistics can react. 
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VIII. TEE PHASE FACTOR IN THE CROSSING RELATIONSHIP 

Having establishd that all particles obey normal statistics we 

obtain instead of (7.8) and (7.9) the relationships 

M(KC)G () M(K1C) 

(8,i) 

= M(K) ;() M(K1) 

and 

M(Kv c ) 	() M*(KC) 

= M(K 	pp) 

From (8.2) it follows that 

(8.2) 

IM(Kc)I 	= 	IM(v)I . 	 (8,3) 

That is,.the continuation of M(K)  is equal to M(Kv)  up to a possible 

phase factor. 

Equation (8.3) can be written as 

M(KC) = M
cv ) a() , 	 (8.4) 

where a(K) is a spinindependent:phase factor. {The spin independence 

of a() follows immediately from the covariance conditions (2,11)28 

Insertion of (8,4) into (7 , 5) gives 
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a() a(,) = Q, ,c) 	(8.5) 

2j 
where Q, = (-i) p  a / a 

All our equations are invariant under a transformation of the form 

(8.6) M (K) -+ [exp(E ± i cp)] M(K) 
C 

where cp is a real number depending only on the particle type p 

The sum in (8,6) is over the particles referred to by K , and the ± 

sign is plus for final particles and minus for initial. The numbers 

can be chosen so that for each particle p there is one particular M 

function that satisfies instead of (8.4) the more stringent condition 

M c V (K c) = M c  (i V  ) 	
( 8.7) 

That is, the phases Cp can be chosen so that a(i) = 1 , which implies 

thatfor the particular.  K, associated with T in (8.1) one has also 

= 1 . If the phases a and 	in (7.5) were such that Q were 

always unity, then the above adjustment of phases to give a(K) = 1 

would make a( 1 ) = 1 for all 	, and the crossing relationship 

(8.4) would have no extra phase. 

In order to discuss the value of Q , certain stipulations regarding 

the orde of variables must apparently be made. In field theoretic models 

one has a cluster decomposition law that yields 
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M(K' 1, K' s , 	 ' K'; KIt1,  K2, 

(8,8) 

; K"1 ) M(K' 2  ; K"2 )'" M(K' ; K") + 

That is, if the variables in M are ordered according. to a particular 

cluster term, in the manner shown, then the a for this particular 

cluster term is unity. 

That this equation should continue to hold in a pure S-Matrix 

theory can be argued as foflows. 29  Let all but one of the sets K'. and 

K". be held fixed and let this one remaining set be denoted by A.. Then 

(8.8) will be written.in  the abbreviated form 

M(A) 	M(A) ii + .. , 	 (8.9) 

where It . stands for the product of the remaining factors on the right.. 

[The M(A)., . on the left is, of course, a quite different function from the 

M(A) on the right.] 	 , 	 .. 	. 	. . 

From our gen'al cluster decomposition property we have, instead of: 

(8.9) the more general equation 

M(A) = aA M(A) II + ''' , 	 (8.10) 

where aA  is the phase factor a of, (2.30)..  Let B be a set of 

variables labeling an :  amplitude in. the same superselection, class as the 

result labeled.by  A. We hayethenalso. 	 . 	,. 
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M(B) = aB M(B).fl + ••0 
	

(8.11) 

where all other variables are still fixed as before. 

Consider now a superposition• C = aA + bE . That is, C labels 

the amplitude such that 

M(C) = a M(A) + b M(B) 
	

(8.12) 

According to the general cluster property one should have, in analogy to 

(8-lo) and (811), also 

M(C) = 	
M(C) n -- 	 (8.13) 

This is actually a slight extension of our postulate El of Ref. 12, which, 

as stated, referred only to amplitudes labeled by sets K , not to their 

superpositions. But exactly the same physical principle should apply to 

superpositions. This extension of the postulate Elwhich we call Eli, 

gives (8 .13). 

We need also a stipulation that 

M(C) = a M(A) + b M(B) 
	

(8,l1 ) 

This req.uirement would be rather natural if we were dealing with a Hilbert 

space formalism in which the S matrix were regarded as a unitarity 

mappingof free-particle states onto free-particle states, with these 
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free-particle states regarded as tensor prod.ucts of individual sirgie-

particle states, and in which the ordering of variables specifies the 

ordering of these states. Of course, since we know that the tensor 

products of these states in different orders are nQtall equal, it is not 

absolutely clear that (8,14) must be satisfied, since the addition of 

extra states might affect different states differently. proofs of spin 

and statistics that depend on such extra stipulations are not completely 

satisfactory, since it is conceivable that a theory with abnormal 

statistics might be possibleif  one were to abandon the extra stipulations. 

This might be done in such a way as to leave the physical relationships 

of superpOsition, Lorentz invariance, etc., unaltered. 

However, having proved the normal connection between spin and 

statitis without rc'ourse to such stipulations our objective now is 

to complete the specification of the basic formalism of a proposed 

S-Matrix theory. The stipulation (8,14) is therefore now adopted. 

The stipulation (8.14) immediately gives the result 

aA_aB ,  

as one seesby taking special values a andb satisfying 

a : b = - M(B) : M(A) . 	 (8,16) 

Then the relevant term on the left side of (8.15)  vanishes, which implies, 

by virtue of (8.1o), (8.11), and (8.14), the result (8.15). The phase 

factor aA  therefore depends onlyon the si..perselectionclass of A., or 
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more generally on the superselection classes of the various sets K". 

In that case, however, one can take the sets K' i to be equal to the sets 

K" 1  , without altering aA . Since the relative phases of the connected 

parts M(K". ; K",) and their corresponding no-scattering parts are 

fixed to be unity, by virtue of E2, and since the phase of the no-

scattering contribution to M(K" 1, K"2,• K" ; K"1, K"2, ".K") is unity 

by virtue of our original conventions on the no-scattering parts (which 

we were free to choose), wa find that the factor aA = aB is also unity, 

and thus obtain (8.8). 

