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ABSTRACT
Coherency strain flelds in prec1p1tatlon hardened alloys are usu=

ally non-uulform and dlfflcult to analyze.‘:Cu—NléFe alloys, however,

can be made to possess coherent lamellarumicrostructures which have
.small and uniform strains. Calculations of yield ‘stresses based on 5
these coherency‘strains agree Well with measured values. The yield |
' stresses of the Qu-NiéFe alloys studied are independent of the inter=
'lamellar spacing;aud independent of the volume fractions of the two.
chemically different lamellae present; houever, they are directly pro=
portional to the differences in cubic lattice parameters of the two kinds
of plates formlng the lamellar structure.

The lamellar mlcrostructures are produced from supersaturated

;solid solutions by a dem1x1ng process. That 1s, atoms of one kind
cluster to form one type of lamellae and the remalnlng atoms . cluster

to form the other type of lamellae which form durlng low temperature
transformatlon. _Because the,average atomv51zes are dlfferent in the two
‘chemically different lamellae the lamellar plates must be strained in B
. order for coherency to te maintaiued between the lamellae. dn overaging
this coherency is lost and the.compositions of the two lamellae are given
by the positions of the phase bouudary lines on the equilibrium diagram.
.However, when coherency is maintained,vit is shown in the‘present.work

that the demixing process 1s stopped short of completion at low tem=-
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I. . INTRODUCTION

Soon after age’hardening alloys were discovered, it was suggested that

internal coherency strains. were important contributors to the amazing .

strength increases obtained during aging. In recent years theories have

been advenced to quantitatively'assess'these strains but this has been a

difficult task because of the complex nature of the strain fields near

" precipitate particles.

- It was the objective of this study to select an alloy system in which
the strains were small and the strain fields relatlvely unlform in both the
matrix and a coherent pre01p1tate in order to calculate the 1nternal strains

and relete these strains to the yield stress of the alloy. Alloys'with

the desired characteristics were found in the ternary system Cu-Ni-Fe.

- The copper-niokel-iron system has been thoroughly investigated both
2 ' -
from the phase diagram aspectl’ and from the structural standpoint;5 10
The isothermal section of the'Cu-Ni-Fevphase diagram for 600°C is reproduced

in Fig. 1, and it includes the tie lines for that temperature. A vertical

section constrﬁcted from several isothermal sections. and passing along any

tie line would reveal a pseudo-binary diagram ﬁith,a large miscibility gap;

‘These alloys show the well-known spinodal transformation. The vo lume

fractions and the difference in the lattice parameters of the two‘"phaseeﬁ

 formed during precipitation can be varied over a wide renge through

Although it is recognized that non‘equilibrium, pre-precipitation'segre4 '
gated regions are not phases in the rigorous sense of the word, the -

term is used. hereln for convenience of d1scuss1on.
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composition and aging temperature variations.

Before the equilibrium FCC phases finally form, two intermediate
decomposition stages‘are encountered during lOW’temperature aging of
samples quenched:from above the miscibility gap. The first stage is
called the "side-band" state because of the satellite reflections which
appear on either side of the main reflections in Debye—Sherrer X-ray
patterns. These satellltes are due to one-~ dlmens1onal composition (and
therefore lattlce parameter) fluctuatlons in ‘face-centered- cublc materlal.
The'satellite position-with respect to the main Bragg line is a functlon
of the wavelength of thefcompOSition fluctuation and. ls moxre remoyed from
the main line the smaller thevwavelength.l’L A sine wavelL has been used to

7,11

approximate the composition-distance curve, although others have
suggested that a square or more general wave shape would be just as
appropriate. No method has been devised to ascertain ekperimentally the
exact nave form.that'exists during the transformation.

The second stage x-ray patterns reveal the formation of two tetragonal
structures.3’7’8 The two non- equlllbrlum.structures have a common "a'
tetragonal lattice parameter which is constant throughout both structures.
One of these structures has a c/a ratlo less than one while the other has
a c/a ratio greater than unlty. The morphology of the two phases is
lamellar with the plates lying parallel to {lOO} planes. The two tetra;
gonal ”a" axes lie in the common {lOO} plane and the "¢'" axes are normal
to this plane.5 o It is apparent that the second stage structure also
possesses a one-dimensional lattice parameter variation along the "c'
axis which probahly'more nearly‘upproaches avsquare wave configuration

than is the case during the earlier "side band" state. Because the £luc -

tuation wavelength of the tetragonal state. is larger than that of the



"side-band" state, the difference in stages one and two may be only one
»15

of degree. Bagaryatskii and Tyapkln have shown in similar transfor-.;
mations found in Ni-Ti end Ni-Cr-Ti alloys that the two stages described
above are observed ﬁith soft‘i-radiation but only one stage is found with
hard rediation. This supports the suggestion that the appearance of two
different intermediate structures during aging is only a matter of_degree
in a continuously changing system, (Kelly and Nicholson;u have reviewea
the work of Bagaryatskii and Tyapkinvand.other work pertinentvto the
present investigation. ) | | . o

The microstructure»of'greatest'interest is the one which gives the
maximum room.temperature_yield stress for any giveh aging temperature.

This maximum occurs at a time when the magnetic coercivity and other

propertiess,are a®t a maximum and when the transformation is still in the

"side-band" stage; Errors in determining the maximum yield point as a

:-functlon of aging time were not found to be crltlcal because. the maximum

is very broad in Cu-Ni-Fe alloys (e g see Fig. 5)

. The s1de4baﬂd mlcrostructure can be cons1dered as two tetragonal

 structures with c/a <1 and c¢/a > 1 where a is constant and ¢ is a function
’..of p051t10n. Thus'a one dimerisional lattice parameter fluctuatlon occurs.

The basic assumptlon employed in the theory to be developed 1is that the

tetragonallty of.the two structures is caused by elastic stralns needed

to maintain coherency of two structures that, if unattached ‘would be

cublc.v It has been shown2 that all compos1tlons of pre01p1tat1ng phases

. in Cu- Nl Fe alloys are cubic when gquenched from above the mlsciblllty gap

- and they are cubic when overaging has caused a loss of_coherency’.7 One

of the phases has a cubic parameter that is too small to match with the
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other and consequently plates of this phaee will be stressed iﬁ two -

dimensional tension in the coherent state. ILikewise plates of the other

phase will be stressed in compression. It has been suggested 2 that these o
coherency stralns inhibit the transformatlon such that the phase composi-

tions do not reach those given by the equilibrium dlagram until coherency w
is losf. The end effects introduce a complication in the stress analysis,

but because the plates'are long compared to their thickness, as‘indicated

by.the electron micrograph of Fig. 2, the end effects can be neglected.
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II. THEORY

The method to be fellowed in calculating the yield'stress of
lamellar alloys is to determine the magnitude of the stresses which are
present in the microconstituents of the alloys and to resolve these
stresses along the slip plane in order to relate them to the.first

large migration of dislocations enforced by a gradually increasing load.

