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Parity of Fermions: Tests and Ambiguities
Janice Button-Shafer
Lawrence Radiation Laboratory

University of California
Berkeley, California

May 9, 1966
ABSTRACT

' Parity tests and ambiguities are discussed for fermion
interactions. These include decays iﬁto.spin-i/z and 55pin_-3/2

fermions, as well as v_fermi‘on production from a polarized target.

-Complete tests for the several-step decay of a high-spin férmation

" resonance are presented,
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Parity of Fermions: Tests and Ambiguities
Janice Button<Shafer

Lawrence Radiation Laboratory -
University of California
Berkeley, California

- May 9, 1966

This letter presents, through the use of invariance arguments, sim-
ple discussions of parity tests and of ambiguities in the following processes:
the strong decay of a2 fermion, FJ into a fermion Fi/Z plus a boson BO; the

strong decay of an F _ into an F3/2 plus a Bo; ‘and the production of an Fi/Z ,

J

» : . ' 1,2 Lo .
plus a Bo from a polarized target. Decay of a 'formation'' resonance

1@0 an 'F3/2 is treated extenswe'ly.

Decay into Fi/Z'  -- No parity information can be obtained from

the decay angular distribution of a spin-J fermion (FJ) that yields a spin-1/2
+) describing

decay of one parity must be 'mulfiplied by a pseudoscalar ~ G.Dp to
obtain the decay matrix (M) required for the opposite parity. (The operator
G is associated with the spin of the final Fi/Z’ and ﬁ is a unit vector along

the direction of decay momentum in F ' s rest f{rame.) Thus

g
M = G-p M. - (1)

The initial state is describable by a density matrix p;» SO normalized

that Tr p; = 1. The angular distributions for the two parities are
: . o
I+ Tr(M_i_ p; M+)
' (2)

. .‘ - -~ KA. S ) - -~ 2 ':" .
I =Tr{(o-p M) py (M! G-p)] =Tr[(G-p)"Myp, M;].

PSRN
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‘Since (5-. ﬁ) =1, thc. Mand M _ transformatxons are here 1nd1st1ngu1shable. 3 S

The polanzahon of the outgomg ]' /2 is found by evaluatmg

or, for the opp051te pa.r1ty,

f’ = Tr[0(C-p M_*_piM_.!; 5’-13)] . | : (4)

B By derfinition, '. M, p, M ‘or Pgy Must equal -%-1(1 +i5+- o .);4-' thus.

up_=a.13<f>+.a)a-§. | N

But i 0- p is the same as the 'rotat_ion operator R(w) = exp(i 0+p n/2);

hence Eq. (5) may be wr1tten , o e

B_=R(m [P -6]_3;1(17). e

,

The F 1/2 'vector polarizations for the two decay parities thus differ by a

' . rotation of 180 deg about 13 _5 . _ ' ' T ' »

Decay mto F3/2. -- The angular d1str1but1on for decay of an FJ mto

F3/2 is not par1ty-art1b1guoes in the same seese as that for decay_mto 1?‘1/2.' o

However, a parity determination from the angular distribution alone is ‘some-
times impossible,
Two orbital angular 'momenta are:possible for each pa.rity in the

strong decay into an F3/2' £, =17 - 3/2 aﬁd 2l =T+ 1/2 or£_=J-1/2 and

£+ = J+ 3/2. 6 If the trans1t10n matnces a.re separated mto lower and h1gher

Z—wave contr1but10ns 77Z andc)?L , they are related by7
) £ — 1' o .'; . ' .
.37'2_ .+9i(f -eT10<}4++fT30T20 %z I U

(The T are spin- 3/2 operatdrs expressed in the he11c1ty system, with

Lo

T, < S =S-p. 'The e and f are complex numbers, Cf. Eqs. (3) and

10

| o
(5) of Ref 7 ) Neither of the "parity operators" T, or T30T20 . is unitary,

LI

‘as is O- p for sp1n 1/2

1P, Tr(cpf+) = Tr[a’(M+p M+)] . (3')_ a

oo
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. - 0.4 0 of gt 0 3 0 of . .
| T, i TyeTyg .8
10 0 0-14 of " ¢ 30720 . 0 0-3 0 .-),
. 0 0 0 -3 0.0 0 -1
i Thus,v in general, the angular distribu/tion ' o ,I s .
_ ol ot A ¥ ' y . .
r=Tr (77490 ) o, 0 4907 )T /T, N

. differs fer even and odci pa.rities.8 ‘
| r’Although the angular -distribution does not involve a Mihemi-fy;;)e '_
ambig'uity, it does not yiéld enough informatidri to determine the FJ Ia'eri'ty
(as well as two part1a1 amphtudes) if Jis <5/2. I
.' Neither of the (non- umtary) parxty operators can be equwalent to a ?1  =
retatlpn ope?ator.that acts on 33/2 polarlzatxon.9 T o : |

