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ABSTRACT ‘

. " . A systematic study of the dynamics of scgttering witﬁ several
coupled two;particle channels 1s made using the new strip approxima-
tion; The exlstence of a unique solution to the I\ID"l equations is
established from maximal enalyticity of the second degree. The method
used is anlextension of Jones' proof in the sinéle-channel case,

. .making use of an explicit expression for the determinant of D con-
structed by Gross. The general method is»theﬁ applied to the particular

. case of a nn-KK two-channel caiculation of the p;meson, first with
fixed-spin particle and then‘with Reggeized particle exchange as the
generalized potential. A detailed discussion of the numericel result

is presented with the conclusion that the effect of the inelastic

Fa

channel (XK) 4is not important in the present approximation scheme.
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I. INTRODUCTION

The strip concept regarding the four line connectcod parts
can be stated most easily in terms of the usual invarients s, t and
u., In the physical region of the s-channel, we have resonance peaks

o

~ . jal .
in the low energy region (s smaller tlon a few GoV®) and for high s

-we have diffraction peaks in the foreward and backward direction with

width less than o few Gevzin the momentum transfer variables (t or u).
Othérwise the four liine connected part is small. Similar sﬁapements

can be mede for the physical region of the t- and u-c?annels. On

& lendelstam diagram the regions where the four line cohnected part

is large will be strip-like regions. If we assume the same strip

structure for the unphysical regions we will require the four line

connected part to be small unless the magnitude of at least one of
the inveriants is small, The new strip approxima‘tionl is based on -
the observation that this strip structure can be achieved very natu-

rally if we approximate the four line connected parts as the sum of

B ﬁirect and crossed channel Regge poles satisfying the Mandelstam Repre=-

sentation., A typical s=channel Regge~trajectory a(s) that can

reach the right half argular-momentun-plane is shown in Fig. 1. The
strip region will be the finite interval of s for which Rea(s) > 0

with Ima(s) ¢ 1 where the Regge pole contribution of the general form:

| Py (=)
. f . «n{2a(s) + 1] 8(s) e%%%l;372§~

LAY
s
$

willﬁdomﬁn&éé the amplitude:

&
,®
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n /

(l)‘With .s 510; .we heve resonance voles when Re al3) takes
, integral faluei (g%éil'> O);v If Ima(s) > 1 the resonance becomes-ﬂrﬁ“'
too broad to be recognizable. e l : . S PN
(2):With s < 0, we are in the'physical region of the‘crossed
channels; since Re ofs) > O the Regge poie will dominct2 the high
t (or u) _behavior.
Furthermore if we require £(z) <o fall off rapidly for large
s ‘ve have the stirip structicn in the unphysical region. Similar ar-
',guhents can be epplied to t- and u-channel Regge poles,
Assuming,(multiechannel) two-particle unitarity in the direct
channelvgcross'the strip;Aa reasonable approximation for a sitrip width
éf a few Gev if we include channels with unstable external particles,
we can wrife dovn a set of coupled ND-l integral equations? with the
.exchange of crossed channel Regge poles as generalized potentials
analytic in the angular momentumvvariable. From‘these equations we
can calculate the Regge poles in the direct channel,

22,2

Teplitz and Collins have made a very extensive study in

the single-channel case of nn scattering. In this report we study

the effect of additional inelastic channels.' W¢ derive in Section II.
_.the multi-channel ND-l_'equaﬁions and pfove the éxistence of a unique

solution from maximal anelyticity of the second degree.3 In Section

III, after Justifying the numerical method used in solving the HD-l “

equations, we make a detailed calculation of the wn-KK model of the B ]

p-meson, In-%he concluding section, we discuss the unsatisfactory

~aspects of duf scheme and how they may be improved.
- s
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 II. " THE EXISTENCE OF A UNIQUE SOLUTION TO THE
MULTI-CHANNEL STRIP EQUATION

L
gives a rather complete discussion’

In & recent paper Jones
of the singlé-channel N/D  equations when the Dafunction has only
a finité cut. In particular he shows that a unique solution exists
by éssuming nmeximum analyticity of the second degree (14ASD), or ana-
lyticity in angular momentunm,

We generalize his results to the lMulti-Channel ND-l equa-

tions in the new striy aprroximation., The ambiguity in the solution

- can be removed in the same way as in the single-channel tase by

using an explicit form for the determinant of D. constructed by

p

Gross.

Thé logic of the problem is as follows. We want to calculate
the partial-wave scattering amplitude B£ (Bg is a matrix), from an
input ngpl which carries all the left hand cut of B£ and  the rigﬁt
hand cut above s = ¢ ,. where o 1is thé.strip boundgry coﬁmon té all

channels, and the requirement that By satisfy'unitarity from s = 51

v

to s =90 , where Sy is the threshold of the lowest channel, = Ve
try to solve this problem by writing B, = HD™Y, with the matrix D_'
carrying the right hand cut qf Bz from s = sy to s = ¢ and the
matrix N carrying all the other cuts. The Justification for this
decomposition can be accomplished in two ways. - Wé can sth that for

any given Bg we can construct D explicitly (for example through

the Omnes f&?mula in the single chennel case); we then get 1 from
N =BD. d% ve assume that B, can be written as wpt, We then

-

o
L.
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derive the integral equations satisfied by N aﬁd D, and Justify
our aséum?tion é poéteriori by proving that solutions %o the‘integralv
e@uations for W or D actually exist. In the muliti-channel case

. . ‘ :

we have to rely on the second approach, Mandelstam  has shown the
.existence of D din the case when ¢ +» = , >and the eigenphase shifis
satisfy § (») - & (sl) = 0 . For the case when ¢ is finite the
latter conditions about the eigenphase shifts are not satisfied unless
£ =+ e 3 howvever, we can prove the existence of I at least for large
2 + The metrix ND'l will then have the correct cut structure, To
‘estab;ish the uniquencssAof cur solution we have to rémo@e the CDb
ambiguity;'thgt is, the possibility of adding arﬁitrary poleé into

the dispersion relation for D and N, This is éccomplished Tor
large L by using the Gross formula. The continuation to lower values
of 2 éan be done in exactly the same fashion as for the single-channelv

_ case,

A. The Derivation of the Strip Fquation

- The partial-wave scattering emplitude from the ith channel to

the Jth channel is defined by the following equations:

[A(s,t)] 13 ‘9[: (20+1) (Ai)_ij P (2)

A, )13
o ()13 -

R | 'y T TR
o 4 %

i

-
.y

- i In ﬁﬁe following we will use metrix notation and suppress the




5.
index & except when we discuss properties concerning the ancular
momentun,

Our basic problem is to.calculate B , assuming that we are

. given BP wﬁich carries the left hand cut of B and the right hand

" cut above s =g¢ ,

[¢]
t
B(s) = B7(s) + %- ]( : I%géi;l ds* - (TI-A:1)
®1

and that B satisfies the multi~channel tvo-body unitarity from

s ="s, to s=o0 :

1.

