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ABSTRACT 

1 

Coherency strain fields in precipitation hardened alloys are usu-

ally non-uniform and difficult to analyze. •cu-Ni-Fe alloys, however, 

can be made to DOssess coherent lamellar.rnicrostructures which have 

small and uniform strains. Calculations of yield stresses based on 

these coherency strains agree well with measured values. The yield 

stresses of the Cu-Ni-Fe alloys studied are independent of the inter-

lamellar spacing and independent of the volume fractions of the two 

chemically different lamellae present; however, they are directly pro-. 

portional to the differences in cubic lattice parameters of the two kinds 

of plates forming the lamellar structure. 

The lamellar microstructures are produced from supersaturated 

solid solutions by a dethixing process. That is, atoms of one kind 

cluster to forii One te of lamellae and the remaining atoms :cluster 

to form the other type of lamellae which form during low temperature 

transformation. Because the average atom sizes are different in the two 

chemically different lamellae the lamellar plates must be strained in 

order for coherency to be maintained between the lamellae. On overaging 

this coherency is lost and the compositions of the two lamellae are given 

by the positions of the phase boimdary lines on the equilibrium diagram. 

• However, when coherency is maintained, it is shown in the present work 

that the demixing process is stopped short of completion at low tern- 
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I. INTRODUCTION 

Soon after age hardening alloys were discovered, it was suggested that 

internal coherency strainswere important cOntributors to the amazing 

strength increases obtained during aging. In recent years theories have 

been advanced to quantitatively assess these strains but this has been a 

difficult task because of the complex nature of the strain fields near 

precipitate particles. 

It was the objective of this study to select an alloy system in which 

the strains were small and the strain fields relatively uniform in both the 

matrix and a coherent precipitate in order to calculate the internal strains 

and relate these strains to the yield stress of the alloy. Alloys with 

the desired characteristics were found in the ternary system Cu-Ni-Fe. 

The copper-nickel-iron system has been iihoroughly investigated both 

from the phase diagram aspect 1 ' 2  and from the structural standpoint 1°  

The isothermal section of the Cu-Ni-Fe phase diagram for 600 0c is reproduced 

in Fig. 1, and it includes the tie lines for that temperature. A vertical 

section constructed from several isothermal sections. and passing along any 

tie line would reveal a pseudo-binary diagram with a large miscibility gap. 

These alloys show the well-known spinodal transformation. The volume 
* 

fractions and the difference in the lattice parameters of the two tphasesU 

formed during precipitation can be varied over a wide range through 

* 	 . 
• • 	Although it is recognized that non-equilibrium, pre-precipitation segre- 

gated regions are not phases in the rigorous sense of the word, the 

• 	term is used herin for convenience of discussion. 
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composition and aging temperature variations. 

Before the equilibrium FCC phases finally form, two intermediate 

decomposition stages are encountered during low ,  temperature aging of 

samples quenched from above the miscibility gap. The first stage is 

called the "side-band" state because of the satellite reflections which 

appear on either side of the main reflections in Debye-Sherrer x-ray 

patterns. These satellites are due to one-dimensional composition (and. 

therefore lattice parameter) fluctuations in face_centered-cubic material. 

The satellite position with respect to the main Bragg line is a function 

of the wavelength of the composition fluctuation and is more removed from 

the main line the smaller the maveleñgth. A sine wave has been used to 

approximste the compo sit ion-di stance curve, although others 7 ' 11  have 

suggested that a square or more general wave shape would be just as 

appropriate. No method has been devised to ascertain experimentally the 

exact wave form that exists during the transformation. 

The second stage x-ray patterns reveal the formation of two tetragonal 

structures. 3 ' 7 ' 	The two non-equilibrium structures have a common "a" 

tetragonal lattice parameter which is constant throughout both structures. 

One of these structures has a c/a ratio less than one while the other has 

a c/a ratio greater than unity. The morphology of the two phases is 

lamellar with the plates, lying parallel to [100) planes. The two tetra-

gonal "a" axes lie in the common (100) plane and the "c" axes are normal 

to this plane. 3,4 It is apparent that the second stage structure also 

posseses a one-dimensiona]- lattice parameter variation along the "c" 

axis WhiCh probably more nearly :pp:rowhe s a square wave configuraLipi.i 

than is the case during the earlier "side band" state. Because the fLue-

tuation wavelength of the tetragonal state is larger than that of the 
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"side-band" state, the difference in stages one and two may be only one 

of degree. Bagaryatskii and Tyapkin l2,13 häve shown in similar transfor-

mations found in Ni-Ti and Ni-Cr-Ti alloys that the two stages described 

above are observed with soft x-radiation but only one stage is found with 

hard radiation. This supports the suggestion that the appearance of two 

different intermediate structures during aging is only a matter of degree 

in a continuously changing system. (Kelly and Nicholson 1  have reviewed 

the work of Bagaryatskii and Tyapkin and other work pertinent to the 

preseflt investigation.) 

The microstructure of greatest interest is the one which gives the 

maximum room temperature yield stress for any given aging temperature. 

This maximum occurs at a time when the magnetic coercivity and other 

properties8  are at.a maximum and when the transformation is still in the 

"side-band" stage. Errors in determining the maximum yield point as a 

function of aging time were not found to be critical because, the maximum 

is very broad in Cu-Ni-Fe alloys (e.g. see Fig. 5). 

The "side-band" microstructure can be considered as two tetragonal 

structures with c/a < 1 and c/a > 1 where a is constant and c is a function 

of position. Thus a one dimensional lattice parameter fluctuation occurs. 

The basic assumption en1oyed in the theory to be developed is that the 

tetragonàiity of the two structures is caused by elastic strains needed 

to maintain coherency of two structures that, if unattached, would be 

2 cubic. It has been shown that all compositions of precipit?ting phases 

in Cu-Ni-Fe alloys are cubic when quenched from above the miscibility gap 

• and they are cubic when overaging has caused a loss of coherency. 7  One 

of the phases has a cubic parameter that is too small to match with the 
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other and consequently plates of this phase will be stressed in to 

dimensional tension in the coherent state. Likewise plates of the other 

phasewill be stressed in compressiofl. It has been suggested 15  that these 

coherency strains inhibit the transformation such that the phase composi-

tions do not reach those given by the equilibriuflidiagram until coherency 

is lost. The end effects introduce a complication in the stress analysis, 

but because the plates are long compared to their thickness, as indicated 

by the electron micrograph of Fig. 2, the end effects can be neglected. 
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II. THEORY 

The method to be followed in calculating the yield stress of 

lamellar alloys is to determine the magnitude of the stresses which are 

present in the microconstitue.nts of the alloys and to resolve these 

stresses along the slip plane in order to relate theñi to the first 

la±'ge migration of dislocations enforced by a gradually increasing load. 