Parity Tests for Fo-mation Resonances. --Decays of fermions into

“an F3/2 have recently been analyzed in "formation" experiﬁehﬁe. 10 . The - ‘
two tests utilized may be considerably extended. E
" The process to be discussed is
(1), (2) B R
¥ ——n . . o S 10) -
I (s) 3/2 - Tz Wy /e e

. A spinless boson is understood to accompany each final fermion, The
numbers indicate the step of decay; the le"tters the étredgth of decay. - K The'

i

, decay of ‘a; final-state resonance FJ in th1s sequence. has been treated
theoretmally, ‘with and vuthout the use of TLM spin operators.. T 11

A brief dxscus sion of the T tensors4will be helpful. These are 'of

LM

great utlhty for spin- -state descr1pt1on, as they make p0551b1e the formulatlon
“of a complete set of mdependent bpm-parlty tests. Each (TLM) characterlzmg a

particle's state.,combmes with a - (9 $) or a BMM' (9,

8, 0) in its decay o «
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distribution.

A system of spin J re_quires'(ZJ+1)2 parameters for the
description of its spin state. For an.F3/2, the normalization and vector -
= (Iy, (T iO> ® (S, ), ctc.) plus twelve additional

Y)' ° ’\)a

PR/ 3 .
{T55) = ((SX'I'ISY) »>and (T,o) &< (S ...} --are reqm;‘e_d. Thé <T2M>’ »

polarization terms (<T00>

quantities-—suciu as <T,20> loet <3 SS - SZ>, <T21> o« <Sz(s +i8

x

which are second-rank tensor polarizations, correspond to alignment of

spin.. They are quantities similar to moments of inertia or to the nuclear

{

eclectric quadrupole moment. .
For the "formation resonance'' produced from a BO + Fi/Z system,.
~angular-momentum conservation in production permits only even-L, M =0
(T Y if the incident-beam direction is the z a>xis.‘l13 (Only the m, = & 1

LM _ _ J A
spin states are occupied.)

The derivations of Ref. 7 may be readily extended to treat the

£ e ) P 5 an o w g, —_ . i ‘1 . . ‘ Y .
formation resonance. The 1mt1a1l ‘ <TLM,> = tLM and thc; nehc;ty.a*nphtudesr
AK [ contained in {-}/\/ » Eq. (7)] are used to form the density matrix for the

outgoing spin-3/2 particle: »

. o 274 | |
- _ B e ) (2)\) . » L
L.p(3/2)]>\>\: Awa : Z ST tr o 0, N=\! (0,0, 0). . (11)v
L L | ‘ | :
e
where Le is even. The ngk)z. . quantities each contain a Clebsch-Gordan .

coefficient; they may be expressed in terms of 'nI(_‘O) - by use of recursion

" relations., o . . ) : )
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For initial spin J = 5/2,.

[ 2a+Bc 0 0 0"
., 2 o -
- _ 1 0 Nba-2¢ 0 0
AL =) _ . _ R
{ 0 N6a-2¢ 0
- Lo o - 0 2a+\bed
y 23b+2d 0 0 0
2 , :
A=l 0 N2b-283d 0 ‘ 0
- a8 o 0 N 2b+2v3d 0 b
o 0 0 ’-zd’éb-\/’?_dj
12y
here a, b, ¢, and d designate the p- through g-wé.ve arﬁplitudes. For a
formation resonance of spin 5/2’,
+ L= \0- = 0.4 ..
LOO i.QQO, tZO v Or 47 8;
. ) i B (13) -
t, = 0.309 all other t_, = 0, % ‘ ‘
40 " oYl AR OMET trm T
The angular distribution for decay (1) is [Tr P being 1] "7
4 | , |
N0 =TT e = Z  Cptrg Ypo®), (14)

e

. v )
L . . 2
where each CL is a function of [a]|

. . 2 Re b¥™d. With the three C

) ICIZ, and 2 Re a™c or ]blz, ‘deZ, and

L

amplitude solutions can be found for either parity.

frc;m I( 9)> data of 2 J = 5/2 formation _I;es.onanée,
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P It sor;me estimate of lc[ (or-ld%) relative to la[ (or 1b{) can be

made, however, a parity determina‘cibn may be possible. Equation (16) of Ref, 7

with ¢, d = 0 and | J = 5/2 yields the production distributions presentea
by Minami:ié’ 17
I1.(0)= (-1,/2)[1;+ 0.800 Pz(cos_o)] : o (45)
I_(0)= (1/2)[1 + 0.409 P,(cos 0) - 0.976 P,(cos 0)]. (16)

- Decay (2) can be analyzed for FJ parity information. The distribution

of ‘%1/2 (in F3/2‘ s -rest-frafne) . f‘3/2 (in the resonan'c‘e rest frame) will have
. 18
the form o

2109 = 1(0) [ - (T,0) (V5 Pylcosw)] (17).
with cosw = I::i/z . £‘3/2. - " If the 6‘ of decay (1) and the highe? g' wave are
ignored [Egs. (22) and (23) of Ref. 7]: .

