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DETERMINATION OF THE NEUTRON-NEUTRON SCATTERING LENGTH* 

Edward Shield 

Lawrence Radiation Laboratory 
University of California 
Berkeley, California 

ABSTRACT 

Measurements on the reaction T(d,He 3 )2n at 32.7 MeV incident 

deuteron energy have been used to determine the n-n scattering length. 

Watson's theory of final state interactions provides a theory with 

which the experimental data giving the number of He 3  at 6 and 8 deg versus 

energy can be compared. Comparison is made with numbers of He 3  near the 

maximum energy in which case the neutrons go off with little relative 

energy under the influence of a final state s-wave interaction. The 

best fit of the data to theory gives a nn  = - 16.1 ± 0,1 F. The applic-

ability of this method is proved by measurements on the reaction 

He3 (d,T)2p which givel. a value for a equal to the accepted value
pp  

within the experimental errors. Comparisons of results with other 

measurements of a 
nn 

 are given. 



action calculational methods now available. These are .potentii models 

alculated from field theoretical treatments of particle exchanges, e.g., 

t, p, etc. and the construction of scattering amplitudes using dispersion 

theory. 

The application of final state.iiteraction theory for the accurate 

determination of scattering parameters is in practice a not unequivocal 

procedure. One specific difficulty is that the primary interaction (or 

production proess) which in the theory is independent of the relative 

energy of the interacting pair at small relative energy, may not in fat 

be so. For example, this seems to be the case for the reaction 

p + d - n + n + p at n-n relative energies of 1 MeV and greater. This. 

severe limitation is due to the long-range nature of the primary inter-

action, and will be discussed below. 

Another problem encountered is that of multiple final state 

interactions in the presence of three strongly interacting particles. These 

are quite evident in the spectra of the p + d reaction at low bombarding 

• 	 energies. 1 	Since the cross-section enhancements are strongest at the 

lowest relative energies of each pair, kinematically, for sufficiently 

large total center of mass energies the different pair interactions 

should be completely separable (excluding the possibility of resonant 

• 	• states). Nevertheless this is a complication that must be noted. 

In this work, a determination of the neutron-neutron scattering 

length through the final state enhancement of the He 3  spectrum of the 

reaction H3 (d,He 3 )2n at 32.7 MeV and 0lab 6 deg is presented and 

discussed. The theoretical background, experimental procedure and method 

of analysis are described. The discussion attempts to deal with some of 

the points raised in the preceding paragraphs. 
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II, THEORETICAL BACKGROUND 

A. Final State Interactions-Factored Wave-Function Enhancement 

In the original paper on the subject of finalstate interactions, '  

Watson considered processes which could be described by a Hamiltonian with 

two separable potentials, H = H0  + U ± V. Here V is considered a prod-

uction potential, an interaction connecting two channels, a and b. In 

the important special case where U acts only between particles of the out-

going channel and does not connect a and b, he showed that the transition 

matrix for the process could be written 

Tb = <0b'a OM > 
	

I 	

(1) 

where 

o(+) = X 	 E - H +i + [ 	
-1 - o(+) 

E-:1 	T'V a a 	a 	o  

and 

= 	+ F0  - H0  - i] 	UØ 

with X the plane-wave eigenfunctions of H, If U acts only between a 

pair of particles in the final state, say l" and 	then 

Ob 	
= h( Ei)g(r ) 	 (2) 

where B 1  and € do not contain q or r and g(r) describes the relative 

motion of l" and 7? 2," (1) becomes 

Tb 	drg(r) f 	 () 

It is assumed that q, the relative momentum of "1" and "2" is sufficiently 

small so that g is s-wave. Therefore, asymptotically,  

= e'sin(qr + b)]/qr, 	; 



_i1._ 

The domain of integration of (3) is determined by the non-zero values of 

V1aO(+)  if this range is sufficiently small, then qr <<1, (This 

condition of short-range production
11 
 will be discussed in Sec. V. A) 

So, 

sin(qr + b) 	sin (qr cot 6 + i) 

I 	 1 
= sin 	

r 	1 2 l - - ± rq rj 	 (3a) 

where a is the scattering length and r the effective range, 

Ignoring the q 2 term, 5q (-) may be written 

g(r) 	e 	C(sinb)/q]f(r), 	 () gq  

Inside the range of U, which is assumed strong and attractive, g(r) 

does not depend strongly on q for small q, except through the boundary 

condition where it joins the outside wave function. Therefore, ()+) is 

valid inside the region of interaction as well as outside of it, for 

small q. Therefore, (3) now becomes 

Tba = e
5 sin b 

f d3rdE f(r)Via0 	 () 

and the cross section for an n particle state is 15  

do = v2  f b ( 

	

E) 

 ( 	
± 

i 	
) rel 	=l 	 i=l 

(6) 

I 	I Tj 2  
i=l 	 spins 

For the three particle final state, after integration over the 

momentum and energy delta functions we have 

2 	2 
d 	8t 	 V 	2 
dldE = 	pE1 	

bal  

	

rel 	spins 



where p(E), the phase space factor, may be defined from 

[d3pld3 P21 
/6 

The phasespace factor corresponding to (7), the differential cross 

section for observation of a single particleis 

= 2/h6 [ml3M2mV 3]2 [Ell 1/2 E1max E] 1/2 

We may rewrite (5) in the form 

	

m 2_ _ 	m ( 0)2 
ha - q 2 ± q 2 

 cot  2 	ha 

where Tba(°)  is the integral in (5) and is independent of q. In the 

specific case of the reaction, H3  ± d 2n ± He3 , we have in the c,m, 

system 

1/2 

	

d2/ddE = 
	2((ax 	

E)] 	 (8a) 

± /m [-l/a ± rq2/2] 

where we have absorbed all consiants and ITba 0 
 1 , which as assumed 

to depend only on 8, into the factor g(e) 2 0 The Jacobian of the 

transform of (Ba) to the laboratory is simply (E lab/E) h12 0  (This as well 

as the phasespace expression is derived in the Appendix 0 ) 

It remains to show that Tb(°)  is essentially the same transition 

matrix element that one would obtain if there were no strong final state 

interaction present, Also it will be noticed that the"enhancement ', 12 
 

sin2b/q2 , approaches zero for large relative energies of the interacting 

particles, and consequently so does d o/ddE. This is certainly unrealistic; 

what should occur is that when the enhancement becomes small, the cross 

section approaches the unenlaanced cross section, In other words, the 

t 



enhancement factor should become unity as the final state interaction 

becomes weak, Such an enhancement factor can be defined by the use of 

Jost functions, 

B. Jost Function Enhancement 

The Schrdinger equation for s-wave scattering is 

+ V(r) - k2] w(k,r) = 0, 	 (9) 
dr 

where w is a solution simply related to 	the solution with physical 

boundary conditions by 

	

-ib 	w(k,r) 
= e 	-___ o 	 kr 

It is convenient '  to introduce a function which is a solution to (9), but 

which satisfies the same boundary conditions as the solutions to the 

tlfree u Schr5dinger equation with V = 0, These are 

Ø(k,O) = 0, 	 (ba) 

Ø'(k,o) = i. 	 (lob) 

0 is related to 	by 

Ø(k,r) = 1- 

Ø(k,r) is a real function for real k, and is even in k. Also it is 

everywiiere analytic in the k-plane, 

The Jost function, f(k,r), is defined as a solution to (9) with the 

boundary condition 

Lim r - 
	

ikr 
e 	f(k,r) = 1. 	 (11) 

From Eq. (11) we have for real k, 

f*(..k,r) = f(k,r). 	 (12) 

[j 
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We may construct solutions regular at the origin from the two 

linearly independent solutions f(k,r) and f(.-k,r), 

Ø(k,r)= 
	[f(k)f(-k,r) - f(.-k)f(k,r)], 	 (13) 

where 

= (± k,O). 

