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ABSTRACT 

A systematic study of the dynamics of scattering with several 

coupled two-particle channels is made using the new strip approxima- 

-1 tion. The existence of a unique solution to the TD 	equations is 

established from maximal analrticity of the second degree. The method 

used is an extension of Jones' proof in the single-channel case, 

making use of an explicit expression for the determinant of D con-

structed by Gross. The general method is then applied to the particular 

case of a 7r7r-lO two-channel calculation of the p-meson, first with 

fixed-spin particle and then with Reggeized particle exchange as the 

generalized potential. A detailed discussion of the numerical result 

is presented with the conclusion that the effect of the inelastic 

channel (KK) is not important in the present approximation scheme. 
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I. INTRODUCTION 

The strip concept regarding the four line connectc parts 

can be stated most easily in terms of the usual invariants s, t and 

u. In the physical region of the s-channel, we have resonance peaks 

in the low energy region Cs smaller th: a few CcV) and for high s 

we have diffraction peaks in the foreward and backward direction with 

width less than a few Ge 1tin the momcntum transfer variables (t or u). 

Otherwise the four line connected part is small. Similar statements 

can be made for the phyzical region of the t- and u-channels. On 

a Mandeistarn diagram the regions where the four line connected part 

is large will be strip-like regions. If we assume the saxne strip 

structure for the unphysical regions we will require the four line 

connected part to be small unless the magnitude of at least one of 

the irwariants is small. The new strip approximation 1  is based on 

the observation that this strip structure can be achieved very natu-

rally if we approximate the four line connected parts as the sum of 

direct and crossed channel flegge poles satisfying the 14ande1stai Repre-

serttion. A typ±cal s-channel flegge_trajectory a(s) that can 

reach the right half angularrnoentup1ane is shown in Fig. 1. The 

strip regIon will be the finite interval of s for which flea(s) > 0 

with ma(s) 4 1 where the Regge pole contribution of the general form: 

P 	(-z) 
+ 1] s(s) sin ITU(s) 

the ami,litude 



-2- 

(1) With s > 0, we have resonance poles when Re a) takes 

a(s). integral value ( . 
	

> 0). If Ima(s) 	he resonance ecomes cis 

too broad.to  be recognizable. 	 . 

(2)With s < 0, we are in the physical region of the crossed 

channels; since Re a(s) > 0 the Regge pole will do:iato the high 

t (or u) behavior. 

Furthermore if we require () to fall off rapidly for large 

s we have the 3trip structcn in the un?h:sical region. Similar ar- 

guments can be apDlied to t- and u-channel Regge poles. 

Assuming (multi-channel) two-particle unitarity in the direct 

channel across the strip, a reasonable approxirnation for a strip width 

of a few Gev if we include channels with unstable external particles, 

we can write down a set of coupled ND 1  integral equations, with the 

exchange of crossed channel Regge poles as generalized potentials 

analytic in the angular momentum variable. From these equations we 

can calculate the Regge poles in the direct channel. 

Teplitz and Collins 2a2b  have made a very extensive study in 

the single-channel case of iri scattering. In this report we study 

• . 	the effect of additional ineiastc channels. We derive in Section II 

• 	the multi-channel ND 1  equations and prove the existence of a unique 

solution from maximal analyticity of the second degree. 3  In Section 

III, after justifying the numerical method used in solving the ND 

equations, we make a detailed calculation of the irr-K model of the 

• p-meson. In the concluding section, we discuss the unsatisfactory 

• aspects of dUf scheme and how they may be improved. 

• 	 • 

0 



-3- 

II. THE EXISTENCE OF A UNIQUE SOLUTION TO THE 
• 	 MULTI-CHANNEL STRIP EQUATION 

In a recent paper Jonesgives a rather complete discussion 

of the single-channel N/I) equations when the D-function has only 

a finite cut. In particular he shows that a unique solution exists 

by assuming maximum analyticity of the second degree (MASD), or aria- 

• 	lyticity in angular momentum. 