Q!

(U) = {1 + [(23-3)/473] P2<cos¢>‘}'

| (18)
f_),’__(xp),a' {1 - [(27+5)/(43+4)] Pz.(c.oékp)};
for J = 5/2 these equa’cic‘nqs‘,‘a:r.e_;19 .’ | |
Z;m « [1+ O-ZOO'P'Z] and. i’_(up) < [1-0.714 P,] . o (19)

Transforxﬁationé of (T.. along £ to (T along other axes give
e -\t 2m/ BTORE F3/2 F9 (20 &

different PZ coefficients. 0 With the incident beam as polar axis, these are

0.800 and -0.114 for even and odd parity, respectively. 19 With the,production

normal as polar axis, these coefficients become -0.700 and 0.786 for even

and odd pz‘lrity.._zl1 (Some caution should be exercised in interpreting average - .

o
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'F3/Z alignment if the formation resozuapce has any background.) A complete
analysis is of course unaffected by-the choice of coordinates.

Complete Parity Tests for FJ (formation) — F3/2 . --The above tests

[Egs. (14) and (19)] treat only two 'profiles' of a probability distribution.

A complete analysis of the distribution involves the full examination of

decay (2) for cach @ interval in decay (1).
The following [from Eq. (19), Ref. 7] give the expected G-dependence

; : . 2 )
of the -F3/2‘ s (real) second-rank tensor polarizations. 22 [The first- and

third-rank polarizations are not observable in'decay (Z).] -

27-1 o |
KT, ;z&[pw/mTZO]=Zwu/5ﬁ/2 }: [ZAéaéi%iZAi pg%]tLOYLﬂe)
: . . . Le N 3 .
| | 27-1 | |
T,y = 2ne/5Y? Y g Ay -a_at ) aBe D 0,6,0)
o T -0 o
2t S
KT,,) = 2n(2/5)"/? Z (A AL A A n(zi)z t1o Dgz (0,0, 0) |
'_Le | . (20)
KT, o =7 KT, o (™ (Tg ) -

For J = 5/2, the first of thes¢ bécomes
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{T,o = . |
? 7 - SA;S/[(Za +3c2 4 7\/" 6 Re ac)(1-L[ L+1]/8)-(3a%+ 2¢%- 248 Re 2" c)] (1/5)
SAR :c i[()bz +a%+ 286 Re b’ a1 [L+1]/8) - (b ,féa - 288 Re b™a)]( 1/7)
- | 21y
X fg 10 ¥po @) - |
In these cquations, almplit:ldesJ have been abbrévi‘ated (A3 instead of A3/2,

and AZ instead of !Alz); and Dé"\A‘has replaced [(2L+1 /477] i/zﬁ/LM, .

The analysis of the above tensor polarlaamons may be made by com-

. s e 7
paring the data with

Q0; b7y = (4/4%) 1(0) {1 - (T, 0 V3 (3 cosu-1)/2

s2(15/2)1/2 Re (T, ,) (0) cosfsindcosy - (15/2)/2
B (22)

..(15/2)1/2 Re<T22>(0)cos 2¢ sin?an }.

Histograms o f (0) anci I <T2 §(6) may be compared \Vluh the -ollowmg ex-

\

2
Z 9L LO( ) (4m) Y
L

pressions:

KT20 ) = > LO(@)LM/Z
Y o |
KT, (6) = Z o Dé"i(o 6,0) = ) g Yy ,(0,0)( )1/2 (23)
Le IT"e E
I(Tzé)(e') = Z vl Dy, (0,6,0)= }: v ¥,,(6,0) (am /2,
' L : Lo
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The coefficients (.)'L,.‘ 1 My @ d 189 depend on spin parlty and amplitudes
They are given in Table I for J = 5/2 decay with the higher 4! amplitude
neglected. Figure 4 displays I(T,,)(6) and 1(1‘22}‘(0),
After analyzing the data for the I<T~Zm> (6), one may evaluate parity

(and spin) by taking a ratio of certain moments. The following is valid

with any amount of higher ™ ¢' wave:

r—“‘ ] . B 'L‘:j: . L:{:
I(T,,) moment/I(T, ) moment =(T,,) D 02/ {T5 Doy )