In the analysis, a square wave composition-dstance curve will first be 

assumed. The resulting structure will then be as shown in Fig. 3. The 

subscripts 1 and 2 refer respectively to the properties of the phase 

with c 1/a < 1 and.to  the phase with c2/a >. 1. Let a represent the conmion 

non-equilibrium w a tT parameter of the two tetragonal phases, and let a 10  

and a20  be the equilibrium cubic lattice parameters for the most extreme 

compositions existing in the plates. These two values will tend to 

approach those of the equilibrium phases. 

The cross-hatched plane of Fig. 3 represents a cut section through 

the lamella and the external forces F xl 	x2 
and F replace the constraints 

which were present before the cut; ). is the wavelength of the composition 

fluctuation and f'1  and f2  = (1-f1 ) are the volume fractions of the two 

phases. Since 'c1  < a and c2  > a the total displacement' over many lamella 

in the z direction will be small, and therefore the assumption 'a z 0, 

where a is the stress,in the z direction, is'made. The effect of having 

differ from zero is to raise the stresses in plates of one composition 

"while it lowers the stresses in the plates of the other composition by a 

corresponding amount. The net effect eventually nearly cancels when the. 

final calculations are made (cf. Eq. (26)). 

From >F = 0 and Fig. 3 it can be seen that 
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= - 2L.f2 	 (i) 

(CT 
will have a negative sign showing compression since plus x is taken 

to be the positive direction of stress.) Because the phases are known to 

be tetragonal and are not orthorhombic, ax y xl a in both phases. a and 

0 
are constants when a square wave compo sit ion-di stance curve is assumed. 

x2  

Equation (i) can also be obtained for a more general composition-

distance wave form. For this case let a 1  vary across plates of composition 

1 according to the expression. 

n 2irnz i\ 
Cr = a 	 A sin 	, O < z < —) 
xl 	xl 	in 	 ' 	-. —2 

Imax 	 1 

n 
where the maximum amplitude of 	An 

2mnz 
sin 	is restricted to unity. 

1 

Therefore a < awhere a 
xl 	 xl 

is a constant. 	Also in plates of 
xi— max 	 max 

composition 2 

a 2 
2nz, < 

Imax 	1 2 

or 

-a1 	 sin 
2nzt 	, 	< Z T  () 

here z' = z - 	nd !a 2 1 < a 	where a 	is a positive constant 
max 	 max 

	

and a is a compressive stress, i.e., a < 0. 	and X2 are related to 

the modulation wavelength by 

- 	 •l 	2 
2 

and the volume fractions f]  and f2  are related to X and. ?.2 by 
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- 	 f 

= 5:-. 
2 	2 

Again, Z F = Oand 

Lf 	

= 	2 	
2z 

a 1 	 A2sin 	
t 

dz' (7) 

On integrating boto sides of the equation between the given limits 

i [n (A
2 

	 Ain\l 	 2 fn / n 
a 1 	 > 	 COS -710 TJ I = x2 	S 	- 	lTfl + -  COS 

max 	 max 

If the two wave shapes are similar such that A = in 	2n A 	then 

i 	7 	 2 
x1 	,) 	_K ax2  

Imax" 	 max 

and using Eq. (ti). 

• 	 xl 	fi = ax2 	2 () 
Imax: 	 Imax: 

The maximum value of a 1  is a 1 	(cf. Eq. (2) ) and the extreme value 
Imax 

of a 2  is a 2 	i.e., ax2 	x2 	
(cf. Eq. (3) ), then again 

Imax: 	 Imax: 

a1 	= 	x2 '2 

for the conditions of identical wave form. This is identical to Eq. (i) 

when L and ). are cancelled in the earlier equation. Hereafter the sub-

scripts denoting max'imum stress will be dropped, and a and will be 



used to indicate maximum values of these two stresses. Only stress maxima 

need be considered in the following analysis because dislocations will en-

counter the greatest barriers where the stresses are largest. 

In the following, isotropic elasticity.is first considered, but be-

cause of the significant anisotropy of metal crystals, equations will also 

be derived for use with the directionally dependent elastic properties. 

For isotropic materials 

€ 	= 	[a-v(a +a)) x 	E 	x 	y 	z 

1. = 	[a - v(a + a)1  

1 
=Cr - v(a .+ ay)} 	. 

whereE is Young's modulus and v is Poisson's ratio. Since a = a , and x 	y 

a =0 
z 

[a -va) 
x 	E. 	x 	x 	 . 

and 

E€ 	 .. 
Cr = 

 

Substituting Eq (9) into Eqs (i) or (7) 

EE 	f 	: 	E 	€f 	 . 	.. 
1: xl 1 - 	2 x2. 2 	. 	. 	. 
.1-v 	- 	1-v 	. 	 .. 

1 	 2 

Since c = 
	 is the strain in the x direction 0± a plate (a 

a 	
.. 

0 	 . 
being the appropriate cubic lattice parameter) then 	 . 
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E1f ( - aib) 	E 
2  f  2 ( - a20 ) 

(1 - v1) a10 	= 	(1 - v2 ) a20 	
(II) 

On solving Eq. (II) for 

- 	a10a20  ((1- v2 ) E 1 
f  1 + (1 - v1 ) E2f2 ) 

a = a20  ( 1 - v2 )E1f1  + a10  (1 - v1)E212 	
(12) 

Equation (9) can be reitten 

• 	 E(-  a) 

ax = (i-v)a 	 (13) 

so that when the elastic constants and cubic lattice parameters of the two 

phases are known, the biaxial tension and coniressionstresses in phases 1 

and 2, respectively, can be determined. 

From Eqs. (8) and (9) 

1  
- [a -v

/
c1 +a)) 

	

z. 	E. 	z 	• 	x • 	y 

= 	[ -v (2 a)) 

	

2va 	2vE€ 
- 	x 	• 	X - 	 X 
- - 
	E - - (1-v)E  

• 	 c-a 	 a-a 
Since E = 

	 0 and x 	a 
= 

z 	a 	
then 

0 

c-a 	.2v(-a) 
0 

a -  - (l-v)a 
0 	 0 



and 

	

c = 	( (v+ 1)a - 2 	). 	 (i) 

Likewise, if the tetragonal data for c and a are known, the ccmiposition of 

the phase can be estimated from a 0  which is obtained by rearranging Eq. (14). 

a 	 + (1 - v)c) 	 (15) 

The equations for use with the anisotropic elastic compliances take 

much the same form as those for the isotropic case. Again the conditions 

of Eq. (1) or (7) apply. The equations for use with anisotropic.cubip 

crystals which correspond to those of Eq. (8) for isotropic materials are 

=s aS 	+ 

	

xx 	11 xx 	12 yy 	12 zz 

e 	=S a + S Cr + 	a 

	

ry 	12 xx 	11 yy 	12 zz 

e=S a + 	a + 	a 

	

zz 	l2xx 	12yy 	llzz 

(16.) 