We generalize his results to the ulti-Channel ND 1  equa 

tions in the new stri aroximation. The ambiguity in the solution 

can be removed in the same way as in the single-channel ease by 

using an explicit form for the determinant of D. constructed by 

• Gross. 5  

The logic of the problem is as follows. We want to calculate 

the partial-wave scattering amplitude B (B is a matrix), from an 

input B which carries all the left hand cut of B and.the right 

hand cut above s = a , where a is the strip boundary common to all 

• channels, and the requirement that B 9  satisfy unitarity from s 

to s = a , where s1 
 is the threshold of the lowest channel. We 

try to solve this problem by writing B ,  = ND , with the matrix D .  

carrying the right hand cut of B from s = s to $ = a and the 

matrix N carrying all the other cuts. The justification for this 

decomposition can be accomplished in two ways. • We can show that for 

any given B we can construct P explicitly (for example through 

the Omnes fdmula in the single channel case); we then get Ti from 

N = B ,D . Oi we assume that B can be written as ND 1 . We then 
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derive the integral equations satisfied by N and D , and Justify 

our assumption a -posteriori by proving that solutions to the integral 

equations for N or D actually exist. In the multi-channel case 

we have to rely on the second approach. Mandelsta has shown the 

existence of D in the case when c 	, and the eienphase shifts 

satisfy 6 (co) - 	( si ) = 0 . For the case when o is finite the 

latter conditions about the eigenphase shifts are not satisfied unless 

- 	; however, we can prove the existence of N at least for large 

• The matrix ND 	will then have the correct cut structure. To 

establish the uniqueness of cur solution we have to remo''e the CDD 

ambiguity, that is, the possibility of adding arbitrary poles into 

the dispersion relation for D and N. This is accomplished for 

large 9 by using the Gross formula. The continuation to lower values 

of Q can be done in exactly the snme fashion as for the single-channel 

case. 

A.The Derivation of the Strip Ecuation 

The partial-wave scattering amplitude from the ith channel to 

the jth channel is defined by the following equations: 

[A(s,t)] j 	(2+1 ) 	),ij  P(z) 

(A )ij 

2. iJ  
q1 q 

In the following we will use matrix notation and supress the 
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index Z except when we discuss properties concerning the anrular 

momentum. 	. . . 

Our basic problem is to calculate B , assuming that we are 

given B hich carries the left hand ct of B and the right hand 

cut above 5a, 

B(s) = Br (s) + 	IB(s') ds' 
 

and that B satisfies the multi-channel two-body unitarity from 

ss1  to s=a 

Im B' = -p 0 	S.
1

<  s < a . 	. 	(IIA:2) 

where. p and 0 are diagonal matrices (we restrict ourselves to 

spinless particles): 	 .. 	 . 

2Z+l 	 . 	. 
2q1  

	

-. 	. 	.pij 	
- 	

6.ij 

O(s- s.) 	.
ij 

We proceed by writing 	 . 	. 

1 

B 	ITD 	, 	 (IIA 3) 
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where D carries the right handcut from s s 1  to s = c , and 

N carries all the other cuts. 

We then have, on the right had cut 

• 	 Im D = Irn(B) 	(Im B)N = -p 8 N s1  < s <a 	(II-A:) 

• 	and on rest of the cuts of B 

Lm N 	Iif(13D) 	(In B)D 	(un B)D 	(II-A:5) 

If we normalize D to the unit matrix at.infinity, we can 

write (we defer the discussion of CDJ) poles to Section il-c), 

	

D(s) = 1 	ds 	p(s') ::' 	 (Il-A 6) 

and 

	

N(s) 	B(s) D(s) 

Br (s) D(s) 	D(s) 	ds' 

N(s) is real by assumption for s < s < a 	and since the second 

term on the right vaiishes at infinity as 	, we must have 
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Cr 
D(s) ds' 	= - 

	

ds' B(s') InD(s') 

	

-: 	Thus we have, using (II-A:6) 

N(s) = Br(s) 

+ 	

ds' B') : 	c:) e(s') N(s') 	(11-A:?) 

	

Tr 

• 	 We now proceed to show that (11-A:7) is soluble at least for 

large 	and defines a unique N(s) 

B. The Existence of N 

For the present discussion7  is is more convenient to rewrite 

the equations for N to display the channel indices explicitly. 

aBp (s') -B (s) 
N1 (s) = 	j(5) 

+ 	
- 	

N(s.') 	(11-A:?)'
Pj  

with the convention that repeated Greek indices are summed over all 

channels. 