From the fact that the phase factor a is unity for the 

decomposition of the type shown in (8,8) one can conclude that the factors 

a and a in Q are independent of the external variables of the process 

containing the pole. In particular, if one writes the M(K,)  on the 

left of ()-i-,io) as 

M(K 
VV ) = M(K' V , , K',, K' ; K' p 	Vt 	

' K") , 	(8.1) 

where K" and K' 	contain the initial and final variables of K , 
V 	 V 	 V 

and similarly for •K 
V 	 p 	p 
, , and K' and K" are the variables associated 

with the exchanged particle, then according to (8.8) One can say that 

a,0  in (lLiO) is unity. 
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• 	r-- K 	
: - 

-L 	. 	 • 
Fig. 13.  Decomposition of (8,17) according to (li.iO). 

The phase aa  in (1,)  is' the inverse of the phase change 

induced by moving KI through K' , into the position where (8.8) is 

again applicable. But this phase change is independent' of the variables 

associated with the external particles associated with 	. 'Here we 

are using, 'the' fact that the phase change induced by the. interchange of 

any two adjacent 'variables is .•independent of the remaining 'variables . of 

the M' function. This is ,a consequence 'Of (8,8) 'and unitarity.' For 

unitarity.'ensures that the phase change induced by a reordering of the 

various final variables is independent of the particular initial variables 

(To see this consider the contributions to forward scattering, which is 

a sum of absolute values.squared. Thus all'contributions must suffer'the 

same phase change under a reordering of the final external variables). 

But then (8,8) ensures that the interchange of two adjacent fiiial variables 

must induce a phase change that is independent of all of the other 

variables, since one can consider a decomposition in which these two final 

variables are the only two final variables of one of the individual 

factors on the right of (8.8). This factor can appear as a contribution 

to various reactions. 
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For the analogous calculation of a one uses (8.17) with K in 

place of 

, I  

KV  

- 

tc 

Fig, 13. Decomposition of analogous to the one in Fig. 13, 

but with p in place of p. 

Again aa 	I, and a,0  is Independent of the external variables 

of K, : now one must commute KTt.. through K 'T  v to obtain the form 

where (8.8) is applicable. But then 0. is independent of the external 

lines of K,,  and oneobtai±isfrom the.special crossing relation (87) 

(with the variables ordered as in Figs. 13 and T) the general crossing 

relation 

M(K1v,.Kc; K" ) = M(i,.; 	, i). 	(8.18) 

That is, if the phases are adjusted so that (8.18) is valid for one 

particular v' •, then it will be valid for every v' 

In terms of the functions Mc(K)  defined in (2.26), the crossing 

relation (8.18) becomes 
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M(K I C) 	 , 	 ( 819) 

which is just the statement that (- pr ., m , 	t) is equivalent to 

(p , m , t), with the understanding that the continuation from the 

original region of positive (- p) to the new region of positive p has 

been made along the path of continuation c 	That is, for the M(K) 

functions the division between initial and final can be dram arbitrarily: 

one has a single universal M function for all the crossed reactions. 

The important fact that the sign change under interchange of 

adjacent conjugate variables is the same as the siga change under the 

interchange of the corresponding like variables follows immediately from 

(8,8) and the fact that the phase change under interchange of adjacent 

variables is independent of the other variables of M . One can consider 

• (8.8). for two different orderings of the sets of variables of the M 

function on the left. Then to one of these sets of variables one adds a 

conjugate pair and finds that .this pair must commute with all variables. 

In fact any set of variables of zero quantum numbers must commute with 

any other variable, if (8.8) is to be consistent with unitarity. 
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IX. CONCLUDING REMARKS - TUE STATUS OF ANALYTIC S-MATRIX TUEORY 

The present work is basically a contribution to the development of.  

the S-matrix framework begun in Ref. 1, The assumptions in that work were 

stronger than one would like :.in several respects. In the first place the 

possibility of superselection rules was not encompassed, and there was a 

special assumption, B', referring to phase factors. In the second place 

the crossing property was derived from a postulate of physical connection, 

which is an assumption of the general crossing principle without its 

specific detailed form. In the third place the analyticity postulate, 

though expressed entirely in terms of the unitarity equation, was guided 

in the definition of the physical sheet by previous experience with 

potential and perturbation-theory models. 

The removal of the superselection rule restriction and of the 

phase assumption B' was the task accomplished in Ref. 12. The present 

work provides a derivation of crossing from weak analyticity assumptions 

of the general type postulated in Ref. 1, but without use of the specific 

assumptions regarding the form of physical sheet postulated there. The 

nature of the construction given here of paths of continuation connecting 

crossed and Hermitian analytic points makes it very likely that these 

points will be on the physical sheet as defined there; the constructions 

in both cases are in terms of formal extensions of the Landau surfaces 

off the mass shell and the requirement that the various region all are 

linked together when the external masses are zero. In Ref. 1 the Landau 

surfaces allowed to be singular in the region relevant to the continuation 

from the zero mass region were constructed so as to be just those Landau 
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surfaces that are singular in the corresponding region (defined as the 

physical sheet) in perturbation theory. In the present construction we 

have the condition that those singularities entering the physical region 

must be just those of perturbation theory. It is very likely that this 

correspondence with perturbation theory at physical points will ensure the 

correspondence with perturbation theory throughout the physical sheet, to 

the extent that only Landau singularities are allowed in this sheet. A 

proof of this would provide a justification of the particular construction 

for the physical sheet defined in Ref. 1. This problem is left for a later 

work. 