In the analysis, a square wave composition-distance curve will first be

assumed. The resulting structure will then be as shbwn'in Fig..B. The

subscripts 1 and 2 refer respectlvely to the propertles of the phase

- with ¢ /a < 1 and to the phase w1th c /a > 1. Iet a represent the common

non- equlllbrlum "a parameter of the two tetragonal phases, and let alO

and s be the equlllbrlum cubic lattlce parameters for the most extreme

compos1tlons existing in the plates. These two values will tend to
approach those of the equllibrium phases.

The crossahatehed planerof'Fig. 3 represents a cut section through
the lamella and the ext'ernal'forc'es F lb and F . replace the constraints
whlch were present before the cut A is the wavelength of the composition

fluctuatlon and f and f2 = (1-f ) are the volume fractlons of the two.

phases. Since cq < a and 02 >a the total dlsplacement'over‘many lamella

in the z dlrectlon will be small and therefore the assumptlon o, = O,
: i

where o, is the stress in the z dlrectlon, is made. -The effect of having

o, differ from zero is to raise the stresses in plates of one compos1tlon

o while it lowers the stresses in the plates of the other composition by a

corresponding amount. The net effect eventually nearly cancels when the.

 final calculations are made (cf. Eg. (26)).

From ZI& = 0.and Fig. 3 it can be seen that
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o UM = -0 oM, : (1) .

(okz_will have a negative sign showing compression since plus x 1is taken
to be the positive direction of stress. ) - Because the phases are known to
be tetragonal and are not.orthorhombic, o, = Gy.in both phases. 0 and

00 are constants when a square wave composition-distance curve is assumed.
Equation (1) can also be obtained for a more general composition-

distance wave form. For this case let 0. Vary across plates of composition

1 according to the expression.

n . o A
' . 2mnz- - 1 .
%1 = le} 2 Ay e T (0<z<-5) @)
max 1 :

is restricted to unity.

T . . ' n
where the maximum amplitude of 3 An sin 2mnz
1 1

Therefore o . < O, where o is a constant. Also in plates of
“xl = Xll' xll
“Tlmax _ max
composition 2 S
n : Ay
e . 2Tnz e ¢
2~ x| 2 Ay sin % ,,<—2—_<_z5>\2>
Tmax 1 2 , :
or .
— g N . omz’ 0< ' < ig N (5)
e T % fo S0 52 P2F 22 '
. Jmax 1 . : A -
. Ny 7 : : .
. oo, 2 g A > v o
where z' = z 5 and |0X2| E_OXQ. .where Okgl is a positive constant
. : max max

- and 0., 1s a compressive strees, l.e., 05 < Q. xl and KE are related to-

the modulation wavelength by;

. _ N N : o - v

1 2 ' ¥
5 === A \ :

and the volume fractions f] and fp are related to x] and. xg by



1. M o ey
o M
¢ T2 2
N Again, Z F_ = O0Oand
.n _
M Mo
2 2
n : n
Z . . 2mz'’ .
L 0,1 5 Ay, sin == dz = L -0, % Ay, sin = az', (5)
max -1 1 max 1 . 2
o o

Onjintegrating both sides of the equation between the given limits T

o N fn (lm LA\ n A?n cos m + A2n

=0 C5r 2 — cos mm = = - x2‘ 5 Z cos —_— .
. 1 S r) max 1 _ :

| If the two Wavevshapes are similar such that Aln = A2n’ then -

» ) 14
LM (o ) "2
\~Xl’maxf em B Xg'max S oem
 and using Eq. (4).
O’Xl‘ f = 0x2| fg . . : . (6)
“lmax max - :

1 i (cf. Eq. (2) ) and the extreme value

max , , ,
of o, is o, ie., 0, =-0, (cf. Eq. (3) ), then again
: 1 max B max -

O

for the conditions of identical wave form. This is identical to Eq. (1)
when I and A are cancelled in thé eariier equation. Hereafter the sub~

Scripts denoting maximum stress will be drqpped, and 01 and Oxé'Will be



used to indicate maximum values of these two stresseé. Only stress maxima
néed be considered iﬁ the'following analysis because dislocations will_en—
counter the gréétest'barriers where the'stresses are largest.

| ‘In the'following, isotropic elasticity is first considered, but.be-
causge .of the significant anisbtropy of metal crystals, equations will also
be derivéd for use with the directionally dependent eléstic.properties.

For isotropic materials

€ = % (o, - v(dy +voz)} \S\
e’ = 35 (o ; v(o, + c.)} B | o (8)
y B v x Tz ‘

GZ ) % (o, = vlo, * o))} / o

where E is Young's modulus and v is Poisson's ratio. Since oL =,o&, and

o. =0
z
€X = '}-3- _{UX - VGX}
and
E;€¥, o o ; o .
‘o'. . l-—-v Y . v . . (9)

X

Substituting Eq. (9) into Egs. (1) or (7)

E

165171 G | R
Tt T, | - (10),
B "V .
a - ag ‘ : _ S _
Since ¢ = is the strain in the x direction of a plate (ao

O
being the appropriate cubic lattice parameter) then



Bfy (B-ag) o Bpfp (8 -ap) (11)
T a,  ~ -
SRS DT |

(1 - Vg) 20

On solving Eq. (ll):for a

210%20 {(1 - v2) B T, + (1 - vl) E2f2}
- + -
ayy (L = vp)E Ty +ayy (1 - v, )BT,

a = . (12)
Equation (9) can be rewritten

o, = S (13)

' so that when the elastic constants dnd cubic lattice parameters of the two

phases are‘known,‘the biaxial tension and compression strésses in phases'l_'

and 2, respectively, can be determined.

From Egs. (8) éhd (9).

' 1, o
o= —_— - -+ . .
€ E. [Uz _v(éx : Uy)l B

= %- [0 -v (2 ckjj

2v g . 2y E e 2y
X g X

E (T -V)E | IT-v '

c - ag  a.=-a :
Since e = and €= then
z a . pe o
) :
c - a 2v (a -‘ao)
a - T T v ) a
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and

- ____f_j((v+1)go-eaa}." )

v

L1kew1se, if the tetragonal data for ¢ and a are known, the compos1tlon of
the phase can be estimated from a which is obtained by rearranging Eq. (14).