As explained in Reference 1, B. 1 (s) will have a logarithmic 

singularity near $ 

t 

B P( 5 ) 	- 	Im B1 (a) Ln(c-s) 	 (11-B i)
ip 
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Preparatory to removing the singular part, we define new func-

tions N! 	by 
I j  -ç 

•(s) = 
	1/2 	

N 1 (s) 	 (II-B:2) 

The reason for doing this •7ill become clear in the following: 

We have for N! 

1/2 	B 
N(s) 	3 P( 5 ) + 	ds' 

ics)[1cst) = : 
	

2 ]c
s' N4(s') 

(II-B:3) 

where 

1/2 
B!(s) = B1 P (s) 

Separating out the singular part down to the highest threshold 

s , we have: 

S 	 a -  

N!(s) = B!(s) + 
	

ds U1.(ss)N?(sf) + f ds Ks,s') N(s f ) 

- _!. f ds' k(s,s') 

S 

where 

U J 



MM 

	

•
l/2(S)[B 	(s') - B PCs)]  

U (ss') 	1 	 1.I 	 U 

111 	 iT.• 

x. 
K(s,s') = U(s,s') + 	

2
—k(s,s' 

Zn(o-s') 	Zn(-s) 

	

• - 	s' - s 

x 	= 	1/2 	lim 7, P( 0 )1 p 1 /2 ( a ) 

Note that now X1. 
J 
= A 

1 	 i , a relation not true if we use N i 
 instead. 

of N! iJ 
In the single-channel case, we can use the Wiener-Hopf method 

to get a unique solution if the phase shift 	(a) < Tr 	In the multi- 

channel case, we expect the eigenphase shifts to play a similar role. 

To facilitate future discussion, we specify the eigenphase shifts in 

the following way. 

The matrix 

S = 1 + 21 P 1/2 
	1/2 

• 	 hich is unitary and symmetric for s < s.< a , can be diagonalized 

by an orthogonal matrix T(s). For 	< S < ( with. s 

M is the number of channels). The first i eigenvalues can be writ-

tenas 	H 
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21 
e j (s) = e 	 = :,•.., I 

where 6 	are the eigenphase shifts of the interval S. < s < s. 

Because of the step functions 0 , the eigenphase shifts of different 

intervals are not analytic continuations of one another. But also 

because of the step function, we have 

=6
ij if i or j >k 

which implies 

n. 
:1. 	1 

Thus we can write all the eigenhase shifts in terms of 	real con- 

tinuous, piecewise analytic functions: 

&1 (s) = 
	

Sj  < S < 

j = 1,..., M 
	

i = 1,..., M 

At s =a , the orthogonal transformation T T() that 

diagonalizes S also diagonalizes the matrix A , whose elements are 

the X.. ?., • We have 
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• 	 -1 	 1/2 	1 /2 -1 TST 	1+2iTp 	(ReB)p JT -2TAT 

taking the real part of both sides, we get 

2i.() 

X. 	Re 	
[e : -] 

or 	• 	 x. = [ n  

where 	is the ith eigenvalue of A 

• 	After introducing the matrix T , as explained in Reference 7, 

we can use the Wiener-Hopf method to get the following coupled integral 

equations: 

SM 
£ j (S) 	Ba(s) + f 	ds' U 	(s,s') N'(s') 

- 

	

f 5 (U. 0 )(s,s') 	0
v 	 v 	vj () i.i 	 lp  

S . 

for S < 

S . 

= 	+ T 	ds' U(s,s') ill f 	11"V 

• 	+ T. T - 	r ds' (K 0 )(s,s') 	
0() 

	

'p vp j 
	

pi 

-• 	
.•• 

for 5M< 	 (11-13:5) 

• 	 •. 



-12- 

where: (i) the 	are related to N'.'s by the Wiener-Hopf 
ij 

equations 

- 	ds' k(s,s') 	j (5')  

with 

• 	 IT 	= T. 	K' 	• 	 (11-13:7) ij 	J4.1 	uJ 

Just as in the single-channel case we can invert (11-13:6) to give 

Cr 

jj (S) 	 ds' O(s,s') N (s') 

where o(ss') is the Wiener-Hopf resolvent kernel. 9  

(ii) = , P 
ii. 	Tij 13  ij• 

(U16)(s,s') 	f ds" U1(s , s " ) O(s " ,s') 

(KO)(s,s') = f ds" K(s,s") O(s",s') 

j 

As discussed in Reference 4,  the function jj (S) will have 

the fol-lowind behavior near s = 
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----3 (a - S)la  