Im B™E

]
4

@ s,<s<0o . , (I1-A:2)

_ where_‘o- end € are diagonal matrices (we,festrict ourselves to

spinless particles):

e

R
<
Cam N
]
|
W
[N
S
On
e

S
We proceed by writing

B = w7, . (1I-A:3)




. b

%

where D carries the rlght hand cut from s = s te s=0, and
' ‘AN carriés 2ll the other cuts,
We then‘have, on the right hand cut. ‘ e

ImD = Im(B’lf:) = (Im B‘l)n = wp O X sy <s<o (IT-A:k)
and on rest of the cuts of B
ImN¥ = I4(BD) = (ImB)D = (ImBP)D (IT-A:5)

If we normalize D to the unit metrix at.infinity, we cen

",write (we defer the discussion of CDD poles to Section II-C),

o ‘ , ' '
D(s) = 1 ’%‘j as' elsl) Z,(f'i i(s') (II<A:6)
5. ' '

and

N(s) B(s) D(s)

Bp(s) D(e) + s )f asr 1 BLe1)

» H(s) is real by assunption for s) <s <a, and since the second

term on the rightvvahishes at infinity as .%-; we must have

T




‘ S { : Pl 1
D(s) f ds! Im‘B(s ) . _;L_f as' B (s ? Im D(s')
m 5 -5 it ‘ S =S
LoV sl sl
e Thus we have, using (II-A:6)
o P o
: n at) _ mF -
Me) = B(e) %f aer Blad =2 le) oy e(sn) st (11-miT)

We now proceed to show that (IT-A:7) is soluble at least for
. | ‘
large -¢ and defines a unique ¥N(s) .

B. The Existence of N

7

. For the present discussion’ is is more convenient to rewrite

" the equations for N to display the channel indices explicitly.

\ . | : O WP gt P S g .
. : -BY (8') - B (s) . .
\{ = D -J; Y iu ! \ N o T
Nygls) = By (s) + "f o p(s") Ilud(s.) (11-A:7)

S

o Tu

with the convention thaf.repeated Greek indices are sumﬁed over all

channels,

As explained in Reference 1; Biup(s) will have avlogarithmic

-

singularity near s = g ¢

G

B, °(s) —> =2 In3B, (o) fn(o=s) . (II-B:1)
M s »+ g0 T ‘ L .
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Preparatory to removing the singular part, we define new func-

tions N! by
1d

(s) (I1-B:2)

x
s) 13 .

The reason for doing this will become clear in the following:

We have for Hil

J

1/2 1/2
e e MR ) - B2 ()] e M Rlen)
? = L S — 1] ——— I\" ]
¥jy(s) = By P(s) + X f as srogtie. i1y(s")
S
u
(II-B:3)
where
B!P(s) = o 1/2(5) B .p(S)
iJ i , 1J
Separating out the singular part down to the highest threshold
s

o+ We have:

g

Nij(s) _ B£§(3> . ‘[-ﬂ s Uip(s!s')nﬁj(s') +-J( ‘dsvaiu(s,s') N;J(s')
su | Sy - |
Aiu . ’ (IT-B:lk)
- 5 ~[- ds' k(s,s') N;J(S') 7




of N!

by an orthogonal matrix T(s)._ For -si'< s < Syel (with s

9=

0 2[5, sty - 3 P(e)] 0 MRan)

Us (s,8') = S - iy
-U T s - &
~ \ = ’ . \ iu 1
Ky (5ss") Uy (s,8") + = k(s,s")

k(z,s") - 2n(0—5'? = 2n(g-s)

S’ e S

Ay S 0 2(0) [Im zaiup(c)] pu1/24(0)

.'Noﬁé that now Aiu =\, , & relation not true if we use ’Nij instead

ui
8

H in the single-channel cése,'we can use the wienér—Hopf method
to get a uniqué'solution if the phése shift 6&(g) <« .h In the multi-
channel case, we expect the eigenphase shifts to play a similar role.
To facilitate future discuséion, we specify the eigenphase shifts in
the following way. |

The matrix

s = 1421 0% 50 /2,

which is unitary and symmetric for 8) <8.<0, can be diagonalized

Surl T 90

¥ is the number of channels), The first i eigenvalues can be writ- 3

ten as

-



ej(s) o= e J'::;’ooo,i,
oy
where 51(1) are the eigehphase shifts of the interval S; <8 < 8. . B
L% . .\.
Because of the step functions © , the eigenphase shifts of different
intervals are not analytic continuations of one another. But also
because of the step function, we have
Sij(sk) = Gij if i or 3>k,
!
which implies
. . 3
6.(1)(5.) = n, 7
i i i
> 1= 1,000,
o (1) o . (i+1) - ' :
R O
Thus we can write all the elgenphese shifts in terms of I real con-
tinuous, piecewise analytic functions:
- s (3) :
55(s) = 6,9 (s) Sy €S <sgn
J'—'—i’con’rﬂ i:l’o.o’;d y
. ?;'"!
At s = 0, the orthogonal transformation T = T(o) that

diegonalizes S also diagonalizes the matrix A , whose elements are ’ «

the X,.'s ,!.We have

ip

.~

Ao 401y
g

oo



=lle

k|

. - ,:v ‘ ' 3 - | =3
TST ;_‘= 1+ 23 TB:I/Q(ReB) p*/?]T 1 - 2TAT T

taking the rezl parf of bYoth sidés, we get

216i.(o)_l

>
fl
jos}
1)

- or . : A

L
i
4]
[N
o]
[ec]
e
L
Q
N
| S
+
1t
i
-
*
.
e
-
=

where Ay is the ith eigenvalue of A . ‘ ,

i After introducing'the matrix T , as explained in Reference T;

we can use the Wiener~Hopf method to get the following coupled integral.