From Eqs. (ii) and (13) 

0r 	21k If(k)
e 1 	- 	 (Ji.) 

	

f(-k)le -+ 
	e 	j 

k,O(r) 	 [ e_ikr ± 	 ikr 	 (15) 

Comparing (i ).i.) and (15), 

S 
0
.(i)- f(k) 
	

(16) 

but 
2i8 (k) 

5(k) =e 

Therefore, from (12) and (16) 

± (k) 
f(k) = 	f(k)Ie ° 

Also comparing (i )-l) and (15) 

a = [( t/2) 1/2  1fk)f] -1 

By using the boundary condition (lOt), the ratio 

F' 	
w0(k,r) 

- [/sinkr r=O 



is found to be 

F' = f(k)j 

Using the quantity F', the ratio, at r = 0, of the value of the s-wave 

function in a potential to the value of the wave function for no inter-

action, may be found. Thus 

i 
k,O(k,r) 	 0 

(k) 

F  
(0 

k)o 	
(kr) 	= 	

f(k)j 
(17) 

F12 therefOre represents the ratio of the probabilities of finding the 

two particles at r = 0 with and without an interaction between them. It 

is, for this reason, called an enhancement factor. The important 

distinction between the Jost function enhancement factor, and the factor* 

(sin )/kof (8a) is that the former has a more appropriate normalization. 

It can be shown that IF1 2 	1 as k 	16 this means that as the final 

state effects become small, the cross section approaches the (unenhanced) 

production cross section, and not zero, as (sin 	/s Jue's. 

From an integral representation of f(k) in terms of the scattering 

phase shift,16  it can be shown that, in the effective range approximation 

f(k) =: (18) 

where 

ff r(a-) = 1 

1 
ra = - 1/a 

Therefore, 
2 	2 

1F12= k +a 
	 (19) 

2 	2 
k + 

* k and q are used interchangeably. 
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It is interesting to compare this enhancement factor with that obtained 

from the factored wave-function approach. 

2 	2 	2 
sin b - k ±a 	 (20) 

k2 	- k2 	
2 	(k2  ± a2 ) 

In the region k 2 << a2  the enerr . dependnce of (19) and (2) become 

equivalent However, for the neutron-neutron system, a2  = 66o x 102cm2, 

while a relative energy of 1 MeV corresponds to k = 2i41 x 10 cm 

thus for the purpose of accurate detennination of scattering parameters 

the two approaches are not equivalent 

C. Coulomb Effects 

The asymptotic solution to the Schr8dinger equation with a 

Coulomb potential is 

Of 	
= e[F0  cos b + G sin 

For kr <<1 

	

sin 6 [i - r/a ]/Ckr, 	 (21.) 

where we have used the effective range expansion with Coulomb terms, 

and ignored ternis of order k2r2 , 

C 
2  k cot b =_1/a - h() 
	+ro Ic2 , 	 (22) 

.2 
,2 	2tii 	 1 

2kR= 2tii 	
11 = 	, 	Li = 

e 	-i 	 me 
p 

h() = Re P(l
(li)] 	- ln 

Therefore, 
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øf 	
f(r) 
	

(22a) 

Which is of the same form as Eq. (-i-). Therefore, in the case 

of the final state interaction 1oetween two protons, the cross section is 

I (e) 1 2 	C'[E(inax 	1/2 
- E)] 	

, 	 (23) 

	

-
2  [ 	 12 

g 	

CE + 	
- h() + 7E2pj 

where 
rm 
op 

2 2 
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III, EXPERIMENTAL 

A. Beam Optics and Alignment 

For this experiment deuteron beams of 32,T and 40j1 MeV were 

obtained from the Berkeley 88-inch sector-focused cyclotron0 The beam 

line and orientation of magnets is shown in Fig. 1, In •the horizontal 

plane the quadrupole Q i
focuses the beam between itself and the switching 

magnet, which then bends the beam through 40 deg. Q2  was then used to 

obtain a focal point at the analyzing slit. This slit was 0,070-in, wide, 

The rays from the image source were then focused at the target center by 

In the vertical plane the beam remains parallel between the switching 

magnet and Q3 , which focuses it at the target center. Initially 2  the beam 

spot was observed visually on a quartz plate at the target center position. 

Before obtaining the beam, the 0,070-in, wide entrance collimator, the 

target center, and the counter collimator in its 0 deg position had been 

optically aligned. To obtain a beam line coincident with the line 

defined by these points, horizontal beam profiles were made (see Fig, 2) 

by sweeping a 0,100-in, wide slitted tantalum plate on one counter arm 

through the beam, By moving slowly th:rough a small range of angles near 

0 deg, the beam profile is obtained as the beam current which reaches the 

Faraday cup directly behind the slit as a function of angle, The whole 

scattering chamber could then be rotated about the entrance collimator to 

center the beam, 

I 
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B. Gas Target and Tritium Filling System 

The gas target is shown in Fig, 3. It was constructed in two 

tandem horizontal sections, and during the experiment was placed in a 

20-in, portable scattering chamber. The scattering chamber and target 

were evacuated to a pressure of approximately 10mm of mercury. The 

upper section of the target was filled when the target was already in 

the scattering chamber, through an external fill line. The lower section 

was filled and isolated previous to placing the target in the chamber; 

this section contained. either He 3  or H3. Generally the upper section 

was filled with N at 1/3 atmosphere or evacuated for background. runs. 

The target was constructed in an unusual wedge-shape to minimize 

its volume, so that large amounts of H3  would not be required. The 

volume of each of its chambers was 65 cc, The entrance and exit windows 

were constructed of 0.00041-in, thick "Havar" foil and were soldered to 

the target body. It was found that this was the minimum thickness that 

could consistently tolerate a differential pressure of 1 atmosphere, 

In order to avoid the necessity of pumping on the tritium gas 

during the experiment, we filled the H 3  target section outside the 

scattering chamber, by simply allowing the evacuated target and coupled 

H3  gas container to reach equilibrium. In this way we obtained a tritium 

pressure of 0.2 atmospheres (about 40 curies), This relatively low 

pressure was more than adequate, since for optimal energy resolution we 

were limited to low counting rates by the electronics, 

C. Counter Collimator System 

The detector, counter collimator and target system are shown 

in Figs. .i-a and b. The counter collimator system (see Fig, 5) was 
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designed to reach sma11-scattering angles (-" 3 deg). The ultimate limit- 

ations in reducing the angle of observation were the spread of the direct 

beam behind the target, and elastic scattering from the target entrance 

window. The tantalum counter collimator thicknesses (0,040-in) were such 

as to stop 25 MeV protons; their widths (0,070-in,) were determined by 

the need for relatively good angular resolution (we obtained approximately 

+ 0,3 deg) without undue sacrifice of counting rate, 

D. Beam Energy 

The aluminum foils used as absorbers in determining the range 

of the beam deuterons were discs turned to an accuracy of better than 

0.1% of their diameters. Their weight was determined on a microbalance 

to an accuracy of better than one part in 100,000. The impurity content 

was less than 0,1% by weight. However, the beam energy was measured in 

air and there were air gaps both before and after the passage through the 

foils. The values used are given in Table I, where the energy losses are 

summarized. The ranges of deuterons in aluminum, nitrogen and oxygen were 

obtained from the work of Williamson and Boujot. 11  A representative 

range curve is given in Fig. 6. 