Once the definition of the phyical sheet given in Ref s. 1 and 12 

is confirmed by mass-shell considerations the central problem becomes to 

derive a general integral representation for multiparticle scattering 

functions analogous to the Mandeistam representation for the four-particle 

functions. The first part of this problem is to obtain the general 

discontinuity formulas for cuts entering the phyical sheet. A paper on 

this subject is in preparation. That work should provide a basis for a 

proof of the pole assumptions P1  and P2  that were the basis of the 

present work. 
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APPEI\1DIX A. A Fundamental Theorem on 

Analyticity of Integrals 

Theorem A, Let F(K) be defined by 

m 
F(K) = ff (K; K) 	n 	(g.(;K)) d, 	 (A,l) 

1=1 

where the g. are single-valued real analytic functions of the sets of 

real variables K = (k1, 	, k) and K = ( k1, ",k) 	Suppose for 

K in a set 	that QL(K) = (i?:g.(;K) = 0 all j) is a bounded 

set over which 	 is of maximal rank m n , and that f(K;K) is 

analytic at points (i?;K) of [(K;K):Ke 9, e 4(K)) 	Then F(K) is 

analytic at points I of AQ. The analyticity of f(K;K) and F(K) is 

in the sense of.  Def. 2.1 of Section II. 

Proof. Let K be a fixed point in 	.. Because the rank of 

is maximal the set a(K) is a real analytic submanifold. 30,31  That is, 

for any 	in 	(K) there is a real function t(x), defined and 

analytic on •L(K), the closure of a bounded open set u(K), in the space 

of points labeled by the set of local coordinates X = (x1, 	xnm) 

such that 	(x) maps u(K) onto an open neighborhood 	of 

K in the space 	K). One can, in fact, evidently take the x. to be 

linear functions of the k, in such a way that 

is nonzero at G = 0 (all g. = 0) for X in a sufficiently small 

This ensures °  that the inverse function i'(x,G) will be unique 

and analytic in both arguments at G = 0 for X in U(K). The function 

	

'(x) is then 	v(x,0), 
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The function i_(x,G) depends also on K and.will sonietiniesbe 

written as 	'_(X,G;K). It is, in fact, analytic in K, by virtue of the 

facts that it is analytic in .G and that •G is analytic in K 	For 

one can write 

= 	- 

X 	K 	6G K 

G 	
dK+dK=dK, 	 (A.) 

which gives 

~Kl 3i 
, 

as the well-defined ierivative. 

Because )(K) is bounded it is also compact in the induced 

topology, in which the neighborhoods in (K) are defined as the 

intersection of (K) with neighborhoods in the imbedding K space 

This result is well known 2  

The basic neighborhoods in (K) will be taken small enough so 

that each one is contained with its closure in one of the 	-(K). This 

is possible because of the analytic character of K'(X,G) and its 

inverse. In particular, given a point K of c(K) one can find a 

sufficiently small neighborhood c-_(K) of. G, = 0 such that Kt(X,G) 

is analytic with an analytic inverse over 1L(K) I& A1..(K)) 0  Thus by 

taking the basic neighborhoods in K space small enough so each.is 

contained with its closure in the image of one of the TL.(K) 
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we ensure that the closure of the restriction to (K) of each of these 

neighborhoods is in one of the 

The basic neighborhoods in the space of real points K can be 

defined as the open sets bounded by surfaces at rational constant values 

of the k. . This provides also a set of neighborhoods in 	For 

the basic neighborhoodsin (K) a subset of these will be chosen. In 

particular, since for points on (K) the g. are analytic functions of 

the k. with nonzero the gradients, the basic neighborhoods in 	(K) 

can be taken small enough so that the gradients of the surfaces g. = 0 

are almost constant over any basic neighborhood in QL(K) . 	Then the set 

of basic neighborhoods in QL(K)  is further restricted by the requirement 

that none of these neighborhoods be bounded by a surface corresponding to 

a certain constant k. if the gradient to this constant k. surface 
.1 	 1 

is "nearly parallel" to any linear combination of the gradients to the 

surfaces g.. 	0 , at any point K of the neighborhood in question. 

[The point here is first that one can certainly find n 

constant-k. coordinate surfaces whose gradients are not "near" the 

subspace spanned by the gradients at K to the surfaces g = 0. For 

let v.) be the orthonormal set of•normalized gradients to the coordinate 

surfaces lying at constant k. , and let wJ be an orthonormal set of 

vectors such that the first in of them span the space °A)(K) spanned by 

the m gradients Vg. at point K , Suppose m + 1 of the V. lie 

"near" the space ° )(K), in the sense that, with a suitable ordering of 

the V. , the quantity 

	

m+l 	n 

(vow)2  

	

i=l 	j=ni+l 
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is smaller than unity. Then the sum over the complementary set in i is 

2  (v.w.) 	= n-m 
.i=m+2 	j=m+l 

(v.w.) 	= 	n -rn -i 
i=m+2 j=1 

This gives 5 	, contradicting the assurnption.that th + 1 of the V. 

lie near the space kJ(K). Thus at most m of the V. can lie near 

O\A) (K), and one can find a set of at least n - m vectors V. none of 

which is nearly parallel to any linear combination of the gradients to 

the surfaces g, = 0 , (By nearly parallel we can mean, specifically, 

that the lines make'anangle of less than n 	degrees) One can choose 

any one of these vectors as one of the x. . Working up by induction 

in m one sees that one can complete the set of x by choosing from 

among'the set of k. whose gradients."are not nearly parallel to the 

vectors of 'J(K). Thus one can find arbitrarily small neighborhoods of 

K in (K) that are bounded only. by manifolds corresponding to k. 