1

L= TTV {2v 5+ (1L -~ v)el. | : (15)

The equations for use with the anisotropié elastic compliances take
much the same form as those for the isotropié»case. Again the‘conditions
of Eq (1) or (7) apply. The equations for use with anlsotroplc cublc

crystals whlch correspond to those of Eq. (8) for isotropic materlals are -

(16)

eyzﬁ: Shhoyz

| Cox T Shhdzx

exy = Slﬂ—kcxy

The first subscrlpt of the stresses and strains: in Eq. (16) refers to thé“
normal of the plane over which the stresses act while the second glves the v .a‘
direction of their action. Thus e and o are equivalent to e_ and o

XX XX X be
which appear in the equatlons for 1sotrop1c materials. Sll”SlE’ and Shh.'
are the elaotlc compliances for cubic crystals. As before, ka = ny’ and

g = 0.
ZZ
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In additidn,‘cxy = 0 because the two structures are tetragonal and the

x-y plane is taken perpendicular to the four-fold axis of rotation."oyz

and Oy are not zero, but for plates that are long compared to their

'thickness, these shear stresses are small. ‘oyz'and Oy will be greatest

at the boundary between phases 1-and 2 where they are related to

x| by the ratic of A/L. For thin plates A < < L and A/L is small so
max ‘ .

that cyz and Oxz can be neglgctgd. Therefore

S = (8 ¥ 835) o
ey = (817 +81p) 0y (17)
e22_= 2312 O
and-
. .eix ' ‘ ‘ ' :
A= — - : .(18)
+ . :
2 Sy Y
Applying Eq. (1) or (7)
Cx, T1 i, T2
L — - e o (19)
(8., ¥8 -7 (s, t8.,). '
| 11‘__:12)1 L T, o
'where the subscrlpts outside’ the parentheses refer to ‘the data for phase,
a -a .
one and two respec+1vely. By substltutlng ey = —-afll; into Eq. (19)
. o S
a can be obtalned as before (cf Eq. (12) )
+
= _ f10%0 (£1(81,% Spp), + 1p(Sy+ 12)1} (20)
= + :
» 220 1(811 12) ERACERSTYE |
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If the elastic compliances and cubic lattice parameters are known, then
Eg. (18) can be used to evaluate the principle stresses in each plate.

From Egs. (17) and (18)

“ 28 e’

e = 12 "xx
= =
ZZ Sll 812
c = ag 2515 | o (a -a) |
and ——— = 1§ T a , therefore
o 11 T2 o]
2s S
- 12 - :
= + s - . :
c=a 5 (a ao) | A (%l)

11 12
~ or, asAbefore, if -a and the c/é ratio are known for each phase then‘the‘

cubic parameters can be obtained by rearranging Eq. (21) and

: -
a = m————— (5
° 511 = Spp

1t Spp)e - 28, 5)]{;" o (22)
'Iﬁ'ofder'to_find the effects of O and o, on dislocation métion,
shear components”of these stresses on the slip plane,and in the slip
direction must be found. For FCC crystals the slip plane ié.{lll] ana :
the slip direction is (liO) . Resolution of these stresses can be done:
.vgeometricailyIOr with %hé aid of a stress tensor. On using the.tensor__

method, the stress in the p direction, when the normal to the Slip plane

is given by p,_is'

G = 3% o.. A, A , | 2
ko 1y 1 i Tde R (23)
i= X, ¥, Z

J = XV, z

£ ]
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where ﬂiu and ij are direction cosines between the given lines. Letting
1 be normal to the (111) plane and p be in [101], then, when the lamellar

plates lie in the x-y plane,

9(111)[10T] = %x £[1003[1111%12001[10TT % f010] 121 ] [020]( 20T ]

‘where >:£ ' - i £ = = e -
[100]{111] = 757 7 f(io0][101) T T ololf1l) T 5
anq l[lOO[[ldT] = 0 , Therefore G(lll)[lQI] = 0(111)[1101 = J%r-.
: . g o
S _ _ XX o .
Likewise, O(131)[o1T) ~ °(111)(Tw0l © but o441 yT107 = O

Thesé7Stresses are pure shear components'bécause p is normal to p.

'Figure 4 shows'graphically the relatiohships‘of one po%ential.slip
plane“énd,tﬁree poténﬁial élip di;ections to the stresseg QX’ cy,;and o,
The'lamella are considered to be parallel to the x-y plane in Fig. 4.» The
resolved sheér.sﬁress ffom_ox, oy = Oy and.crZ = 0 in the [101] direction _v

on the (111) plane is

. o A
X (100) ,
"[101] T sinb LY cos ¢ cos ¢ .
' S . vA(loo) 1 |
where 8 = 45°, cos ¢ = —— and ¥ = 30°. i = ——— is the ratio

of the area of the (lOO)-plane-ﬁo-the area of the (111) plane which projects

onto the (100) plane. Therefore,

- 11 3 % e
Trio1] T Voo, > - . B CONE
fj J3 J6 -
Likewise,
) ag
—- = X
RN RN
and |
o .

‘[T107 ~
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These are the stresses encountered by the three poss1ble dislocations (six
if the negative signs are included) gliding on this (lll) plane for lameller
platev lying paral lel to (001), i.e., in the x-y plane of Fig. L,

Con51der a di slocation in the (111) plane with Burger' s vector

g[ldl], For plates which are parallel to (001) we -have seen from Egs. (23)
Oy ' : v

et~ g
to either (010) or_(lOO). For plates parallel to (010) o, = 0,.and o = 0

and (24) that = An adjoining set of plates will be-parallel
'sd that the shear stress acting on the above.dislocation while it is in
tneSe plates is
- = +
T{lOl] Oixlxuzxp Gzzﬂzulzp
D * 1 } ;
Oy 5 T t o A\~ )~
NERRYF V3 NE

For plates parallel tcﬁ(lOO), o, =0, and o, = g, SO that

T[1o1] T Gszyulyp * O antap

Loy +o A '-—L)=-S¥X .
RLANE W5 N\ e ‘

Since a dislocation”will interact with these threeaplate:drientafidns
nith equel probability,'one~third of a unit length of dislocation will
experience an accelerating stress from platee parallel to (001) when
o, > 0, one-third will experience zero stress from plates parallel to- (010),
and thebremainder will experience a retarding stresshfrom plates parallel
to (100). when I > 0. Tne portion of the dislocation which is accelerated
will move until it encounters an adjacent tetragonal plate that ‘is loaded

g

. 0 and. 'llOJ] J%?J, which is now a retard-

in conpression so ihwt'dx
Lng stress. Consequently, the dislocation will be retdrded aLong one-third

of its length by plates which are in compr6551on, experience zero Qtre
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along one-third of its length, and be retarded elong the remaining third
by pletes that are loaded in tension. Dislocations in other slip systems
will encounter identical conditions. The maximum retarding force on a unit

dislocation willvbe, then

1 1 "
F = 3 ‘T1|b+ -5-|12tb+0 » (25)

where {Tll is the absolute value of the resolved shear stress acting on
dislocations with Burgers vector b from plates which are in tension (for
‘plate orientations where T, £0) and lT | is the absolute value of the

resolved shear stress from.plates which are in compreSSion (for plate

' Oxp
orientations where 1. # 0). Now |, | and |71 | = - — 80
2 _ 1 ' 2 Jé
that F = l le - okg)b where the negative sign appears before Gxé

J%

" because of its compre531ve nature. The applied stress which must overcome

this forCe if dislocations are to move is T = E or
ST app b

waever; when Tapp > lrei,'nhich can happen’nhen_f2 is large and phase 2
contains a small strain;'then-Eq. (26) no longer governs the stress for the
- first dislocation_motion; In this case the applied stress will cause the
dislocation segment innibited by T, to move through phase 2_until.it
:reaches nhase 1 where it will be accelerated; Then.only-one-third of the
unit length of dislocation line will be retarded while. the other two seg—
ments will have either Zero shear stress or an accelerating stress. The

net effect is that plastic flow can easily take placeo The applied stress

Tapp needed to start this chain of events is
. o : E
xp :
= fu,l = - : (27)

i fiT)"D oL . \/ -()
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'Ti.and T are dependent on the volume fractions of the two phases
pfesent. By equating the applled stress to IT | in Eq. (26), a solutlon E

for the critical volume fraction where Eg. (26) will break down can be

obtained. Assume that the elastic modull are the same in both phases.