Table I. Beam energy measurement, 

Material Thickness Aluminum Equivalent E Uncertainty 
(cm.) (mg/cm2 ) (MeV) (mg/cm2 , Al) 

Air 9,66 13,4 32,7 ± 0,5 

Al 750,2 ± 	,2 

Air 6,10 8,6 6,0 ± 0,9 

Al 33,0 

Total 805,2 mg/cm2  E =32,69 MeV ± 0,13 
5.6 
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Detectors 

The LE detector used was a specially prepared phosphorus-

diffused-in-silicon type. The depleted (charged-particle sensitive) 

layer of this detector was 0,0036-in, thick at the reverse bias operating 

voltage of 80 volts,The non-depleted tdead" layer of this type of detector 

is less than l thick,18 

The E detector was a lithium-drifted-silicon type. Its depletion 

layer was 0 ,083 -in ,  thick operated at 225 to 250 volts reverse bias, 

Electronics 

A schematic diagram of the electronics is given in Fig, 7. 

General Description 

• 	The detector signals were fed directly through low capacity cables 

into each of two charge sensitive preamplifiers. The output signal of 

these preamplifiers is independent of detector capacitance and was of the 

order of 0.5 volts. 

Both pulses, LE and E, were next fed into linear pulse amplifiers, 

whose maximum gains are about 1000X, This amplifier contains shaping 

networks. An L.-E integrator was used to give the output pulse 0,2 .tsec 

rise time. These pulses were then clipped to about 3 sec by the amplifiers 

delay line circuit which superposes an inverted delayed pulse of the same 

amplitude on the original pulse. In addition there was a slow coincidence 

requirement between tE and E pulses for output. The net amplification of 

the input signals was approximately lox. The output is then fed to the 

identifier unit. 

Identifier 

By using the empirical range-energy relation for charged particles, 
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R = aE1 ° 73 , the identifier generates a pulse whose amplitude is dependent 

only on the type of particle detected, 19  The operation of this unit is 

briefly outlined below. 

a, Mixer, The E and LE signals are fed first into the gated 

mixer circuit. Essentially this unit addsa shortened z\E signal, delayed 

by 1,5 isec by the timing generator, to the last 1.5 sec of the E pulse. 

Thus the output is a stepped wave form of amplitude E and then E + L1.E, 

The E + AE pulses are analyzed and stored in the Nuclear Data PHA. 

b. Function Generator, This unit electronically simulates the 

range-energy relation and generates a stepped wave form of amplitude 

and (E + 
	) 1.73 ,  

c, Sampler. This unit "samples' t  the step signal of the function 

generator at 1.5 isec and 2.5 p.sec and forms the difference 

(E + 
	)l.73 - E

1 ' 73  = T/a, 

where T is the thickness of the AR detector. The constant a is 

inversely proportional to the value MZ2  of the particle, and the amplified 

output of the sampler is the "identifier" output signal. Shown in Fig. 8 

is a typical identifier spectrum as displayed on the RIDL LlOO channel PHA. 

This spectrum was used for the identification of He 3  from d + T 2n+ He3 ; 

protons and deuterons from other channels were not in range of the total 

detector thickness and so their identification was quite poor. Ordinarily, 

good separation of all particles is readily obtained. 19  Here we have 

excellent separation between tritons, He3.   and He 4. 

3. Routing 

The identifier output signals of the sampler were used to route 

E + AR signals from the mixer to the appropriate one of four quadrants of 
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Figure 9. Particle identifier spectrum. 



a 4096 channel Nuclear Data PHA, The range of identifier spectrum 

amplitudes which would generate a routing signal in one of the four router 

channels was determined by setting the upper and lower windows of a 

separate single channel analyzer on the identifier peak of the desired 

particle as cibserved on the RIDL display, These routing signals then 

initiated storage of the E + LE pulse. The H + AE spectra were finally 

transferred to a PDP-5 on-line computer which stored them on magnetic 

tape, printed, and plotted them. 
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IV. ANALYSIS 

A. Calculations 

P. H. A. Channel Energy Width 

• 	The first step in the reduction of the data was. the determination 

of a'relative energy scale by calibration of the channel energy width of 

the Nuclear Data pulse-height analyzer. The .channel energy width is the 

difference of two energies corresponding to adjacent storage channels for 

input pulses. The discrete spectra of the reactions N(d,He3)Cl3 and 

1. 	13 	 0 
N (d,t)i 	were. used for this purpose. 	Shown in Figs. 9 and 10 are 

14 
the He spectra from N(d,He3)C13 at Eã = 32,7 MeV, °lab = 6 deg and 

0lab = 20 deg. A program called "Lycurgus t' was used to calculate the 

kinematics of the ground state and excited states of C 13 . The channel width 

was then calculated from the separation between the ground state and each 

of four well-resolved levels. The average channel width was found to be 

34.21 KeV/channel. At Ed = 40 1  MeV this channel width increased due to 

lower gain settings of the amplifiers and was determined to be 140.9 .KeV/ 

channel with a maximum deviation of ± 0,2 KeV/channel. . 

Target Center Channel Energy Width 	 . 	. 

Due to the considerable variation of energy loss with energy for 

He3  particles in the Havar foil exit window of the gas target, the channel. 

energy width at the target center, where the events takeplace,is different 

frOm the corresponding channel energy width. From the defitiition above, 

choosing the observed energies E 1  and E2 , corresponding to the locier edges 

of the adjacent channels, the observed channel width is . 

where E' 1  and E' 2  are the target center energies and 5E 1  and 8E2  are the 
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corresponding total energy losses in target gas and Havar foil, 

