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DETERMINATION OF THE NEUTRON-NEUTRON SCATTERING LENGTH*
Edward Shield
lawrence Radiation ILaboratory
University of California
Berkeley, California

ABSTRACT

Measurements on the reaction T(d,He3)2n at 32,7 MeV incident

. deuteron energy have been used to determine the n-n scattering length.

Watson's theory of final state interactions provides a theory with

3

at 6 and 8 deg versus

3

which the experimental data giving the number of He
energy can be compared. Comparison is made with numbers of He~ near the
ﬁaximum energy in which case the neutroﬁs go off with little relative
energy under the influence of a final state s-wave interaction. The
best fit of the data fo theory gives ann = - 16.1 + 0.1 F. The applic-
ability of this method is proved by measurements on the reactibn

He3(d,T)2p which giver a value for app equal to the accepted value

within the experimental errors. Comparisons of results with other

measurements of ann are given.
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- action calculational methods now available. -These are.potential models
calculated from field theoretical treatments of particle exchanges, e.g.y

ﬁ, P, etc. and the construction of scatterlng amplitudes uSing disper51on

theory.

The application of final state.imteraction'theory for the accurate
determination of scattering parameters is io practice a not onequivocal
procedure One spe01f1c difficulty is that the primary interaction (or
production process) which in. the theory is independent of the relative |
energy of the 1pteract1ng pair at small rela+ive ‘energy, may not in fact
‘be so. For example, this seems to be the case for the reaction
P+ dvﬁ n+n + pat n-n relative energies of 1 MeV and greater. :This.-
severe.limitation is’due to the long-range nature of fhe‘primary inter-
action, and will be discussed below. | |

Another problem encountered is that of multiple final state
1nteraetions in the presence of three strongly interacting particles.‘ These
are quite ev1dent in the spectra of the P+ da reaction at low bombarding
_energies.lu, Since phe cross-section enhancements are stroqgest at the_
lomest relative energies of each pair, kinematically, for sufficiemtly
large total oenter of mass energies the different pair interaotions
should be pompletely'separable (excluding the possibility of resonant'
"states). Nevertheless thislis a complioation that most be noted.

In this work, a determination of the neutron-neutron soattering

3

length through the final state enhancement of the He” spectrum of the

reaction H3(d,He3)2n at 32.7T MeV and @ - 6 deg is presented and

lab
discussed: The theoretical background, experimental procedure and method

of analysis are described. The discussion attempts to deal with some of

the points raised in_the preceding paragraphs,
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IT. THEORETICAL BACKGROUND

A, Final State Interactions-Factored Wave-Function Enhancement

In the original paper on . the subject of final state interactions,
Watson considered processes which could be described by a Hamilténian with
two separablé potentials, H = HO + U + V., Here V is considered a prod-
uction potential, an interaction connecting two channéls, a and b, In
the important special cése whéfe U acfs only between particles of the out-

going channel and does not connect a and b, he showed that the transitiocn

matrix for the process could be written

Ty = <¢b(‘)ivl\ua°(+) > o (1)

where
' o+ ; T o+
¥ ()=Xa+[Ea-HO+1ea V\pa()

a
and
(-) _ 1L gy (5)
g7l =%y + (B - H - el Ugb
with X +the plane-wave eigenfunctions cof Hon If U acts only between a

pair of particles in the final state, say "1" and "2," then

() _n ey (5 ‘ - : '
g-b - th (E )gq (r) ! (2)
where B’ and €* do not contain g or r and gq(_)(r) describes the relative
motion of "1" and "2," (1) becomes
- [ @Ope () 3. (9) o(+) .
T, =/ arg 7 (x) [ d7erng, t (e )y, : _ (3)

It is assumed that g, the relative momentum_of "1 and "2" is sufficiently

small so that g is s-wave. Therefore, agymptotically 

gq(—) = e—iaﬁsin(qr +8)1/ar.
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The domain of integration of (3) is determined by the non-zero values of
Vwao(+); if this range is sufficieﬁtly small, then qr << 1., (This
~condition of short-range productionll will be discussed in Sec. V. A.) v

So,

sin(qr + ®) . sin d(qr cot & + 1)

L qgr] ' (3a)

. r
=Sln6[l—g+2o

where a is the scattering length and T the effective range.

(-)

Ignoring the q2 term, gq may be written

gq(_)(r) ~ e~1° [{sin 8)/qlr(x). : ()

Inside the range of U, which is assumed strong and attractive, gq(—)(r)
does not depend strongly on q for small g, except through the boundary
condition where it joins the outside wave function. Therefore, (4) is

valid inside the region of interaction as well as outside of it, for

small q. Therefore, (3) now becomes

e 1 sin 8 3.3 o(+)
pa— ~ ")“ 3q
Ty, = — fdrd € f(r)wa - (5)
: : . 15
and the cross section for an n particle state is
n n
dc;:ﬁvg” ja Y W, - B |® Y .
rel i=1 + i=1 *t
(6)
n
. 2
X T (d3p./h3 > T |° .
. i ; ba -
odi=1l spins N
v
For the three particle final state, after integration over the o
momentum and energy delta functions we have ' ‘ >
2 2
d7ao 8 A 2 '
INaE © Fv o(z) L Tpal™ (7)

rel spins
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where p(E), the phase space factor, may be defined from

. Cfa3. 3. 1,46
.p(El)&EldQldS223dE2 = [d p,d p2] /b,

The phase~-space factor corresponding to (7), the differential cress

section for observation of a single particle is

m 3m m 1/2 ' ' B -
Q(El) ) 2/h6 [hl ME if] [El]l/E [E max El] 1/2 a

‘We may rewrite (5) in the form

2 1 (0),2 ‘ o -
= 7 5 T 9 (8)
| (q2 . q2 cot£6) l ba ! v i

(o)

where Tba is the integral in (5) and is independent of gq. In the
specific case of the reaction, H3 + d - 2n + He3; we have in the c.m.
system
o 11/2
' 2 [ ax ]
dgﬁ/deE = lg(e)l (E)(Em = E),

» (8a)

2 | 2/,
E,+ 1% /m.n -1/a + r q /2

. 2
where we have absorbed all constants and 'Tba(Q)I'? which is assumed

to depend only on 6, into the factor |g(9)|£° The Jacobian of the

l/gu (This as well

transform of (8a) to the laboratory is simply (Elab/E)
as the phase-space expression is dérived in the Appendix,)

It remains to show that Tba(O) ig essentially the same transition
matrix element that one would obtain if there were no strong final state
interaction present. Also it will be noticed that the "enhancement,”
singé/qg, approaches zerc for large relative energies of the interacting
particlesj and consequently sc does dgd/deE, This is certainly unrealistic;

what should occur is that when the enhancement becomes small, the cress

section approaches the unenhanced cross section., TIn other words, the
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enhancement factor should become unity as the final state interaction
becomes weak. Such an enhancement factor can be defined by the use of

Jost functions.

B. Jost Function Enhancement

The Schrbdinger equation for s-wave scattering is

2
- §;§_+ v(r) - k2 Wo(k:r) =0, (9)

dr

where LN is a solution simply related to wo’ the solution with physical
boundary conditions by

. —160 wo(k,r)
Wo a kr

r

It is convenient to introduce a function which is a solution to (9), but
which satisfies the same boundary conditions as the sclutions to the

"free" SchrBdinger equation with V = 0. These are

g(k,O) = 0, . . _ (lOa)
#(k,0) = 1. (10v)

g is related to wo'by

1
g(e,r) =2y (k7).
#(k,r) is a real function for real k, and is even in k. Also it is

everywhere analytic in the k-plane.