e 

	

yz 	LlJy 

e 	Sa 
ZX 

e =Sa 

	

xy 	'-fxy 

The first subscipt of the stresses and stras inEq. (16) refers to the 

normal of the plane over which the stresses act while the second gives the 

direction of their action. Thus e and a are equivalent to e and a 
xx 	xx 	 x 	x 

which appear in the equations for isotropic materials. S11, S12, and S44.  

are the elastic comnliances for cubic crystals. As before, a = a , and 
xx 	yy 

a 	=0. zz 

-.10 - 
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In addition, a = 0 because the two structures are tetragonal and the 
xy 

•x-y plane is taken pe'pendicular to the four-fold axis of rotation. a yz 

and a ,  are not zero, but for plates that are long compared to their 

thickness, these shear stresses are small. .a yz 	xz and a will be greatest 

at the boundary between phases land 2 where they are related to 

a 	by the ratio of k/L. For thin plates X << L and ?./L is small' so 
XX max 
that a and a can be neglected. Therefore yz 	xz 

	

• 	 e 	=(s 	+S)a • 	• 	xx 	li 	12 	xx 

e 	= (S11  -1 s12 ) a 	 (17)
Yy  

e =2S a zz 	12 xx 

and 

e 
xx 

a. = _________ 	
• 	: 	 (18) 

11 	12 

Applying Eq. (i) or (7) 

e 	f • 	 e 	f 
xx. 1 	 xx' 2 

	

• 	 (s 	+s 	 (S 	+s ) 
11• 	12)i 	il 	12 

where the subscripts outside the parentheses refer to the data for phase 

0  
one and two respecfively By substituting e = 	

a0 	
into Eq (19) 

a can be obtained as before (cf. Eq.  

- 	a10a20  If 1 (s11+ S12 ) 2  + 

a = a20f1(S11+S12) 2  + a10f2(S11+S12)1 	
(20) 
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If the elastic compliances and cubic lattice pararneters are kno, then 

Eq. (18) can be used to evaluate the principle stresses in each plate. 

From Eqs. (17) and (18) 

2Se • 	 . l2xx 
e = S11 12 

•1 c-a 	 . 	a-a 
o 	12 	 o 

and 	= 
S +S 	a 	

therefore 
a  
o 	11 	12. 	o 

2S 

	

12 	- 
c=a+ 	 (a-a0 ). 	 (21) 

11 	12 

or, as before, if and the c/ ratio are known for each phase then the 

cubic parameters can be obtained by rearranging Eq (21) and 

a 	= 	
[( s 1  + S12 )c - 2S12  )) 	(22) 

In order to find the effects of a xl and a x2 on dislocation motion, 

shear components of these stresses on the slip plane, and in the slip 

direction must be found. For FCC crystals the slip plane is (111) and 

the slip direction is (110) . Resolution of these stresses can be done 

geometrically or with the aid of a stress tensor. On using the tensor •  

method, the stress in the p direction, when the normal to the slip plane 

is given by , is 	 . 	 •. 

a. 	= 	a.. 	. 2. 	 (2) 
lip 	ii 	13 	

J$L 	jp 

• 	 I = x,y,z 

j = x,y,z 	 • 	• 
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where L and i. are direction cosines between the given lines. Letting 
J4L jP 

i be normal to the (iii) plane and p .be in [101], then, when the lamellar 

plates lie in the x-y plane, 

= oc £ [100][111][100][l0l]XX 2 [0l0][l11][0l0][101] 

where 	£[100][lll] = 	' £[l00][101] = 	£[0i0][111] = 	, 
 113 

xx 
and i [ loo[[loi] = 

0 . Therefore °(ni)[ioi] = a(111 ) [110]  = 

Cr xx 
Likewise, °(11i)[OlT] = a(111 ) [110]  = 	but a(lll)[TlO] = 0. 

These : stresses are pure shear components because p is normal to Li. 

Figure 4 shows graphically the relationships of one potential slip 

plane and threépotential slip directions to the stresses a, a, and a. 

The lamella are considered to be parallel to the x-y plane in Fig. -i-. The 

resolved shear stress from a x 
 , a y = a x , and a z = 0 in the [101] direction 

on the (ill) plane is 

a 	A 

	

T[101] = sinO A(111) cos 
	cos Vi 

where e = 5°, cos = - and 1i = °• A 1 
	= - is the ratio 

(ill) 

of the area of the (100) plane to the area of the (iii) plane which projects 

onto the (100) plane. Therefore, 

	

1•1 	
Cr 

- 2a - - -= -. 	 2 
[l0l] 	x 	 2 

Likewise, 
a 

T[ OlI] 

and; 

[110] 
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These are the stresses encountered by the three possible dislocations (six 

if the negative signs are included) gliding on this (iii) plane for lmellar. 

plates lying paralel to (001), i e , in the x-y plane of Fig 4 

Consider a d_slocation in the (iii) plane with Burger's vector 

{i0T]. For plates which are parallel to (001) wehave seen from Eqs. (23) 

and (2) that 	aT = 	
An adjoining set of plates will be parallel 

to either (010) or (100) 	For plates parallel to (010) a =
cr and a 	0 

sO that the shear stress acting on the above dislocationwhile it is in 

these plates is 

T 	+C1 1 2 	 .CF 
[101] 	xx x.t xp 	zz zi zp 

1 	1 	 17.1 \ 
=a - - +a —i-- j=0.

Xx  

For plates parallel to (100), a = 0, and a =a 
z 
 so that 

= ry2y12yp ~ 

= a 	1 (0) +  

yy  f3 	 T2 / 

SinOe a dislocation will interact with these three oplate brientatios 

with equal probability, one-third of a unit length of dislocation will 

experience an accelerating stress from plates parallel to (ooi) whe.n 

a >0, one-third will experience zero stress from plates parallel to (010), 

and the remainder will experience a retarding stress from plates parallel 

to (100) when a > 0. The portion of the dislocation which is accelerated 

will move until it encounters an adjacent tetragoa1 plate that is loaded 
a 

.1.11 cc)nrç).ressiun so that 0 	0 and. 	 -a-- , 
which is now a retard.- 

x 	 1o1] 

ing stress. ConsEquently, the dislocation will be retarded alLong one-third 

Of its length by plateS which are in compression, experience zero stress 
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along one-third of its length, and be retarded along the remaining third 

by plates that are loaded in tension. Dislocations in other slip systems 

will encounter identical conditions. The maximum retarding force on a unit 

dislocation will be, then 

F = 	r1jb+T2ib+O 
	

(25) 

where 	is the absolute value of the resolved shear stress acting on 

dislocations with Burgers vector b from plates which are in tension (for 

plate orientations where T, 0) and 1-c21 is the absolute value of the 

resolved Shear stress from plates which are in compression (for plate 
ax1  

orientations where T 2 
o). Now

.  iT1 = 
	and it2  = - - so 

that F = - -- (a1 - a 2 )b where the negative sign appears before 

because of its compressive nature. The applied stress which must overcome 

this forde if dislocations are to move is t 	= 	or app b 

= 	1 	(a -a ) . 	 (26) 
app 	 xl  x2  

However, when Tapp > k2i which can happen whenf2  is large and phase 2 

contains a small strain, then Eq. (26) no longer governs the stress for the 

first dislocation motion. In this case the applied stress will cause the 

dislocation segment inhibited by 2 to move through phase 2 until it 

reaches phase 1 where it will be accelerated. Then only one-third of the 

unit length of dislocation line will be retarded while the other two seg-

thents will have either zero shear stress or an accelerating stress. The 

net effect is that plastic flow can easily take place. The applied stress 

t 	needed to start this chain of events is 
app 

ax2  
(27) 

app 
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and T are dependent on the volume fractions of the two phases 

present. By equating the applied stress to k21 in Eq. (26), a solution 

for the critical volume fraction where Eq. (26) will break down can be 

obtained. Assume that the elastic moduli are the se in both phases.. 