• 	 •1 	 1 
with a. = - l.(a) ± mil < 	, unless we fix te arbitrary con 

stant in the general solution of (11-13:6) to a particular value, then 

. (s) 	(a - 
	)

1 
.i.j 

S-*° 

To find the correct behavior near s 	y , we make use of 

the explicit expression for the determinant of D • In the next section, 

we will show that for large z , when there are no bound states 

M 	Cr 

det D(s) = exp - 	 f ds' 
.1=l s 	s'-s 

with 	(s) = 0 

and 	(-) - 0 as 	- 

It follows that the determinant of D. has the following behavior 

near the strip boundary 

det D(s) 	(a - s) 
s-pa 

Because ofq. (Il-A 6), we have 

1 

det N(s) 	(a - 
s-a 
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But N1 	is related to N 	through (11-13:2) and (II.B:7), so weij 

have: 

9 

det TIT = det(TN') = (det T) det(ph/2) det N 
	

(II-B:lO) 

so 

	

det v(s) 	( - s) 

Since each term of the determinant of N involves one of the elements 

of each column of N , by comparing Eqs. (11-13:8), (11-13:9) and (ii-

BdO), bearing in mind that &(c) 	0 as 9. 	, we conclude that 

Eq. (II-B:9) is the correct behavior for each I , and we can make 

the identification 

a1  = 	 11-13:11 

Thus all the arbitrary constants in the solution are fixed. Once the 

identification ( II-B:ll) is made and analyticity in 9. is assumed, 

we have a unique solution to (Il-A:?) for all 9. as long as all eigen-

phase shifts at s = a are less than ir , because (1) if 6 (c) < 

Eqs. (11-13:5) are Fredholm. T  (ii) if 	< 1 (ø) < i , we may define 

1 
- 

1-0 	ITO  = 	j (s)(a- 5) 
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with 

>c>O 
Tr 

—0 and the integral equations for N , 

4 (5) are Fredhoim. 

In the next section we will discuss the CDL) 	itujtjes and 

continuation to lower 9. values.. 

C. CDD Ambiguities and 'axinal Analicity of the Second Degree 

Just as in the single channel case 1°  we might hav written 

for D and N 

a 	p (s') O(s') N (s') 	n 	r 
• 	DL(s) = 1 - 	 f ds' 	

- 	

9. . 	

+ 	
. 	(II-A:6)' TT 	

Si 

n . r. 	a 	3P(31) - B P(51) 

B [ 
+ 	s_] + 	

ds' 	- 	
. 	p 9.(s)O(s)(s) 

if r 	(the residue matrix) and S  are suitably chosen so that i 	 1 

• 	D9.(5) is real outside the interval s1 < s < Cr . It is clear that 

(Ii-A:7)' will have a solution, at least if all the 6 are outside 

the interval s1  < s < a • These are the well known CDD ambiguities. 

We choose our convention for the eigenphase shifts as . 

0 	for 11,'•.,n. 
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• The most general expression for,  the determinant of ) is 

• 	 m 

• 	 det D(s) 	 (s - 	exp - 	 f ds' • 	 Ti 
i1 	 I-I 

For any physically reasonable B 
z P we expect B ' (s) 	0 for 

s1  < s < C1 as 2. - 	(e.g. through Froissart-Gribov transformation 

as in the single channel case). With our convention we then have 

0 for I = 1,..., M. In this limiting case, we expect 

r 
D —4l+ 

2. 	 s . 	'- s. 
CO 	

- 

i 

N2. 
2. 	 + 	 } 

So there shouldn't. be any singularity at $ 	thus n = in. 

Furthermore there are no bound states for large 9. , so m 0, 

which implies n 0 • Therefore we conclude that for large 9. we 

have a unique solution with no CDD poles in D 

Now we will establish that N and D are analytic in 9. •, 

then we can infer from MASD that we have a unique solution for lower 
'I 

valuesof 2.: 

Fronithe discussion in !eference 4, we are assured of 9. 

analyitity far N 9.(s) when s <s < s, 4  and for 	9.(s) when 
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< s < a , at least for £ values such that Re Z > -1 and 3(a) < 

(we suppress the channel indices). The 11 defined by 

ds' O(s,s') L° (s') 	s < S < a f  
are analytic functions of £ as long as the integrals exist, e.g. if 

< ' Tr 	Similarly Nt for sTI 
< s < a defined by 

Nz(5) .= p_1/2(a) T'(a) c(s) 

are analytic in Z for 	(a) < IT . Finally the functions Dt 

defined by 

• 	 . 	. 	 (s') e(5')N (s') = -. f ds' 	 .. L 	l 	ir 
	 s-s 

are analytic in £ when the. . 	are analytic, provided the integrals 

exist. The integrals certainly exist for 	 , therefore it is 

obvious that Dt . cannot develop any singularity (or poles) as long as 

ii and will always maintain the same normalization at infinity. 