[

T(I+3/[ (L2 (L-1)] 7, | (24)

where I' = +1 or -1 for "even' (3/27, 5/2.+, etc.) or "odd'" parity, respec-
tively. © [Eq. (24) is similar to Eq. (31) of Ref. 7.] If J = 5/2, two in-
dependent tests are possible (for L = 2 and L = 4). ‘

3

Parity tests may be possible in decay (3) of the formation-resonance

decay scheme. The odd-£ polarizations resulting from the formation-

™)

‘esonance decay, FJ - F3/2, are

YTio) = XT3q) =KTa3) =0
Loz f e (3) . L
- e = 2= = " b —
1(1“> (_Z/m) % (A1A3 A_3A_.1)«/—3 ary tio D01(Q, 8, 0)
’ e . ) ) . .
- : 23-1 . |
1/2 5 =L (3) L .
T = 4w _ .
I(T,,) = 4n(1/35) g (-AgAg+ A A ) npy ty 6 DY (0,0,0)
| e Co ' (25)
| 23-1 o
~ - 1/2 . :{:. sk (3) ) L
KTgp) = 2w2/1)7 % (A_ya5 - A A nC) e DY (0,0,0).

These reduce fo expressions proportional toIma ¢ or Im b  d. A ratio of
i

| an I<T32> momgntx(foz' L=2, 4---) to either an I<Tii> vor én I(T31> moment -

may yield parity (and spin) information.
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The [(T,, ) of Eq. (25) may be analyzed by determining the polariza-
tion of F.i/z-from thg angular distribution of i‘gs weak decay, See Eq. (27) of
Ref, 7 (of Addendum to I.J'CI’\I_,—’.'L{)SS?.)24 !

.In corvxclusion,’v;the follgwing can be said about FJ - F3/2 decayf
1) A “iormation' resonance generally yields consi_dérabl_y less spini—parity
inforn’ia‘cion. than a ”fi.nal-s_tate” resonémce.
2) Parity cannot bvc; tested in (formation) decay (1) if the higher £ wave is
taken into account and if J & 5/2. |

3) Parity analysis does not require initial-state vector polarization; F,J

“alignment yields an excellent test in the strong decay (2) (even with higher 2

'

wave),
A

4) Spin—oarify information may be obtained from the weak decay (3), especially

for the final-state resonrance.

4y

5) I complet‘e angular dependences of decay are investigated, the spin-
parity conclusions cannot be affected by the choice'of‘coordinate systemo.

The above ;iescr_iption"s aré complete and are felitivistié. For a
more extensive discussion, see Ref. 24.

F’/Z production from a polarized target. --Invariance arguments may

be used to determine parity effects in the distribution and polarization of an .
Fi/Z from a polarized F’i/z in the process.

-+ ! | 5 — ! . 26
BOY Fi/Z (polarlz¢d) BO + Fi/Z' ( )5

y
A simple treatment may be made in analogy to the above discussion of the

: dec.ay.r 7 Fi/Z"

v

The transition matrix for the process of E.q. (26) is

°

M,=g+h G -n, ’ ' (27)

!
O
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-~ C i R i .
(where n is the normal to the production plane and g and h are complex

L

amplitudes) if the intrinsic parity P(Fi/7) is even relative to
P ™
(Bg)

Yparity operator' C- k changes M, to a pseudoscalar form:

N ) ! v s . . . i .
X P(F'i/z) X P(BO ). If the parity P(Fi/z)ls .relatively odd, then a

~

M =(z+h G-n)&- k). (28)

The vector k may be any combination of initial and final momenta in the c.m.

~

irame.

‘The angular distribution of the outgoing Fi/Z is, with Pt defined as -

target polarization and cosé = fi. ISL/Pt,
. A L
1

) = Tr [ ol B . sMmi
I,(6) =Tr[M, 5 (1+P. 0)M]]

+ }hviz + 2 Re 'gf::h Pt cgscfb.

= g

In a separate experiment that prodgces. Fi/z from an unpolgrized target, thfa

cross section IO and polarization IOP}?O are found. Thus Eq. (29) may be

rewritten:

'I+(CE>) = I,(1 + Py P, coso). : ' : (30)

If the relative Fi/Z parity is odd rather than even, the é.ngular dis -
‘tribution becomes

I (&) =Tr{M, O . "o,

.1 mT ) | ’ :
el s + ; Ok ML | (31)

but as discussed above, [Egs. (5,6)], i &k = Rk () and thus

'1_(¢>) = Tl‘{M+[R(w) o; R‘_i(w)ij}; S | | (32)

This means that the P, in the initial density matrix will appear to be rotated =~
: . .