Therefore, 	 . 
a 

1. 
= 	 ) 

	

3T6 	
X - Cr 

 

and 	 . 

2a = -a 
x2 . 	x1  

or 

2( 	- a20) 	. 	(. 	Q) 

(S +5 1a 	= 
11 12 ' 	

T +S 
20 	 11 12

a' 10 

and on solving for 

- - 	a10a20 	 (28) a  - 1 	2 -a20±-a10  

The critical volume fraction f 2  can be found by comparing Eq.. (28) 

to either Eqs. (12) or (20) because when the elastic constants are the 

same in both phases both Eqs (12) and(20) reduce to . 

- 	a10a20  (f+ f2 ) 

a = f1a20  + f2a10  

Thus, f= 	and f = .. Similar equations can be derived when T. 	= 
2 	3 	1 	3 	. 	 . 	 . app 

The solution for this . case will give f 1  = and f2  = when the 

e1astimodu1i are equal. Under equalmoduli conditions Eq. (26) is 

good for < f1  < 	When the moduli are not the same in both phases, 

an independent check of Eq. (26) can he made for each set of data to see 

	

if the conditions t app < Jt1 	2 
, IT .  I are met. 

—  

The four important equations derived above for the isotropic case are: 
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I 
- 	a 10a20t±-v2 1J1 i 	-r 11   
a (12)  

a60 (1-v2 )E1f1  + a10 (l-v 1 )E2 f2  

E(a - a) 
II.. ccx 	(l-v)a 

a 	)  
app 	

f6 	
x 

henT 	<IT app— 	1 	2 

IV T= k 	= - 
 

app 	2 	..16 

if 1T 2 1 < 	T11 and the conditions of Eq. (26) are not met. 

If 1T 1 1 < 1T21; and Eq. 	(26) does not apply, then Tapp = 
1T 1 1. 

The correspOnding equations for the anisotropic case are: 

a10a20((S11+ 	122 	
l 

+ 
S12 ) 1  f2 ) 

I 
- 
a = 20 (s11 +S12 )2  f 1 

 + a10 (S11 +S12 ) 1  f 
(20) 

(a - a) 
0 (18) ii. cc= • 	xx 

III Tapp  = 	(a 	- () xxi 
31/6 

(26) 

whenT app 
< T
— 	1 	2 

IV. 

• 	 a • 	 XX 

T •=kl=-• (27) 
app 	2 

if 	IT,I < 	T JJ and the conditions of Eq (26) are not met If 	1T 1 1 	< 

and Eq. (26) does not apply, then Tapp  = k 1 1 

Thus, when the elastic constants, volume fractions, and cubic lattice 

parameters :Cor tine, extreme conditions are krown, tbe critical resolved. 



shear stress can be calculated for a wide range of conditions. For 

< 	Eq. . 	(27) will not be valid because of the loss , 
or unirorni 

strain fields for small volume fractions of precipitate. 

If v1  = v2  and E1  = E2 , then for the isotropic case . 

- 	a10a20 (f1 +f2 ) 
a = a20f1  + a 	f 102  

E(a-.a 	) 	E 	a 20 - 1) 
= = (l-v)a1 	 a20f1+a10f2 

cr 	E
a10 

= 1-v 	720f1 	a10f2 
 

and 
a 	a lo  

(29). 
Tapp a20f1+a10f2 

but because a 10 Z a z a20  

La 
1 	Ei 	o\ .. / . 30 

 
T 	

16 --J 
	. 

. app 	1-v 	/ 

For the anisotropic case, if 	S12)1 = (s11 + 
S 12 )21 11  

then a similar 

derivation leads to 
a 	-a 

app T 	

= 	16 	
s) 	a20f1  + a10f2 

. 

or 

1 	1 	/0 (32) 
T app 	(S11 + s1j 

Thus the yield stress is directly proportional to the difference in lattice 

parameters of t 	two extreme compositions when Eq 	
(26) is valid 	Usuafly 

the elastic moduli do not differ wiely so that this is an approximately 

general result. 
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Ven Tapp is given by Eq. (27), a general relationship btween yield, 

stress and volume fraction can be obtained if it is again assumed that 

the elastic moduli are the same in both phases. From Eqs. (27), (24), and 

(18) 	 -Cr 
1 	

(a-a20) 

'7app 	1 T21 = 	= - 	s11+S12)a20 

but when the elastic moduli are the same, Eq. (20) gives 

- 	a10a20 , 
a= 	 and 

a20f1+a10f2  

a10  
1), and rearranging• 

app 	 (S11+S) a20f1+a10f2  

a10f1-a20f1  

Tapp - - 	(S11+S12 ) a20f1-a10f1+a10' or 

-a 

Tapp  - 	(s11±s12 ) a 0+a10 	
and 

1 	 1 
Tapp 	(S11+S) 1 

+ 

alo 

but 	
a10 

ol 

and 	 f 

app = 	(S17S) a) 

for f < fmin }iere f3m Z and is established by Eq (26) when 

'tapp = 1T 2 1 	TTi:us the yie]d stress is directly propor'tonal to the 

difference in cibic lattice parameters and the volume fraction of, phase 

one for these conditions. 
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The critical resolved shear stress can be obtained experimentally 

from oriented single crystal tensile specimens with the aid of the Schrnid 

factor. Hoever, polycrystalline samples are adequate to check a nunber 

of the points of the theory. Absolute values of the tensile yield stress 

can be calculated on the basis of theories 1  for the plastic deformation 

of polycrystallifle samples which gives 

(4) 
rield -m yield 

where the constant m involves an average orientation factor for the slip 

systems which operate during plastic flow. The equation used for cal-

cülating tensile yield stresses of polycrystalline samples thus becomes 

(

CT 0 	= Tn - 	- 	 ( 7) 
yield 	\ )0C1 

For randomly oriented grains m = . o6. 