Therefore,
%
2 1
[t.] = - = —= (0. = a_ )
2 Jé 346 1%
and ‘
EGX = -0
o) X1
or
2(a - aEO) (a - alO)

T - .
(311 8107200 (811 810l

and on solving for a

By B ’
5 - 1020 . (28)
.].: a -+ ?_ a : o
3 20 3 710

The criticel volume fraction f2 can be found by comparinngq._(ES)
to either Egs. (12) or (20) because when the elastic constants are the

.same in both phases both Egs. (12) and (20) reduce to

5 - lO 20 {f 2}’
o= T .
f1850 * T2390
Thus, f. = é- and —’l- Similar-e uatione caﬁ‘be derived when T =
> e T3 T L 4 ' app
lTl]. The solution for this case will give fl = % and f2 = % when the

iesmoduli are equal. Under equal-moduli conditions Eq. (26) is

When the moduli are not the same in both phases,‘

WO

~an independent ‘check of Eq. (26) can be made for each set of data to see
if the conditions Tapp < lTll,,ITE[vare met.

The four important equations derived above for the isotropic case are:
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8, 02l (1-v B £+ (1-v)E, 1))

I. 7 = - : : e (12)
. a, Il—vejElfl + alo(l-vl)EEfQ o
E(a - aé) ' - |
II. 0'X = W _‘ . = : : (15)
. ot =—2 (o -0, ) ‘ - (26)
app 3 JB Xy | X5 . o _
when Tapp < |Tl|, lT2|
_ 0X2 S . _ v
w1, = |t,| =-— e o ! (27)
, app 2 JB o .

if IT2| < ‘Tll ard the conditions of Eq. (26) are not met.
I IT1| <_|T2|73nd qu (26) does not apply, then Tapp = |T1|-

The corresponding equations for the anisotropic case are:

- o aloa20{(sll+ 812)2 £+ (Sll+s12)l fe} o

. _ _ (20)
oS Rl Ty FaB e B
| (a - a,) | BRRCT:)
1T, o= Z————-—T— T , 1
) X li+812 & - ' o _
‘III. T - i (o R ) (26)
app 3 JG xxl XX2
when Tapp < ‘Tll,.lTE‘
. : . |
S T - |
IV, Tapp =1!121 = - = | o (27)

if |7, < lTil and the conditions of Eq. (26) are not met. If lfll < ng{
~and Eg. (26) does not apply, then Tapp = |T1|.
Thus, when the elastié‘constants,bvolumé fractions, and cubic lattice

parameters for the extreme conditions are known, the critical resolved
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shear stress can be calculated for a wide range of conditions. For

fl << %-, . (27) will not be valld because of the loss of uniform

strain fields for small volume fractions of prec1p1tate.

If v. =v, and E. =E then for the isotropic case

1% 1 = P

- aloaeo(f +1, )

- QOfl * alOfE
. =E<a %) — 20 4
x, - (I-v)agg 1-v sty +agpfh

a
g E 10
= { s -1}
T2 T 1w apefy T agoh
and
1 80 T #10 , ’ : -

Pz ./g a0t , ,

but because alO ® a ? a,
T ® = o (30)
(= > (0

»For the anlsoﬁroplc case, if ($11-+812)l = (8114-812)2, then a 51m1}ar

derivation leads to

a, - a .
1 - 20 10 ‘
- = } (31)
N G S10) et Ai0fa
>OI’ -

' JAY:)

! 1 < 0> | |
T &~ - : 32) ’
aP%‘ 3 J% (Sll+'slg) a . L .

Thus the yleld stress is directly proportibnal to the difference in lattice'

parameters of ° extreme compositions when Eg. (26) is valid. Usually
the elastic moduii do not differ wiaely‘so that this is an approximately

general result.
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When T apD is given by Eq. (27),‘a generai relationship between yield,
stress and volume fractlon can be obtained if it is again assumed that

the elastic moduli are the same in both phases. From Egs. (27), (2&), and

(18) I
- - lT ‘ - XXQ - - 1 <a’— 320)
S app SRR J6  811%810)%0

but when the elasbic moduli are the same, Eq. (20) gives

2100

2of1+alof2

and.

ml

1 1 0.

T = o. {
app g (S11%80) 2x0T1+210%0

- l},'andAreafranging-'

f_-a. T

S 1 e f1017%201 o
. == b
app ~ " Jg - (81%510) “ang l—alOfl+alO
T = L l {5 2 and
- ;
app J6 (Sl ) Na, +alo /f
. e ‘ 1 -1
T = = =
ap g (5p*Pip) p o 2
Ha T
: o1l
~but - 10
- AT >> 1
. o1 }
and N £, 0y | |
T ( ) o (33)
o e N UL T _ -
for £ < f]mln R %-and is established by Fq. (26).when
T = lT " Thus the yle]d stress.. LS dlrectWy propor11ona] Lo the

app
~difference in cubic lattloe parametexs and the voJume fraction of phdse

.one for these cond;tlons.’
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The critical resolved shear stress can be obtained experimentally -

from,orlented s1ngle crystal tensile specimens with the aid of the Schmldﬁ

factor. However, polycrystalllne samples are adequate to check a nunber’

of the points of the theory. Absolute values of the tensile yleld stress
can be'calculated on the basis of theories16 for the plastic deformation

of polycrystallihe samples which gives

P Sy v . : eI
Syield ~ ™ Tyield - B8)

where the constant m.lnvolves an average orlentatlon factor for the slip
systems which operate during plastic flow, " The equation used for cal-

culating tensile yield stresses of polycrystalline»samples thus becomes

o se1a ° 3%(“ ) i (55)

For randomly oriented grains m = 3%.06.

The samples used in checking ‘the theory were forged or swaged which
gives rise to a. texture w1th some gralns hav1ng [100] near the ten51le
axis and others with [lll] parallel to the bar axise. 1T This texture 1s'
retalned after auneallng.lB The - Schmld factor for [lOO] crystals would

be equlvalent to us1ng m = 2.45 while that for [111] grains would corre-’

'spond to m”= 3,68, - Since [100] is the more favorable orlentatlon of the

two for slip, grains in this orientation w1ll contribute more to the
initlal yielding process. Therefore an T constant between 2.45 and 3,06
would be:approprlate for calculating-the,absolute values of the yield -
stresses for fabricated polycrystalline bars.