The question of what happens, if 6 (a) > 77 as Z decreases and if 

a) < rr once again when we continue to decrease t , has been dis-

cussed in Reference. The conclusion is that the solution toour 

problem, whenever 6(a) < ir , is correctly given by the unique solu- 

tion to the Integrdl equations satisfied by 'I and 	with no CDD poles. 
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IlL. A Trn-K7 MODEL OF THE p-SON 

The dynamic calculation of the 0-meson, considered as a 

resonance in channels consisting of two pseudoscalar riesons with 

vector meson exchange as the main binding force, has been made by 

various authors. 12a,12bThe inherent difficulty in all models using 

the hiD method,12a is that the output p-width is too large. (The 

calculations by Ea1az3 	 12b and oy Finkeistein, 	using an equivalent 

potential approach which ?erhaps is equivalent to a partial Mandel-

stam iteration, seems to show substantial improvement in this aspect.) 

As it turns out, our method suffers the sare difficulty. 

First we justify the numerical method by applying a result 

obtained by Jones and Tiktopoulos. 13  Then as a preliminary step be-

fore the fully Reggeized calculation, we consider the case when fixed-

spin particles are being exchanged. We thus de'relop a basis of com-

parison against which we can test the effect of Reggeization. Next 

we construct the generalized potential frornRegge-pole exchange. 

There is some complication because the ir- and K-meson masses are 

different and we have to make an airnroximatjon. The numerical results 

are discussed in detail. The unsatisfactory aspects of our scheme 

and how they may be improved will be discussed in the concluding section. 

A. Justification of the Numerical Method 

The theorem proved by Jones and Tiktopou1os can he stated as 

follows. Th integral equation 
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(s) 	
(s) + J 

ds'X(s,s')(s') 

is given where 	(x) 	in L2 (a,b) , i e 	f ds(s)( 2  < 	and 

• 	the resolvent (1 -X 	of the integral operator £( exists. Sup- 

pose further that X = W + C where the norm of W is less than 1 and 

C is square integrable (f IC(s,9')1 2dsds' <). Then the method 

of matrix inversion can be used to invert the integral equation (for 

this we need K to be piecewise continuous) provided we choose the 

mesh points carefully near the singular point. 

The multi-channel equations for N can be easily shown to 

satisfy the above conditions. Diagonalizing Eq. (II-B:4), we have 

5, 	 Cr 

= 	(s) + 
	

ds' 	
+ 	

ds' 
 f 	J. 

CT 

- 	ds' k(ss')(s') 	i,j = l,, 1 
Tr 
2 f 

where 

TiN ' j ( s) Ij 
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tJ. (s,s') 	= T. ti (s,s')T 
]41. 	 lvvp 

T K (s,s')T iv vp 	pu 

We can rewrite the alxve equations for each fixed column index j as 

a single integral equation 

110 - (M-1)s 

j (S) = j (S) + f 	 M 

where 

j (S) 	 Is - 	(i-1)(cT—s1 )] 

X(s,s') 	=Ui  is -. (i-l)(a-s1 ), 	5' _(_l)(_si)]o[sM - 5'] 

+ 	- (i_1)(_.$), 	' - 	(1._l)(o_ 5 )]o[ 5 ' - 	+ 

A. 
- —kEs -  (i-1)(a-s1 ), 	s' - 	(i-l)(o-s1 )]ots' - 	+ 

+ (i-1)(cj-s1 ) < S < 
	

+ 

Si + ( ji)(cys1 ) < 5' < S1  + 11 (a—s1) 
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• 	 : 	1 if s>O 
0(s) = 

	

• 	
• 	1

0 if s<O 

Now the existence of the resolvent (1 _)_1 as well as the square-

integrability of the U. 
lii 
 and K 

11  
. ' s has been established in Sec-

tion II of this report. Since 	= 	 are less than 1 for 

all i , the operator X is the sun of two operators: one with norm 

less than 1 ; 	he other, square integrable. Therefore the theorem 

of Jones and Tiktcpouios applies. 