(directed along -z instead of +z). The differential cross section becomes

I_(d) =1I4(1 - PFQ P, cosd). ~. o ' (33)
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[We check that PFO has not -changéd: IPFO-— = Tr(§‘~ HM‘_{_ G % —;‘5‘- k M_L) =2 Re g*h, ] |
Evidently the relative parity of Fi/Z. will be manifested in the sign of the cos¢
- 26 : .
Cterm. - . . A J

The polarization of the outgoing F'i/Z from a polarized target depends

on its relative parity. If events are selected so that the scattering normal is

parallel to Pt’ then for even parity

— ~ ~ : o~ 1 oo
. == . = r I
.1 PE‘ Pt = I PF z ’L[oz M+Z (4 + Ptoz}M+]
(34)
= IpPro TR
for odd parity,
1B P o= f ._.“: 1 4 ‘; oy ¥
IPL Py =Tr[o,M, 0k (14 Ptcrz)ﬁc k M! ]
(35)
= IO(PF‘O - Pt)'

‘Again the parity operator is equivalent to a rotation.of the initial density
matrix; and this rotation causes a sign change in Pt.' Thus Egs. (34) and

(35) yield a further test for the F1'/2 parity..
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on Recently Discovered Resonant Particles, June 1965 (Ohio Univel's'ity

Physics Dept., 1966);and R. Armenteros, M. Ferro-Luzzi, D. W. G. Leith,

R. Levi-Setti, A. Minten, R. D. Tripp, H. Filthuth, V. Hepp, E. Kluge,

H. Schneider, R. Barloutaud, P. 'Gr'anet, J. Meyer, J.-P. Porte, Phys.

w

Letters 19, 338 (1963).
A brief'reanalysis of CERN (Armenteros et al.) data has recently

appeared; this takes account of higher £ waves for just the two distributions

exar mined by e\Derlmenters. [G. F. Wolters and D. J. Holthuizen, Phys.

Let.ter_s 19, /Oi (1906)].
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18. .The. customary' Byers-Fenster distribution for decay into Fi/Z yields
the expression in brackets. Here the notation <Tﬁm> is reserved for
'F3/2 and t for ¥

LM J University of Illinois preprmt,
19. Ci. J. D. Jackson /Partlcle and Polari léo.t.lOfl Annular Dlstrlbutlons for

Two- and Three-Body Decays, prepared d for Les Fouchus Ecme ar £té,

~

July-August, 1965. C. Zemach also presents the ki/?f FB/Z distribution (Ref 5).
. } . . ) . ! 1 Q”L '
2 el n e - 3 I I B,
0. The TJJ\/ transform according to R T_L.L\[L Z M V(O' B \{)T

where R. is the rotation operator and a, B, and y are the Euler angles.

M’

) | ~ o s
21, A simple method is to retain the usual z = F3/2 representation and to
] .

calculate the expectation value, Tr] p(B/Z)TZO]’ of Tzo(ﬁ) = TZO(;f) =

il

1 0 1 0 -3

(1/373)(352-5%) = )
o V> ~3 0o 1 0

0 ~3 0 -1

2

Alignment along the normal was f{irst calculated by R. Barloutaud and

R. D. Tripp and was presented in Armenteros et al., Ref. 17.

(3) (3) (3)
Lo’ Dprir andns

23. The Ymoment't of 2 distribution is defined as the coefficient of some

22. Then follow from Eqgs. (43), (45), and (46) of Ref. 7.
orthonormal function. -

24. Janice Button-Shafer, Parity of Fermions: Tests and Ambiguitieé,
Lawrence Rédiatio;l Laboratory Report Addendum to UCRL-16857,
(unpublished). | |

25, .Thésé have been discus’s'ed with differenf language by.S. M.v Bilenky,
Nuovo Cimento _f_O_, 1049 (1958), and A. ‘Bohr, Nﬁcl. Phys. 10, 486 (1959).

26. One could also write M_ = (0- k)(g + h(—)‘-_;.). The fact that ¢+ k precedes

M“r causes I to have the same form as I,, but "rotates' P to -2 Re g"h/Io;

FO

actually redefining M_ has changed the sign of h. = Equation 33 again is obtained.
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J=5/2, lo‘\;/e‘r 7 wave oniy [Eq. (23)].

OIJ:

Even Parity

L

By,

10.500

0.179

, 0,00Q“

-0,0446

- =0,0574

1-0.0765

0.000

0.0685

0.0700"

" 0dd Parity

OIJ,

Ty,

P

0.500

00,0914

. -0.163

¢

0.159

0.0081

' -0.0911

- 0.000
0.0488

0.0500 .-

0,000
Co0.0732 .