whose gradients are not nearly parallel to any vectors of 	K). And 

since ° )(K) depends continuously on K the condition can be maintained 

for all K in sufficiently small neighborhoodsj 

By virtue of the compactness of L(K) . there is a finite covering 

of (K) by neighborhoods of the trpe specified above. Since intersections 

of finite numbers of these neighborhoods are also neighborhoods of this 

same type, one can find a finite set 	Pia(K)J  of these neighborhoods 

whose sum is just P(K), apart from the set of measure zero coming from'' 

the boundary points of the various Q a(K) 
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By virtue of the conditions imposed on the basic neighborhoods 

of 	each ?a(K)  iis contained in one of the 	The inverse 

image of (a(K)  under the corresponding K'_(X) will be called 

Let a(x;K)  be the 	t(x,o;K) = 	'(x) that maps Ua(K)  onto 

Then one can write 

F(K) 	f 	fa(X;K) J(x;K) dX 
a 	u(K) 

(AL) 

a Fa(K 

where 

= f( a (x;K);K) 	 (A.5) 

and 

21? (x;K) 
(x;K) = 	a 	 (A,6) 

a 	 (x,G) 

Some straightforward formal manipulations give for the derivative 

of Fa(K)  with respect to K the expression 

F a (K) 	f (f_ \.
dX   aa) 

TJ(K) \K/ 

f ___ 
YE 	f J s(h ) 	

a 	, 	 (A7) 
.U(K) 	a a 	a 	K 

where 



UCRL-16816 

.l29- 

h(X;K) = i.(x;K) - c 	= 0 	 (A,8) 

are the equations for the surfaces in X bounding, Ua(K)  The function 

is the component of ia(XK)  associated with the boundary 

surface 	of 13(K). 

The derivative with respect to K is to be interpreted, always, 

as the derivative .on any variable upon -  which the k. of K depend 

analytically. In particular, if the function is defined only, over a 

restricted set, then the derivative is with respect to any apropriate . 

local,, coordinate, in the sense of Def, (2.1). With this understanding 

the derivative 6fa/K  exists over the closure of Ua(K)  by virtue of 

our original assumption. It is therefore also uniformly bounded over, 

u(K). The derivative of J exists in the usual sense, hence also in 

the sense of Def. 2.1. . It is therefore also uniformly bounded over 

The set u(K) is bounded and hence the first term on the right 

in (A.7)  is finite 'and, in the sense that it is independent of the phase 

of the variation dK, well-defined. 

The second 'term on the right in (A.1)  is also finite and well 

defined. The function h 	is analytic in K in the usual sense, hence 

also in the sense of Def. 2,1. For any particular term P one can 

transform to a set of variables in which the k. corresponding to the 

surface Pa is one of the x. . Then the 	(h) just eliminates this 

one of the dx in dx . The remaining integral is finite because 

13(K), and hence Ua(K)  is of bounded extent.' y virtue. Of the method 

of construction the number of sides P is finite and hence so is the 



UcRLl68l6 

-130- 

second term in (A.7).  The formal derivative (A,7)  is therefore finite 

and well-defined. 

Since the formal derivative F/K given by (A.7)  is well-defined, 

the function F(K) is analytic in K to the extent that the formal 

expression actually represents the limit of 	. For real K this 

is true. However, for complex K the meaning of F(K) is not yet 

defined. 

For complex K near a real K0  € 	one can take F(K) to be 

defined by (A.). The many-variable version of the Cauchy Theorem 

then permits the contour for Fa(K0 + C) to be taken to consist of a 

central part u(K0 ) plus a boundary strip running between Ua(K0)  and 

U(K0 + SC). Using this form for the contour one obtains (A7) as the 

limit of LF/K for all complex LsK . Thus the function F(K) defined 

by (A4) is analytic-at points K 0  in 

For real K the various possible ways of choosing the local 

coordInates and the u(c) all lead, via (A.li-), to the same function 

F(K), by virtue of the factors J. Since the extension to complex K 

via any one of these choices gives an analytic function, the extension 

must be independent of the particular choice used in (A,4), 

Definition. A-local coordinate patch in Q(K) will mean the image in 

(K), under an analytic one-to-one mapping (x), of a bounded open set 

in the space of points X = (x1, ... ,x) 	The set. X is the set of 

local coordinates corresponding to the local coordinate patch. We 

further specify that the x, be a subset of the set of k,. That this 

is possible follows from arguments given in Theorem A' 
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Theorem A. Let 	(K) be the set of real K described in Theorem A', 

and let (K:G(K;K) = 0) be the set of ll complex K satisfying the 

same conditions, g.(;K) = 0 for all j 	suppose j(K) c.  (:G(;K) = 0) 

is the image of R(K) under a mapping K - K' = K + i T' (;K), where 

T'(K;K) is real and continuous over Q(K) 	with continuous [hence 

uniformly bounded] first derivatives with respect to the local coordinates 

corresponding to some [hence every] finite covering of 	K) by local 

coordinate patches. Suppose Q(K) is close to Q(K) in the sense that 

the image u.'(K) of U(K) is within the region where•a(XG)  is 

analytic with analytic inverse, the relevant minors of 	 still 

being nonzero. Suppose f(KK) is analytic at points (;K) of 

(K):KE , Te R'(K)). Then F(K) defIned by (A.4), but with U'a(K) 

in place of iUa(K)  is analytic at K. in 	, provided 	'(K) is 

sufficiently close to Q,(K). [This final condition of closeness means 

that for some 	> 0 we have, using the metric in K space, 

for all ? in (K), for any fixed point K of 

Though this condition is used in the following proof, it probably is not 

necessary for the validity of the theorem. The explicit definition of 

F(K) is given by (A.9)]. 