The differential energy loss of the He 3  particles in the gas or 

foil may be written 

bE = s(E) 	px 

where S(E) is the stopping power of the material, p  its dehsity and x its 

thickness. The difference in energy losses for particles of energy E 1 1  

and E 1 2  is 

5Et 2 	bEt 1  = - [S,(E '2) - s1 (E1 1 )] (px) 1  

= 
- 	 l 

' (px) 1  

The index IL on the stopping power and thickness denotes the first energy 

loss (in thetarget gas for this case),. For E 2  - E 1  << 

Z~Ss = + D1 (E1 1 )(E1 2  -. E 1 1 ), 

where D(Et)  is the derivative of S(Et), Thus the channel width after the 

particles have passed through a thickness, x 1 , of material is 

ch 
= AE' ch 	1 	ch - D (E 1  )El 	' (px) , 	 (24 ) 

where LiE1 
h 
 is the target center channel energy width, By applying this 

formula to the second energy loss (in the Havar foil) we obtain 

=ch 	ch 
JLiE / [1 - D2.(E.) ' (px)2] / [1 - D1 (Et) 	(Px) 1 ] , 	(25) 

where (px) 2  is the. thickness of the Havar foil and E 11  the particle energy 

when entering the foil. If only the observed energy is known, as is the 

	

case here, there is no simple procedure to find the particle energy prior 	 .11 

to the large energy losses. The advantage of (25) is that approximate 

energies for E' and E' 1  may be used to determine LiEbch.  fortunately, in 



(26) 
2 

d 
dOdE 
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the energy range we considered, the variation of Eh  with energy is 

quite small (about ,3% over the full energy range) and for ease of 

calculation it was considered a constant, For example, at 6 deg, 

Ed = 32,7 MeV, (E)ch was found to be 33,25 KeV/channel. 

3, Angular Distributions 

In order to define angular distributions for a three-particle 

final state it is necessary to specify the particle energies at which.the 

spectrum is evaluated, as well as the energy intervals integrated over, 

In (8a) we have assumed a c,m, cross section separable in energy and 

angular dependence, contained in g(), To deteine g(). we 

define 

E2  

da 	- 
d Enn  = 

However, only relative values of dojd are necessary. Therefore, the 

quantity calculated was 

S = N sin e/c , 	 . 	(27) 

where N is the number of counts in the interval E2  E1 , 8 the lab angle 

and .iC the number of microcoloumbs collected in the Faraday cup, S was 

evaluated for three fixed values of E, at lab angles 6, 8, 10, 15, and 

20 deg, The variation of S with 8
c m is due only to the g(8fl 2  factor 

in the cross section of (8a), if the energy interval of integration in 

(26) is sufficiently small and H is fixed, In fact, the intervals werenn  

five channels (171 KeV) wide (the resolution FWRM was seven channels). 

These intervals were centered about each of the three values of H nfl shown 

in Fig, 11, Therefore,, we assumed 
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jg(e) 1 2  cc s(e) 

Below, these two quantities are used interchangeably, since the cross 

section calculation was ultimately normalized to the data. From this 

experimental determination of the angular dependence in the lab system, 

we can apply an accurate correction at fixed lab angles, This is 

necessary since each lab spectrum corresponds to a continuum of C.M. 

angles, For example at 0lab 
 6 deg, for the range E = 0 to 1,51  MeV,nn  

m goes from 12,52 deg to 12,85 deg, When lg(e m )12 for different 

values ofE 11  are compared (see Fig, 12), it is seen that there is no 

significant departure from the form of (8a), This fact demonstrates the 

validity of the Watson form in this angular region. 

The angular dependence, g(e)1 2 , determined as described above, 

was then used to correct the 6 and 8 deg lab spectra, For the 6 deg and 

8 deg spectra this dependence was approximated by a straight line, in the 

former case between values of S(e) corresponding to 12,52 deg and 16,5 deg, 

c,m. These two points are obtained from (27) for Enn = ,1O MeV, 

elab = 6 deg and 8lab = 8 deg, This energy was chosen because it correspon 

ded to the best statistical accuracy, Table II gives the val.ues of 

lg(ecm )jd at 10 channel (0 , 3 42 ) intervals of the 6 deg spectrum. It 

should be noted that the maximum correction is about 

Table II, 	Values of 	g(e 	
)]2 at 10 channel intervals, 

m 

8 lab E 
nn 

Channels from 6 c,m, 2 	Error 

(deg) 
end point (deg) g(e)l 	(%) 

6 0 0 12,52 1,00 	±8 

,40 10 12,60 ,9922 

'19 20 12,68 ,9833 

1,18 30 12,77 ' 9740 

1,57 kO 12,85 ,9645 
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4, Resolution Folding 

The calculated function, d2a/dcdE must be combined with all sources 

of instrumental energy spread in order to simulate the observed spectrum. 

Since the energy spreading is the result of random processes, for a large 

number of events, we expect a monochromatic line to appear on the spectrum 

as a Gaussian distribution of energies. Therefore, the observed cross 

section can be expressed as 

H 
max

a(El 
= 	

exp [- (H - H' )2/2()2] 	dE 	, 	(28) 

fE 	 2E 2t 
mm 

where 

a(El= d2a/dc2dE 	
= H' 

The quantity tiE is the standard deviation of the Gaussian energy spread 

distribution. It was determined experimentally for He 3  from the width of 

the peak corresponding to the reaction N(d,He3)C13,  with C 13  in its ground 

state. These peaks are intrinsically monochromatic and therefore we may 

extract LNE directly from their widths. 	Figure 13 shows the grbund 

state peaks from which the half-widths were estimated. In principle one 

must correct for the additional kinematic energy spread of the H 3 (d,He3 )2n 

reaction in order to use the full width at half maximum (FWHIVI) of the C 13  

peak in (28), (This energy spread is due to the finite angular acceptance 

of the detector.) However, the energy spread of the He 3  from the 

H3 (d,He3 )2n reaction is about 50 KeV compared to the 10 KeV, of the 

14 
N(d,He3)C13, The total spread estimated from Fig, 13 is 21 ± 14 KeV. 

Therefore the correction is negligible when folded in as an independent 
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random error. 

The integral of (28) may be approximated by the sum 

(E.) = Emax Emmn 
	

;) 	
(29) aR 	

N 
J 	 k=l 	 2tE 

For simplicity, the indices in (29) are taken to correspond to 

channel energies in which the cross section is observed, (E. is the 

lower edge of channel j,) Measurement of a cross section corresponds to 

averaging (29) over each instrumental channel width Therefore, 

	

Cr R(Ej) = L 	
E.1 	

- E/2()2]dE/2 

j 	 (30) 

= Z 	() 
{_ Erf(E. 	Ek) ± Erf(E. 1 - E} 

Note that E
max 
 S 

minV
N,  which is just the channel width, is cancelled 

by the averaging process, A simplification is obtained if we define 

(tErf). 
1 	 j 

= Erf'E, - E k
j=l 

) + ErftE 	- E k 	 (31) 

with 

i = (j + 1) - •k 	 j > k 	 (31a) 

i=k -j 	 j<k. 

Then 

= 	a(Ek) 	(tErf). 	.. 	 (32) 

k,i 

For the Gaussian function used in (30) 
11 

(rf). = ,9998 
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Therefore, the maximum value of i, used in (32) was II. A computer proam 

was used to generate the 11 >< 50 matrix. of (32) for each value of a, 
nn 

B. Results and Errors. 

1, X Distribution and Errors 

After calculating (26) and folding into it the resolution loss by 

using (32), the next step is to compare the calculation with experimental 

, 

data by calculating the X 2 distribution as a function of a
nn 
 All the 

calculations have been done at energy intervals corresponding to the 

observed channels, and we may readily form the sum 

i=l ('i,a 	'Xi)2/i,a ' 

Here, Y 
i 	is the calculated cross section for a particular value of a ,a 	 . nn 

X. is the observed, cross section. Since we are concerned with the shape 

of the spectrum, there is no' 'need of calculating absolute cross sections, 

and some reliable criterion for the normalization of the calculated cross 

sections is necessary, The factor chosen was one obtained by requiring 

to be a minimum, 

If 

Yq i 
	=KY. 