	

• 	 B. Fixed-sjn Particle ExchE.nce 

1. Generalized Potential 

Near a t-channel pole of definite spin tt , isospin It  and 

mass mj , the scattering amplitude 

R.(t) 
• 	• 	 A.(st) 	(2zt + 1) 	

iJ 	
P (z) 

- 	
rLR_t 	t 

By crossing, the generalized potential in the s-channel for 

angular momentum Z and isospin I from exchange of this particle 

in the t-channel in the zero width approximation is given by 

I s 	
(2 . Z +1)R (t=mj, 2 	t =Mr, 

2 )] 	 2 	

1 
1B  X P(s)] 	I I 	t 	ij 	Z 	 Z +1 s 	ij 	s t 	 t 	 '[zs(t 	2(q Q 	S 
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where 6 	 is the isospin crossing matrix element. The explicit 
st 

form of the crossing matrices used is as follows: 

for 	rT7r+7T7r 

	

I =0 	1 	2 
I 

S 

II 

0 
7T1T 	= 	 3 

	

1 	1 	5 1 	
•i;- 

	

1 	1 2 

IT7T 	KK 

	

1 	3 

	

t2 	2 
S 

TrK 	
0 	 _ 

's1t 	 3 

	

2 	2 

	

3 	3 

KKKK 

	

I =0 	1 
I .  

S 

ft 

- 	0 	1 	3 

's't 	- 	 .. 	. 

i 	1 	1 

	

2 	2 
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We list below the generalized potential arising from the exchange of 

particles shown in Fig. 2. (Channel indices 1 for irr channel, 

• 	2 for KK channel.) 

I 	 1fl 2_14m 2 	2s 
[Bp  s 	s 	2 x 	x 3 X{yllx 

(

P Tr

) ( + m2m2) Q(1 + 	4 2) 

1 

• 	 2(q1 ) 	s 

• 	where 

1 1 	/m 2 14_m 2 

= r • 2 	
j 	 is the reduced residue. 

	

11 P. p 1 2 	2/ 	. v m -4m 
p iT 

• s-rn • 	 2 	it 
q 1 	- 

The factor of 2 comes from the u-channel contribution which Bose- 

• 

	

	statistics requires to be the same as that of the t-channel contribu. 

tion for allowed 9 
S 
, I S  combination. 

	

= 2 x 	 3 	

2 - 	2+ 2 ) 2 }

11  
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	 2ni, 	S 	

( 
y* 	 ic '\ - 	 2 	• 	2 	2 2 1 	• 
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where 

2 	sm 2 = 
14 

The factor 	is the ratio of reduced residues given by exact SU3  

symmetry. 15 

x 3 x 	 x 	 (1 + 
2:2) 

Q5(l + 	2) 

+ 	
x 3 	ii 	 } ( + 

	2s 2) 

	+ $ 

	

	 4 fl1 	 S 	s-mK 

1 
x 	

22.+2 2(q2 ) 

The factors i  and 	in the curly brackets are again the StJ3  

ratios of reduced residues. Notice that we do not have a factor of 

2 here since p- and -mesons cannot be exchanged in the u-channel. 

We treat the -meson purely as a member of the same octet which con-. 

tains the p-meson, and-the w-meson as a singlet entirely decoupled 

to the octet. The actual w-0 mixing will make little difference 

to the output as will become apparent from the dIscussion in the fol-

lowing section. 
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2. Results 

The numerical results comparing the single-channel and two-

channel cases for various values of the strip width a , the input 

p-width r , the K*_width r in and the -width r in are sum-

marized in Tablel and Figs. 3-5. 

We conclude that the one-channel and two-channel cases are 

qualitatively very much the same. In order to get a resonance peak 

14 in the p-wave cross section at the experimental p-mass, we need 

• an input p-width several times larger than the experimental value or 

a strip width much larger than one might expect from the fact that 

resonance peaks die out when s is larger than a'few GaV. The oüt 

put p-width Is always several times larger than the experimental 

value (see, however, discussion in (e) below). The I = 1 trajectory 

is too flat and the intercept too high, while the I = 0 trajectory 

violates the Froissart limit slightly. Both kinds of trajectories 

turnover too soon, if.ve take values given by thezero of the real 

part of the determinant of D (see Footnote lh). These qualitative 

features of the output are not sensitive to the changes in the input 

parameters. 