équations:

Sy .
qr - '3 ' ' ' '
uiJ(s) Bij(s) + Jf ds _Uiu (g,s ) Nuj(sv)

S

u-

C

.. "l [} . ] w 0 ‘,.' |
+ATW_I ds (Uiuov)(s,s ) ij (s')

3y
for s < Sy
o s,,
- o -y il .
N = B I s g U - Yy W (gt
‘iij(s) Dlu(s) Tiu J[‘ ds' qu(s,s ) ij(s_)
s

for s, < s




-]lDm

e t

where: (i) the N iJ'S are related to X i3 s by the Wicner~Hopf
equations '
* v
o ‘ .
T, = T, -2 ds' k(s,s") T,,(s") (11-B:6) g
i3 ) i ’ i3 : : .
. S
with
Eij = Ty, My (II-B:7)
!
Just as in the single-channel case we can invert (II-B:6) to give
- =0
4 = ! s') N '
T, y(s) fds 0, (s,8") T2, (s)
S,,
i
where Oi(s,s') is the Wiener-Hopf resolvent kernel.g
45y F P P
B = . B!
(11) 3y, Tin Py
> |
! [ - ' " ot " [}
(Uiuov)(s,s ) ds Um(sw. ) Ov(s_.s )
Sy -
o
' = "y s.g" "ot r
(Kuvop)(sfs ) ds Kuv( ,s") Op(s ,st) |
SM'v )

As discussed in Reference L, the function XN

iJ(s) wil; have

the fgllowinéJbehavior near s = g

-
S

)




i-13-

)~y (11-B:8)

W, (s) = (0 =5
iJ
with"a" = l-[6 (¢) +m n| < 1 unless we fix the arbitrary cone
i a ' | 2? )

stent in the general solution of (II-B:6) to a particular value, then

— —8,
M., (s) =——> (¢ =-3) °

S 2> 0

(II-B:9)
To find the correct behavior near s = ¢ , we make use of

the explicit expression for the determinant of D « In the nexi section.
3Y 3%
!

we will show that for large & , when there are no bound states

, o g s (s")
det D(s) = exp{-= 2: ,]- ds! e
i u=l ’ _ s! - s

"

wlth"éigsi) = 0

“and Si(g) + 0 as & > o .

It follows that the determinant of D. has the following behavior

near the strip boundary

-1 %5,

.det D(g8) s————> (5 - S)
S + ¢

Because'of;Eq.V(II-A:6),'we have

-t | R P XA ()

o v det N(s) ——> (g - s)
s+ 0



-lh- . -

is related to XN,, through (II-B:2) and (II-B:7), so we

But I\IiJ 13
have:
= e 1/2
det N = det(IN') = (det T) det(p™'°) det N (I1-B:10)
so
M
-+ § (o)
- L=t I
det T(s) ———> (g =s) "
s >0
— i ‘
‘Since each term of the determinant of N involves one of the elements

- of each column of 1 , by comparing Eqs. (II-B:8), (II-B:9) and (II-
B:10), bearing in mind that 6i(c) + 0 as & + » , we conclude that
Eq. (II-B:9) is the correct behavior for each i, and we can make

~ the identification

(II-B:11)

Thus all the arSitrary constants in the solution are fixed. Once the
identification (II-B:1l) is made and analyticity in ¢ is assumed,

we have a unique solution to (II-A:T) for all ¢ as long as all eigen-

phase shifts at s = ¢ are léss than = , because (1) ir éi(c) < %
Egs. (II-B:5) are Fredholm, | (ii) if %-< Gi(o) <7 , we may define
E [Gi(c) 1, J
. -z 770, = O ¢ - m 2 €
- Nyyls) = “ij(sM"-," s) .

L%

<



Cwith
» Gi(o)
1~ >eg >0
™
. ) -'7 _,O' . h>
and the integral equations for Ni4(s) are Fredholm.
J

In the next section we will discuss the CDD ~-uituities and

continuation to lower ¢ values,

C. CDD Ambiguities and “laximel Analvticity of the Second Degree

Just as in the single channel ce.selO we night have written

for iDz and Nz‘

) . : o4 ' 1y - 1y ' . :
p,(s"') o(s*) 1 (s") n r., .
D, (s) = 1.1 f ds' £ — + ¥ ;—-é—- (II-A:6)"
. . bt J 3! = g i=1 R4 . .
°1 ' .
[ , P p
o n T, : B *(s') -~ B,¥(s") »
- : 1 [ 2 2
N (s) = BY [1 + ) = ] + = | ds' - p,{s")e(s")N (s')
L H 4= S8y T A s' = s . '
71

(TI-A:T)!

if fi (fhe residue maﬁrix) andr Bi are suitably chosen 80 that
Dg(s) is real outside the interval 8) <s <o . It is clear that
(II~A:T)' will have a éolﬁtion, at least if all the 8, are outside
tﬁe interval s; < s f 0 . These are the well knowﬁ CDD ambiguities,

We choose our convention for the eigenphase shifts as

. éf ,Gi(si) = 0 o for 1= 1,.e., n .

©
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‘The most general expression for the determinant of » is

no . | o | ot
I (s-uy) . | 5, (s )
det D(s) = == (s ~0)"" exp(- Jr ds" . i
S .
. u=]1
Ll

e
=Y

::[H

m (s=8

)
{=1

2

Sy <85 <@ as L > o (e.g. through Froissart-Cribov transformation

P
For any physically reasonable B Poye expect Bﬂ’(s) + 0 for

as in the single channel case).h ‘With our convention we then have .

éi(o)‘f 0] for i=1,¢0¢, M, In this limiting case, we expect

' o n
D, > ] 4+ E;L
L K
L > o i=

So there- shouldn t. be dny singularity at s = d;, .thus 'n.% m .,
Furthermore there are no bound states for larpe. 2, som= O,
which implies n = 0 ;“Therefore.we conclude thet for large 4 we
have a unique sélution with no CDD poles in D .