	

,a 	i,a 

where 1. i ,a is any unnorinalized calculation, then for 

r 	' 	 1/2 
x 2 / y 

/ 	i,a) 	a.,a 

is a minimum. Figures l, 15, and 16 show these appropriately normalized 

calculations superposed on the experimental spectra. While the two fits 
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= - 16.1 F. The dashed line is obtained 
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nn 
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at 8 :deg appear to be quite good there is unfortunately some background 

from the reaction d ± He 3- n - p + He 3  evident at the high energy end of 

the spectra. At 6 deg, this background was negligible and the fits show 

remarkable stability over the full range of energy which is covered by 

46 channels or data points. This can be seen in-Table III (each point 

in this table corresponds to an observed channel width). Therefore, it 

was from this spectrum that the value of a was extracted, The values of 
nn 

as a function of a are shown in Fig. 17, Each point in this distri
nn  

bution corresponds to the sum (33) over 46 data points. A parabola was 

fitted to the 8 values of 	between a = 15,25F and a = 17,0F, The
nn 

equation of this parabola was 

=(x 	= ,8257 	9,1705 x. + 5,6559 x 	 (3) 

where 

1 
= 	

nng 
a 	15,25 in fermis, 

Table III. Stability of 

8 	- Points - Number of Minimum 
x2  

(deg) 
(Channels) points a(f) 

nn 

6 46 46 16,1 46.1 

(32,7 MeV) 5 	46 42 16 43 

16 - 46 31 16,4 258 

8 	 8 	46 	39 	16,0 	38,9 

(32,7 MeV) 	16 - 46 	 31 	16,2 	33,9 

8 5 - 	6 42 15 , 1 30,6 
( 1 0,4 MeV) 16 - 46 31 168 19.4 





The leastsquares solutions for the coefficients of Eq. (34) are linear 

in the Ys. Therefore the standard deviation of these coefficients is 

readily obtained from the standard deviations of the calculated Yis, 

which are 	n 	 1/2 

S3 ={ 
	

Yi,c ) 2/( n - 3)} 

where Y. 	is the calculated value from Eq. (32). If we write 
I, C 

2 
Y. 	C. ±0 X. ±0 )C 
i 	0 	li 	2 i 

then the minimum X 2  corresponds to 

Y 	= 	c/2c. mm 	1 2 

The uncertaint.y in,the position of this minimum is then taken as the sum 

of the percentage standard deviations, In Eq. (34), this is equal to 

± ,03F, whih is certainly negligible. The minimmX 2  corresponded to 

a. 	= - 16,o6F, 
nfl, 

2, Standard Deviation and Probable Error of a nfl 

The number of data points, N in the sum, Eq. (36), is equal to 

46; this corresponds to 115 deg'of freedom and we may use the asymptotic 

form for the X 
2 
 distribution, . For V > 30, where V is the number of 

degrees of freedom, the quantity- 2V - 1 is distributed normally. 

Therefore, the value of X 2  corresponding to the mean of this distribution 

for 45 degrees of freedom is 4,5, Similarly, the value of X correspond-

ing to one standard deviation above the mean is 55,5110, and the probable 

error corresponds to X = 52,162, As can be seen from Fig. Jj', the 

minimum X 2 , 46,095, is very near the mean Y,  and hence there is no ambiguity 

in the definition of the error associated with the determination of the 

scattering length. Thus the probable error and standard deviation were 



- 

2 
obtained by finding the intersections of these values of X with the 

parabola of Eq. (31), The following values were obtained (see Fig,, 17) 

P, E. = ± l,O4 F 

S. D, = ± 129 F. 

C. Experimental Errors 

A most convenient and reliable method of obtaining the effect of 

experimental uncertainties on the value of the scattering length is simply 

to substitute input values corresponding to the limits of error into the 

calculations, This procedure was used for the beam energy, channel width, 

g(), and the Gaussian FWITh of the resolution loss. The resulting 

distributions are shown in Fig, 18 and are discussed below, 

1, Detector Angle and Target Pressure 

These two quantities, although they are primary measurements made 

in the course of the experiment, do not enter into the expressions for 

the observed cross section, Eq, (26), However, these uncertainties 

propagate into the quantities which do serve as the input parameters for 

the calculation, 

In the determination of detector angle there were three main sources 

of error, First, the positioning of zero-deg calibration of the detector-

arm vernier scale was accomplished by optically aligning the center of the 

entrance collimator and the center of rotation of the counter arm (also 

the target center) with the center of the counter collimator, The center-

ing of these collimators was accurate to about ± .005 in, and they were, 

respectively, 18 and 12 inches from the center of rotation, The uncertainty 

in the zero deg position of the detector arm is therefore, ± ,Ol deg, 

The estimated uncertainty in the determination of the beam center 
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- 

from the beam profiles (see Fig, 2) was ± ,03 deg, 

The reading error of the detector-arm vernier scale was ± ,03 deg, 

Therefore the total angular uncertainty is approximately ± 0,04 deg, 

Since absolute cross sections were not being measured 2  pressures 

were determined by means of compound gauges on the filling system, or 

in the case of the tritium target, on the target chamber itself,  . We 

estimate the total error on these gauges to be, at worst, about ± 10%, 

This uncertainty becomes an uncertainty of the energy losses in the target 

gas, but ultimately has no effect whatsoever on the scattering length 

determination, as will be shown below, 

2, Beam Energy Determination 

The uncertainty in the thickness of the aluminum absorbers used for 

the range-energy measurement was ± 0,46, (Since there was a short air gap 

between the absorbers and the Faraday cup in which the beam was collected, 

there is an additional uncertainty in the total range due to the rather 

low energy (- 6 MeV) which the particles have when they reach this gap. 