The Jost function, f(k,r), is defined as a solution to (9) with the

poundary condition

Lim T r(k,r) = 1. (11)

r - ®

From Eq. (11) we have for real k,

*(-k,r) = £(k,r). (12)

14
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We may construct solutions regular at the origin from the two

linearly independent solutions f(k,r) and f(-k,r). .

¢(k‘s.r)' = 5%1; [f(k)f(-k.,r) - f(-_k)f(k,r)],

where
f(+k) = £(+ k,0).

From Egs. (11) and (13)

g;f:ﬁ: E%E {f(k)eikr _ f(_k)e—ier

2ik (k)

£(-k) [_e-ikr- . ff(k) eikr], ;

Ve, o(F) » B

Compariné (lﬁ) and (15),

5,06) = R
but
2185 (k)
So(k) —e ©

Therefore, from (12) and (16)

id (k)
£(k) = |f(k)|e °

Also comparing (14) and (15)

i1 -1
a = [(n/E)l/g Lﬂfﬁl] |

By using the boundary condition (10b), the ratic

wll,r)

T, .
I/-é gin kr

F' =

r =0

Vo/x [ -eiikr;so(k)eikr] :

(13)

(1)

(15)

(16)



is found to be

Fr = =
BE3)
Using the quantity F{,'the ratio, at r = 0, of the value of the s-wave s
function in a potential to the value of the wave function for no inter-
action, may be found. Thus B
id (k
Ve oU6T) o)
F = k;O . = e . (17)
(o), (k) )
Ve o (k)
2
2 : s o
|F| therefore represents the ratio of the probabilities of finding the
two particles at r = O with and without an interaction between them. It
is, for this reason, called an enhancement factor. The important
#
distinction between the Jost function enhancement factor, and the factor
(sih ) /kof (8a) is that the former has a more appropriate normalization.
It can be shown that |F|2 -1 as k —» m;l6 this means that as the final
state effects become small, the cross section approaches the (unenhanced)
production cross section, and not zero, as (sin 5)/k Joes,
From an integral representation of f(k) in terms of the scattering
phase shift,l6 it can be shown that, in the effective range approximation
k- ip | - |
(k) = 55 > (18)
where
1 .
—2- I'e(a—B) = 1 -
!
1 ®
§ I'ea B = - l/a
Therefore,
2 2 : :
2 k o
|FI = ) = 5 e v (19)
k +B

* k and g are used interchangeably.
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It is interesting to compare this enhancement factor with that obtained

from the factored wave—fuﬁction approach,

L2 o 2 2 . . .
gin © k™ + . 1 (20)

k2 k2 +,82 . .(kz + O?)

In the region K << a2, the energy dependence of (19) and (2) become

\ s ' o2 -2
equivalent, However, for the neutron-neutron system, & = 66.0 X logucm s

: : -l
while a relative energy of 1 MeV corresponds to k2 = 2,41 x 1024 cm
thus for the purpose of accurate determination of scattering parameters

the two approaches are not equivalent.

C., Coulomb Effects

The asymptotic: solution to the Schri¥dinger eguation with a

Coulomb potential is
14

(-) _ _-id . . ]
B = e [FO cos & + G_ sin ® /kr

For kr < 1

e sin 5 [1 - r/a ]/01{1«,. - (21)

24

(-)
gf
where we have used the effective range expansion with Coulomb terms,

and ignored terms of order k2r2, '

¢% cot & =-1/a - hI({“) g ) (22)
: 2
2 onq . 1 .
C =T n=mg 5 RB= 73
e -1 mpe

n(n) = Re [%%%l::{%gl] - 1nn .

Therefore,



-id
(-) e sin & -
L}
Which is of the same form as Eg. (4). Therefore, in the case
T _ i
of the final state interaction between two protons, the cross section is &

% |(o)]? PleE™ - 5)1Y/°
304 & 2 o (23)
L A 1 h(n)
CErp+a "o ~ & 7y
p P :
where
I’Omp
')' =
on°
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IIT. EXPERIMENTAL

A, Beam Optics and Alignment

For this experiment deuteron beams of 32.7 and 40O.L MeV were
obtained from the Berkeley 88finch sector-focused cyclotron., The beam
line and orientation of magnets is sh@wn in Figoﬂl_° In the horizontal
plane the quadrﬁpole Ql focuses the beam bétween itsglf and the switching
magnet, which then bends the beém through 40‘degi Q2 waslthen used to
obtain a focal point at the analyzing slit. This slit was 0,070-in, wide,
The rays from the image-source were then focused at the target ceﬁter by
Q3u In the-vertical piane the beam remains parallel between the switching
magnet and Q3, which focusés it at the target center. Initially, the beam
spot was observed visually on a quartz plate at the target center position.
Before obtaining the beam, the 0,070-in. wide entrance collimator, the
target center, and the counter coilimator in its O deg position had been
optically aligned. To obtain a beam line coincident with the line
defined by these poinﬁs, horizontal beam profiles were made (see Fig. 2)
by sweeping a 0.100-in, wide slitted tantalum plate on one counter arm
through the beam, By moving slowly through a small range of angles near
O deg, the beam profile is obtained as the beam current which reaches the
Faraday cup directly behind'the slit as a function of angle. The whole

scattering chamber could then be rotated about the entrance collimator to

éenter the bean,
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Scattering chamber

Tritium target '|.—Shielding

Foraday cup ™~

Target collimaiors ’
Quadrupole

‘/Anolyzing_ stit doublet—Q, r(

Bearn plug -~

Switching magnet

ot 2

Meters

Lo

MuH-11198

Pigure 1, Experimental layout.
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Figure 2. Horizontal beam profile,
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B. Gas Target and Tritium Filling System

The gas target is shown in Fig. 3. It was constructed in two
tandem horizontal sections, and during the experiment was placed in a
20-in, portable scattering chamber. The scattering chamber and target

P

were evacuated to a pressure of approximately 1077 mm of mercury. The:
uppér section of‘the.target was filled when the target was already in
the scattering chamber, through an external fill line. The lower section
was filled and isolated previous to placing the target in the chamber;
thié section contained either He3 or H3° Generally the upper section
was filled with Nlu at 1/3 atmosphere or evacuated for background runs.

The target was constructed in an unusual wedge-shape to minimize
its volume, so that large amounts of H3 would not be fequifed. The
volume of each of its chambers was 65 ce. The entrance and exit windows
were constructed of 0.0004l-in, ﬁhick "Havar'" foil and were soldered to
the target body. It was found that this was the minimum thickness that
could consistently tolerate a differential pressure of 1 atmosphere.

In order to avoid the necessity of pumping on the tritium gas

3

during the eipefiment, we Tilled the H- target section outside the
scattering chamber, by simply allowing the evacuated target and coupled
H3 gas container to reach equilibrium, In this way we obtained a tritium
pressure of 0.2 atmospheres (about 40 curies). This relatively low

pressure was more than adequate, since for optimal energy resolution we

were limited to low counting rates by the electronics,

C. Counter Collimator System

The detector, counter collimator and target system are shown

in Figs. la and b. The counter collimator system (see Fig. 5) was
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.