The equatlcns derived above show four s1gn1ficantvpoints:

l) The yield stress is 1ndependent of N\, the modulated structure

wavelength, which means the yield stress is independent of partlcle size.
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2) The yield stress iS'heérly'independeﬁt of thevvolume'fractions
fl and. f2 if the elasfic constants do not differ appreciabiy'inbthe two
phases and Eq.7(26)‘applies. |

3) The yield stressvié direétly pfoportional tolthé_difference in
'_cubic lattice constants of the precipitating phases when the elastic

constants are nearly the same in both phases and Eq. (26) applies.

max min . 1
1 171 173

are the critical volume fractions where Eq. (26)_be¢omes invalid, the

L) When f. < flmln, or f where f and. T, 5'§--
vield stress is directly proportional to the difference in cubic laﬁtice
- parameters and the volume fraction'of'the precipitating phase providing

the elastic moduli are the same in bbth precipitate and matrix.
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TII. EXPERIMENTAL PROCEDURE

Four compositions of polycrystalline Cu-NieFe samples wereAprepared
and these are designated as alloys,i, 2, 3, and 4 in Fig. 1 and Table I.
Compositions were verified by chemioal analysis. rAlloys 1, 2, and‘B lie .
on one tie line. The alloys were cast into one-half inch diameter copper
molds in an inert atmosphere, forged (alloys 1-3) or swaged (alloy 4) to
three-eighth inch diameter rod, and homogenlzed for three days at 950°C
in evacuated quartz capsules. Before melting, 0.5 wh. % manganese was
added to each alloy to aid.fabrication. The average grain size of the
homogenized bars was 0.15 mn. Tensile bars with a gauge length of 1.125
inches and diameter of O.i6O inches were ground from the homogenized bars,
encapsulated in evecuated quartz tubes, heated to 950°C, and quenched in
water before aglng. Alloys. 1-3 were. aged at 625°C for various times or
aged first at 625°C for a specified time and then given a subsequent treat-
ment at 450°C for IOO hours. Daniel6 has shown that the length of time at
the higher temperatﬁre fixes the waveleﬁgth.of the composition fluctuatioo
while the lower temperature influences the amplitude of the fluctuation.
Samples of alloy L were aged to their maximum hardness at 800°C, T30°C, and
625°C to 1ndependently check the effect of variation in lattice constants
of the two precipitating phases. An additional sample of alloy'h was first
aged 6 hours at 625°C and then held 100 hours at 550°C. It was necessary
to guench the samples after aging at temperatures above 625°C to prevent
structural changes from occurring while cooling to room temperature. An
Tnstron tensile testing machine was employed.using a strain rate of
.0175 in/in/min and the yield stresses were determined by the .OQ%HOffset

method.
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Lattice parameters:ofrthe two eguilibrium phases were determined from
-alloy I for the three aging temperatures 8dO°C, 730°C, and 625°C. Powder
samples were:held_15 days at 800°é'and one‘mbnth at 730°C and.625°C; A.
back reflection_focusing'camera of;6O mm redius and unfiltered chfomium

radiation were used for the lattice parameter determinations.
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IV. EXPERIMENTAL RESULTS

Figure 5 shows the measured yield stress versus aging time data for
alloy 2. The yield stress reaches its maximum.rapidly and maintains a
value very near the maximum even after 194 hours at 62500. The other
alioys‘(l—B) revealed similar treﬁds at 625°C as did the alloys given the
additional HSOOC treatment, but tﬁe yield stresses of tensile specimens
given the additional treatment were shifted to higher values. Table iI
gives the maximum measured»values taken from-fhe yleld point vs. aging
time curves for alioys 1,22 and 3 aged aﬁjfhe two temperatures. The
aging time to maximum yield was either 8 hours at 625°C or 8 hours at
6256C.plus 100 hours at A50°C. Table ITT giveé the experimental yield - 7
stresses for eaﬁples of-alloy 4 after aginé them to thelr maximum hard-

: ﬁess which occurred after holding for 3 minutes at 800°C, 16 minutes at
730°C, and 8 hours at 625°C. The yield stress of thevalloy 4 sample |
which wag held et 625°C for 6 hours and then 100 hours at 550°C is aieov

given in Table ITI.
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V. DISCUSSION OF RESULTS

Experimental verification ofAFhe theory is limited to the conditions
under which Eq. (26) is valid. TFirst, confirmation will be made‘of three-
of the four significant noints indicated by the equations which were de-
rived in Sec. II:

1) The wavelength of the modulated structure is directly related to
. the aging time.5’8’lo Values of thevmodulation wavelength measured by
Hillert et al.lo on theif alloy H,.an ailoy:with a composition near to that
of alloy 2, are placed‘in panentheses at the appropriate times in Fig. 5.
Theee wavelengths are given in numbers of atomic planes. It is cleaf from
Fig. 5 that the yield stress does not vary greatly with aging time orr
modulation wavelength. This égreee with the theory in that A does not
appear in Egs. (12), (13), (26), and (34) or in the similar Egs. (18),
(20), (26), and (54). | | |

2) The volume fractlons of the two precipitating phases are different
for each of the alloys 1-3 although the phase’ comp051tlons are the same
for any given temperature since these alloys all 11e on the same tie llne.
Table TII shows that the maximum yield stress is constant for these three
alloys when they,heve been aged at the same temperature. . Therefore the
yield stress does‘not change as a function of the volume fraction. Changes
in the calculated yield stressee with changes in volume fraction mainly' |
reflect the difference in elastic moduli of the ﬁwo.phases. Since the ex-
perimental yield sfresses do not change with changes inlnoiume fraction;
then the converse is indicated, i.e., there 1s no difference in the
elastic noduli of the two phases. Thus, Eq.-(BE), which shows no dependence

upon volume fraction, can be applied.
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The conditions under which.Eq, (26) is valid were checked for alloys 1
and 3 because they have volume fractions very near the critical values
determined in Sec. II. It was'foﬁnd that Eq. {26) could be applied to
both alloysvwithin.the uncertainty of establishing the critical and
estimated volume fractions for alldys which 1lie on this tie line. The
experimental results in Table IT show Ed. (26) to be valid.