Outline of Proof. The boundaries of the sets Ua(K)  map into surfaces 

H7  in 	(K), the surface H being, by construction, the intersection 

of R(K) with a portion of the manifold k. . = c . Here c 	is .a 
17 	7 	 7 

(real) rational number and iy means i . The image of H in 

is H' , on which k. 
	is given by E 	= c7  + i t'. 7 (/H I'K). The 

symbol K/H means that K is considered restriôted. to H7  

N 
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Each of the real functions t'. 7 (K/H7  ; •k) can, by virtue of 

the Weierstrass approximation theorem, 35  be approximated over H7. , for 

fixed K , to arbitrary pointwise precision by a real polybnmial 

t". 
17 
 (i;K). in the variables k 1  . 	

1 
of K . Indeed all the t'. 

7 
 (If/H 

7 
 ;K) 

having the same index i can be approximated by one single polynomial 

tt(;K), We assume this is done so that the index iy on 

can be interpreted as an i . Sometimes, as in (A.7),  Pu is used in 

place of .7  to identify a boundary surface. 

	

The Ua(K)  can be selected so that for each point K of 	(K) 

there is, in 	K), a coordinate patch N(K) containing 'K , such that 

the k. associated with each H that.intersects N(K) is a member 
17 	 7 

of the set of local coordinates X corresponding N(K) 	If the 

original Ua(K)  do not satisfy this condition then the c can be 

slightly shifted so that the condition is satisfied. [Suppose, for 

example, that a surface h 7 (X 7
17  
. (x) 

7 
c = 0 intersects the 

intersection 'I . of a set of coordinate surfaces 'x. 	0 , where j 

runs over the s:t (i, -o, a < n rn). And suppose h7 /x. = 0 , 

for j = a + 1, •, n m , at some point of 'a 	(h7 
 = 0). This is 

a ty-pical case where the gradient of h is not independent of 'the 

gradients of some subset of the x. and hence h cannot be taken as 
3 	 7 

one of the x. . There may be a connected set of points in 'a 
 for 

which this condition on the gradient remains satisfied, but all points 

of this set must lie at i.
17 	7 

c , Thus a slight shift of c will 

move this entire set . of points on . (h = 0) for which the grandient 

condition is satisfied out of the set 'a 	
A finite number of applications 

of this argument will give the required result.] 
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By the Heine-Borel covering theorem the compact Q(K) can be 

covered by a finite number of coordinate patches of the type specified 

above. These real neighborhoods N(K) in 	K) can be extended to 

complex neighborhoods T() in [:G(R;K) = 0) such that the mapping 

(x) associated with N(K) remains analytic and single-valued over 

N*(K). We shall require that for some finite covering of K(K) by these 

local coordinate patches N(K) the image in Q'(K) of each N(K) lies 

in N*(K). This requirement certainly can be satisfied if 	(K) lies 

sufficiently close to RM. This condition is far from necessary, however. 

The complexification of the neighborhoods N(K) leads to a 

complexification x. -* z of the corresponding local coordinates. 

Because the z. are independent variables over the corresponding N*(K), 

the requirement just imposed ensures that the values of the kv 	 on
iY 

H' are independent variables. In particular, the k! associated with 
7 	 17 

the various H' 	can be simultaneously shifted by sufficiently small 

amountswithout moving of f the surface (K:G(K;K) = 0). 

Because the k'. 
17  on H' 	are independent variables, in this 

sense, a surface ç"(K) c (:G(;K) = 0) can be defined by the mapping 

K - K" = .K + i T"(K;K), where the i component of T"(K/H7  ; K) is 

a polynomial t".(/H ;K) of the type discussed earlier, and where all  iY 

components of T"(KK) are, for fixed K , continuous in K over 	K) 

with continuous [hence uniformly bounded] first derivatives in the local 

coordinates of any fixed finite covering of ..(K). 

The surface 	"(K) can be made to lie arbitrarily close to R' (K). 

Thus:by virtue of the many-variable Cauchy.theorem 3  the contour can be 

taken to rin over k,"(K) instead of 	'(K), without changing the value 

J 

of the integral. 
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The construction described above is carried out for the briginal 

real K = •K0  in 2.. For nearby real K the boundaries of the real 

U(K) are taken to be defined by, the same equations h = 0 that .are 

used at K = K0  . The boundaries of the images U'ta(K)  of  Ua(K)  under 

K - K" , are defined by taking the t".(K;K) to be independent of K 

This can be done because they are independent variables, in the sense 

discussed above. 

The function F(K) is defined by (A.-i-), but with the X in 

(x) replaced by Z"a(X;K),  which is the function that maps Ua(K) 

onto utta(K) In particular, we have 

F(K) = f"a(K) 	
a(" ;K) 
	

a(z" ;K) dZ" 

(A 9) 

cz (K) f(Z"(X;K);K) 

	
(z"(x;K);K) 

where 

f(Z tT ;K) 	f(K(ZtT ; K) ; K) .  

As the real K varies from its original value K 0  certain of 

the boundaries of the •Ua(K)  may move. The integral Fa(K)  can be 

considered to be composed of a central part lying over the fixed Ua(Kó) 

plus a boundary part that is : the strip connectingU(K 0 ) to U(K). 