The inclusion of the inelastic channel does give some addi-

tional binding and, as expectecL, will narrow the output p-width, though 

not by a large amount. The details are as follows. 

(a) The spacing between the I = 0 and I = 1 trajectories 

is smaller in the two-channel case, thus the Froissart limit is 

violated no irse than in the one-channel case, although the correspond-

ing 1 = 1 trajectory intercept is larger. 

lip 
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}eeping r 	 at the experimental value, in order to Get 

the p-peak at the right position (J = 5.3 m) we need a much higher 

a for the one-channel case (1280 in 2 ) than for the two-channel case 

(600 in 2 ); also the output p-width is narrower and the trajectory 

steeper in thc Latter case. 

If we allow both a and 
I 

r 	 to vary, keeping the cor- 

rect output p-peak position, we notice that for larger a we get a 

narrower output p-width but flatter trajectories.

in  (d) To see the effect of r in , r 	 and the p-contribution 

in Kr-. KK, we allow them to vary independently insteai of using 

the values given by SU 3  . Because their contribiitions are small 

compared to the p-contribution in mi - imm , unless we assign them 

values drastically different from those given by SU 3  there will be 

no appreciable changes. Increasing r" , r2 will narrow the out 

put p-width and flatten the output trajectory. Changing 	is 

more effective. 

(e). If we use r 	 7 times and r 	0.16 times the value 

given by SU3  we could get an output p-width of 0.9 rn, , although 

the intercept of the p-trajectory is very large (0.9) . This con-

firms that one way of achieving the experimental p-width is to get 

the p-meson primarily as a bound state of an inelastic channel weakly 

coupled to the mi channel, though it is not possible to do so with 

reasonable input in our scheme. Notice in Fig. 4 that we have two 

I = 1 trajectories in this latter case. The leading trajectory is 

primarily a 400und state of the Ki channel due to the unusually large 
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attraction of the 4-exchange; the secondary one, presumably due to 

p-exchange in the rr channel, is mainly a resonance of the 	ii 

channel. 

C. Reggeized Particle Exchange 

1. The Generalized Potentia1 

The potentials were obtained following the Chew-Jones pre-

scription. 1  We assume that the double spectral functions are large 

only in the strip like regions indicated with i , j , k in Fig. 6, 

In the case of an equal mass channel the contribution to the amplitude 

in the s-channel from a Regge pole in the j-region can be written 

(omitting signature and isotopic spin complication): 

	

O 	
2s I'a. (t)
T 

• 	 R(s,t)4.r j  (t)f 	
- 	

ds' 	(ill-Cd)
st  

CY 

where 

(t) 
r(t) = [2(t) + lJy(t)(-q 2 ) 	 (III-C:2) 

and y (t) are the trajectory and reduced residue functions of 

the Regge pole under consideration. The integral In Eq. (iII-C:1) is 

defined by analytic continuation when it does not converge. 	 -• 

The full amplitude can then be written as the sum of Regge 

poles in alltrip regions: 



me 

	

A(s,t) = 	rn(,t) + 	
R(s , ,-.1 j 

1. 

+ : [R(t,$) + 
j 

	

+ 	[R(u,$) + k R(u,t)) 	 (III.C:3) 

where the & I s are the signature factors of the Regge poles and 

is the strip width, taken to be the same for all channels. The iso-

topic spin crossing matrix elements have been omitted. The amplitude 

thus constructed will have a double spectral function different from 

zero in the shaded regions of Fig. 6. The Reageized potential for an 

equal mass channel can now be obtained directly from this amplitude 

by separating the appropriate terms from the partial wave projection 

of the amplitude. Using the Wong projection formulae we can write 

the contribution of a single Tegge pole in the *ir - mr case 

(m taken to be 1) 

	

(113P s 4 	f cit [Im(l + 22)] 
 f at P 	
) 	+ 

CO 

	

+ (-i) '  B, 	du'r(t')P(,) 	
- 	) 	

- (-1)' 



-29- 

either 

•S 	1 
+ sin na(t) [_ 
	P()(_1 - 
	+ 	

1 + 	J 	if 	-I - 	< 102  

or 

rf cot 7(t) 	I' = O,2 '  