‘. . R . : . N . R
Gas fill tine ] -
Cé for upper chamber .
I DR Beam direction
[
S::;‘:" S ““‘“‘*Upder chamber
(. \ /
b "\:2\’>a
J S eam enfrance
< \7 “windows
/1/'\\ g (Havar)
~-~ —~=J~—Lower chamber
To compound gauge
Havar exit : ' {tritium pressure measurement)
windows AN
(0.416 x 1073in, thick)
.lll N
MUB-11200
4
Figure 3,  Gas target chamber,
[ 2
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Gas target chamber ‘.

} Figure b,

(a) Top view

Detector and target system,

’ [
Detector arm . i
T vernier  vertical and horizontal
Faraday cup [ entrance collimators %
' - -Il - - Beam line .
~ Detectors Y : g
(AE ond E) - -7 Isolation foil -
Detector Scattering chamber
~ collimators
. 5 10.
(0) baeaad 4
Inches
. ( \A
Gas fill line
Target - ] / (upper chamber)
‘ support shoft, | Gas target chomber
Detector box - \ : (lower position)
B | S e L - h ~—— Beamn line
Faraday.” / - \ "
- cup . .
: Detector arm Detector arm
vernier
(b)
. MuB-11199 -

(b) Side view
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MUB-11201

igure 5, Detector holder and colvlimating vsystem.
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désigned to reach small-scattering angles (~ 3 deg). The ultimate limit-
ations in reducing the angle of observation were the spread of the direct
beam behind the target, and elastic scattering from the target entranceb
window. The tantalum counter collimator thicknesses (0,040-in.) were such
as to stop 25 MeV protons; their widths (0.070-in.) were determined by
the need for relatively good angular resolution (we obtained approximately

+ 0.3 deg) without undue sacrifice of counting rate.

D. Beam Energy

Thé éluminum foils used as absorbers in determining the range
of the beam deuterons were discs tufned to an accuracy'of better than
O,I% of their diameters. Thelr weight was determined on a microbalance
to an accuracy of better than one part in 100,000, The imﬁurity content
was less than 0.1% by weight. However, the beam energy was measured in
4air and there were air gaps‘both beforé and after the péssage throﬁgh the
foils, The values used are given in Table I; where the energy losses are
summarized. The ranges of deuterons in aluminum, nitrogen and oxygen were
obtained from the work of Williamson and Boujot‘,l7 A representative
fange curve is given in Fig. 6.

Table I, Beam energy measurement.

Material Thickness Aluminum Equivalent E Uncertainty

(cm.) (mg/cm?) (MeV) (mg/cm®, Al)
Air . 9.66 13.4 327 + 0.5
Al 7502 + b2
Air 6.10 8.6 6.0 + 0,9
Al 33.0
Total ' . 805.2 mg/cm2 E = 32,69 MeV + 0.13

+ 5.6
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E. Detectors
The AE detector used was a specially prepared phosphorus -
diffused-in-silicon type. The depleted (charged-particle sensitive)
layer of this detector was 0.0036-in., thick at the reverse bias operating
voltage of 80 volts. The non-depleted "dead" layer of this type of detector
is less than 1p thick.18

The E detector was a lithium-drifted-silicon type. Its depletion

layer was 0.,083-in. thick operated at 225 to 250 volts reverse bias.

F, FElectronics -
A schematic diagram of the electronics is given in Fig. 7.

1. General Description

The detector signals were fed directly through low capacity cables
into each of two charge sensitive preamplifiers. The output signal of
these preamplifiers.is independent of detector capacitahce and was of the
order of 0.5 volts. » : -

Both pulses, AE and E, were next fed into liﬁear pulse amplifiérs,
whdse maximum gaiﬁs are about 1000X. This amplifier contains shaping
networks. An L-R integrator was used to give the output pulse 0.2 psec
rise time, These pulses were thén clipped to about 3 psec by the amplifier's

delay line circuit which superposes an inverted delayed pulse of the same

* amplitude on the original pulse. In addition there was a slow coincidence

requirement between AE and E pulses for output. The net amplification of

the input signals was approximately 10X. The output is then fed to the “

identifier unit.
il

2, Identifier

By using the empirical range-energy relation for charged particles,
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_op-
R = aEl'73, the identifier generates a pulse whose amplitude is dependent
only on the type of particle détected,l9 The operation of this unit is
briefly outlined below.

a. Mixer., The E and AE signals are fed Tirst into the gated

" mixer circuit. Essentially this unit adds a shortened AE signal, delayed
by 1.5 usec by the timing generator, to the last 1.5‘usec of the E pulse.
Thus the output is a steppéd wave form of amplitude E and then E + AE,
The E + AE pulses are analyzed and stored in the Nuclear Data PHA.

b. Function Generator, This unit electronically simulates the

range-energy relation and generates a stepped wave form of amplitude
1. .
Y73 ana (B + AE)l 73,
¢c. Sampler. This unit "samples" the step signal of the function

generator at 1.5 psec and 2.5 psec and forms the difference

(8 + am) T gH T3 = 1/a,

where T is the thickneés of the AE detector. The constant a is

inversely proportionélito the value MZ2 of the particle, and the amplified
output of the sampler is the "identifier" output signal, Shown in Fig. 8
is a typical identifier spectrum as displayed on the RIDL 400 channel PHA.

3 3

This spectrum was used for the identification of He from 4 + T — 2n+ He™;
prétons and deuterons from other channels were not in range of the total
detector thickness and so their identificétion was quite poor. Ordinarily,
gbod separation of all particles is readily obtained,l9 Here we have
exéellent separation betweeh tritons, He3'and He

3. Routing

The identifier output signals of the sampler were used to route

E + AF signals from the mixer to the appropriate one of four quadrants of

-
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a L4096 channel Nuclear Data PHA, The range of identifier spectrum
amplitudes which would generate a routing signal in one of the four router
channels was determined by setting the upper and lower windows of a
separate single channel analyzer on the identifier peak of the desired
particle as observed on the RIDL display. These routing signals then
initiated storage of the E + AE pulse. The E + AE spectra were finally
transferred to a PDP-5 on-line computer which stored them on magnetic

tape, printed, and plotted them.

»

~
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IV, ANALYSIS

A, ‘Calculations

1, P. H. A.‘Channel Energy Width

The first step in the reduction of the data was. the determination
of a relative energy scale by calibration of the channel energy width of
the Nuclear Data pulse-height analyzer, The channel energy width is the
difference of two energiesicorresponding to adjacent storage channels fof

s . 14 3yA13
input pulses. The discrete spectra of the reactions N (d,He )C and
Nlu(d,t)Nl3 were used for this purpose,EO Shown in Figs. 9 and 10 are

14

the He” spectra from N (d,He3)Cl3 at Ey = 32.7 MeV, 6., = 6 deg and

2] = 20 deg. A programbcalled "Lycurgus”gl was used to calculate the

lab
kinematics of the ground state and excited states of Cl3.. The channel width

. was then calculated from the separation bétween'theﬂground state and each
of four well-resolved levels. The average channel width was found to be
34,21 KeV/channel. At Ed = 40.4 MeV this channel width increased due to

lower gain settings of the amplifiers and was determined-to be 40.9 KeV/

channel with a meximum deviation of + 0.2 KeV/channel.