% L

then we can infer from MASD that we have a unique soiution for lower

Now we will establish that N and D, are analytic in ¢ ,

&y

values of & :

From ,the discussion in Reference L, we are assured of ¢ : -

analyticity f&f NQ(S) when s, <s <s, and for ﬁg(s) when

o
Y



- =1T-

5, <85 <0, aﬁ least for £ values such that Re £ » =1 and 62(0) < w

Ve

(we suppress the channel‘indices). The 1, defined by

O \

g . -
— . = 0
= ey = ' « at) T ' .
'_Nz(°) v ,-[. ds Oz(o,s ) Wy (s") ?M < s5<g
s

",
{

4

ere enalytic functions of £ as long as the integrals exist, e,g. if

§,(0) < 7 . Similarly ¥, for s, <s <o defined by

i (s) = %"1/2(0) 7, 7o) Wy(s) !

'3

are.analytic'in  % for éz(o) < 7 , Finally the functions Dy, »

. defined by

2 |

s' = s

; g : ( |) e( ')H k v) ;“
D, = 1- fds'pp“sf s..,g‘s,

Sl“

* are anelytic in 2 when the . N

. are analytic, provided the integrals

exisﬁ, The integrals certai@ly»exist for Gz(c) < w , therefore iﬁliér
obvious that D, Acanﬁot develop any singularify (or poles) as long as
dz(o) < 7 and will always maintain the same normalization at infinity.
The que;tion of what happens, if 62(0) > 1 as "% decrecages and if
Giéd) < 7 once again when we'coptinué to decrease ¢ , has been dis-
cussed in Reference 4, The conclusion is thatrthe“soluﬁion to our

- problen, whenever 62(0) ST, is_corrgctly- givenAby the uniqﬁe sOlue

tion to the iﬂtegral cquations satisfied by X

2 and Dz with no CDD poles.,

L.
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ITI, A . mwn-KX MODEL OF THE p-MESON

The dynamic calculation of the pe-meson, considered as a-
- resonance in channels consistiné'of two pseudoscalar meséns-with' 5
vector meson exchange as the main binding force, has been méde Sy
12,120 The inherent difficulty in all models using
the 1I/D methoc‘i,l2a is that tﬁe output p-width is too large. (The
calculations by Balizs and by Finkélstein,l2b using an equivelent
vpotential epproach which perhaps is equivalent to a partial Mandelw
stam iteration, seems éo show substantial improvement in‘thisvaspect.)
As it turns out, our method suffers the sane difficulty.'

First weljustify the numerical method by épplying a result

obtained by Jones and ‘I’iktopoulos.13

Then as a preliminary step be-
fore the fully Reggeized calculation, wevconsider the case when fixed-
spin particles are being exchanged., We thus develop a basis of com-
parison against thch we can test the effect of Reggeization, Next

we construct the geheralized éotential from Regge~-pole exchange.

There is gome cpmplication because the T~ and’ K-meSon’masses are
different and we have to make‘an approximation, The numerical results

are discussed in deteil. The unsatisfactory aapects of our scheme

and how they may be improved will be discussed in the concluding section.

A.  Justification of the Numerical Method

-

The theorem proved by Jones and Tiktopoulole can be stated as

follovs., Thékintegral equation

-

o
..



'a)

. . ' . b
o(s) = o(s) « fds'x(s,s')w(s')

a

b

is given where ¢(x) 'is'in La(a,b) , i.e. Jr ds|¢(s)|2 < ® and

a
the resolvent (1 -.kﬂ-l of the integral operator X exists., Sup=
posevfurﬁher that X} =W + C where the norm of W 1is less than 1

. .

C is square integrable (./. lC(s,s')[zdsds"< @), Then the method
: , |
- a

éf ﬁatrix inversion can be used to invert the integral equation (for
this we ﬂeed K to be piecewise continuous) provided we choose the
mesh pqints carefully near the singular point.

The multi-channel equations for N can be easily shown to

satisfy the above conditions. Diagondlizing Eq{ (II—B:&), we have

, s _
M : ‘
—‘ = R ' 17 t\3T ' S —: ' T—
Nij(s) Bij(s) + .j. ds Uiu(s,s )nuj‘s ) + ~/- ds Yiu(s,s )Juj
. su . . ) SM ‘
AP _ |
-— '[. ds' k(s,s')¥ ,(s') . 1,8 = 1,00, M
- ud . .
» %M '

where

Nij(s) | TiuN'uJ(s)

and

(s*)
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BN

. : 1 ym
Tivva(s,s )’I’cu

1]

G;u(é,s')

T

"-{. ! ) ' -l
llu(s’s ) ivI{vp(S,S )TDIJ

We can rewrite the above equations for each fixed column index J as

a single integral equation

Mg = (M-l)s 1

wj(vs) = ¢J(s) +f ‘ .}c(S,s')pr(sf)' J= 1,000, ¥
s,
) |
vhere
by(s) = Ty ls = (i-1)(oms))]
oyfe) = yls = (D) (ems )]
X(s,s') = Uiu{s - (i-l)(c:'-?sl‘). s' - .(u-l)(c-'-sl.)]O[sM - (u-i)(c-sl)}'- s']
+ Ry ls = (1-1)(0=s), 8* - (u-1)(o=5)]ols" = s, + (u=1)(o=s )]
- %'k[s - (1-1)(o=s,), s' - (“'i5(°’sl)]e~[s' -5y + (u-l)(cfsl)]
for

51 + (i-l)(o—sl) <s<s + i(o-sl)

1
s + (u=1)(o-s;) < s' < s + u(o-s,)



"

=2l

R 1 if s >0
v()(s) = . o
. 0 if s <0

fow the existence of the resolvent (1 1J¥)-l as well as the square-

integrability of the ﬁ;u and K;u's has been established in Sece.

tion II of this report. Since 1A, = 5in® di(c) are less than 1 for

all i, the opverator & 1is the sun of two operators: one with norm

'less'than 1l 3 *“he other, sgquare integrable., Therefore the theorem

of Jones and Tiktcroulos epplies.