S 0.0352




‘_.relatlve to the 1nc1dent beam. The labels 1nd1cate JP (parity reiative

-each J = 5/2 curve, For J =3/2"7, = 0.100 and v,
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Tensor polamzat\mn components of FS/Z resultmg from the decay

(formatlon resonance) - I“3/2‘ ‘I‘he angle 0 is that of the F3/2

The ratio of each I T moment to the correspondmg T moment
22 21

', ylelds (J+-—)(-)P.' (See Table I for the two coefficients or moments .of’

5 = -0.100; for’
= 3/2 )y Py F 0.060 and V'Z = 0-06_0‘)
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! ADDENDUM S
The foilowin‘g rép-res‘,ehts additional explanations of material in the

*text.,” New equations and new footnotes are labelled by lette_r_sv;'l

Page 2:
Two orbital angular rmomenta:'are possible for each parity-in the

strong decay of a fermion (with spin 3.3_/2) into an F3/2 plus BO‘I:

£, =3 -3/2and £} =7J+1/2, or £_ =J-1/2and ®' = J +_3/2.,6 If only
the lowef waves, .é+ and Z_, are cdnsidered, there is a sifnple relatiohship
between the transifio.n mafrices for the two parities of decay. Tht;, "pari’ty'
operator" in this case is S. .ﬁ,‘ where S_» Sy’ and 5, are the usual spin-3/2
operators and 5 fhe direction of decay momentum. With the initial density
matrix given by p; (no?:malized kso that Tr P = 1) and the "plus -parity"'h _
' transition matrix represented by %_’_, the angular distribution of the declvay -
FJ - F3/2. (plubs parity) is | ‘ _
| I, =Tr W e ML) @
if the_lhigher!" ‘waves are neglected, .%_ o (go'.fi)‘z’?_l~ and the angular dis-
tribution for the deéay of opposite parity is o -
IeTr (3P m ity ®)
Unlike the case for a final Fi/Z’ the parity operator felated to‘ the F3/2
system is not proportional to the identity when squared,’ (This caﬁ be seen
by squaring the S1 matricgs given in Schiff™ or the sz matrices given in

Ref," 7.) In fact, with 13 considered the z axis, S L.

65 =

o O O W
o O =» O
1
-
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Thus the angular dlstrlbutlons for oppo‘nte parltlcs, I+ and I., differ from |
e.ach other if higher .E' waves are neglected,’
The inclusion of the higher waves requires closer éxamination of the
transition matrices. With the spherical tensors TiM’ TZM’ -and T3M
serving as spin operators in the spin-3/2 space, tlile transition matrix may

bc written (in the helicity system) as follows for each parity: [

A=t Lt
with ‘}nz=cc 97z£-£ HT =fHT, ;
| 20720 20"
_ w
or* Vi _=g'GTiopio:gGT10’

S
DN =B HT  py = RHT,.

Here 2, f, g, and h are complex nunbc s, and G and H are (real) chv agonal

matrices in spin space. The Py, 2re components of spherical‘tensors

. c':onstruct-ed from p (defined as z). The .above are the forms demanded by

invariance principles.. | .
The% for lower £ waves have been dlscusscd above, wherc it was‘

noted .,nav?/'l OC/IZ+S p (or ?724_ 10 The 9)'2 for the hzghcr waves are

also simply related:

{1 0 0 0

3.0 0

Y e,

M =N’ 977+ /N | o 1 ol (8)
0 0 -1 |

The contridbution to the negative-parity distribution made by the higher wave

. R
calone is (p,

representing p, rotated to helicity axes)
i - > 1 - i

£ _ 2 I . A .
I =TTy Tsp) )m P T] o (%a)
% . 1y T
- Note in proof: It would be better form to write the 5. or 'I‘20'1T30(=T30T201)

s

e . . . q A .
ity operator before th e)/(.’ but since /7] . is diagonal here, the notation

go]
)

‘

used is equivalent,
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obvxously this is dlfferent from ' ' : 1
: Z' . . - - _ K
= Tx07, p% f R

(However, the contribution from the interference of lower and higher £ waves . -

B

is similar for the two parity cases.)

It follows that the Fj -

I+ and I_, are generally distinguishable.

F3/2 angular distributions of opposite parity,
8,0

The inclusion of both orbital angular momenta in strong decay intro-

duces a new ambiguity into a parity determination from the angular distribu-
tion of FJ - F3/2. The two complex.amplitudes represent three ixxdepexxdcnt

real parameters that must be exira cﬁgd from the data, Whe‘h ox.xly-the polar

angle 0 is observable (a.s in the "decay' of a fo-rmation ‘resonance)»‘,".,\the spin |

. ) \\\
J of the resonance must be > 5/2 if parity discrimination is to 'Qé made.
N

-

J

' 4
"parity operator(s)" on polarization components. Is it possible that the

\
F3/2, the question arises as to the effect of the

N,

For the decay F

p or the T -1 TBO operator is equivalent to a rotation operator, in analogy

to the ¢+ p of Eq. (5)? The operator for rotation of the _spin-—3/2 system
through angle ¢ about p (or Z) is

Rp(¢) = e

and on expansion of the exponential, one obtains higher powers of Sz which

9

lgo p('}) = ei‘SZé ; = ™~ (d)

do not reduce as in the case of the spin-1/2 system, This rotation operator

*~

does not reduce (nor does any other) to the S¢p '"parity operator' for the

lower £ waves or to the TZO V3 parity operator for the higher £' waves.