%) Equation (32) (in.conjunction with Eq. (34)) suggests that a
plot of measured yield stress rersus Aao woqld produce a straight line
passing through the origin, i.e., the yleld stress is directly propor—
tional to Aa . Equation (52) requires equal elastic moduli in the two
phases but the. proportionality between yield ‘point and Ae is qaite con-
stant for anybone alloy even if the moduli are different. This is diffie
cult to establish analytically3 however, a graphical example shows it to
be truetl The points in Fig. 6. designated by squares. represent calculated
yield stresses (m = 2.5) which were computed for alloy 4 using different
elastic compliances for each phase. ‘These points lie on the solid liner
which extrapolates to the originvas required by direct proportionality.
Figure 6 shows plots of the measured peak yield stress versus the difference'
in lattice parameters of the equilibrium cubic phases for alloys 1-3 |
(circlesj and versus the difference in cubic lattice parameters calculated
from tetragonal lattice parameter data for alloy 4 (triangles). (The |
method.of evalnating Aao from tetragonal data will be discussed later. )
.The points on both lines are easily within the accuracy of the yield point
data or especilally, in the caee of alloy 4, within the accuracy of the |
method of determining Aaolfrom,tetragonal data. Tne data thus give a .

confirmation of the direct proportionality between yield stress and Aao.
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The slopes of the lines in Fig. 6 depend on the proportionality fac-
tor of Eq. (32) cr, in a more complicated way, on Egs. (18), (20), (26),
and (34). In order to make'calculatious using these equations, the re-
_quired data for Cu-Ni-Fe alloys must be assembled. The sources of these
data will be discussed next:

1) Volume fractions were obtained in all cases from the phase dlagram .
with the aid of the lever. law. These values are incorporated in Table I
with the alloy compositions.

2) The elastic compliances for the component phases were eetimated
by first assuming that the elastic anisotropy of the copper—rich phase is
the same as for pure copper and that of the copper-poor phase 1is the same
as forvpure nickel. Values of Young's modulus were obtained fo} pure
copper and for copper-nickel allojs of about the same compoéition as that -
of the’precipitating copper—rieh phase. The elastic compliauces for the
copper ~-rich phase were then estlmated by scaling down the pure copper
elastic compliance data in the ratio of the Young's modulus of pure copper
to the modulus of the copper-nickel alloy. A similar method was used for
the copper—poor phase but this tlme nickel data were scaled up in the
ratio of the Young's modulus for pure nickel to that of the proper nickel-
iron alloy. This is justified by the equation used for calculating Young's

modulus from Single,crystal elastic data if the anisotropy of the alloy

and the pure element are the same, i.e.,

S .
2 M
=53, "5 <S,12‘ Tt “’1‘1)

’ ™ 3 ] r,,‘,,‘., . . — '
Here E is Young's modulus (for polycrystdls), Sll’ 812’ and Shh are

=i

. : . 2 . . .
elastic compliances of individual grains, and the 5 factor arises from
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an average grain orientatioﬁ coﬁsideration.v'The equation shows that a
proportional change in each of the elastic compliances will result in an
inverse change in . The required data for making estimates of the elastic
compliances are included in Table IV. The values from lines 3 and L of
Teble IV were used for alloys 1-3 and those from lines 5 and 6 were used
for alloy 4 calculations. The sum-Sll + 812 is also included because it
regularly appears in the equations.

%) Lattice constants (in kx units) for the cubic phases in equili-
brium in alloys 1-3 were obtained from.the lattice parameter contours
published by Bradley et al.2 The compositions of the‘phases in equilibrium
at the given temperatures were obteined from the Cu-Ni-Fe phase diagram.
The constants obtained from the literature for alloys 1-3 along with the
measured-parameters for alloy k aged at the different temperatures are
given-in Table V.

The lattice Darameters measured on a sample of alloy 4 which ﬁad been
annealed at(8OO ¢ agreed w1th the values obtained byHargreaves7 on the
same alloy'(CulON17Fe5) andvfpr the same annealing temperaturer These
parameters are. good. to approximateiy four significant figures. Values of
T calculated from Eg. (20) are also given in Table V.

In addition, Hargreaves7 gave tetragonal lattice parameters for
CulONi7Fe3 aged to the tetragonal stage at three temperatures. .These
parameters are given in Table VI along with values of aio and 3¢ calcula-
ted from Eq. (22). A comparison of the calculated values of a in Table v
with the measured values in Table VI shows a fine agreement. This is

consistent with the initial assumption that coherency strains are caus1ng

the tetragonal diastortions.
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The difference in measured and calculated cubic parameters also shows
an effect which has boen mentioned previously. Since thé ?alues are given
for diffefent temperatures in Tables V and VI the comparison can best be
made on a graph.' Figure 7 shows toat the cubic parameters calculated from
tetragonal data (dashed line) lie inside the measured cubic data (solid
line) except at the highest temperature. This indicates that strain energy
which increases atblowér temperatures during the tetragonal stage of the
transformation innibits the approach of ﬁhe‘two phases to their equilibrium
compositions. Straih energy increases withwthe square of the strain and
theréfore becomes significant at larger strains.

The method of calculating ao's from tetfagonal data (Eq. 22) appears.
to be righf because of the close agreement of the caiculated values with
the measured values a£ the smallér strain, i.e., for the alloy'agéd at
800°C. The values of ao' used to determine la_ at 625°C and 730°C for the
graph in Fig. 6 were taken at the appropriate temperatures fiom.the dashed
lines in Fig. 7. |

Calculated yileld stresses which appear in Table IT for alloys 1-3
were obtained ﬁsing the equations for anisotropic materials; €.Ley EQS.,
(18), (20), (26), and (34). In this case é was obtained from the cubic
lattice parameters. The calculated yield stresses for alloy L, Table III;
 were obfained using the measured tetragonal a parameteis whiie ao’s'were
oomputed»from BEqg. (22). ,Direct substitution Of_alO’ ago, and a in Eq.
(20) and use of Egs. (26) and (%4) gave the desired results-for alloy b.
Two Vélues of m (Eq. 3L) were used. The calculated &ield stresses given
in the column of Tables II and IIi with m = 3.06 are for oolyorystalline
bars with randomly oriented grains. The values in Table IT with m=2.75

and Table III with m = 2.5 take into consideration the preferred.
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orientation which occurred during fabrication. These two particular va lues
of m were selected.because they gave the best fit to the data. Preferred
orlentatlon was observed to be important. Tensile samples of alloy 4 made
from severely cold rolled and annealed stock w1th the tensile axis the same
as the rolling direction had significantly lower yield stresses for the same
heat treatment than the-swaged and annealed bars. For example, rolled
samples aged at 750?C and 625°C had yield stresses of 36,000 and 4%,300 psi
while the corresponding swaged.bars had yields of 40,900 and 5%,600 psi,
respectively. Rolled stock of this matefiglvhae been ‘shown to have a [112] _
preferred orientatien along the rolling direcfionlS’19 which is very near
to the orientation which gives a minimum value to m, i.e., m > 2. BSamples
of alloys 1-3 were fabricated by forging while alloy 4 samples were swaged.
This difference in fabrication prpcedure could result in the slight differ—
ence in m observed in Tables II and IIT for the best data fit. Also, the
elastic moduli of the phases which precipitate for alloys l—B,aﬁd alloy k4
are dlfferent and it is extremely hard to accoﬁnt exactly for this differ-
ence without maklng experlmental measurements on crystals of these phases.
- Since the slope of the yield stress versus difference in cubic lattice
parameter plot is dependent on both m and the elaéticfconstants, the use
of an m to give the best data fit is intended to normalize the»unknownb
aifferences in both texture and moduli. The agreemeﬁt without these
corrections is goed considering the uncerfainty in estimating the elastic
'-modull for the precipitating phases. No attempt was made to correct for
changes 1ﬁ moduli of phases Wthh change compos1tlon at dlfferent aglng
temperatures.