2. Target Center Channel Energy Width o

Due to the considerable vériation of energy‘loss‘with energy for . -
He3 particleé in the Havar foil éxit window of the‘gaé target;.the channel:
energy width at‘the target center, whereAthe'events téke'placé;;is different
from the corresponding channel energy width., From the defiﬁition abové,
choosing the observed energies El and E2, corresponding to the lower edges -

of the adjacent channels, the observed channel width is

]

=.-> = - - (BE,. - .
AB, =B, - B =E,-E, - (88, - 8E) ,

'_where E’l and E'? are the target center energies and SEl and 5E2 are the

1 /
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corresponding total energy losses in target gas and Havar foil,
The differential energy loss of the He3 particles in the gas or
foil may be written

®E = S(E) - px ,

where S(E) is the stopping power of the material,_p its dehéity and - x 1its
thickness. The difference in energy losses for particles of energy E'1

and E'2 is

SE!,. - OE! - Sl(E'g) - Sl(E’l)] (px)l

2 1

- AS:L ° (px)l °

The index 1 on the stopping power and thickness denotes the first energy

loss (in thetarget gas for this case).. For E', - B, < E'2;
— 1 ' .
NS, =+ D, (E l)(E s = E'q),

where D(E') is the derivative of S(E'). Thus the channel width after the
particles have passed through a thickness, Xy, Of material is

LEM = OB (ex)y (2k)

_ 3 1
ch Dl(Ej)AE c

h h

where AE’ch is the target center channel energy width. By applying this

formula to the second energy loss (in the Havar foil) we obtain
— - - . i1 o 1 - .
B! = {AEch/[l DL (&%) - (px),] /[1 - Dy(E) - (ex)y ], (25)

where (px)2 is-the”thickness of the Havar foil and E" the particle energy
when entering the foil. If only the observed energy is known, as is the
case here, there is no simpie procedure to find the particle energy prior
to the large energy losses, The advantage of (25) is that approximate

energies for E!' and E" may be used to determine AE'ch; fortunately, in
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the energy range we considered, the variation of AE”Ch with energy is
quite small (about .3% over the full energy range) and for ease of
calculation it was considered a constanﬁ. 'For example, at 6 deg,
E, = 32.7 MeV, (AE)Ch was found to be 33.25 KeV/channel,

d.

3. Angular Distributions

In order to define angular distributions for a three-particle
final state it is neceééary to specify the particle energies at which{the
spectrum is evaluated, as well as‘the energy intervals intégrated o&ér,
In (8a) we have assumed a c.m. cross sectidn separable in energy and.

angular dependence, contained in ‘g(e)lz. To determine |g(9).|2 we

define

By |
do _ / d.20' ' 6
acle =~ Ioae 4F - : "(2 )
nn .
E, :

However, only relative values of do/dQ are necessary. Therefore, the

quéntity calculated was
S = N sin g/uC , : (27)

where N is the humﬁer of counts in the interval E2 - El’ 6 the lab angle
and uC the number of microcoloumbs collected in the Faraday cup. S was
evaluated for three fixed values of E , at lab angles 6, 8, 10, 15, and
20 deg. The variation of S with ec;;, is due only to the lg(e)lg factor
in the cross section of (8a), if the energy interval of integration in
(26) ié sufficiently small and E , is fixed. In fact, the intervals were
five channels (171 KeV) wide (the resolution FWHM was seven channels),

These intervals were centered about each of the three values of Enn shown

in Fig. 11, Therefore, we assumed
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Figure 11, v‘g(e)lQ calculated from a 0.170 Merinterval centered

~ at three spectral points,
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le(8)|° « s(6) .

Below, these two quantitiés are used interchangeably, since the cross
Msection calcuiation was ultimaﬁely nofmalized to the data., From this
experimental determination of the angular dependence in tﬁe lab systemn,
we can apply an accurate correction at fixed lab angles,’ This is
necessary siﬁce-each lab spectrum corresponds to a conﬁinuum of c.m,

angles. For example at @ ‘= 6 deg, for the range E . =0 to 1.57 MeV,

lab
6 goes from 12.52 deg to 12.85 deg. When ]g(ec 0 )|2 for different

c.m,
.values of'Enn are compéred (see Fig. 12), it is seen that there‘is no
significant departure from the form of (8a). This fact demonstrates the
validity of the Watson form in this angular region.

The angular dependence, |g(9)|2, determined as described above,

was then ﬁsed to correct the 6 and 8 deg lab spectra, For the 6 deg and
8 deg spectra this dependence was épproximated by a straight line, in the
former case between Qalues of S(é) corresponding to 12,52 deg and 16,54 deg,
c.m. These two points are dbtainea from (27) for E . = 40 Mev,

2] = 6 deg and elab = 8 deg. This energy was chosen because it correspon-

lab
ded to the best statistical accuracy. Table II gives the values of
|g(9C o )l2 at 10 channel (0.342) intervals of the 6 deg spectrum. It

should be noted that the maximum correction is about - 4%,

Table II, Values of Ig(ec o )|2 at 10 channel intervals,

Qlab Enn Channels from b0 m A 5 Error
(deg) end point ' (dégi o le(6) | (%)
6 0 0 12,52 1.00 + 8
. Lo 10 12,60 .9922
.79 20 12,68 .9833
1.18 30 12.77 .9740

1.57 o) , 12.85 9645
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4, Resolution Folding

The calculated function, dgc/deE must be combined with all sources
of instruméntal energy spread in order to simulate the observed spectrum.
Sinée the energy spfeading is the result of random processes, for a large
number of events, we expect a monochromatic line to appear on the spectrum
as a Gaussian distribution of energies. Theréfore, the observed cross

section can be expressed as

0 (E) = o(5) e[~ (8- w)P2m?] &, (o)
' . . 2AE 2%
where

a(E') = dgc/deEl‘ .
. EzEc

The quantity AE is the standard deviation of the Gaussian energy spread
distribution. It was determined experimentally for He3 from the width of
the peak corresponding to the reaction Nlu(d,He3)Cl3, with C13 in its ground
state, These peaks are intrinsically monochromatic and therefore we may
extract AE directly from their widths, | Figure 13 éhows the ground
state-peaks from which Fhelhalf—widths were estimated. In principle one
must correct for the additional kinematic energy spread of the H3(d,He3)2n
reaction in order to use the full width at half maximum (FWHM) of the Cl3
peak in (28). (This energy spread is due to the finite angular acceptance

3 from the

of the detector.) However, the energy spread of the He
H3(d,He3)2n reaction is about 50 KeV compared to the 10 KeV, of the
Nlu(d,He3)Cl3, The total spread estimated from Fig. 13 is 240 + 1k KevV.

Therefore the correction is negligible when folded in as an independent
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random error,

‘The integral of (28) may be

N

)
k=1

max min

o(E,)

For simplicity, the indices

channel energies in which the cross

e -

approximated by the sum

J

(29)

5 ftesr”)

ehE

in (29) are taken to correspond to

section is observed, "

(Ej is “the

lower edge of channel j,) Measurement of a cross section corresponds to

averaging

o (2]

Note that (E
_ max ml 1’1

by the éveraging process,

(29) over each instrumental channel width.