B, Tired-spin Particle Ixchange

1. Generalized Potential

Hear a t-channel pole of definite spin Qt s isospin I and 

mass. mp , the scattering amplitude

)

: L (t) A
Aij(s,t) o (22, + 1) —%—-—-Pz (2,

XI’LR —-t t

By crossing, the generalized potential in the s~channel for
angular momentum zs' and isospin I_ from exchange of this particle
2

in the t-channel in the zero width approximation is given by

I

: _ N 2 [ oguo 2 o
[Bg“(s)] s _ 81, (IR (o )‘Q’t{zt(tan )] ng[zs(_t-—'m? )].0.(......_....___

s iy f 2(aq.q




.- where BI T
TsTt
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is the isospin crossing matrix element. The explicit

form of the crossing matrices used is as follows:

for @wmw > 77

mr -+ KK

7K
II

i

Wi Wik

Wi

o

V) [

wiv wlR

1 2
S\
1 3
1 s
2 ~%
1 _(1). ’
- 3 4
/
i.
2
27E
3
.2
3
1
3
2
L
-2




We list below the generalized potential arising from the exchange of

particlés shown in Fig. 2; (Channel indices 1 for um channel,

2 for KX channel.)A

I : ' 2

b < an m -hmﬂ ' 2s Emb
RO IR A Y oY R [ S ) (10—
s 11 s - i v X -hmh s s=hm
1
X
ol o]
2(0‘.1)“9'5-’-‘-
o : !
where - .
o 1 m 2l
Yo7 = T n 2 is the reduced residue,
L m “=lbm .
o p
2
> s=lim
ql = )4

Thé factor of 2 comes from the . u-channel contribution which Bose=-

statistics requires to be the same as that of the t-channel contribu=

tién for allowed ls . Is combination.

I K M,y - (m 2+mK2)2
[B? (s)] 8 = ox g™« 3x3xY X ot L x
9, 1 T~ Y11
s 12 I = L
. : 52 :
2mK2 s m,2 ! 24&
R (1 + : Q X oK L
- [, 2m(m_4m )2 [m 2n(m_—n )21 ) *s 2q. 4 2(qq,)" s
- Tl ™\ T/ Uyege =Ty =Py <99 <1995
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where

The factor ‘%- is the ratio of reduced residues given by exact 8U

3
S umetr‘.ls
’ 2, 2 2
I m “=bx " 2s -2m
[BP(S)]S.-: SKKx?,x .Jéxy x-ﬁ—l 1+ - 0 1.;._ o
Le oo Isl 2 11 L n 2'hm‘2 L ool 2
) v OG.K O‘ rn}{
!
: 2 2 2
m, -4 2s 2m
KK 3 o~y 5
i BIOX3X{2XY1’1X ! }(l+n 142)%'(14.5)1";)
S ) i ¢-I’LK S =47
_ 1
x
The factors %- and ~%- in the curly brackets are again the SU3

ratiosaof reduced residues, Notice that we do not have a factor of

2 here since p- eand ¢-mesons cannot be exchanged in the u-channel.
We treat the ¢-meson purely as avmember of the same octet which con=;b
tains the p-meson, and-the w-meson as a singlet entirely decoupled

to the octet. The actual w-¢ mixing will make little difference

to the output as will become apparent from the discussion in the fol-

lowing section, ' s
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2. ‘Results

The n#meriéal results comparing £he.singié;channel and tﬁo-l
channel cases for various valueshof the strip width o , the ihﬁut»:
p=width ré“ , the k#-width rf{ﬁ and the @-widtn I.';“v ere sume
marized in Table 1 and TFigs. 3-5.

| We éonclude that the one-channel and two-channel cases are
.qualitatively very nuch the same, In order to get a resonance peak 
in the'>p-wave cross section at the experimental p—muss,lh we need(
- an input' p=width several times larger than the experimental value or
e strip width much larger than one might expect from the gact that
,  resonan¢e‘peaks die out when s {is larger than a‘few GéV?. The out=-
. put p-width_is always several times larger than the experimental
Avalue (see, however, discussion in (e) below). The I = 1 trajectory
is too flat and the intercept too high, while the I = 0 trajectory
violates the Froissart limit slightly. Both kinds of trajectories
,turn-over(too SOOn, if we take values given by the zero of the real
‘ Part of the determinant of D (see Footnote ih). These Qnulitative
features of the output are noé sensitive to the changes in the input
pafameters. |

The inclusion of the inelastic chanhel‘does give some addi-
tional binding and, as expected, will narrow the output p-width, though
not by a large amount. -The details are as follows,

- (a) The spacing'between the i 0 and I =1 trejectories
is smaller in the two=channel case, thus the Froiosart limit is
violated no ﬁérse than in the- one-channel case, although the correspond-

iv»

ing I 1 trajcctory intercept is larger,
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in
P

the p-peak at the right position Ws = 5.3 m“) we need a much higher

(b) Keeping T 'atvthe experimental vaiue, in order to get

o] R N
o for the one~channel case (1280 m““) than for the two-channel case =

(600 mﬂz); also the output p-width is narrower and the trajectory

steeper in thz _atter case.

(c) If we allow both o and Tzn to vary, keeping the cor=-
rect output p-peak position, we notice that for lerger o we get a
narrower output p-width but flatter trajectories.

(d) To see the effect of ?;: , Yin end the p-contribution

-—
7

in KK -+ KK , we allow them to vary independently instead of using

the values given by ©8SU, . Because their contridbutions are small

3

compared to the p-contribution in w7 »> wn , unless we assign them

values drastically different from those given by SU,- there will be

3
. . in in .
no appreciable changes. Increasing F¢ . FY* will narrow the out=-

put p-width and flatten the output trajectory. Changing- Pi is

n
¢
more effective,

(e). If we use rin‘ 7 times and T.0

we could get an output p~-width of 0.9 oo, ~although

0.4L6 times the value
given by SU3 |
the intércept_of the p;trajectory is.very large (0.9) . This cone
firms that one way of achieving.the expérimental p=width is to get

the o-meson primarily as a bound state of an inelastic channel weakly

coupled to the =7 channel, though it is not possible to do so with

w

reasonable input in our scheme, Notice in Fig. i that we have two

I =1 +trajectories in this latter case., The leading trajectory is .

- primarily a bound state of the Kﬁi'channel due to the unusually large

-

o
.~
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ot
'attraction of the ¢=-exchange; thg seconda}y dne, presumably due to
:p-exchange in the nm channel, is mainly 2 resonance of the mnm

channel,

. C. Repggeized Particle Exchanve

'l, The Generalized Potentials

The potentials were obtained following the Chew-Jones ?re»
scripfion.l We assume that the double spectral functions are large
.only in the strip like regions indicated Qith i, 3, k in rig. 6,
In the case of an equal mass channel the contribution to the amplitude -
in the s-channel from a Regge pole in the J-region can be wri£ten‘

(omitting signature and isotopic spin complication):

(<1 = -—T-) _ v
R%(s,t) = Lr t)-j. ds' = (III-C:1)
J 2°J. S ‘
wherev-
I’J(t) = [2a (t) + 1}y (t)( (-q, ) o _(I;I—c:e)

aj(t) and YJ(t) are the trajectory gnd rgduced residge functions of
the Regge pole under consideratién; The integrel in Eq. (IITI-C:1) is
defined by analytic confinuation-wheh it does not converge.