The samples used in checking the theory were forged or swaged which 

gives rise to a textune with some grains having [100] near the tensile 

axis and others with [1111 parallel to the bar axis. 	
This texture is 

retained after annealing. 18  The Schmid factor for .  [100] crystals would 

be equivalent to using m = 2.5 while that for [111] grains would corre-

spond to 	= . 68. Since [100] is the more favorable orientation of the 

two for slip, grains in this orientation will contribute more to the 

initial yielding process. Therefore an .constant beteefl 2.5 and .06 

would be appropriate for calculating the absolute values of, the yield 

stresses for fabricated polycrystalline bars. 

The equations derived above show four significant points: 

1) The yield stress is independent of k, the modulated structure 

wavelength, wbic.h means the yield stress is independent of particle size. 
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The yield stress is nearly independent of the volume fractions 

±1 and f2  if the elastic constants do not differ appreciably in the two 

phases and Eq. (26) applies. 

The yield stress is directly proportionai to the difference in 

cubic lattice constants of the precipitating phases when the elastic 

constants are nearly the same in both phases and Eq. (26) applies. 

When 	< min or f1  > fmax where fmin 	and. fmax 

are the critical volume factions where Eq. (26) becomes invalid, the 

yield stress is directly proportional to the difference in cubic lattice 

parameters and the volume fraction of the precipitating phase providing 

the elastic moduli are the same in both precipitate and matrix. 



-22- 

III'. EXPERIMENTAL PROCEDURE 

Four compositions of polycrystallifle Cu-Ni-Fe samples were prepared 

and these are designated as alloys. 1, 2, 3, and 4 in Fig. 1 and Table I. 

Compositions were verified by chemical analysis. Alloys 1, 2, and 3 lie 

on one tie line. The alloys were cast into one-half inch diameter copper 

molds in an inert atmosphere, forged (alloys 1-3) or swaged (alloy 4) to 

three-eighth inch diameter rod, and homogenized for three days at 950 °C 

in evacuated quartz capsules. Before melting, 0.5 wt.% manganese was 

added to each alloy to aid fabrication. The average grain size of the 

homogenized bars was 0.15 mm. Tensile bars with a gauge length of 1.125 

inches and diameter of 0.160 inches were ground from the homogenized bars, 

encapsulated in evacuated quartz tubes, heated to 950 °C, and quenched in 

water before aging. Alloys 1-3 were aged at 625 ° C for various times or 

aged first at 625 ° C for a specified time and then given a subsequent treat-

ment at 450 ° C for 100 hours. Daniel6  has shown that the length of time at 

the higher temperature fixes the wavelength of the composition fluctuation 

while the lower temperature influences the amplitude of the fluctuatlon. 

Samples of alloy 4 were aged to their maximum hardness at 800 °C, 730 °C, and 

625 °C to independently check the effect of variation in lattice constants 

of the two precipitating phases. An additional sample of alloy 4 was first 

aged 6 hours at 625 ° C and then held 100 hours at 550 ° C. It was necessary 

to quench the samples after aging at temperatures above 625 °C to prevent 

structural changes from occurring while cooling to room temperature. An 

Instron tensile testing machine was employed using a strain rate of 

.0175 in/in/mill and the yield stresses were determined by the 
.02% offset 

method. 
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Lattice parameters of the two equilibrium phases were determined from 

alloy 4 for the three aging temperatures 800 °C, 70 °C, and 625°C. Powder 

samples were: held 15 days at 800 °C and one month at 70 0C and 625 °C. A 

back reflection focusing camera of 60 mm radius and unfiltered chromium 

radiation were used for the lattice parameter determinations. 

7 
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IV. EXPERIMENTAL RESULTS 

Figure 5 shows the measured yield stress versus aging time data for 

alloy 2. The yield stress reaches its maximum rapidly and maintains a 

value very near the maximum even after 194 hours at 6250 c. The other 

alloys (1-3) revealed similar trends at 6250 c as did the alloys given the 

additional )-l-50 ° C treatment, but the yield stresses of tensile specimens 

given the additional treatment were. shiftecLto higher values. Table 1 .1 

gives the maximum measured values taken from the yield point vs. aging 

time curves for alloys 1,2, and 3 aged at the two temperatures. The 

aging time to maximum yield was either 8 hours at 6250 c or 8 hours at 

6250 c plus 100 hours at 1I-50 ° C. Table III gives the experimental yield 

stresses for samples of alloy 4 after aging them to their maximum hard-

ness which occurred after holding for 3 minutes at 800° c, 16 minutes at 

730 ° C, and 8 hours at 6250 c. The yield stress of the alloy 4 sample 

which was held at 625° C for 6 hours and then 100 hours at 550° C is also 

given in Table III. 
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V. DISCUSSION OF BESULTS 

Experimental verification of the theory is limited to the conditions 

under which Eq. (26) is valid. First, confirmation will be made of three 

of the four significant points indicated by the equations which were de- 

rived. in Sec. II: 

i) The wavelength of the modulated structure is directly related to 

the aging time.5S10 Values of the modulation wavelength measured by 

Hillert et al. 
10 on their alloy H, an alloy with a composition near to that 

of alloy 2, are placed in parentheses at the appropriate times in Fig. 5. 

These wavelengths are given in numbers of atomic planes. It is clear from 

Fig. 5 that the yield stress does not vary greatly with aging time or 

modulation wavelength. This agrees with the theory in that ?. does not 

appear in Eqs. (2), (13), (26), and (34) or in the similar Eqs. (18), 

(20), (26), and (34 ). 

2) The volume fractions of the two precipitating phases are different 

for each of the alloys 1-3 although the phase compositions are the same 

for any given temperature. since these alloys all lie on the same tie line. 

Table II shows that the maximum yield stress is constant for these three 

alloys when they have been aged at the same temperature. . Therefore the 

yield stress does not change as a function of the volume fraction.. Changes 

in the calculated yield stresses with changes in volume fraction mainly 

reflect the difference in elastic moduli of the two phases. Since the ex-

perimental yield stresses do not change with changes involume fraction, 

then the converse is indicated, i.e., there is no difference in the 

elastic nioduiLi of the two phases. Thus, Eq. (32), which shows no dependence 

upon volume fraction, can be applied. 
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The conditions under which Eq. (26) is valid were checked for alloys 1 

and 3 because they have volume fractions very near the critical values 

determined in Sec. II. It was found that Eq. (26) could be applied to 

both alloys within the uncertainty of establishing the critical and 

estimated volume fractions for allys which lie on this tie line. The 

experimental results in Table II show Eq. (26) to be valid. 

3) Equation (32) (in conjunction with Eq. (31)) suggests that a 

plot of measured yield stress versus Aa 0  would produce a straight line 

passing through the origin, i.e., the yield stress is directly propor-

tional to La0. Equation (32) requires equal.elastic moduli in the two 

phases but the. proportionality between yield point and ta is quite con-

stant for any one alloy even if the moduli are different. This is diff i-

cult to estallish analytically;, however, a graphical example shows it to 

be true. The points in Fig. 6. designated by squares. represent calculated 

yield stresses (m= 2.5) which were computed for alloy )-I-using different 

elastic compliances for each phase. These points lie on the solid line 

which extrapolates to the origin as required by direct proportionality. 