N Bivl o o ' ’
2/, 2

- - E 2(AE dE? 21

A R A R e

o(Ek) {- Erf(Ej - Ek] + Erf(

Therefore,

(30)

-n) -

I/N' which is just the channel width, is cancelled

A simplification is obtained if we define

(AEre), = Erf{Ej - Ek) + BrE(B ) - B (31)
with
i=(3+1) J>k (312)
i=%-j i<k,
Then -
Eﬁ{Ej) E: c(EKJ ©(aEer), o (32)
K,1 S
For the Caussian function used in (30)

11

E: (AErf)i =

i=1

9998 .
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Therefore, the maximum value of i, used in (32) was 11, A computer program

was used to generate the 11 x 50 matrix.of (32) for each value of a -

f

B. Results and Errors

1, X2 Distribution and Errors

.After calculating (26) and folding into it the resolution leoss by
using (32), the next step is tc compare the calculation with experimental
data by calculating the X2 distribution as é function of'anne All the

calculations have been done at energy intervals corresponding to the

observed channels, and we may readily form the sum

N
X2 =:§Z: (Y'i,a _:Xi)e/rY’i,a ’ (33)

a i=1

Here, Y?,
i,a

is the calculated cross section for a particular value of ann;
J .

Xi is the observed cross section. Since we are concerned with the shape
of the spectrum, there is no need of calculafing absolute cross sections,
and some reliable criterion for the normalization of the calculated cross
sections is necessary. The factor chosen was one obtained by requiring
X2 to be a minimum. B
If
Y*, =K Y.

where Yi a is any unnormalized calculation, then for
, :

([T T

e is a minimum. Figures 1k, 15, and 16 show these appropriately normalized

1/2

calculations superposed on the experimental spectra. While the two fits
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Figure 14, Triton spectrum at 8 deg lab of the reaction'He3(d,t)2p at
29,8 MeV with theoretical fits calculated for 11 268 events and for
21 798 events, The dots are experimental points, The solid line is

the best fit for 11 268 events with a__ = - 7.69 F, The dashed line
is the best fit for 21 798 events with a__ = - 7.41 F, The dash-dot
line is obtained with a__ = - 6,90 F, foF 11 268 events, and the dash-
double dot line is obtained with a__ = - 8.33 F; they indicate the

sensitivity of the theoretical curve to variation of ap
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Figure 15, He3 spectrum at 6 deg lab of the reaction T(d,He3)2n at
32,7 MeV with theoretical fits calculated for 17 782 events,  The solid’

line is the best fit for a

= - 16.1 F.

The dashed line is obtained

- , nn E .
with & = - 14,0 F and the dash-dot line corresponds to a = - 18,0 F.
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at 8 deg appear to be quite good, there is unfortunately some background

3 3 evident at the high energy end of

from the reaction d + He'=» n + p + He
the spectra, At 6 deg, this backgrqund was negligible and fhe fits show
remarkable stability over the full range of energy which is covered by

46 channels or data points. This can be seen in Table III (each “point®
in this table corresponds to an observed channel width). Therefore, it
was from thi; spectrum that the value of ann was extracted., .The values of
: X2 as a function of ann are showﬁ in Fig. 17. -Each point in this distri-
bution correspondé to the sum (33) over 46 data points, A parabola was
fitted to the 8‘yalues of'XEibetween & = - 15,25F and &on = 17.C0F, The

equation of this parabola was

.6

Y, = (xi - 45.0) = 4.8257 ~ 9.1705 x, + 5,6559 % (34)
where
X, = - (ann) - 15.25 in fermis.
Table III. Stability of xZ
L ‘Points : Number of Minimum o
(éeg) (Channels) points ‘ ann(f) X
6 1 - k46 b6 16,1 u6,1
(32.7 MeV) 5 - 46 L2 16,4 434
16 - L6 31 16.4 - 25,8
8 8 - U6 39 6.0  -38.9
(32,7 MeV) 16 - 46 31 16.2 33.9
8 5 - L6 Lo 15.7 | 30.6

(ho.hMeV) 10 46 31 16.8 19.4
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The least-squares solutions for the coefficients of Eq. (34) are linear
in the Yi’s, Therefore the standard deviation of these coefficients is
readily obtained from the standard deviations of thercalculated Y.'s,
which are Crn ' 1/2
S5 = ;E; (Yi ) Yisc)i/(n -3)

where Y,  is the calculated value from Eg, (32). If we write
1

Y, = ¢, +C. X, + C X,
) 171 7 T2t

2 ~
A (o)

then the minimum,X2 corresponds to

The qneertainty in the position of this minimum is then taken as the sum
of the percentage standard deviations. In Eq. (34), this is equal to
+ .03F, which is certainly negligible. The minimumX2 correépqnded to

a = 16 ,06F .

2. Standard Deviation and Probable Error of ann

The number of data points, N in the sum, Eq. (36), is equal to
L6 this corresponds to 45 deg of Tfreedom and we may use the asymptotic
fofm for the %2 distribution. - For v > 30, where v is the number of
degrees of freedom, the quantityvV ZXE - V2v - 1 is distributed normally.
‘Therefore, the value of X2 corresponding to the mean of this distribution
for 45 degrees of freedom is 44.5. Similarly, the value of xE correspond-
ing to one standard deviation above the mean is 55,5QO, and the probable
érror corresponds to XE = 52,162.' Aé éan,berseen from Fig. 17, the
minimumi%gy 46,095, is very near the meanX2 and hence there is no ambiguity
in the definition of the error associated with the determination of the

scattering length. Thus the probable error and standard deviation were
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obtained by finding the intersections of these values of X2 with the
parabola of Eq. (34)., The following values were obtained (see Fig. 17):

P, E, =+ 1,04 ¥

I+

5. D. =

1+

1,29 ¥,

C. Experimental Errors

A most convenient and reliable method of obtaining the effect of
experimental uncertainties on the value of the scattering length is simply
to substitute input values corresponding to the limits of error into the
calculations, This procedure was used for the beam energy, channel width,

g(e), and the Gaussian FWHM of the resolution loss. The resulting X2

distributions are shown in Fig. 18 and are discussed below.

1. Detector Angle and Target Pressure
These two quantities, although they are primary measurements made

in the course of the experiment, do ndt enter into the expressions for
the observed crbss section, Eq. (26). However, these uncertainties
propagate into the quantities which do serve as the input parameters for
the calculation,

| In the determination of detector angle there were three main sources
of error, First, the positioning of zero-deg calibration of the detector-
arm vernier scale was accomplished by optically aligning the center of the
entrance collimator and the center of rotation of the counter arm (also
the target center) with the center of the counter collimator. The center-
ing of these collimators was accurate to abcut * .005 in. and they were,
respectively, 18 and 12 inches from the center of rotation. The uncertainty
in the zero deg position of_the detector érm is thérefore, + 01 deg.

The estimated uncertainty in the determination of the beam center
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vfrom the beam profiles (see Fig. 2) was + ,03 deg.