'The fuli_amplitude caﬁ then be written as the sum of Regge

poles in alllétrip regions:

-




=28

Als,t)

(o} (o}
zi: [Ri(s,t) + &y Ri(s,u)]

+ § ‘[p‘j(t,s) i Rj(t,u)]

+

k

vhere the £'s are the signature factors of the Regge poles and o
is the strip width, teken to be the same for all channels. The iso=

topic spin crossing matrix elements have been omitted. The amplitude

thus constructed will havé & double spectral function different from -

zero in the shaded regions of TFig. 6. The Reggeized potential for an

equal mass channel can now be obtained directly from this amplitude
by separating the appropriate terms from the partial wave projection
of the amplitude, Using the Wong projection fofmulae we can write

the contribution of a single Regge pole in the #m + nn case as:ga

(m" taken to be 1)

T 1 0 &
[Bln:(s)] 1 = Z s fdt, [Isz_(l +—|| =
: B J |

x
™
gty
e
)
P
m
c}‘_"\a

+
Py
!
)
e
H
>»

d 2ay

) [R)(u,s) + & R7(u,t)] © (III-C:3)

u'
5 [ ey 22 - ot o




| + I'(t) II' P o (t) (-u. - — - 2Qa(t)(-l - ;—c;é')

,1.é9-"

either

2q

t

o (0810, T I*,"t sy s s
sin ma(t) [(-l) Pa(t)(fl - ;;g) * Pa(t)(l * ;;f)] if , (-l - ——5) <1

?c wa(t) oo

.e
t
',J
N

’ 2 {2+l s
Cfat . ) >
- (s -S)(—~Qs.) g ! Qs. ?st

(ITI-C:h)

where

s+ t+u = s'+t' +u =4

A similar expression can be ﬁriﬁten for the case ﬁf-é!df ;

In the case of ﬁn > Kﬁ',i thg external particles have different'
masses, The more complicated functional‘relatién bhetween qi and t
means that an expression of the type Eq. (III-C:l)~will fail to have
the correct analyﬁic properﬁies in s and t becausé the double

spectral function will be non-zero outside the shaded regions shown

in Fig. 6. The procedure adopted to avoid this difficulty is to

-




. =30

epproximate qi by

It = (m # m )21 < (ny = 5)%)

A ERICOR

¥

where M* 1is the mass of the resonance heing exchanged in the t-
channel, In the same spirit, we define the cosine of the scattering

angle in the <{~channel as

S

¢ ale)? !

Q
ES

c; k.

With the above approximation we can rewrite Eq. (III-C:1l) to read

' (suppress the subscript J )

s
0 P =1 - ’))

1 “(t)( 2(q2)”
-51'*(1:)

L}

R*%(s,t) ds'  (IIT-C:5)

8! - s
where now
rA(e) = [2a(t) + 1v(£)(~(en P

It is'readily seen that this expression has tﬁe correct analytic
‘properties, and ﬁhen L (I-i*)2 1t reduces to Eq., (III-C:1). As we

expect the mé;n contribﬁtion to the potential should come from values
of t 'close;%o (M*)2 ,» this seems to be a reasonable approximation.

With 4his new form for Rjo(s,t) ,. the seme steps as led to Eq.

Y

@




~31-

(IIi-C:h) can be cafriéd out and an expression for the potential in
the nm + KK case can thus be~derived..

The potential due to exchange of the Pomeranchuk trajectory,
~ which is present in both the =m and KK channels,‘is very repule
sive in our scheme, As pointed out by Collinsza a combination of an
attractive and a repulsive potential can zive rise to poles on the
‘physical sheet in the present method. One way to avoid this diffi-

"o,

culty is to "renormalize” the potentiall6 by subiracting from the
~potential its value at s = 0 and adding back the same quantity now
computed from a partial wave projection of the amplitude.f In the

T > 7T case, we have

. : o |
[Bf(s)]I = "—i'le' f at Isz (1 + -:?-2-) [VP(s,t) - vo(s,t)]
S ) . .

11 2rq ’ 2qs
g™ g %
* —""-'»I;?ﬂ Ldv q (l  — Z (20* +1) ImA, ,(t)
27rq;~ A 2q‘ 2' even

where Vp(s ,t) is the contributlon from exchanbe of the Pomeranchuk
trajectorj to the potentlal in the @7 + nr case, It has been shown

by Collins2b

that the second term is negligible, dnd the "renormali-
zation" can be carried‘oﬁt uéiné only the first term, He also

pointed out that this renormalizing technique can iead'to difficulties,
and is not entirely Justifigble, We‘éhall use it in the following

" because it is the only way to prevent the potential from being over= -

"whelmed by ﬁ xchange.'

. !

o

/lk Ll'\ e
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2 Resuits

In the one-channel calculation?a 2b it has been noted that

we cannot get enough attraction }rom either a fixed-spin particle
excﬁange or a Regge-pole exchange with input p-width equal to the
experimental value, Thus in order to get the peak in'thg cross Sec-.
tion at the correct p-mass, we have to use an input p-width several
times larger than the experimentai value. In the fixed-spin case
this leads t§ an I = 0 trajectory with intercept larger than 1,
violating the Froissart bound., In the Reggeized case we have an
additional restriction, i.e. the imaginary part of the poLential at
the strip boundary is .required by unitarity tb saﬁisfy the relation
O<op (c) ImBP(0) ¢ 1 , which will be violated usually before we
‘violate the Froissart bound, especielly in the lower £ values., the
other difflcultles are large output p-width and flat output traJectory.
From the two-channel fixed-spin particle exchange case discussed

above we find that the inelastic channel KX ’ through Fin and

Pin_, -prévides edditional attraction and narrows the output pe-widtih
a little. We now investigate»whether we can get the same kind of
effect with various types of parametrizaﬁionvof the input trajectories
and residues in the Reggeized case,