By virtue of Cauchy's theorem, 34  applied to the first form in (A.9),  the 

exact shape of the interior of the contour U'ta(K)  is not important; it 

can be slightly shifted without changing Fa(K) 
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Because of this freedom in the choice of contour, the location 

of central part of the contour, lying over U(K0 ), can be prescribed by 

taking the function Z ua(X;K) to be independent of K . This function is 

then analytic in K and, consequently, so is the part of the integrand 

in (A.9)  lying over U(K0 ), Thusthis central contribution to Fa(K) 

which corresponds to the first term in (A.7),  is analytic in K 

For the calculation of the contribution to F(K) coming from 

the boundary strip near H 	H we choose a set of local coordinates Pa 	y 

X 7 which has an element x 
37 
. that is k 

17  
. 	(We may need several 

such coordinate systems to cover H , but a finite number will certainly 

suffice,) In this coordinate system 7 the equation for H" 7  is 

• 	z". 	i". 	= c + i v". (i (x ; K)/H ) 17 	17 	7 	17 77 	7 

z". 
37 

(x 
 7 
/H 

 7 
; K) , 

which, by the theorem on compositions of analytic functions, 6  is analytic 

in K . The meaning of X7 /H is evident0 

- The other edge of this boundary strip lies on U"(K 0 ) , hence 

on the image in 7  space of Z"a(Xa/  H7 (K0 );K0), which is 

2"7 (x7/H ; K) 

[ 	(z"(x[(x/H;K0)];K0);K)] 
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The •i component of this equation is 

K) = 	
(Z!tx[(X/H ;K0 )];K0 );K) , 

where T. (z" ;K) 	 Pa = 7 component of the function 	(z" ;K)0 
ia a 	 a a 

This function z .J. 
 7 

(x 
7 
/11 

 7 
 K) is analytic in K, and hence so is 

; K) 	 ; K) - '(X/H ; K) 

Let Z" represent the set of coordinates other than z". = 
7 	 J7 	17 

in the set Z!? ., and let X be defined similarly0 The value of Z" 
7 	 7 

on H?!7  has not been specified so far0 The point is that the contour in 

can be slightly shifted, keeping z 7 (X7 M ; K) fixed, without 

altering the value of Fa(K)o  This is because the contribution to Fa(K) 

from a piece of the contour confined to H!?7  vanishes, because of the 

vanishing of dz".• 	This result is familiar in simple cases, where the 

shifting of the contour in Z space is justified by 'the Cauchy:theorem 

in 7 space0 

Since the exact value of Z",(X , /H,,  ;K) is not important, we 

shall leave it unspecified, except to require that the surface "(K) 

be smooth (i0e0, continuous withcontinuous first derivatives with respect 

to the variables of some, local coordinate system)0 

The contribution to Fa(K)  from the boundary strip near H" 

is then given (up to a sign perhaps) by 
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(z" (x ./H ; K );K ) 
f7 (z 7 (x7/I;K0 );K0) f 

tt(X/H;.K) 
0 	A  z 	(x/H ;K)dX 

37. .7 	.7 	7 
7 

plus higher-orderterms.in A KI.. The dependence. on K isthroughthe 

analytic function ...z 7 (X, / 7 ;K).o Thusthelimit 

will be we1ldefined (i0e,, . independent of the pbase of L K) The 

analyticity. of F(K) then follows by,the same arguments that were 

used in Theorem A . 
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APPEEWIX B. The Phase Factor 

in the Pole-Factorization Theorem 

i6 	 6 	 1 	 6 	 6 

3: 	 3
7. 	2+7_7 

s  n8 	 p 	-P 	 8 

 

1 	

+ 

tf 0  
Fig. Bi 	 Fig. Bi' 

6 1 6- 6 
1g7 

G6 

Fig. B2 Fig. B2' 

- 

Fig, B3 
	

Fig. B3 1  

Fig. Bi - A Contribution to Fig. 3. 
Fig. Bl'- The corresponding contribution to Fig. 6. 
Fig. B2. - The connected part corresponding to Fig. Bi. 
Fig. B2' - An analogous contribution corresponding to Fig. Bi'. 
Fig. B3 - A contribution corresponding to Fig. B2, but with a 

different intermediate set of particles. 
Fig. B3' - An analogous contribution corresponding to Fig. B21. 
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The phase factors in Fig. El are a and a2  whereas those in 

Fig. El' are 	and a2  . In order to convert Fig. 3.1to  Fig. 6 one 

must multiply bya1 ' a2 '/a1a2 .. By virtue of 	this is equal to 

at a' */a  a. , where a, b, c, and d label the sets shown in 
ac bc ac Dc 

Fig. B2, etc. But by virtue of E3 and E2 this is in turn equal to 

o stimes 
p 

a ad abd/ad d = a ad/ aad =Cb 

where ab  is 'the ab  of Eq. (l..iO). That the other corresponding 

terms in Figs, 5 and 6 gave 'this same ratio ab  is assured by 

and E3 . The factor 0 comes from the interchange of order of the 

two variables p in c' that is required to bring Fig. B2' into the 

form where E3 is applicable; after thisinterchange C' can be 

replaced by d' . Then E2 is used to obtain Figs. B3 and B'O 
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APPEINDIX C 

In Ref. 13 M(K) is shown to consist of a sum of terms M 1 (K) 

each of which is a limit to physical points of a function analytic in a 

region containing physical points as boundary points. In particular 

we have 

f M 
 c 
i 
 (K (K) dK 

= 	h1 + 	fM  c  i
(K + i e ' (K)) p(K) dK 

where K is here considered a point in a real vector space of dimension 

(3K - )+), and 1 (K) is a point in the same space. (i.e. local oinear 

coordinates are introduced). Certain properties of such functions will 

now be derived. 