The rollcd samples discussed above were not guenched after aging whlle

the swaged bars were and therefore the 7)0 C rolled sample value of 56 000
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psi is slightly larger than it would have been had the sample been gquenched
after aging. The effect of hardening during cooling from the aging tempera-
ture was markedly observéd on samples aged at 80060{ Samples of ailoy N
aged and relatively slowly cooled had a maximum hardness of RBBE while
those quenched after the aging treétment had a maximum hardness of RB69.
Also,‘since ﬁhe transformation is hard to control at high temperatures it
is probable that the peak of the yield versus aging time curve was not ’
attained exacfly for the 800°C sample of alloy 4 and this would explain
why the 800°C yield'stress.appears to.be low (cf. Fig. 6 and Table III).
Having considered both experimental and calculated results, it is now possible
to introduce new details iﬁvolved in the yield stresé of Cu-Ni-Fe and
‘oﬁher alloys.

Earlier in the discussion'it was shown that the volume fractions fi
and f2 do not greatly influence the yield stress for any one aging tempera-
ture if they are between certain critical limits, If the.compliances of
the two precipitated phases are the same, Eq.b(18) shows that £, and T,
are only'weighting:factors'which balance g proportionately tOw@rd éne cubic
parameter or the other. That is, if f. is large (phase one is'much thinner

2
than phase two), then 2 will be close to aéo. This means that there will
be very tittle elastic strain in phase two and a large amount of strain in
‘phase one. Thus, if one of the phases is much thinner than the other, the
strain in_it is much larger.and, consequently, the stress in it cbntributes
‘most to the increase in yield stress (cf. Eq. (26)). Equatibn (32) shows
that when the elastic compliances are the same in both phases, the yleld
stress does not depend greatly on which phase is highly stressed but depends

only on the sum of the strains in the two phases. Since the total strain

is dependent on ba the difference in cubic parameters of the extreme
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compositions, and Aao is independent of fl and fg, the yield stress is
relatively independgnt of flvand f2.

. When fl becomes smaller than the. critical value, as discussed in
» Seé. 1T, then the max imum yield stress will fall off linearly with volume
fraction (cf. Eq. (33)) until the strain fields are norlonger uniform.
Then the éhange with volume fraction will be more complicated. This is
the case for most precipitation hardeningvsystéms. It is clear from this
discussion that the equations derived in Séc. II give the maximum aftain-
able yield stress for any precipitation hardeﬁing system where coherency
strains are controlling because the yiéld stress does:noﬁ inc;eaée.after“
the critical volume fraction is. exceeded. | |

Tt was shown through Fig. 7 that the extreme compositions ofvthe

phases existing dﬁring the fransformatioh are not always given by the
equilibrium compositions of the phase diagram. The actual difference in
lattice parameter is usually soméwhat less than that given‘for équiiibrium
phases because the driving fofce of the reaction is nbt;sufficient to pro-
vide the strain energy needed for coherent eqﬁilibrium-composition plates.
Maﬁy miscibility gap systems, e.g., Au-Pt and Cu-Ni-Co;‘have'larger equili-
| bfium péfameter differences than Cu-Ni-Te and thus the strain energy can
become very large during the phase tranéfofmétion. Thevyield stress de-
termined for-Au;hO at.% Pt wag 110,000 psi for alloyé aged at 50060.15

o : * ‘
The equilibrium Ag is .115A vhich gives a computed yield of 266,000 psi.

X - -
Tt was observed for Cu-Ni-Fe slloys that a value of m = 2 could be used

to obtain the correct answer for the absolute yield stress when the.
equations for isotropic materials were used. - In the following, this
procedure is used in yield stress estimates for_systems other than

Cu-Ni-Fe.
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R. Carpenterl5 estimated that the actual Aad was about .029 in the grain
interiors of Au-Pt during the transformation which results in a more
reasonable yield stress of 69,000 psi. A value of Aao = .Ohé‘would give
the observed yileld. Another examole is provided by the hardness ihcrease
in Cu—Ni—Co.20 Contrary to Cu—Ni—Fe where the hardness rapidly reaches

a maximum with isothermai aging time and stays there, Cu-Ni-Co alloys show
a more usual age-hardening response by’elowly increasing to a maximum
ﬁardness and then overaging;zo The difference in lattice parameters'

(Aao = .058 at 6OO°C)20vof the twovphases in.equilibrium in Cu-Ni-Co is
about twice that for Cu-Ni-Fe and the strain energy is correspondingly much
larger. Since the‘big factor in the yield stress of ﬁheee alloys is Aao,
this must be the parameter that is changing dufing the leW’rise fo maii-
mum hardness which results in isotﬁermal aging of Cu-Ni-Co alloys. A
calculated value of the yield stress maximum for Cu-Ni-Co was lh0,000 psi'
using equilibrium ao's while a rough experimental value estimated from
‘hardness data was 120,000 psi.

.Because’the driving force is greater for alloys near the center of
the miscibility gap, the maximum yield stress will'probably'be greater
there due to the higher strains permisSible; Only in alloys like Cu-Ni-Fe
where the strains are relatively small willuthe yield stress be independent:
of the volume fractions of the precipitating phases between the critical
values. B

It was e; first thought that ordering of the eopper-poor phase

(Wi Fe) was partially responsible for the increase in yield of alloys 1-3

5
- after the 450°C treatments. Wakelin and Yates21 have shown that NiBFe with

up to four atomic percent oopper will order on slowly cooling from 510°C

to 400°Cc. Tt is difficult to prove the presence of order in Ni,Fe by
>
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x-ray or other techniques sp'it was not cerfain-that the copper-poor phasé
did order at 450°C. waéﬁer, the trend in the yiel& S£ress increase. indi-
cated by an order—strengthening theo‘rjrg-2 was not observed. Thatvis, the.'
increase in yield of the L450°C agedvalloys over tﬁose aged at 625°C did

| nét show a large dependence on‘volume fraction of the ordered phaselbut
instead exhibited a constant increase for all volume fractions (cf. Table
II). This constent iﬁcrease.is consistent with the predictions of the
present theory as is the calcuiated magnitudé of the Strength increase. ‘To
eliminate the complications of the ordéring phenomena, alloy 4 was aged at
temperatures above the ofdering temperature. Thé;yiéid stress data for
:alloy L fit the theory nicely and thérefofe it ig certain that tge yield
increase of alloys 1-3 aged at 4§O°C bver those aged at 625°C ié due to
increased cpherency'strains and is not due to ordering.. The strong.
possibility that ordering is occurring in the copper—poér phase at u5odc
suggests that ordering of lamellar precipifates does not cause large strength
incréases. Tt is well-known that materials which will order do not show'sig-"
nificant_differeﬁces in yield stress between the unordered;and the fully

ordered state.
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VI. CONCLUSIONS

1. Theory and experiment show that the yieldvstress of aged Cu-Ni-Fe
alloyé is nearly independent of the modﬁlaﬁion wavelength of the compoéition
fluctuations.