The reading error of the detector~arm vernier scale was + ,03 deg.
Therefore the total angular uncertainty is approximately 0.0L4 deg,

Since absolute croés segtions were not being measured, pressures
were determined by means of compound gauges on the filling system, or
in the case of the tritium target, on the target chamber itsélf, We
estimate the total error on these gauges ﬂo be, at worst, about * 10%.
- This uncertainty becomes an uncertainty of the energy losées in the target
gas, but ultimately has no effect whatsoever on the scattering length
determination, as will be shown below,

2, Beam Energy Determination

The uncertainty in the thickness of the aluminum absorbers used for
the‘range—energy measurement was * 0,2%, (Since there was a short air gap
between the absorbers and the Faraday cup in which the beam was collected,
there is an additional uncertainty in the total range due to the rather
low energy (~ 6 MeV) which the particles have when they reach this gap.
This error was estimated to be + 0.2% of the.total range. The uncertainty
in the determination of the mean range is estimated to be 0.1% (see Fig. 6).
As indicated above, there are additional uncertainties in target center
energies, due to uncertainties in target pressures, but these are quite
small (+ 8 KeV in the largest case, the nitrogen target)., The total range
waé found to be 805 % 5 mg/cm2 of aluminum corresponding to an energy of
32,69 + ,13 MeV,‘vFigure 18a shows the two X2 distributions resulting from
the calculations with Ed = 32,7 and 32.5 MeV, Thé latter energy would
correspond to an error of - .2 MeV. However, as is evident, there is no
significant shift ih the minimum of the X2 distﬁ;‘ibutibn° ’

A
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3., Channel Energy Width

The énergy separation observed in the lab for. reactions ending in
different nuclear levels depends on beam energy and detection angle
through kinematics, The uncertainties in separation were obtained simply
by calculating the kinematics for all levels in 0.1000 MeV beam energy
intervals, and 1 deg angular intervals. Sample errors, OE, found in this
way for the four levels used to obtain the channel width are shown in
Table IV. The uncertainty d{ch) is the estimated errcr in the positiocns
‘of the peaks corresponding to each level, As can be seen in. the table,
these errors are quite small., Figure 18b shows the X2 disfribution
corresponding to the mean value of the target cénter channel width, 33.25
KeV/channel, and to a channel width .10 KeV/channel greater.‘ There is no

significant shift in the minimum of the X2 distribution. The value in

Table IV, Sample errors for channel energy width.

Lab Separation (from
Level angle ground state) .. Errors Channel width
(deg) Channels Energy OF 5(ch) (KeV/chan. )
(MeV) - 7
7.55 6 226.3 7.750 + ,001 i ,2 34,25
8 226,1 T.7hH7 3k,26
20 225.3 7.695 . 3h.15
3.09 20 90.6  3.100 , 3h.22
8.85 6 267.6  9.132 34,13
' 267.0 9.128 34,19
6.87 20 203.7 6.985 34.29
Average 34,21 + ,08

(max. dev.)

Calibrated pulser 34,38 + 1%

Table IV differs from 33.25 since it is not corrected to the target center,
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4, Angular Dependence - |g(6){2

The major uncertainties in the linear approximation forv{g(e)‘g
aréAdue to the statistical errors of the events used and the uncertainty
in the difference of the angles used, This factor, as applied to the
6 deg spectrum was obtained from the ratios of cross sections of the 6 and
8 deg spectra, The error in the slope is about * 11% (see Fig. 12).
Figure 18c shows two X2 distributions; one for the central value of }g(e)!g
as observed, and one for a value whose slope is lO% greater, The shift in

the minimum is less than 0.1 F.

5. Energy Resolution .

The uncertainty in the full-width at half-maximum (FWHM) of He>
corresponding to the ground state of ¢13 vas + 0,4 channel (13.7 KeV).
This error is the result of estimating the FWHM instead of doing a detailed
fit of a Gaussian shape to the peak. However, in practice, we are doing
such a detailed fit to the high-energy end of the H3(d,He3)2n spectrum,
This is so because the "true” spectrum, i.e. the cross section before
resolution loss is folded in, rises from zero at the maximum energy to iﬁs
peak value in only 120 KeV (305 channels)., Since in (28) we assume that
the "true" particle energies appear as the mean values of Gaussian distri-
butions, all events above the maximum energy are really the Gaussian tail
of the nearly monochromatic peak of the spectrum. Therefore the X2 fit in
this region will primarily be a fit to the FWHM of the Gaussian used in
(30). 1In the light of these considerations, the results of varying the
FWHM are very gratifying. In Figure le are shown the thrée'x2 distributions
corresponding to the value of the Gaussian FWHM and its uncertainty,
0.240 + ,014 MeV, (See Fig. 13.) There is a large increase in the minimum

value of X2 for each of the extreme values of the FWHM. This increase is
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entirely in the 15 highest (energy) points, i.e. the Gaussian tail, For
these points %2 goes from its minimum of 19.7 at FWHM = O.EMO.MeV to
23,1 at FWHM = 0.254 MeV and 26.0 at FWHM = 0.226 MeV, * On this basis we
can say that the value used is very near a best fit to’the data, and the
large change in Xg for the quoted uncertainty indicates a much smaller
probablé error. Nevertheless, even for these rather over-large uncertainties
the shift in the minimum is only about * 0.1 F, Therefore, the actual
vresulting probable error in the scattering length is considerably less

and can be neglected.
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V. DISCUSSION

A, Long Range and Short Range Production

It has been previously pointed out that for smalikangles} the
reaction He3(d;t)2p is a direct reaction of the "pick-up” type°22’23
The angular distributions obtained for the reaction H3(d,He3)2n indicate
that it too, as woula be expected, proceeds by the pick-up mechanism at
small angles; At sufficiently'high energies, the angular distributions
for such reactions are qualitatively well predicted by simple plane wave
Born approximations for the.transition matrix;gh in these approximations
it'is assumed that the production potential, V, is very short range.
Indeed, it is possible to get fits to the angular distributions by assuming
V to be a delta-function in the coordinates of the incident partiqle and
"picked-up” nucleon. In the above cases, this nucleon is in an £ = 0 state

initially, and the crude delta-function model gives
do /46 « [5 (a’)]?
o}

where q 1is the momentum transfer and R is the reaction radius,

In Fig. 11 there are shown the plots of (do/d2) at constant E
for H3(d,He3)2n reaction at B = 0,40, 0.79 and 1.57 MeV., It should be
noted that their relative magnitudes at a fixed 8 are determined by the
enhancément at each value of Enno Figure 12 shows two of these same
curves normalized to the value of ‘g(e)i? for B = .140 at 12.52 deg. The
- slope of the curves between 12.52 deg and 21,31 deg is quite uniform,
@emonstrating that the factorization into angular dependence and energy
depéndénce at small angles is é good and reliabie method of treating the
speétra° Also shown in Figq-l2 is[jo(QRﬂggR = 3,1 F, AT small angles

. . : 2
its slope and general shape agrees well with the observed lg(9)| which

¢
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demonstrates the validity of the direct reaction model,

Direct reactions of this kind, which are highly localized in space,
in contrast with other conceivable mechanisms producing the same‘final_
state, are best suited to the momentum dependence separation which leads
to expression (82). Quoting Watson:l for processes.u,for which the
range of V is considerably less than the range of v there should be no
serious modification of v since the effect of the final state interaction
comes from regions of space for which V =0." (Here v is the final state
interaction, and V is the production interaction.) In the case of
HéS(d}t)Ep this spatial separation of primary and final-state interactions,
characteristic of direct reactions, can readily be seen in the Born approxi-

23

uation trensition matrix for the process.
' - f exp[4T - z)]us(z)(ﬁz‘[ u(z)xq(}’)*(;)@x
[ewllz - 7l A [l il3 - 32l o)
«{ sH3<u,s,3>spp<_1,e>|P(a,msHe3<1,e,3>sd<u,s)> :

3

The three-body wave functioﬁs of H3 and He” were assumed separable

in the form
- 1 . .
W(1,2,3) = w2, - Ryl -5 [ F e ?2]}, (36)

The S's are appropriately symmetrized'spin—isospin wavefunctions and

P(c,t) represents the spin dependent part of V, the primary interaction.