)
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Page 4: |
| The <TZM) vare'quantities sinﬁilar to mqments of inertia in mechaniés
problems. A familiar nuclear-physvicé analc}o.for <T20> is the electric
ciuadr_upolé moment Q,,, defined as fl Y,0(0) p(r) dr, with p'(;) the
nuclear charge dc;néity. [lThe decay distribution I(O) yields'
(T & f Y50 (0) 1(0) d2.] The - <T20) multipole paramgter represcnts
the polar spin alignment; (T22>, the azimuthal alignment;.and(TZi) y @
combination of polar and azixﬁuthél alignmen:. | |

For the "formation resonance' produced from a BO + Pi/@ system,

angular-momentum conservation in production permits only even -L, M = 0

if the incident-beam direction is the z axis, 13 As only the

(T
my = +1 and -4 spin states are occupied, the densﬁ:) matrix describing the
resonance has the simple form

[p]x }—[p] %-=1/2, T (e)

all other [p] = 0.

m, m'
It follows that the only nonzero polarization parameters describing the
. ' 14 .
" 1 ) p
resonant state are the '"alignment' terms (TZO) » (Typ)» <T60>’ etc,

Note: The n " of Eq, (11) are expressible as functlons of

L,\- .\'

n o= (7" Y2 re0)/anl Y2 CUIIL 1/2, -1/2). See Ref. 7, Appendix IL

B SIoh
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The angular distribution for decay (1) isfai.'-s(' R - B - .
I(_O).= Tr P(3/2) = Z C‘I’_,v'-tI'_,O YLO (6) o (14) g
’ chcn~ . : S o
where, for even parity,
2.2 1
CO = 2n{a"4c )no(o)
- T 7a2%45.5c2 3WE Re a”ey nll) .
CZ—.-:,;(?a +5.5c-3N6 Rga c) nyy ‘ : .(f)
o . 2 na. ¥ (1)
C4—'5‘(—3C —iCﬂ:"‘\.\;‘c. C)néo_‘
and, for odd par‘ity,
Co = 2 (b% + %) (()10) - e
CZ:_/(Sb +125d -3\/”6Re bd)n“) (g

C4ff7r-(-16b2+9d -10\[_Reba)n(i).v

With the three C from 1(6) data, both Egs. (f); and (g) owill generally .
be soluble. Honce, no determination of par1ty can be made frc*m just I(f)) for

a J = 5/2 formation resonance.,

Ardmne
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5 Page 8 S o L | g PR e
For J = 5/2 Eq. (20) becomes o IR o s ; : B :

| ',\[' .i_v [(Za 243c2 4208 Re a c)[i L(L+1)/8] (3a%42¢ -2\’— Re a c)](1/5)1 R

(2n/NG |

__( ’T/_ ) = [(6b2+d2+2'\]_ RP b d)[1 L(L+1)/8] (b +6d 2\13 Re b d)](1/7) J
(1) | L

'< nLO Lo LO(G) S (21,),

T2 =

4

. (-NBa +r\/6c -Re a c)(1/5) | 1/2 R
(1) ‘!. |
(w/NB) ) [L(L+1) t (0 0 0) o
| “/; % ( \/ b2 NBa%+5 Re b d)(1/7) ] ‘ TLO Lo Dot ERU

22) = IR ,} : o "f;v . h
4
S (- J‘a +\/_€c -R4= a c)(1/5)
w/\B) }:
’ I sz \/"d —5Re b d)(1/7) | e

,t

I(T |
i

(in/z) [VL(.L+1)/“'(L-I-.2)(L..1)] /2

| (), pL |
P X"Lofro P 02(0:6: 0).