(a) Reproducing the fixed-spin particle exchange case: we use
extremely flat linear trajectories for p , K* and ¢ passing through
1 at the corresponding resonance energies. The residues, tdken to be

constant, are adjusted to give respectively the experimental p~width,

the 5*uwidtﬁﬁand the ¢-width with ratios to the p-width fixed by

Y
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»SUj symmeéry.. Ve get vgry ﬁugh-the s€me poteptials as from the fixed~
'spin pérticlé exchange;'in particular thgré are‘vefy small imaginary
parts. . ,- | o,

(b) Various parametrizations of the input trajectories and

- residue functions: we use a one-pole formula for the various trajecw

R

tories2b : : -
1.3
t Tt
B R
a(t) = J, = 2 == -2
R t t
R l—r
B
-where- J, - a gives the intercept at t =0 , tR is the square of the

nass of the resonance, J_ +the spin of the resonance and tB is the pole-

R

position., Two forms of the residue functions have been used: the Chew-

” Teplitz formula.18

56 ) (E'- u}a(t)*l
4

. }Y(t) = Ca'(t)[-{— t]Qa(t) (l + Y

which has been used in Ref, 2b to get a self-consistent solution, and

~

the one-pole formula

A .

v(t) = <
B

which can give avsteeply-falling’residue fupétion as sdggested.by

19

-

the results of fitting the high energy scatféring data,
To start with, we use the seme parametrization for o and

a_  and.the residue functions for Y and vy which givés a

P i : pnw pun - v

3

ﬁau
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A

self-consistent solution in the one-channel calculation as explained

in Ref.'2b, and assume the P and p contribution in XX to be of"

the same form as that in wr, with P coupled equally strongly to

‘the "KK- and the wn-channels buﬁ with Yde/Yp"f = 0.5 , the SU3 )
ratio for all t. As for the trajectories a¢ s Oy WE take the
pole position 1, to be the same as for ap but ad’ust the intér-

cept at t = 0 350 that they run more or less parallel to the o=~

trajectory. TFor the residue functions = and Ygrag W again
A

(K

el

Yo
use the same form as for yp"ﬂ with the magnitude fixed by SU3
_ratios. The resulting output.as compared to the one-chanhel result

is shown in Figs. 7-9. We notice that the ogtput.is very similar

to therﬁe-channel case and we still get appfoximately self-consistent
p and P in the nn channel. This result presumably is due to

the fact that the K¥* and ¢ frajectories, lying lower than the
p~-trajectory, are dominated‘by the p-contribution in the mn-
channel, The p- and P-contribution in the KX chennel is small

es compared to that in the wr channel because the XX thréshold

is much higher and we cannot exchenge p and P in the u-channel,

The output in this case gives YOKE/Y ~ 0,15 and YPKK/YPnn‘V 0.09 ,

pnm

far smaller than the SU3 ratios of 0.5 and 1 respectively,
Although these ratios are not directly sublect to experimental test,

we know that the X¥-width and ¢-width calculated from SU3 ratios

agree reasonably well with the p-width, These departures from th .

SU3 ratios therefore seem to indicaté a defect i{in our calculation . i

scheme, However, if we increase the ¢-contribution in the XK

-

Y

e
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channel by a factor of 6 , we find prﬁ/ann‘“;o'z ‘and YPKKJYPwn‘V
0.1 . This slight improvement sugges£s that, 1f in a better dynamic
nodel (see discussion in Section IV bélow) the attraction in the KX
channel can be greatly énhanced, which we know will {improve the out-
put p-width, the above defect may alsc be cured., The output aiéo
sufferé the sane difficulties as the one-chennel case: large output
p=width, flat trejectories, viola£i0n of unitarity for lower £ values.
Since these qualitative Teatures aprarently are not sensitive to the
-presence of the KX channel, & completely self-consistent solution is
considered as not significant; !

We néxt try to see whetheér we can improve~£he output by change

| Ing the input drastically. As it turns out, mainly because unitarity
at the strip boundary puts such a stringent restriction on the imag=
inary part of the potential, we are unable to.improve our result in |
any satisfactory way: Ve explain the details as follovs:

(1) The strip width: In contrast to the fixed-spin particle
eéxchange casé, the potential, now depending on the strip vidth, dew
 creases whenlwe increase the latter., The additional attraction we can
~get by increasing o is thus very limited,

(i1) The trajectory: A steeper input trajectory will decrease
tﬁe potentisl and flattén the output trajectory; the appro%imately self;
consistent potrajectory used is about the best compronise we can
manage.,

(111) The‘residﬁes: A stéeply;falling residue function gives

steep output trajectory and satisfies unitarity better for all velues

o

e b
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: §
of %, but'ﬁﬁe output residue function is never steeply~fuiling
and, if‘ﬁe try to keep the p-peak in the cross section at the right
?osition,‘the'trajectory develops a large imaginafy part so fast that
we are unable to follow it sbove £ = 0.4 , If we allow the p=-peak
to appear al much lower energy we can get steeper trajectories (Fig.
10).

(iv) The effect of X* and ¢ : In the fixed-spin particle
exchange case we found that we could narrow the output pewidth by
ch&nging the contribution of K¥- and ¢-exchange, if we made the
p-meson as a bound state of the KX channel weakly coupléd to the
T Ehannel. There we had to use a Y¢KE»'too large to be acceptable;
in the presenf case we find that unitarity at the strip boundary rules
out-such a possibility. In TFig. 11 we plot two illustrative cases
where we increease the attraction in the KX channel by very large
factors. Even though unitarity is vinated severely already at 2 =1

-we still cannot get the experimental pewidth,

14



" =37
IV,  CONCLUSION

'Oﬁrftwo-channelvcalculat;on in Sectioh III-B of ﬁhé output
p-width forvfixed-spin,patticieAexchange agrees with earlier resultsl2a
 based on the same N/D . model (Regge trajectories were not considéred

ih thé earlier publications}. From the discussion of Section III.C

it 1s evident tha* Reggeization, because of the restriction imposed

by unitarity at the strip boundary, does not improve thg resu;t in any
.appreciable way in our approximetiorn schene.