The spatial and momentum coordinates of (35) are defined as:

- - - - 2
r =71 -Tg q = g'ﬁ -
2.7 -7, ¢ -x-2%
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- o 1 (5 - ) > e V
y = r3 -5 |T)y * r5 q _( kl k2 2
7.7 l(a -

R - re)

'K and ﬁ'are the incident and final momenta respectively, in the c.m. system.
In this direct reaction ﬁodelz the productlon potential is just

an interaction between nucleons 3 and 4, It is quite evident that this

production process is independent of the relative momentum and separation

of nucleons 1 and 2, the two-proton system, Therefore the production

process does ﬁot distort the momentum dependence on q in (35), which is

contained in the factor
*

(7 -
.fu(x)Xq (x)a’x . | (37)

In Sec, II, A. i1t was shown that a necessary condition for the

simple factorization of the momentum dependence of {4 L sin ® (q
\ 1y )

is that gr <1, At r = O this factorization is an exact procedure for
the asymptotic wave function., (The Jost function enhancement is also

obtained at r = 0,) Hence, the use of sin ©® as an enhancement may be

said to correspond to short range production processes, If this short
range condition is not fulfilled, then the factorization cannot be done
and the.infegrals (5) and (37) depend on the detailed behavior of gq-(r)
in (3) or an(r) in (37). Furthermore, the matrix elements also depend
on the form of Xa(+), which is not, in general well known, Eveﬁ in using
the Born'approximation, there is, generally, a considerable uncertainty in
the unperturbed férm.of Xa(+)o This is the case with u(x) of (37), the

3

wave function of the two protons in the He” nucleus.
. A good example of these considerations is nucleon-deuteron breakup

reaction, from which attempts have been made to extract the neutron-neutron
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X : 25,26 . : s ' ‘
scattering length. In the impulse approximation, the dependence on
g, the relative momentum of the two like nucleons is contained in the

matrix element for forward scattering of the odd nucleon26’21

T = TD(K)J/.d3r xq(‘)*(r)ﬁd(r)éxp ['iﬁ °>?7é] (38)

where K is the momentum transfer, and ﬁa(r) is the deuteron wave functiocn,
Using the Hulthen function, R. J. N. Philips calculated (38) and pointed
out considerabie departure from the factored form of (8). Appropriately,
Phillips called the nucleon-deuteron break-up a ”iong_range” process,
since the production of the final state takes place over the range of
non-zero values of the deuteron wavemfunction, which being relatively
extensive, makes necessary consideration of values of gr =~ 1 for Enp’
E _ > 1 MeV., The net effect of this "overlap" is to give & more narrowly
peaked spectrum. Therefore, if one attempts te fit the speCtrgm with

the Watson form or some other short-range approximation, the scattering
length obtained will ﬁe too large. Indeed the scattering lengths obtained
from experiments utilizing n + d > n + n + p range from - 21.6 ¥ {no error
quoted) by Cerineo et a1025 to - 23.6 f72°g P by Voitovetski et alng6 In
the light of later work,.these values seem definitely to be several fermis
too large. However, in carefully evaluating the expression (38) as it

3

occurs in the transition matrix for = +d —-»n + n + 7, MeVoy~ showed
that for ¢ corresponding to-'Erln < .8 MeV, the momentum dependence of (38)
could be represented as sin B/q'to within about 2%, (However he estimatés
.that the discrepancy due to the d-wave component of the deuteron may be as
high as M%,)

Therefore, we can say that the distinction between "long-range"

and "short range" production is a most important criterion in applying the
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Watson form; the factorization is valid only within a limited region of low
particle-pair relative energies., This energy region is defined by the range

3

of the production process, Consider specifically the d + T and d + He

29

reactions. Using a Gaussian wave function in (36) we find the average

3

separation of a nucleon pair in the He” nucleus to be

<I‘ > :l°29 F’
12 He3

compared to the deuteron for which

< = 3026 F)

>
Y12 “geut
using the Hulthen wave function. Therefore in the range of energies
we have considered, Enn < 1.57 MeV, assuming the same < Ty > for H3 as

for He3 we find

1 <77, <3
3
and the short range approximation is valid,

If it is possible to use the factorization (4) one avoids the
necessity of explicit evaluation of the production matrix element, which
generally depends on too many’ﬁncertain quantities. Such evaluation has
often been done using the Born approximation} a highly dubious procedure
for low energies, aside from the fact that the form of the sgpectrum may
depend critically on the form of the initial state two-nucleon wave function,
as stated above., This effect is illustrated in Fig. 19 iﬁ which is plotted
the "overlap integral,"” (38), for neutron-deuteron breakup, with subsequent
final state interaction of the two neutrons, and the "short-range”
approximation, i.e. essentially the Watson form, both calculated by‘PhillipSOEBV

It is readily seen that the effect of the "long-range” production is to
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Arbitrary units

b=1.4F

[sin(b‘-*—kb)]z
- /

Complete overldp |
integral

Figure 19.

MUB-11207

04dd nucleon spectrum of nucleon-deuteron exchange with .

and without short-range approximation.
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favor small values of Enn more than in the case of short range production,
thus narrowing the resulting peak.

A similar effect seems to be present in the reactions H3(n,d)2n and
He3(p,d)2p, but the explbration in terms of long range production is rathef
obscure in view of the fact that the Watson forﬁ gives such éxcellent
results for the reactions He3(d,t)2p and H3(d,He3)2n° Ajdacic et al°3o
investigated the H3(n,d)2n reaction at 1k4.k4 MeV;_énd attempted to extract
annvfrom their data. They found that the peak at the high-energy end of
~ the deuteron spectrum, corfesponding to small Enn’ was much narrower than
the prediction of the Watson form. The& used the Born approximation to
extract the value &0 = - 18 £+ 3 F, and as explained earlier this is
questionable,

30

On the other hand, Tombrello and Bacher, investigating the mirror
reaction He3(p,d)2p at 11.94% MeV, also found a much narrower peak than

could be described by the Watson form for the proton-proton interaction,

but they fitted their data by aésuming an additional interaction, It was
assumed that thisrinteractioh~took place between the deuteron and the p-p
system considered as a single particle,vand by utilizing only Coulomb and
centrifugal effects a best fit to the data was obtained if this interaétion
was present in an L = 3 state, However,'this description ignores an |
essential feature of three-body kinematics that only one pair of particles
may have zero;of‘low relati&e momentum in a given configuration. Thus

the customary freatmentlo of multiple final state interactions conéiders

the total enhancement as the product of enhancements due to the interaction
df each pair of particles in the three particle system. It is kinematically

impossible for the two protons to have low relative momentum at the same

time that the deuteron haé low momentum relative to the c¢.m. of the two
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protons. However, the deutercn and one proton may have zero relative
momentum, but fhe deuteron then must have large momentum relative to the
. second proton; this occurs at Ed = l/LL-EIdnaX° For non-resonant attractive
potentials, the final state pair enhancement always peaks near zero
relative momentum for the pair. Hence we expect to see the effects of the
p-p interaction at the upper end of the deuteron spectrum, Wﬁile the p-d.
interaction should appear a? low energy. Thus.the residual effect of
'the p-d interaction could only éppear, if it does at all, as a broadening
of the proton-proton peak at high energies, rather than the observed
narrowing.