Figure 6 shows plots of the measured peak yield stress versus the difference 

in lattice parameters of the equilibrium cubic phases for alloys 1-3 

(circles) and versus the difference in cubic lattice parameters calculated 

from tetragonal lattice parameter data for alloy 4 (triangles). (The 

method of evaluating Aa 0  from tet.ragonal data will be discussed later.) 

The points on both lines are easily within the accuracy of the yield point 

data or especially, in the case of alloy i-I-, within the accuracy of the 	- 

method of determining Aa from tetragonal data. The data thus give a 
0. 

confirmation of the direct propo:rtionulity between y:Leld stress and. L.a1. 
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The slopes of the lines in Fig. 6 depend on the proportionality fac-

tor of Eq. (2.) cr, in a more complicated way, on Eqs. (18), (20), (26), 

and (34). In order to make calculations using these equations, the re-

quired data for Cu-Ni-Fe alloys must be assembled. The sources of these 

data will be discussed next: 

i) Volume fractions were obtained in all cases from the phase diagram 

with the aid of the lever law. These values are incorporated in Table I 

with the alloy compositions. 

2) The elastic compliances for the component phases were estimated 

by first assuming that the elastic anisotrqpy of the copper-rich phase is 

the same as for pure copper and that of the copper-poor phase is the same 

as for pure nickel. Values of Young's modulus were obtained for pure 

copper and for copper-nickel alloys of about the same composition as that 

of the precipitating copper-rich phase. The elastic compliances for the 

copper-rich phase were then estimated by scaliig down the pure copper 

elastic compliance data in the ratio of the Young's modulus of pure copper 

to the modulus of the copper-nickel alloy. A similar method was used for 

the copper-poor phase but this time nickel data were scaled up in the 

ratio of the Young's modulus for pure nickel to that of the proper nickel- 

iron alloy. This is justified by the equation used for calculating Young's 

modulus from single crystal elastic data if the anisotropy of the alloy 

and the pure element are the same, i.e., 

44 
= S11  + 	+ 	- 

Here E is Young's modulus (lor polycrystals), S 1 , S12 , and S44  are 

elastic compliances of individual grains, and the factor arises from 



an average grain orientation consideration. The equatofl shos that a 

pioportional change in each of the elastic complianCes ill result in an 

inverse change in 	The required data for making estimates of the elastic 

complianceS are icluded in Table IV. The values from lines 3 and 4 of 

Table IV were used for alloys 1-3 and those from lines 5 and 6 were used 

for alloy 4 calculations. The sum S 11  + S12  is also included because it 

regularly appears in the equatioflS. 

3) Lattice constants (in kx units) for the cubic phases in eqiili-

brium in alloys 1-3 were obtained from the lattice parameter contours 

published by Bradley et al. 2  The compositions of the phases in equilibriUm 

at the given temperatures were obtained from the Cu-Ni-Fe phase diagram. 1  

The constants obtained from the literature for alloys 1-3 along with the 

measured parameters for alloy 4 aged at the different temperatures are 

given in Table V. 

The lattice parameters measured on a sample of alloy 4 which had been 

aunealed at 800 ° C agreed with the values obtained by HargreaVes
7  on the 

Ni7Fe) and for the same nealing temperature. These same alloy (Cu 0   

parameters are good to approximately four sigrificant figures. Values of 

a calculated from Eq. (20) are also given in Table V. 

In addition, Hargreaves 7  gave tetragonal lattice parameters for 

Cu10Ni7Fe3  aged to the tetragonal stage at three temperatures. These 

parameters are given in Table VI along with values of a 10  and a
20  calcula- 

ted from Eq. (22). A comparison of the calculated values of a in Table V 

with the measured values in Table VI shows a fine agreement. This is 

consistent with the initial assumption that coherency strains are causing 

the etraojiul distortions. 
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The difference in measured and calculated cubic parameters also shows 

an effect which has been mentioned previously. Since the values are given 

for different temperatures in Tables V and VI the comparison can best be 

made on a graph. Figure 7 shows that the cubic parameters calculated from 

tetragonal data (dashed line) lie inside the measured cubic data (solid 

line) except at the highest temperature. This indicates that strain energy 

which increases at lower temperatures during, the tetragonal stage of the 

transformation inhibits the approach of the two phases to their equilibrium 

compositions. Strain energy increases with the square of the strain and 

therefore becomessignifiCaflt at larger strains. 

The method of calculating a's from tetragonal data (Eq. 22) appears 

to be right because of the close agreement of the calculated values with 

the measured values at the smaller strain, i.e., for the alloy aged at 

800 0C. The values of a used to determine a at 625 °C and 730 °C for the 

graph in Fig. 6 were taken at the appropriate temperatures from the dashed 

lines in Fig. 7. 

Calculated yield stresses which appear in Table II for alloys 1-3 

were obtained using the equations for anisotropic materials, e.g., Eqs. 

(18), (20), (26), and (34). In this case a was obtained from the cubic 

lattice paiameters. The calculated yield stresses for alloy 4, Table III, 

were obtained using the measured tetragonal a parameters while a0 t s were 

computed from Eq. (22). Direct substitution of a 10 , a20 , and a in. Eq. 

(20) and use of Eqs. (26) and (34) gave the desired results for alloy 4.. 

1No values of m (Eq. 34) were used. The calculated yield stresses given 

in tbe coiumii of Tables II and III with rn = 3.06 are for polycrystalline 

L),a -rs with randomly oriented grains. The values in Table II with 
rn = 2.75 

and Table III with rn = 2.5 take into consideration the preferred 
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orientation which occurred during fabrication. These two particular values 

of M 
were selected because they gave the best fit to the data. Preferred 

orientation was observed to be important. Tensile samples of alloy 14 made 

from severely cold rolled and annealed stock with the tensile axis the same 

as the rolling direction had significantly lower yield stresses for the same 

heat treatment than the swaged and annealed bars. For example, rolled 

samples aged at 730° C and 625° C had yield stresses of 36,000 and 143,300 psi 

while the corresponding swaged bars had yields of 140,900 and 73,600 psi, 

respectively. Rolled stock of this mateial has been shown to have a [112] 

preferred orientatibil along the rolling 
direction1819  which is vemj near 

to the orientation which gives a minimum value to m, i.e., Ei > 2. Samples 

of alloys 1-3 were fabricated by forging while alloy 14 samples were swaged. 

This difference in fabrication procedure could result in the slight differ-

ence in ii observed in Tables II and III for the best data fit. Also, the 

elastic moduli of the phases which precipitate for alloys 1-3 and alloy 14 

are different and it isextreme]-Y hard to account exactly forthis differ-

ence without making experimental measurements on crystals of these phases. 