Lemma Cl. Let 	R be ti-ie space of CcO  test functions with support 

confined to H , the closure of the bounded open set R t  in the space 

R of n real numbers. Let f[q] be a functional of p such that 

forany  p in 

f[p] = 	1im 	f f (x + i G  z~, (x )) Cp  (x ) d x, 	 (Cl) 

where x and L(x) are elements of Rn  the components of L(z) are 

entire functions of z = x + i y, and f(z) is analytic in the strip 

S = 	: z = x + i e z(x), X € R, 0 < € < Tj > 0) 



_iIi.i. 

if cp(x) in 	R is, at points x of R?  the restriction to H t  of 

a function cp(z) analytic and uniformly bounded. in 

S" 	[z 	He z c R t , urn zi •< p(x)}, 

where p(x) is continuous and positive for •x in 'H', then 

f[] = 

 

lim 	f 	f(x + i y(x) + I € (z))x +1 y(x)) dx+ i y(x)) 
€-O 	RR" 

(c.2) 

+ f 	f(x+iy(x))(x+iy(x))d(x+iy(x)), 
R" 

where the closure.of R" is in R' and .y(x) is anycontinuous real 

function that is zero for x not in R' , and for x in R' gives 

a z 	x + iy(x) that is in S () S' 	The set of points x + I y(x) 

can be considered a contour C lying.over the real points x 	Then 

(C2) can be written in the more compact form 

f[] = 	urn 
+ fc(R 	

f(z + I € (z)) p(z) dz 
€->O 	 R") 

(c.2'). 

+ f 	f(z)(z)dz , 
c(R") 

where C(T) is the part of C lying over T 

34 
Proof. By Cauchy s Theorem, generalized to several variables, 	(Cl) 

is equivalent.to 
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f[p] 	urn 
+ f f(z + I € 	p (z)) (z) dz  

C 

since for some €' > 0 and every fixed 0 < € < €' the functions are 

analytic in the region through which the contour is shifted. The points 

on the boundary: of RT,  where the Cp(z) are not analytic, give no 

contrfbution because of the boundedness condition on cp(z) . For the 

part C(R 1T ) of C the limit € - 0 can be taken, since the integrand 

is analytic, hence continuous,. in € at these points. 

Lemma C2. If the conditions of Lemma Cl are satisfied and if If(z)I is 

bounded over the intersection of S with some neighb.or1ood of R:- R' , 

then 

f[p] 
= f 	f(z):p(z) dz . 	 (C2 1 T) 

Proof. The b.oundedness of f(z) and . cp(z) assures that contribution 

from H' - R" vanishes as H" - R' 

Corollary,l. If 'f[cp] and p satisfy the conditions of Lemmas Cl and 

C2 than. f[cp] is finite (noninfinite), 

Proof. The right side of (CO) is finite. 

Corollary2. If in place.ofEq. (C1);we have 

urn 	f[f±(x + i € 	(x))- 	I € 	(x)J 	ftdx 
€ -+ 0+ 

and if f(z) and p(x) ,satisfy'the conditions of Lemmas Ci and C2 then 

we have, in place of Eq. (C:"), rather 
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fç9] 
= 

	f(z) p(z) dz 
- L 
	

f(z) p(z) dz 

Proof. The manipulations of the proof of Lemma C2 can be carried through 

for each term separately. 

In the following theorems x is a single real variable 

(i.e. n = 1). The set R 1  will be the real set B t  = 1x: x 	< a) 

Theorem Cl, Let f[cp] be a functional of cp such that for any p in 

	

f[p] = 	l 	f[f+(X+i€) - f(x 	i€)] p(x) c , 
€ -+ 0+ 

+ 
where the .f are analytic in the strips 

S±=(z: Re Z € B4 O<In1z <.>O).. 

Suppose the f+ 
	 +
( z)I are bounded in S fl N , where N is a neighborhood 

of B - R' 	Then the vanishing of f[cp] for all p in & implies 

that the limits f(x) exist, are analytic, and are equal, for all 

x in B 1  

Proof. By virtue of the second corollary to Lemma C2 one has 

	

= 	 p(z) dz - f 	f(z) p(z) dz 	(C7) 

for any cp(z) satisfying the conditions of the Lemma Cl, where C and 

are certain (compact) contours from x 	- a to x = a 
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that lie just above andbelow the real axis for lxi <a 	Let r(x) be 

1  
the function r(z) = exp[-(a 2 - z 

2  
.) I and let cp(z ; z) 

Then define 

F(z) 
= L • 
	f(z) (z; Zt)  dz 

- L 	
- 	f(z) p(z;z') dz, 

C+C 	 C+C 	 6 

where C
- 4- 

is a contour from .a to 	a that lies 	
+ 

inside S and 

above C f•or lxi <a b; and C is a contour from a to - a that 

lies inside S and below C for lxi <a b 	For a 	lxi .a b.> 0 

the contours C 	are takento coincide with 	C
+ 
 , respectively, By 

Cauchy 	 1 s Theorem F(z 
) 

= ;2ti f+  (z ) ir(z I ) if z 	is between C+  and 

C, and F(z) = 2gi f(z) r(z?)  if z I  is between C and C 

By virtue of the vanishing of (C5)  one also has for z in either of 

these two regions 

F(zv) 
= f 	f(z) r(z) 	dz - J 	f-(z)  * ( z ) 	dz 	 (C7) 

(z..' z) 	 - 	(z - z') 

± 
In view of the analyticity and boundedness coMitions on f and p , 

(C7) implies that F(z) is a single ana1rtic function throughout the 

- 	-. 	 + 
interior of C 	C 	This implies that f (ZI)  and f (z ) are both 

equal to F(zc)/2jCi  r(z) , and hence are analytic, inside C - 

Theorem 12 The condition of boundedness on if'
+ 
l in the statement of 

Theorem Cl can be replaced by the condition.that l f±( z ) I be bounded 

in S 
+ 

f 	
-m 

N by C exp B Jim zi 	for sane positive values of the constants 

C,Band m 
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woof. One can replace in the proof of Theorem Cl the function (3.) = exp[-(a2 -z2 )] 

by 	exp[ - A (a - z ) I . And the curve z (x) can be taken to 

approach the endpoints at x 	T a..along the lines arg (z t a).= 

Then for points on the contour sufficiently near x 	a the function 

/ 	 , ir(z) 	is less than exp - A Im z -m where A' = A[s1n(ir/Lm)] m 
 (2a) -m,ia 

If one chooses A so that A' > B then Jft J is bounded. near 

= ± a . The same argument also shows that 	f±( z ) cp(z ; z')J is 

bounded for z near ± a , if Z'. 	 a , But it is the boundedness 

of these products, rather than of the Ifi l themselves, that is actually 

needed, both in Lemma 02 and its corollaries, and in the proof of Theorem 

Cl itself, Thus the arguments in that proof carry over immediately to 

the present case. 