This error was estimated to be ± 0,4o of the total range. The uncertainty 

in the determination of the mean range is estimated to be 0,1% (see Fig, 6), 

As indicated above, there are additional uncertainties in target center 

energies, due to uncertainties in target pressures, but these are quite 

small (± 8 KeV in the largest case, the nitrogen target). The total range 

was found to be 805 ± 5 mg/cm2  of aluminum corresponding to an energy of 

32,69 ± ,13 MeV, Figure 18a shows the two X distributions resulting from 

the calculations with Ed = 32,7 and 32,5 MeV, The latter energy would 

correspond to an error of - ,2 MeV, However, as is evident, there is no 

2 
significant shift in the minimum of the X distribution, 
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3,, Channel Energy Width 

The energy separation observed in the lab for reactions ending in 

different nuclear levels depends on beam energy and detectior angle 

through kinematics, The uncertainties in separation were obtained simply 

by calculating the k±nematics for all levels in 0,1000 MeV beam energy 

intervals, and 1 deg angular intervals. Sample errors, SE., found in this 

way for the four levels used to obtain the channel width are shown in 

Table IV. The uncertainty b(ch) is the estimated error in the positions 

of the peaks corresponding to each level. As can be seen in the table, 

these errors are quite small. Figure 18b shows the X distribution 

corresponding to the mean value of the target center channel width, 33,25 

KeV/channel, and to a channel width ,lO KeV/channel greater, There is no 

significant shift in the minimum of the X 
2
distribution. The value in 

Table IV, Sample errors for channel energy width, 

Lb Separation (from 
Level angle ground state) 	 Errors Channel width 

(deg) Channels 	Energy 	bE bJ 	(KeV/chan,) 
_ (MeV)__  

7,55 6 226,3 	7 , 150 	± ,001 ± 	,2 	34,25 

8 226,1 	7.747 34,26 

20 225,3 	7,695 3,15 

3,09 20 90,6 	3,100 3,22 

8,85 6 267,6 	9,132 34.13 

8 267,0 	9,128 34,19 

6.87 20 203,7 	6,985 34,29 

Average 	 34,21 ± ,08 

(max, dev,) 

Calibrated pulser 34,38 ± 

Table IV differs from 33,25 since it is not correctd to the target center, 



11, Angular Dependence 

The major uncertainties in the linear approximation for g(e) 2  

are due to the statistical errors of the events used and the uncertainty 

in the difference of the angles used, This factor, as applied to the 

6 deg spectrum was obtained from the ratios of cross sections of the 6 and 

8 deg spectra. The error in the slope is about ± 11% (see Fig, 12), 

Figure 18c shows two X distributions; one for the central value of 	
2 

as observed, and one for a value whose slope is 10% greater, The shift in 

the minimum is less than 0,1 F. 

5, Energy Resolution 

The uncertainty in the full-width at half-maximum (FWH) of He 3  

corresponding to the ground state of C 13  was ± 0.4 channel (13,7 KeV), 

This error is the result of estimating the FWHM instead of doing a detailed 

fit of a Gaussian shape to the peak. However, in practice, we are doing 

such a detailed fit to the high-energy end of the H 3 (d,He3 )2n spectrum, 

This is so because the "true spectrum, i,e, the cross section before 

resolution loss is folded in, rises from zero at the maximum energy to its 

peak value in only 120 KeV (3,5 channels), Since in (28) we assume that 

the true particle energies appear as the mean values of Gaussian distri-

butions, all events above the maximum energy are really the Gaussian tail 

of the nearly monochromatic peak of the spectrum, Therefore the X 2  fit in 

this region will primarily be a fit to the FWIHVI of the Gaussian used in 

(30). In the light of these considerations, the results of varying the 

FWHJVI are very gratifying, In Figure 18d are shown the three X distributions 

corresponding to the value of the Gaussian FWHM and its uncertainty, 

0,240 ± ,014 MeV, (See Fig, 13,) There is a large increase in the minimum 

value of X for each of the extreme values of the FWHM. This increase is 



entirely in the 15 highest (energy) points, i.e. the Gaussian tail. For 

these points X goes from its minimum of 197 at 1?WnN = 0,20 MeV to 

231 at FWHM = 0,25 MeV and 260 at FWIM = 0226 MelT, On this basis we 

can say that the value used is very near a best fit to the data, and the 

large change in X for the quoted uncertainty indicates a much smaller 

probable error. Nevertheless, even for these rather over-large uncertainties 

the shift in the minimum is only about ± 0,1 F, Therefore, the actual 

resulting probable error in the scattering length is considerably less 

and can be neglected. 
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V. DISCUSSION 

A. Long Range and Short Range Production 

It has been previously pointed out that for small angles, the 

322,23 
reaction He (d,t)2p is a direct reaction of the 'pick-up type. 

The angular distributions obtained for the reaction H 3 (d,He3 )2n indicate 

that it too, as would be expected, proceeds by the pick-up mechanism at 

small angles, At sufficiently high energies, the angular distributions 

for such reactions are qualitatively well predicted by. simple piane  wave 

Born approxitions for the transition matrix;2  in these approximations 

it is assumed that the production potential, V. is very short range. 

Indeed, it is possible to get fits to the angular distributions by assuming 

V to be a delta-function in the coordinates of the inident particle and 

ilpi cked up nucleon, In the above cases, this nucleon is in an £ = 0 state 

initially, and the crude deltafunction model gives 

I i 0 
(qR)l 2 

where q is the momentum transfer and F is the reaction radius, 

In Fig, 11 there are shown the plots of (d/dfl) at constant E nn 

for H3 (d,He3 )2n reaction at E = 0,40, 0,79 and 1,57 MeV, It should be
nn 

noted that their relative magnitudes at a fixed e are determined by the 

enhancement at each value of F , Figure 12 shows two of these same
nn  

curves normalized to the value' of g()2  for Enn = .140 at 12,52 deg, The 

slope of the curves between 12,52 deg and 21,31 deg is quite uniform, 

demonstrating that the factorization into angular dependence and energy 

dependence at small angles is a good and reliable method of treating the 

spectra, Also shown in Fig,. 12 is[jo(QF)1,R = 3,1 F, At small angles 

2  its slope and general shape aees well with the observed jg(e)j which 
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demonstrates the validity of the direct reaction model. 

Direct reactions of this kind, which are hily localized in space, 

in contrast with other conceivable mechanisms producing the same final 

state, are best suited to the momentum dependence separation which leads 

to expression (Ba), Quoting Watson 	for processes., ,for which the 

range of V is considerably less than the range of v there should be no 

serious modification of v since the effect of the final state interaction 

comes from regions of space for which V = 	(Here v is the final state 

interaction, and V is the production nteraction0) in the case of 

H 3 (d,t)2p this spatial separation of primary and final-state interactions, 

characteristic of direct reactions, can readily be seen in the Born approxi-

mation transition matrix for the process, 23  

r 	
f)d3 z f()x ()* I xj d x 3 

M 
 =f exPLitQ zjuz 
	 q 

	

(-\ (L 	
_ l) 3 

f exp[i( 	 - 	d r 	(35) 

(

S 	
3 ( 1 , 2 ,3)Sd(,5)) 

H 	 He 

The three-body wave functions of H 3  and He3  were assumed separable 

in the form 

(l,2,3) 	Nu(r - r2)u(r3 - 	[ r 	r 	 (36) 

The Ss are appropriately symmetrized spin-isospin wavefunctions and 

p(a,t) represents the spin dependent part of V, the primary interaction. 

The spatial and momentum coordinates of (35) are defined as: 
-, 	 . 	- 	2 - 	-p 

r=r-r5  

•- 	 •- 	 - 	 - 	2 - 
x=r1 -r0 	 =1-k 



- 	-) 1 I - 	-) 	 -) 	-i 	
- y=r3 _tr+r5) q 	~/2 

z_r32(ri+r2) 

and are the incident and final momenta respectively, in the c,m, system. 