' We note that the abov:. are all real functlons. {In these 'equa.tions, arnplitudes IR

have been abbrev1ated (A 1nstead of A3/2, and AZ instead of ]A] ), and

oL 1/2 B I
DMt Ahas replaced [(2L+1)/4 ] / 801\/1" | ‘ o : R

N
ot
L
.
. '[
il A
i
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Page 9: _ : " -

After the cAo‘efficientvs of the Y and C, functions in Eq. (22) have been |
determined from the data as f\..mctions of 0, "moments" of the I(A) and
KT n> (0) distributions can be found and checked'égainst values predicted
for férmation-resonance d.ecay. P Alt(—:_rnatively, the data n"xay.bé directly
compared with the predicted function 2 (0,4, Q throughout the 0-{- g‘. space,
(Predictions for 3 will of course depend on spin, parit*, and a, assump-
" tions. ) | ‘ |

For J = 5/2 Eq. (25) becomes

/52 i m 28 ) NTEE i)t DF (0,0, 0

(T, ) =
' 1/2 G -l o
YT, = n(z/zs)'/ iIm {52 §) ZE NTITT) Lg tLo Oi(o 0,0)  (n)
e
YT,y = T (3+4/2) n(1/nm/2 i Im{2:S)

X Z L(L+1)/(L+2)(L- 1)]1/2 ngg t; o D3 (0,0, 0),

where T' is the parity parameter defined as aboye. Evidently a raiio of an
T N e { ': 2 or &)+ 1+1 ‘3 \ e n
KT 3, moraent (for L ....o‘ ) to enheri_an I.<T'1:‘.») moraent or an <T31>

moment may yield parity (and s»in) information,

A

The YT of Eq. (h) may be analyzed by determining the polarization

£m> _
of Fli/Z from the angular distribution of decay:

{

A,/ ed
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>~

9Py, - @n" Y21 (0,896 Tm (T, im Yy, (00
- 2,68 [Im (Ty,) Im Yy (b 0) + Im (T3p) Im Y5 (. D]}

2 (B

"m

t4+iPey') = ay (Q;ﬁ)“i/z I {1.27iIm (T,,) [Di1 (€, , 0) (@)
"+ pt PP 0)] - 1.55i Im (T31) “(Q 4,0) + D> 1(C.. ¢, 0)]

. 3 3 : N
+ilm <T32> [DZ‘l(C" g, 0) - D-Z, 1(&:‘4’50)] }' ’ A
i ' N
where yis:+1 or -1 in accordance with the FB/Z_Fi/Z relative parity. 4

These Fi/z polarization components are readily found, as functions of & =

.

and §; for example,

SRR = /4N L BF) 0

12

.where a is the usual asymmetry parameter in F'I/Z decay; p is the decay

momentum in the 17‘1/2 rest frame; and the sum is taken over all events with

-~

F

1/2 at some particular 4, ¢ orientation. (See Ref. 7 for explanation of

axes x' and y'.)

Moments of the I and I<T2m> distributions provide information on-

lei?

higher £!' wave contribution is significant in FJ decay. Examination of the

(d * : '
and 2 Re a ¢ (or ]d}z and 2 Re b :d) and thus may indicate whether the

Ima corImb dterms of the Eq. (h) distributions may also nelp to establish
the contribution of the higher £' wave. However, even without xnowleage of
the relative f-wave contributions, the L = 2, 4,.+..(2J-1) moments of the

and ibly of ¢t - ive '
I (sz) possibly of the I<T1m) and I(T3m) may give an answer for the

parity of the forrhation resonance,

A

*kim
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Page 10 o U

Relativistic considerations. --The descriptions above are relativistic::;iilyf".

correct, although they utilize three-vectof lang'qage. Each density matrix
describes -a pal.'ticl'e in its rest frame; 'and helicity amplitudes zvire.' invé.riant
under fransformatioﬁ to a resf ﬁ'ame; In Athe application of the fb_rmalism,
the usual rules must be followed: transformations must be made from the
c.m, to each rest fram¢ (in the reaction sequence), and mor.nentumv vectors
in each frame must be referred fo axes prescribed by the “direct Lorentz

transformation, ' (See H, P. Stapp. r)
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FOQTNOTES AND REFERENCES B

m. L, I. Schiff, Quantum Mechanics, McGraw-Hill Book Co., %855 (p, 4463,

n. The rotation-function part of the transition matrix {the ﬁ(r, R

7] M

independent. The coefficients e, f, g, and h are proportional to a,

= A)\[ (27 +1)/47] 1/2@"1\4)\}“(6}),9, 0)} is here ignored; it is parity-

amplitudes. The elements of G and H depend on J. : Y ‘ it
o. There is one vspecial case when I and I_are indistinguishable: when

the spin J and the partial amphtudes are such that ]g] G /3 = ]h] H2/7,

the ?77 anda/l give incoherent contributions proportlonal to the
identity (and an interference term proportional to TZO)' )

p. The "moment! of a distribution is defined as the coefficient of some
orthonormal funct1o_n; e.g., _<(Tlm> YLM> is the YLM moment Qf the

KT, ) distribution.

' q. The value of y is +1 if the relative parity demands £ = J- 1 in F3/2
decay and is -1 if the parity demands 2= Jt+i, ‘
r. H. P. Stapp, University of California Radiation Laboratory Repo'rt

No. UCRL-8096, 1957 (unpublished),
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