Since the slope of the yield stress versus difference in cubic lattice 

parameter plot is dependent on both m and the elastic constants, the use 

of an Tn to give the best data fit is intended to normalize the unknown 

differences in both texture and moduli. The agreement without these 

corrections is gobd considering the uncertainty in estimating the elastic 

mou1i for the precipitating phases. No attempt was made •to correct for 

changes in moduli of phases which change composition at different aging 

temperatures. 

The iolledd samples discussed above were not quenched after aging while 

the swaged bars were and therefore the 730° C rolled sample value of 36,000 
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psi is slightly larger than it would have been had the sample been quenched 

after aging. The effect of hardening during cooling from the aging tempera-

ture was markedly observed on samples aged at 800°C. Samples of alloy )+ 

aged and relatively slowly cooled had a maximum hardness of RB82 while 

those quenched after the aging treatment had a maximum hardness of RBE9. 

Also, since the transformation is hard to control athigh temperatures it 

is probable that the peak of the yield versus aging time curve was not 

attained exactly for the 800 °C sample of alloy ti and this would explain 

why the 800 °C yield stress appears to.be low (cf. Fig. 6 and Table iii). 

Having considered both experimental and calculated results, it is now possible 

to introduce new details involved in the yield stress of Cu-Ni-Fe and 

other alloys. 

Earlier in the discussion it was shown that the volume fractions f 1  

and f2  do not greatly influence the yield stress for any one aging tempera-

ture if they are between certain critical limits. If the compliances of 

the two precipitated phases are the same, Eq. (18) shows that f 1  and f2  

are only weighting factors which balance a proportionately toward one cubic 

parameter or the other. That is, if f2  is large (phase one is much thinner 

than phase two), then a will be blose to a20. This means that there will 

be very little elastic strain in phase two and a large amo'mt of strain in 

phase one. Thus, if one of the phases is much thinner than the other, the 

strain in it is much larger..and, consequently, the stress in it contributes 

11 	 most to the increase in yield stress (ef. Eq. (26)). Equation (.32) shows 

that when the elastic compliances are the same in both phases, the yield 

stress does not depend greatly on which phase is highly stressed but depends 

only on the sum of the strains in the two phases. Since the total strain 

is dependent on L\a0 , thedifference in cubic parameters of the extreme 
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compositions, and Aa0  is independent of f1  and f2 , the yield stress is 

relatively independent of f1  and 

When f1  becomes smaller than the.critical value, as discussed in 

Sec. II, then the maximum yield stress will fall off linearly with volume 

fraction (cf. Eq. (3)) until the strain fields are no longer uniform. 

Then the change with volume fraction wifl be more complicated. This is 

the case for most precipitation hardening systems. It is clear from this 

discussion that the equations derived in Sec. II give the maximum attain-

able yield stress for any precipitation hardening system where coherency 

strains are controlling because the yield stress does:not increase after 

the critical volume fraction is exceeded. 

It was shown through Fig. 7 that the extreme compositions of the 

phases existing during the transformation are not always given by the 

equilibrium compositions of the phase diagram. The actual difference in 

lattice parameter is usually somewhat less than that given for equilibrium 

phases because the driving force of the reaction is not sufficient to pro-

vide the strain energy needed for coherent equilibrium-composition plates. 

Many miscibility gap systems, e.g., Au-Pt and Cu-Ni-Co, have larger equili-

brium parameter differences than Cu-Ni-Fe and thus the strain energy can 

become very large during the phase transformation. The yield stress de-

termined for Au-0 at.% Pt was 110,000 psi for alloys aged at 500
6 C. 17  

The equilibrium 	is .115A which gives a computed yield of 266,000 psi. 

* 
It was observed for Cu-Ni--Fe alloys thata value of m = 2 could be used 

to obtain the correct answer for the absolute yield stress when the 

equations for isotropic materials were used. In the following, this 

procedure is used in yield stress estimates for systems other than 

Cu-Ni-Fe. 
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R. Carpenter '7  estimated that the actual L\a was about .029 in the grain 

interiors of Au-Pt during the transformation which results in a more 

reasonable yield stress of 69,000 Psi. A value of La0 = . 0146 would give 

the observed yield. Another exanle is provided by the hardness increase 

in Cu-Ni-Co. 20  Contrary to Cu-Ni-Fe where the hardness rapidly reaches 

a maximum with isothermal aging time and stays there, Cu-Ni-Co alloys show 

a more usual age-hardening response by slowly increasing to a maximum 

hardness and then overaging. 
20 The difference in lattice parameters 

(a = . 058 at 600 0C)20  of the two phases in equilibrium in Cu-Ni-Co is 

about twice that for Cu-Ni-Fe and the strain energy is correspondingly much 

larger. Since the big factor in the yield stress of these alloys is 

this must be the parameter that is changing during the slow rise to maxi-

mum hardness which results in isothermal aging of Cu-Ni-Co alloys. A 

calculated value of the yield stress maximum for Cu-Ni-Co was 1140,000 psi 

using equilibrium a0 t s  while a rough experimental value estimated from 

hardness data was 120,000 psi. 

Because the driving force is greater for alloys near the center of 

the miscibility gap, the maximum yield stress will probably be greater 

there due to the higher strains permissible. Only in alloys like Cu-Ni-Fe 

where the strains are relatively small will the yield stress be independent 

of the volume fractions of the precipitating phases between the critical 

values. 

It was at first thought that ordering of the copper-poor phase 

(Ni3Fe) was partially responsible for the increase in yield of alloys l-

after the 1450 ° C treatments. Wakelin and Yates21  have shown that Ni3Fe with 

up to four atomic percentcopper will order on slowly cooling from 510 ° C 

to 1400 ° C. It is difficult to prove the presence of order in Ni 3Fe by 



x-rayOr other techniqUeS so it was not certain that the copper-poor phase 

did oder at 450 0C. However, the trend in the yield stress increase indi-

cated by an order_strengthening theory22  was not observed. That is, the, 

increase in yield of the 1 70 0 C aged alloys over those aged at 625°C did 

not show a large dependence on volume fraction of the ordered phase but. 

instead exhibited a constant increase for all volume fractions (cf. Table 

II). This constant increase is consistent with the predictions of the 

present theory as is the calculated magiitude of the strength increase. .To 

eliminate the complications of the orderThg phenomena, alloy 4 was aged at 

temperatures above the ordering temperature. The yield stress data for 

alloy 4 fit the theory nicely and therefore it is certain that the yield 

increase of alloys1-) aged at 450 0C over those aged at 625°C is due to 

increased coherency strains and is not due to ordering. The strong 

possibility that ordering is occurring in the copper-poor phase at 450 6 C 

suggests that ordering of lamellar precipitates does not cause large strength 

increases. It is well-known that 'materials which will order do not show sig-

nificant differences in yield stress between the unordered and the fully 

ordered state.  
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vi. CONCLUSIONS 

Theory and experiment show that the yield stress of aged Cu-Ni-Fe 

alloys is nearly independent of the modulation wavelength of the composition 

fluctuations. 