In this direct reaction model, the production potential is just 

an interaction between nucleons 3 and 4. It is quite evident that this 

production process is independent of the relative momentum and separation 

of nucleons 1 and 2, the two-proton system, Therefore the production 

process does not distort the momentum dependence on q in (35), which is 

contained in the factor 

(.)* 

f U(X)x q 	(x)d3x (37) 

In Sec. II, A. it was shown that a necessary condition for the 

simple factorization of the momentum dependence of 
() 

, dsin 6 (q), 

is that qr << 10 At r = 0 this factorization is an exact procedure for 

the asymptotic wave function, (The Jost function enhancement is also 

obtained at r = 0,) Hence, the use of W sin 5 as an enhancement may be 
said to correspond to short range production processes, If this short 

range condition is not fulfilled, then the factorization cannot be done 

and the integrals (5) and (3) depend on the detailed behavior of g(r) 

in (3) or X q (r) in (37)0 Furthermore, the matrix elements also depend 

on the form of Xa()19  which is not, in general well known. Even in using 

the Born approximation, there is, generally, a considerable uncertainty in 

the unperturbed form of X, This is the case with u(x) of (37), the 

wave function of the two protons in the He3  nucleus, 

- A good example of these considerations is nucleon-deuteron breakup 

reaction, from which attempts have been made to extract the neutron-neutron 
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scattering length,2526  In the impulse appromation, the dependence on 

q, the relative momentum of the two like nucleons is contained in the 

matrix element for foard scattering of the o nucleon262( 

T = T ()fd3r X 	*(r)Ød (r)exp 	/2] 	 (38) 

where is the momentum transfer, and Ød(r)  is the deuteron wave function. 

Using the Hulthen function, R. J, N. Philips calculated (38) and pointed 

out considerable departure from the factored form of (8). Appropriately, 

Phillips called the nucleon-deuteron break-up a .long-range process, 

since the production of the final state takes place over the range of 

non-zero values of the deuteron wave-function, which being relatively 

extensive, makes necessary consideration of values of qr I for E, 
np 

Enn > 1 MeV. The net effect of this overlap is to give a more narrowly 

peaked spectrum. Therefore, if one attempts to fit the spectrum with 

the Watson form or some other shortrange approximation, the scattering 

length obtained will be too large. Indeed the scattering lengths obtained 

from experiments utilizing n + d - n + n + p range from -• 21,6 p  (no error 

quoted) by Cerineo et al, 25  to - 23,6 	F by Voitovetski et al,26  In 

the light of later work, these values seem definitely to be several fermis 

too large. However, in carefully evaluating the expression (38) as it 

occurs in the transition matrix for 	+ d - n ± n + y McVoy3  showed 

that for qcorresponding toE < 8 MeV, the momentum dependence of (38)
nn  

could be represented as sin b/q to within about 4b, (However he estimates 

that the discrepancy due to the d-wave component of the deuteron may be as 

high as 

Therefore, we can say that the distinction between "long-range" 

and "short range" productián is a most important. criterion in applying the 

p 



Watson form; the factorization is valid only within a limited region of low 

particle-pair relative energies. This energy region is defined by the range 

of the production process, Consider specifically the d + T and d ± He 3  

reactions, Using a Gaussian wave function 29  in (36) we find the average 

separation of a nucleon pair in the He3  nucleus to be 

<r12  > 	= 1,29 F, 
He 

compared to the deuteron for which 

<r 
12 deut 

> 	=3,26F, 

using the Huithen wave function, Therefore in the range of energies 

we have considered, Enn < 1,57 MeV, assuming the same <r 12  > for H3  as 

for He3  we find 

q <rl2  H> < ,25 
3 

and the short range approximation is valid. 

If it is possible to use the factorization (ii) one avoids the 

necessity of explicit evaluation of the production matrix element, which 

generally depends on too many :uncertain  quantities, Such evaluation has 

often been done using the Born approximation, a highly dubious procedure 

for low energies, aside from the fact that the form of the spectrum may 

depend critically on the form of the initial state two-nucleon wave function, 

as stated above, This effect is illustrated in Fig, 19 in which is plotted 

the "overlap integral," (38), for neutron-deuteron breakup, with subsequent 

final state interaction of the two neutrons, and the "short-range" 

approximation, j,e, essentially the Watson fo, both calculated by Phillips, 28  

It is readily seen that the effect of the "long-range" production is to 
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Figure 19. Odd nucleon spectrum of nucleon-deuterOn exchange with 

and without short-range approximation. 
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favor small values of E more than in the case of short range production,
nn  

thus narrowing the resulting peak. 

A similar effect seems to be present in the reactions H 3 (n,d)2n and 

11e3 (p,d)2p, but the exploration in terms of long range production is rather 

obscure in view of the fact that the Watson form gives such êxcellent 

results for the reactions He 3 (d,t)2p and H3 (d,He3 )2n, Ajdacic et al, 30  

investigated the H3 (n,d)2n reaction at 11,1 MeV, and attempted to extract 

ann from their data, They found that the peak at the high-energy end of 

the deuteron spectrum, corresponding to small En  was much narrower than 

the prediction of the Watson form, They used the Born approximation to 

extract the value a nn  = - 18 ± 3 F, and as explained earlier this is 

questionable. 

On the other hand, Tombrello and Bacher, 
30 
 investi : gating the mirror 

reaction He 3 (p,d)2p at 11,911 MeV, also found a much narrower peak than 

could be described by the Watson form for the proton-proton interaction, 

but they fitted their data by assuming an additional interaction, It was 

assumed that this interaction took place between the deuteron and the p-p 

systein considered as a single particle, and by utilizing only Coulomb and 

centrifugal effects a best fit to the data was obtained if this interaction 

was present in an L = 3 state, However, this description ignores an 

essential feature of three-body kinematics that only one pair of particles 

may have zero or low relative momentum in a given configuration. Thus 

the customary treatment 10  of multiple final state interactions considers 

the total enhancement as the product of enhancements due to the interaction 

of each pair of particles in the three particle system, It is kinematically 

impossible for the two protons to have low relative momentum at the same 

time that the deuteron has low momentum relative to the c,m, of the two 



protons, However, the deuteron and one proton may have zero relative 

momentum, but the deuteron ten must have large momentum relative to the 

second proton; this occurs at Ed - 1/aax For non-resonant attractive 

potentials, the final state pair enhancement always peaks rear zero 

rative momentum for the pair. Hence we expect to see the effects of the 

p-p interaction at the upper end of the deuteron spectrum, while the p-d 

interaction should appear at low energy. Thus the residual effect of 

the p-d interaction could only appear, if it does at all, as a broadening 

of the proton-proton peak at high energies, rather than the observed 

narrowing, 

B. Correlation Experiments 

The reaction He3  + d p + p + t has been studied extensively by 

means of correlation experiments in which two of the final-state particles 

233 
are detected in coincidence. 	If, for some reason, it is desired 'to 

determine all three momenta in the final-state then such an experiment 

is necessary, since any linearly independent combination of three angles 

and/or energies is required in the c.m, system. However, it is only 

necessary to measure the momentum of asingle particle in order to determine 

the relative energy of the other pair, which is certainly the most relevant 

quantity in describing the pair interactions. For example, 	the 

energy of the two protons in their own c,m, system, is the only experimental 

parameter necessary to describe completely s-wave nucleon scattering (which 

includes the positions of resonant states, if any). The relative energy 

of particles 1 and 2 is 

E12  =E0  - (m1  + in2  + m3 )E3/(n1  + in2), 	 (39) 