B. Correlation Experiments

3A

The reaction He® + d - P + P + t has been studied extensively by

means of correlation experiments in which two of the final-state particles

) . 32
are detected in coincidence.” »33

If, for some reason, it is desired to
determine all three momenta in the final-state then Such an experiment

is necessary, since any linearly independent combination of three angles
<and/or energies is required in the c.m. systen, Howeﬁer, it.is only
necessary to measure the momentum of a single particle in order to determine
the relative energy of the other pair, which is certainly the most relevant
quantity in describing the pair interacticns. For example, E%p; the

energy of the two protons in their own c.m. system, is the only experimental
parameter necessary to describe completely s-wave nucleon scattering (which

includes the positions of resonant states, if any). -The relative energy

of particles 1 and 2 is
B, =Ey - (ml + W, + m3)E3/(ml + m2), (39)

where E_ is the energy of the third (observed) particle in the c.m. system,

3
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3

and E. is the total energy. For the specific case of He” + d - p + P + ¢t

0

we have

By =% - 5/2 Ey »

where E3 is the triton energy. The advantages of a single detector experi-
ment are Well-illqstrated by thé Dalitz triangle for this reaction, shown
in Fig. 20. The inset at the left of the figure shows the spectrum
Eﬁ%ﬁgm in the c.m. systém, which is seen to be the projection of all
evengs, at a fixed c.m. angle for the triton, on to the E3 (ﬁriton energy)
axis, We see fromA(39) and the Dalitz triangle that in observing such a

spectrum, from E, equal to zero to its maximum value, 2/5 EO’ we are

3
covering the complete range of Epp and summing over all other kinematic
parameters, Fach value of E, corresponds to a straight line of constant

3

E12 on the plot; the spectrum of E3 then corresponds to the entire area of
the plot. On the other hand, in a correlation experiment, a fixed particle
energy corresponds to one or two points on the Dalitz plot, and the locus
of the spectrum of particle energies is generally a rather cbmplicated
curve, which intersects the lines of constant E12 at a point. Therefore
the obvious advantage of the single detector experiment, besides its
simplicity, is that it measures all events of a given E12 at a fixed
detector angle, rather than the small fraction obtainable through the
correlation experiment, This is reflected of course by much higher counting
rates, |

Regions of low relative momentum for each pair are shown as shaded
regions on the plot. It can be seen that for any energy spectrum, regions
of minimum relative energy cannot overiap and separation of enhancements

depends on E the total c.m. energy.

o?
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Figure 20, Dalitz triangle and projection for He3(d,H3)2pa
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C. The Resction Heo(d,t)2p
There is very stfbng evidence for the validity of final state
interaction thepry in determining the neutron-neutron scattering length
from the reaction He3(d,t)2p, Spectra from the reaction He3(d,t)2p were
obtained using 29.8 MeV deuterons undér identical experimental conditions,35
The reaction Nlu(d,t)N13 was used to determine the energy scale and

resolution. The proton-proton scattering length was extracted from these

spectra by using (23). Shown in Fig. 14 is the spectrum at GL = 8 deg

~and the theoretical fit. For 21,798 events (Epp =0 to 2,38 MeV)

- _ + .39
app = 7.)4-1 _ °)+9 F.

For 11,268 events (Epp = 0 to 1.58 MeV) the scattering length is

+ 0,61
8p = " 7.69 0.67 F*

The errors are probable errors determined from asymmetric X2 distributions,

34

ap = - 7.719 % .008 F..

‘Since the deviations from the accepted p-p scattering length are within

the experimental errors, one may conclude that, barring chance compensation
of errors in the p-p case, there seems to be no systematic error in the
enhancement factors withinoair experimert al accuracy over the energy range

used in the deﬁermination of the n=-n scattering length.
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D. Determination of the n-n Scattering Length
from the Reaction n” + D—on + n + ¥

The.outstanding éavantage of-fhis reaction in determining the
neutron-neutron écattering length is that thére is only one final state
stfong iﬁteraction possible. Fof thisvreason primarily, this.reaction
has been studied‘exte’nsivelyboth:’ﬁheofe‘cicallye"LL and exper:-'unentally5_7
over the yearso The mbét récent:ﬁofk is that of Haddock et ala7 who used
the treatment éf Ba.riderLL to fit their spectra, ‘The enhancement factor
obtained by Bander is identical to the Jost'funétion enhancement‘of (19),

Approximately 2000 neutron-neutron coincidences at four opening angles were

used to obtain the value of the scattering length

la_ | =16.4 £ 1.9 F,

The value which we have obtained, - 16. 1 + 1,0 F agrees quite well,
One serious difficulty in the use of this reaction should be

36

pointed out. The primary interaction is the _ photoproduction from

the protons at threshold, about which nothing is known experimentally.

If it depended strongly on the n-y relati&e mémentum, the energy dependence
of ﬁhe»n—n final étate iﬁteraction couid be'éonsiderably distbrted,
Unfortunately, empirical evidence against such a possibility, namely the

measurement of the p-p scattering length using the mirror reaction, is not

readily obtained for this type of experiment.
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APPENDICES

A, Phase Space Energy Dependence

B S AL ENEREN
ﬁ%f p,a%, o2, [0, - &,)
_ h_g, /’ o, %ap, 40,9, %ap,00,5 (20, °f2n, - E, )

p, = p,(6,,9))

2
an_. = P, sin ngegdﬁg .

Integrate over the azimuth Eé and the direction of pl

_ e 23p.p. 2ap.dlcos 0.) 8|5 B - E
G Py P1Pp OPp { ' 1)2 ( i o)
81:2 .
-5 P, P,P3Adp,dp,dpy B(ZiEi - EO) , ]
since
plpgd(cos 612) = p3d_p3
p3dp. P,dP, p,dp;

3
dE, = dE, = dE. =
3 m3 2 m, 1 my

2
8xn :
o = (mlm2m3) 5 jdEldEZ where f dE35(El + By + By - EO) = 1.
., Phase space available to the reaction products is proportional to

the area in El - E2 space,

k2]
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B, Calculation of Jacobian Transformation
It suffices for our purposes to calculate the non-relativistic

Jacobian. The transformation follows naturally from the equality

2

o

9
dE 4dQ

o o

dgc

a—E—a-Q—- dEd(COS 9) =

dE_ (d cos 90) (B-1)

where the sub-index o indicates c.m. variables, Thus, in a more compact

form
dec dgoo
dma - ¢ @®ao (B-2)
o o
where J is the Jacobian transformation
O|E , cos 6 }
o) o)
J = (B-S)

o(E, cos 9) ’

The following relations hold between velocities in both coordinate systems

v cos 8 -V, =V_ cos 6
G o} o

2 2 ) 2
vo = vG - 2vG Vv COS 8 + V

where Vo is the laboratory velocity of the c.m.; from these relations we

can derive the functional dependence of EO, cos 90 on E and cos @

1 2 /2 1/2
Eo =3 va - 2VG cos 6 o E + B

2E)l/2

cos 6 - Vv

2E /2
o
m

G .

cos 9_ =
O -



~Cl-

o -1je . ;
1 - v, cos 9 = E / - 2V 2 E“L/2
G ' m GyYm
J =
1 [2 -1/2 | : F
5/ cos 6 i O cos 6_ OF, E 1/2 | 9 cos 6 BEO
28 1/2 O ' OE E OF, o cos 6 .
m
BEO' O,
et o - - s T * $ < .t . _t_’
The first row cf J is precisely ST P and thus the

additive terme of the second row are proportional to the terms of the

first row, hence can be omitted. The result is simply

;- (E_)?/ : | -
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