Three immediate possible improvements in the dynapics come to
!

mind: '(é) Iterate the potential to get additional strength without
violating unitarity. (b) Include additional inelésticity through a
complex generalized potential within the strip. This, furthermore,
will allow a smooth transition across-the strip boundary, avoiding
‘the artificial singularity. . (c) Treat properly the long range
Pomeranchuk repulsionzo in ordér to narrov the output p-width, All
these aspgcts can be handled very naturally using the Mandelstam iterw
ation scheme, In view of Finkelstein's resultsleb, using the‘equi-
velent potential method by Baldzs, we know that ﬁoint (a) is signifi-
cant, The importance of (c) is eStablished>in Ref. 20 Thus we need
not be too discograged bﬁ our results hére, Adding one more‘channel
has not in itself turned out to cure the ills of a particular strong
interaction médel, but we have shéwn that it is computationally feasible
té include multi-channel effects in a Reggeized system., The qualita-
- tive results reported here should be of assistance in the construction.

of better moagls,
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Tabie I. Results of the cases vwith fixed-spin particle exchange as ﬁwo.mm:mHmHMNmQ potential,?
Input Output
omwo Cases in in in, . 2 out
1:0 o e .
wo Aﬂzv nxmﬂaav s Aaav QAS=V ﬁ@ ﬁssv aaprsdv pvov Qonv
(A)L 0.9 - - 1280 4.0 L 101 0.88 1.19
(A)2  [One- 1.26 - - 500 b2 95 0.81 1.15
(a)3 |Channel 1.58 - - 300 | 4,3 92 0,78 1.1
()L : 1.9 - - - 200 L. ks 83 0.72 1,06
(B)11 0.9 8U, - 600 3.75 106 10,87 1.2
Sy Use SU : . :
o] -
(B)12 | Ratiosd 1.1 mcw Loo 3.9 103 0.83 1,1
(B)13 Without ! 1.65 SU, - 200 4,25 91 0.77 1.0k
! ¢ ; ,
(B)oy ! Effect 1.0 0.7 - 300 3.8 100 0.82 1,05
(B)22 | | of K* 1.0 1.2 - 200 3.6 105 0.80 0.99
We201 ;
i i : 1
(c)ii | Channel ,mwMmew. 1.07 mcw mcw. ,roo_ u.m 105 0.84 1,09
(c)iz ; I _ 1.65 SU4 SU 200 | k.15 96 0.78 1.04
1(c)ar viin g | Effect 1.03 Uy 2xsU, koo | 3.55 106 0.85 1.09
(c)ez | | of ¢ 0.9%  suy  kxsu koo | 3.0 113 0.87 1.08
(c)31 m M Effect 0.725  2x8U,  2xsU; k0o 3.25 111 0.85
i 7% . .
(c)32 ! ~ of ¢,K 0.9 0.M6xsU, TxSU, oo 0.9 121 0.9
_ K 4 , . 4 ¢
“The input p-width of 0.9. m_ corresponds to the experimental value of 124 xm<wﬂ- the K¥.
width given by mcw,mm then L6 MeV  (0.34 m;) and the ¢-width is L,9 MeV (0,037 m.).
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Fig. 1 A typical Regge trajectory that reaches the right-helf

angular-nomentun plane,
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MuB-11187

Fige 2 - The articles being '-e':»:changed -that give rise to the
e, < p , . :

_generalized potential.
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Fig. 3 Some I =1 output trajectories from fixed-spin particle

exchange, labeled by the case numbers as listed in Table 1.
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Fig. 4 Some I =0. output‘trajectories from fixed-spin particle

exchaﬁge, labeled "by the case numbers as listed in Table 21,
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Fig. 5 Some I =1, & =1 cross sections from fixed-spin

ﬁarticle exchange,'labe;ed by the case numbers as
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listed in Table 1.
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Fig.rﬁ The Mendelstam diagr&mlfdf the new strip approximation,
Showing x > n s '
: qwing th¢ six strip _1152 : 31'2 » qnd kl,e . Also

the boundaries of the double spectral function.
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Fig. 7T  The approximately self=-consistent p- and P=trajectories

(parameters taken from Ref. 2b). (These are the input

trajectdries we used in all cases below.,) (o = 100 mvz)
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Fig, 8 ‘The approximately self-consistent residue functions Y
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Other residues are given by SUS .
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mately self;consistent case,




~51-

1.0 T T T T
Violates
L unitarity
e
- 0.5 -
()
Viol/ates
unitarity
(c) |
_ (b) (q) 7 Does not violate
- . unitarity
0 1 | 1 |
-200 =100 O
» , ‘ 2
s (m%)
MuB-11189
, Fig‘;” 10 v Output I =1 trajectories for steep input residue

. (v) Yomn 0. 05/ (1 - ——) (p—peak at 22(m|

functions (the trajectories are the same as the approxi-

2
A
)

mately selfuconsistent case) f{o = 200 m“‘:).v

[y

4

(a) Ypﬂﬂ 0. 0371/(1 --—— (p-peak at_2§(m

it
2%

[3¥]

1)

() ¥,y = 0:065 / (%) [proees ot 25,

otner residues are fixed by - SU, retios,

3



-5

100}

~ _
& j
'« 50 -
iy
)

° 5 10

Fig., 11 The I =1, £ =1 cross section,
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(e) o =100 m

Bii(s) . Blg(s) same as the.approximgtely self-consistent case,

; ;Bég(é) ‘is 15 times the approximate self-consistent case,

: The kink in the cross section is due to the presence of a secondary trajectory =
which is mainly a resbnance of the #r channel. (As a measure of violation of unitarity

we have Al = 0,61 A, =121.23 for & =1,)
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FIGURE CAPTIONS

A tipical Regge'trajectory that reaches the right-half angular-
momentum plane. |
The particles being exchanged that give rise to the generalized
potential, T

Some T =1 6utput trajectories'from fixed-spin particle
exchenge, labeled by the case numbers as listed in Tabie 1.

Some I = O output trajectorles from fixed-spin particle

exchange, labeled by the cace numbers as listed in Table 1.

Some I =1, £ =1 cross sections from fixed-spin rarticle

. exchange, labeled by the case numbers as listed in Table 1.

The Mandelstam diagram for the new strip approximation, showing

the six strip 11’2 B 31’2 , and k1’2 . Also the boundaries

" of the double spectral function.

The approximately self-consistent p- and P-trajectories

(parameters taken from Ref. 2b). (These are the lnput

"trajectories we used in all cases below,) (¢ = 100 mﬁe)
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secondary trajectory which i1s mainly a resonance of the nx

channel. (As a measure of violation of unitarity wez have

N = 0,61 A, = 1.23 for £ = 1.)
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