Theory and experiment show that the yield stress of aged Cu-Ni-Fe 

alloys is not appreciably changed by variations in the volume fractions of 

the to components when the volume fractions are between certain limits. 

Theory and experiment show a direct proportionality between yield 

stress and the difference in the cubic lattice parameters of the to ex-

treme compositions which are present in aged Cu-Ni-Fe alloys. 

. It has been shon that the strained coherent precipitates do not 

reach the compositions determined by the phase diagram for low aging 

temperatures hen strain energy in the precipitates becomes significant. 
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FIGURE CAPTIONS 

Fig. 1 	Isotherm1 section for 660°c of the Cu-Ni-Fe phase diagram 

showing the compositipns of alloys 1-4 investigated in this 

study. The portion of the diagram near the iron corner is 

omitted because it is irrelevant to the present investigation. 

Fig. 2 	Dark field electron micrograph of alloy 4 aged 20 minutes at 

800 °c. 

Fig. 3 	Model used to determine the stresses in coherent lamellar 

plates. Front surface (shaded) represents a plane cut through 

the lamella and the forces F 1  and F represent replacements 

for the constraints which ere removed by cutting. 

Fig. 4 

	

	Diagram for determining the shear stresses effective on the 

slip plane due to coherency stresses in plates lying in the 

x-yplane. 

Fig. 5 	Measured yield stress vs. aging time at 625 ° C for alloy 2. 

Numbers in parentheses are approximate modulation wavelengths 

given in numbers of. atomic planes.. 10  

Fig. 6 	Measured yield stresses for alloys 1-3 (circles) and alloy 4 

(triangles) vs. difference in cubic lattice parameters of the 

- precipitating phases. Squares represent values calculated for 

alloy 4 ( = 2.5). 

Fig 7 	Measured values of a 10  (copper-poor phase) and a20  (copper-rich 

phase) as a function of temperature are designated by squares 

and solid lines. Values of a 10  and a20  calculated from tetra-

gonal data are given by circles and dashed lines. 
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TABLE I. Compoditions of alloys 1-4 with volume fractions f 1  and 

determined from the phase diagram. Copper-poor phase is 
indicated by subscript one. 

Alloy Cu Ni Fe f1  f2  

1 54.4 36.7 •8.9 .25 .75 

2 41.8 4.8 13. .50 .50 

3 30-71, 52.5 16.8 .68 .32 

50 35 15 .43 .57 

TABLE II. Measured and calculated yield stresses for alloys 1-3. 	Cal- 
culated values in the columns with ii = 3 06 and iii = 2 .75 are 

respectively for samples with randomly oriented grains and 
for samples that have a preferred orientation of grains caused 
by fabrication. 

Alloy Aging Measured Calculated 	Yield Stresses 

Temn. Yield - m = 3.0 - m = 2.75 	- 
Stress 

1 625° C 47, 150  psi 54,550 psi 	49,100 psi 

2 625° C 47,150 52,270 47,o4o 

3. 625° C 48,030 50,740 .45,670 

1 450 ° C 63,820 71 1 280 64,640 

2 	. 450 ° C 63,050 68,760 61,880 

3 450° C 62,900 66,700 60,030 
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TABLE III. Measured and calculated yield stresses for alloy 4. Calcu-. 
lated values in the cOlumns with ii = 3.06 and m 2.5 are 
respectively for samples with randomly oriented grains and 
for samples that have a preferred orientation of grains 
caused by fabrication. 

Alloy 	Aging 	Measured 	Calculated 	Yield Stresses 

Temp. 	Yield 	
= 3 o6 	rn = 2.5 

Stress 

800° C 29,500 psi 39,710  psi 32,90 psi 

7300C 4o,goo 50,330 1,120 

625° c 53,620 61,88o 52,90 

550° C 62,290 76,220 62,270 

TABLE IV. Elastic modulus;and compliance data and estimats used to com-
pute yield strengths of aged Cu-Ni-Fe alloys. References are 
given by lower case latters. Data on lines 3 and L. were used 
f or yield strength calculations of alloysl-3, lines 5 and 6 
were used with alloy i-i-. 

Line 	Material 	Young's Modulus Elastic Compliances 10 -12 cm 
2 /dyne 

6 10 	5i s 11 s 	s 	s+s 
12 	)4 	11 12 

1 Nickel 
30a 8o -.31 	

08d .49 

2 Copper 
17b 

1.9 -.63 	
13d .86 

3 65Ni-35Fe; 
26a .923 -.358 .565 

l 70Cu-3ONi 22c  1.150 .66 

5 60Ni-0Fe 25a .960 -.370 .590 

6 80Cu20Ni 21 est. 1.205 -.510 .695 

a) Taylor, I., Editor, Metals Handbook (pmerican Society for Metals, 

Cleveland, Ohio, 1914-8) p.600. 

.b) Ibid., p.  906. 

Ibicl,p 925 

Mason, Warren P., Physical Acoustics and the Properties of Solids 

(D. Van Nostrand Co., Inc., Princeton, N. J. 1958 ) P. 358. 
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TABLE V. Equilibrium cubic lattice parameters determined from references 
1 and 2 for alloys 1-3 and measured for alloy 4 • 	Equation (18) 
was used to determine a. 

Alloy Aging Cu-Poor Cu-Rich Calculated 
Temp. Phase a 10  Phase a20 	 a 

1 625°c 3.758 kx 3.577 kx .019 kx 	3.572 lx 

2 625 0 c 3.558 3.577 3.567 

3 62°c 3.558 3.577 .3.53 

1 45o 6 C 3.555 3.580 .025 	3.573 

2 45o 6 c 3.555 3.580 3566 

3 450 ° C 3.555 3.580 3.562 

800 ° C 
0 

3.579A 3.59)+A 

	

o 	 o 

	

.015A 	3.587A 

730°C 3.574 3.597 .023 	3.586 

625 ° C 3.570 3.600 .030 	3.585 

TABLE VI. data from Hargreaves 1  used to determine the cubic Tetragonal 
parametersof the precipitating phases. 	Values indicated by 
asterisks were determined from the graph in Fig. 7. 	Equation 
(22) was used to determine ajo and a20 

Aging Cu-Poor Cu-Rich Calculated 	VaJiies 
Temp. Phase Phase a 	a 	Aa 

10 	20 	o c 1/a c2/a 

800 0 0 
a 

3.586A : 	 •995 1.005 

	

ó 	 a 	a 

	

3.578A 	3.593A 	.015A 

730 ° C 3.586 3.576 	3.595 	019 

6500c 3,586 .993 1.008 3.575 	3.598 	.025 

62500* 3.586 3 	3.5983 
	025 

55000 3.586 991 1.010 3.572 	3.601 	029 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission: 

Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor -

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 

p 



p 