where E3  is the energy of the third (observed) particle in the c,m, system, 
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and E0  is the total energy. For the specific case of He 3  + d p + p + t 

we have 

0 	
= E 

0 
 -5/2E3 

where E3  is the triton energy. The advantages of a single detector experi-

ment are well illustrated by the Dalitz triangle for this reaction, shown 

in Fig, 20, The inset at the left of the figure shows the spectrum 
2 

11 ___----- in the c,m, system, which is seen to be the projection of all 
dclUE3  
events, at a fixed c,m, angle for the triton, on to the E 3  (triton energy) 

axis. We see from (39) and the Dalitz triangle that in observing such a 

spectrum, from E3  equal to zero to its maximum value, 2/5 E0 , we are 

covering the complete range of E and summing over all other kinematic
pp  

parameters. Each value of E3  corresponds to a straight line of constant 

E12  on the plot; the spectrum of E3  then corresponds to the entire area of 

the plot. On the other hand, in a correlation experiment, a fixed particle 

energy corresponds to one or two points on the Dalitz plot, and the locus 

of the spectrum of particle energies is generally a rather complicated 

curve, which intersects the lines of constant E12  at a point. Therefore 

the obvious advantage of the single detector experiment, besides its 

simplicity, is that it measures all events of a given E12  at a fixed 

detector angle, rather than the small fraction obtainable through the ,  

correlation experiment, This is reflected of course by much higher counting 

rates, 

Regions of low relative momentum for each pair are shown as shaded 

regions on the plot, It can be seen that for any energy spectrum, regions 

of minimum relative energy cannot overlap and separation of enhancements 

depends on E0 , the total c,m, energy. 
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Figure 20. Dalitz triangle and projection for He3(d.,H3)2p 



C. The Reaction He3 (d,t)2p 

There is very strong evidence for the validity of final state 

interaction theory in determining the neutron-neutron scattering length 

from the reaction He3 (d,t)2p. Spectra from the reaction He 3 (d,t)2p were 

obtained using 29,8 MeV deuterons under identical experimental conditions, 35  

The reaction N (d,t)N was used to determine the energy scale and 

resolution. The proton-proton scattering length was extracted from these 

spectra by using (23). Shown in Fig, 114 is the spectrum at 0 = 8 deg 

and the theoretical fit. For 21,198 events (E = 0 to 2,38 MeV)
pp  

a 	= -
: 	

F. 
pp 

For 11,268 events (E = 0 to 1,58 MeV) the scattering length is 
pp 

+ 0.61 
a 	= - 7,69 - o.67 F.
pp 

The errors are probable errors determined from asymmetric X distributions, 
34 

The accepted value of a is 
pp 

a 	- 1 , 119 ± oo8 F.
pp 

Since the deviations from the accepted p-p scattering length are within 

the experimental errors, one may conclude that, barring chance compensation 

of errors in the p-p case, there seems to be no systematic error in the 

enhancement factors withincur experimental accuracy over the energy range 

used in the determination of the n-n scattering length, 



D. Determination of the n-n Scattering Length 
from the Reaction t + D - n + n + y 

The outstanding advantage of this reaction in determining the 

neutron-neutron scattering length is that there is only one final state 

strong interaction possible, For this reason primarily, this reaction 

2- 	 5-7 has been studied extensively both theoretically 	and experimentally 

over the years. The most recent work is that of Haddock et al] who used 

the treatment of Bander to fit their spectra, The enhancement factor 

obtained by Bander is identical to the Jost function enhancement of (19), 

Approximately 2000 neutron-neutron coincidences at four opening angles were 

used to obtain the value of the scattering length 

ann = 16J1 ± l9 F, 

The value which we have obtained, - 16, 1 ± 1,0 F agrees quite well. 

One serious difficulty in the use of this reaction should be 

pointed out, 3  The primary interaction is the it photoproduction from 

the protons at threshold, about which nothing is known experimentally, 

If it depended strongly on the n-y relative momentum, the energy dependence 

of the n-n final state interaction could be considerably distorted. 

Unfortunately, empirical evidence against such a possibility, namely the 

measurement of the p-p scattering length using the mirror reaction, is not 

readily obtained for this type of experiment, 

il 

4 
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APPE]JICES 

A. Phase Space Energy Dependence 

= 
9J d3p1  d3p2d3p3 	51)(l2/2m - E0

1 

= 	fd3Pid3P2  b(p./. - E) 

=  p  2 
	2 

d 5 ~ Zp ,2/2m, - E0 ) 

p 1  = 

= p2 2 sin e2ct82d0
2  

Integrate over the azimuth P,2 
 and the direction of p 1  

8t2f  p1 2 
= 	

i i 
d 1P2 dP2d(cos e 1 ) 2b11.E. - E0 ) 

t  

82 r 
E 

-E 
= 6J p 1p2p3dp 1dp2  dp 

3 	i i 	 z 

since 

P1P2d(cos 0 12) = p3dp3  

p3dp3 	p2dp2 	 p1dp1  
dE3 	m3 	2 

= 	
in 2 	

ftE1 	
m1 

2 
= (mim2m3) 

8ir 

 h6  f dE1dE2  where f dE3 ( 1  + E2  + E3  - E0 ) = 1, 

Phase space available to the reaction products is proportional to 

the area in E1  - E2  space, 
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B, Calculation of jacobian Transformation 

It suffices for our purposes to calculate the non-relativistic 

Jacobian. The transformation follows naturally from the equality 

2 
dEd(cos e) = dE0d0 dE (d cos e0 ) 	 (B-i) 

where the sub-index o indicates c,m, variables. Thus, in a more compact 

form 

	

2 	 d2  Cr 
d 	 o 

	

dEd 	
= 	dEd 	 - 

0 0 

where J is the Jacobian transformation 

cos e 
= 	(E, cos e)° 	' 	 (B-3) 

The following relations hold between velocities in both coordinate systems 

v cos 8 - v G = v cos 8 
0 	0 

2 	2 	 2 

	

v 	=v 	-2v vcos8 -- v 

	

o 	G 	G 

where vG  is the laboratory velocity of the c,m,; from these relations we 

can derive the functional dependence of E 
0 .9 	 0 

cos 8 on E and cos 8 

	

E = mv - 2vG cos e 	E1/2 + E 

• 12E)l/2 
cos 8 - v 

cos8 =m 

2ET
12G 

' 

 

 



-1/2 
1 - 	cos e V E 

lFcos e E 2 	cos 

(2MEO 1/2 
	±  

F2 Ei/2  

E 1/2 	cosG 

± 6E 	 Cose 
0 	 0 

The first row of J is precisely - 
	° 	and thus the 

ccose 

additive terms of the second row are proportional to the terms of the 

first row, hence can be omitted. The result is simply 

J= (E)2 
	

(BJ) 

/ 
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