2. Theory and experimeﬁt show that the yield stress of aged Cu-Ni-Fe
alloys is not appreciably changed by variations in the volumé fractions of
the two components when the volume fractibns are between certain limits.

3, Theory and experiment show a direét proportionality between yield.
ctress and the difference in the cubic lattice parameters of the two ex-
treme compositions which are presenﬁiin aged Cu-Ni-Fe alloys.

- L4, It has been shéﬁn thatAthe strained coherent precipitates do not !
~ reach the compositions determined by the phase_diagram for low aging

temperaﬁures when strain énergy in the precipitates becomes significant.
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FIGURE CAPTIONS

Isothermal section for 600°C of the Cu-Ni-Fe phase diagram
show1ng the compos1tlons of alloys 1-L4 investigated in this

study. The portlon of the diagram near the iron corner is

omitted because it is irrelevant to the present investigation.

Dark fleld.electron micrograph of alloy 4 aged 20 minutes at
800°c. | | |
Model used to determine the stresses in coherent lamellar
plates. Front surface (Shaded) represents a plane cut through -
the lamella and the forcesfFXl and_FX2 represent replacements
for the cOnstraints which were removed by‘cutting. - |
Dlagram for determlnlng the shear stresses effective on the
slip plane due to coherency stresses in plates lying in the
-y plane. |
Measured yield stress vs. aging time at 625°C for alloy'2
Munbers in parenthesesare approx1mate modulation wavelengths
glven in numbers of. atomlc planes.
Measured yield stresses for alloys 1-3 (circles) and alloy 4

(trlangles) vs. difference in cubic lattice parameters of the

pre01p1tat1ng phases. Squares represent values calculated for

alloy L (E =2.5).

10 (copper—poor phase) and a20 (copper-rlch

phase) as a’ functlon of temperature are designated by squares

and. solid llnes. Values of'alo ‘and aEO calculated from tetra-

gonal data are given'byvcircles and dashed lines.
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TABLE I. CompOSitions of alloys 1-l with volume fractions"fl and £,

determined from the phase diagram. Copper-poor-phase is

indicated by subscript one..

Alloy e . Ni

Fe

1 2
1 | 5k L 36.7 8.9 .25 .75
2 41.8 1.8 13,k .50 .50
3 30.7.  52.5 16.8 . .68 .52
v s 35 15 3 .57

TABLE ITI. Measured and calculated yield stresses for alloys 1-3. Cal~
culated values in the columns with fi = 5.06»and_ﬁ'= 2.15 are
respectively for samples with randomly oriented grains and
for samples that have a preferred orientation of grains caused

by fabrication.

- Alloy Aging ~ Measured Calculated Yield Stresses

rew. el g05 F-em

1 625°Cc - 47,150 psi 5&,550 psi 49,100 psi

o 625°c  h7,150 52,270 47,040

3. 625°C 148,030 - 50, 740 45,670

1 ks0°¢c 63,820 - 71,280 64,640

o . Lsoc - 63,050 68,760 61,880

3 450°C  62,900 66,700 60,030
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TABLE III. Measured and calculated yleld stresses for alloy 4 Calcu=~

lated values in the columns with m= 3. 06 and m = 2.5 are
respectively for samples with randomly oriented gralns and
for samples that have a preferred orlentatlon of grains
caused by fabrication.

Alloy Aging Measured ~ Calculated Yield Stresses -
Temp. . Yield _ ~
© Stress = 5.06 _ m=2.5
I 800°c 29,500 psi 39,770 psi 32,490 psi
L 730°c k0,900 50,330 L1,120
L 625°¢C 53, 620 - 64,880 52,940
L 550°C 62,290 . 16,220 62,270

. TABLE IV. Elastic modulus ;and compllance data and estlmates used to com-

pute yield strengths of aged Cu-Ni-Fe alloys. References are
given by lower case latters. Data on lines 3 and 4 were used
for yield strength calculations of alloys: 1-3, lines 5 and 6
were used with alloy k.

Line Material Youﬁg's Modulus Elastic Compiiances lO_lecmg/dyne
107 pst 511 510 Spy o St Sie
1 Wickel  30* . .80 -31 o0.84% kg
2 Copper 17? o 1,&9' -.63 1.5d .86
3 65Ni-35Fe . o6% 925 -.358 .565
4 70Cu-30Ni 22° 1.150 -85 . .665
5  GONi-lOFe - os® 960 =370 .590
6 80Cu-20Mi - 21 est.  1.205 =510 695
a) Taylor, L., Editor, Metals Handbook (American Society for Metals,

b)

c)

Cleveland, Ohio, 1948) p.600.
Tbid., p. 906.
Ibid., p. 925.

Mason, Warren P., Physical Acoustics and the Properties of Solids -

(D. Van Nostrand Co., Inc., Princeton, N. J. 1958) p. 358.
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TABLE V. Equilibrium cubic lattice parameters determined from references
1 and 2 for alloys 1-3 and measured for alloy b, Equation (18)
was used to determine a.

Alloy = Aging Cu~-Poor Cu-Rich JAY:) Calculated

Temp. Prase a,,  Phase a,, © a
1 625°C  3.558 kx 5.577 kx L0190 kx  3.572 kx
2 €25°C  3.558 5. 577 5. 567
3 625°C  3.558 5{577 : 4 3.563
1 Ls50°C 3.555 - 3.580 . 025 5575
2 450°C 3,555 . 3.580 3. 566
3 b50°c  3.555° 3.580 ~ 3.562
y 800°C 5.579§' . '5.594§ L0154 ’5.587ﬁ
b 730°C  3.57k 3.597 .023 3.586
4

625°C © 3,570 - 3,600 ‘, . 030 3,585

TABLE VI. Tetragonal data from HargreaVes7 used to determine the cubic
: parameters of the precipitating phases. Values indicated by
asterisks were determined from the graph in Fig. 7. Equation
(22) was used to determine ajp and apg.

Aging ey Cu-Poor Cu-Rich  Calculated Values
Temp. Phase Phase ' A

. cl/a» c2/a %0 = %0 %
8oo°c _'.5.5865 © 0 .995 1,005 - - 5,578& 5.595§' .015ﬁ
730°CT 3586 3576 3.595  .019
650°C  3.586  .993 1.008 5,575 . 3.598  .023
62560*_ 3,586 ", L - 5;5757 _ 5.59_85 .025

550°C - 3.586 .91  © L.OI0  3.572  3.60L  .029
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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