Remark Cl. Theorems similar to 02 have beenproved by other authors,' 

under the more stringent assumption that f[] is a distribution. This 

distribution assumption demands that f(z) be bouiided near Im z = 0 

by some negative power of urn  z . 39  It is not clear that we wish to 

impose such a strict requirement on the allowed functions. In fact, frOm 

the S-matrix view point is isnatured to allow all functionals f{] on 

that can be expressed as sums of limits of anal'ic functions. 

Theorem 02 is a step in this direction. The condition, required in this 

theorem, that f be bounded by an exponentialof an Thverse power, while 

already very weak, can be much further weakened by replacing the constant 

power m by C' exp B' lim. z.. Moreover this new m can again be 

replaced in the same way, and so on. Thus the bound on f(z) can be 

made extremely  weak, Whether the boundedness condition can be removed 

altogether is still an open questior, as far as I know. 
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Theorem C. If a functional f[cp] has a finite value for all infinitely 

differentiable functions p(x) of compact support PL that are 

restrictions to 	of functions analytic in the interior of R , and 
ff 

if for such cp the functional is given by 

	

f[p] = 	lim f [f+ (x + 1€) - f(x - 1€)] p(x) dx 	(c8) 
E - O 

where the functions f
+
(z) are analytic in the strips 

	

S± = 	Re z € R, 0 < ± Lu z < Tj > 0) 	 (C9) 

and are bounded at points of S+  near the boundary of R by C 

exp B I Im z I -m , for some positive values of constants C,B and m , then 

the functions f±(z)  are unique up to a common additive function that 

is analytic at interior points of R 

Proof. This follows from Theorem C2 by taking the f±  of that theorem 

to be differences of possible functions f 
+

of this theorem. The extra 

condition in this theorem that p be analytic at interior points of 

dies not alter the proofs, since only functions having this property were 

used 

Remark C2. The particular bounded.ness condition used in Theorem C can, 

	

according to the Remark Cl, be greatly weakened, if the need should arise. 	 r 

Also, class of p for which (c8) holds can be much further restricted, 

if the need should arise. 
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APPENDIX B 

The mass-shell paths C.. connecting various crossed reaction and 

Hermitian conjugate points are constructed by following the distortions 

of paths C 
13  
. . p (a ) as the effective masses a 

p 
 increase from zero to 

p 
2 •At the start, where all a

p 	
0, the C 

l3  
. . (a ) all reduce to a 

single common point. As the a increase the various end points of the 

C..(a) move along definite singularity free paths and the interiors of 

the C. 
13 . p 

(a ) are distorted so as to avoid a certain set of Landau 

surfaces 	. 

In this continuation in a the various C. .(a ) may be 
p 	 13 p 

distorted in such a way that it becomes possible to find a closed 

loop lying in the set of C.. • Since no surfaces of the specified set 

cross this loop as it develops from a single point at a = 0 

to its form at .a = L 2  one can say that, in a certain sense, none 

of these surfaces lies "within" the loop. Thus one might expect that 

the massshell loop should be able to be shrunk (staying within the mass shell) 

to a point, without crossing any of these surfaces. This is in fact, 

true, within limits, if the set of surfaces 	is such that it is 

possible to construct somefunction singularon just this set 

This result is proved by an application of the continuity theorem 

for functions .of several complex variables. 
40 
 First it can be noted that 

the actual loop, as it grows from a point to its final form, can, at 

each stage, be approximated to arbitrary precision (pointwise) by a 

curve that is a boundary of a disc lying on an analytic manifold. In 

I 
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particular if the equation for the ioop at any particular value of the 

a is given in terms of a set of massshell variables z. by 

= z(@), where 9 is a cyclic -variable, then these equations can 

41 
be approximated to arbitrary pointwise precision by the expansion 

N 
z. 	 (expie) '1  c 

n 

= I 
(exp I Q) 

The surface 	(z) is a one ( complex) dimensional analytic manifold. 30  

The curve 	(z(z);JzI = 	1) passes arbitrarily close to the original 

curve0 

If the original curve Is always confined to a bounded region, as 

we shall suppose, and remains at more than some finite minimum distance 

from throughout the contribution, which we can suppose, then N 

can be held fixed over the entire journey from a = 0 to a = 
p 	 p 

Since the boundary, curve (z.(z)JzF = 1) crosses no singularity of 

, neither can the interior points [z 1 (z), 1zJ < 11 , by.virtue of the 

continuity theorem0 Thus finally at a = L we can shrink the curve 

to a point by. the transformation IZI - 0 0 

The above argument applies within the limit set by the requirement 

that a system of analytic local coordinates z. can be found such that 

the loop lies within the coordinate patch corresponding to these 

coordinates0 Though the question can be pursued further it is simpler to 

restrict the paths so that no closed loop occurs within the set of 

paths0 
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For the set of analytic functions with singularities lying on 

(at least within the relevant region) we have in mind, the truncated 

or renormalized perturbation theory functions It remains to be shown, 

however, that the restriction imposed. on 92 by the requirement that 

only positive-a singularities enter the physical region of the larger 

process actually forces 	to be identical to the analogous set of 

singularity surfaces in perturbation theory. 
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