+ r(t)[Pa(t)(_i - 	
(t) 	 .1 - 2()(_1 72 

tan 

S 

if 

,' 
1 	 rs,\  

- 	 f 	ds' (t)(2)1 	dt' 
a(s')  -1 - 2q2, 	L 	

- 

where 

s + t .+ U = s' + t! .+ u' 

A similar expression can be written for the case KK + KK 

In the case of vv 	, the external particles have different 

masses. The more complicated functional relation between qt  and t 

means that an expression of the type Eq. (iil-C:l) will fail to have 

the correct analytic properties in s and t because the double 

spectral function will be non-zero outside the shaded rejions shown 

in Fig. 6. The procedure adopted to avoid this difficulty is to 
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approximate qt  by 

-( 	.+ 	)2J[(.T*)2 - ( 	
)2] 

( * )2 = 	11 	 7T 

where M is the mass of the resonance being exchanged in the t 

channel. In the same spirit, ve define the cosine of the scattering 

angle in the t-channel as 

S 

= 	1-'• 
2(q) 2  

With'the above approximation we can rewrite Eq. (III-C:l) to read 

(suppress the subscript j ) 

S 

co p. a(t) 
r 	 2(q) 

ds' 	(III-C:5) 

S 

where now 

r*(t) = [2a(t) + 

It is readily seen that this expression has the correct analytic 

properties, and when t - (M*) 2  it reduces to Eq. (III-C:l). As we 

expect the m.in contribution to the potential should come from values 

of t closeo (M*)2 , this seems to be a reasonable approximation. 

With .tis ne form for Rr(s,t) , the same steps as led to Eq. 
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(Iii-C:) can be carried out and an expression for the potential in 

the 	KK case can thus be derived. 

• 	 The potential due to exchange of the Pomeranchuk trajectory, 

• 	which is present in both the mi and IO( channels, is very repul- 

sive in our scheme. As pointed out by Collins 2a  a combination of an 

• 	attractive and a repulsive potential can give rise to poles on the 	-' 

physical sheet in the present method. One way to avoid this diff 1 

culty is to "renorrnalize' t.-ic potentiallG by subtracting from the 

potential its value at s = 0 and adding back the same quantity now 

computed from a partial wave projection of the arnplitude. In the 

m + irmr case, we have 

[Bp(s)] 
= 2q2 	f dt ImQ(l + 	) [P( s ,t) 	v0 ( s, t)] 

1T7T 
t 

+ 	
10  

+ 	/ d 
	+ - 	E (2t' + 1) i& , () 

q5 	 2q 	z even 

where V(s,t) is the contribution from exchange of the Pomeranchuk 

trajectory to the potential in the mi - irir case. It has been shown 

by Collins2b that the second term is negligible, and the "renormali-

zation" can be carried out using only the first term 0  He also 

pointed out that this renormalizing technique can lead to difficulties, 

and is not entirely justifiable. We shall use it in the following 

because it is the only way to prevent the potential from being over-

whelmed by P4.exchange. 
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2. Results 

In the one-channel caicuiation2a,2' it has been noted that 

we cannot get enough attraction from either a fixed-spin particle 

exchange or a Regge-pole exchange with input p-width equai to the 

experimental value. Thus in order to get the peak in the cross sec- 

tion at the correct p-mass, we have to use an input p-width several 

times larger than the experimental value. In the fixed-spin case 

this leads to an I = 0 trajectory with intercept larger than 1 , 

violating the Froissart bound. In the Reggeized case we have an 

additional restriction, i.e. the imaginary part of the potential at 

the strip boundary is .required by unitarity to satisfy the relation 

o p() IrnB(a) 4 1 , which will be violated usually before we 

violate the Froissart bound, especially in the lover Q values, the 

other difficulties are large output p-width and flat output trajectory. 

From the two-channel fixed-spin particle exchange case discussed 

above we find that the inelastic channel K , through r 	 and 
in r., provides additional attraction and narrows the output p-width 

a little. We now investigate whether we can get the same kind of 

effect with various types of para!netrjzatjon of the input trajectories 

and residues in the Reggeized case. 

(a) Reproducing the fixed-spin particle exchange case: we use 

extremely flat linear trajectories for p 	K* and 0 passing through 

3. at the corresponding resonance energies. The residues, taken to be 

constant, are adjusted to give respectively the experimental p-width, 

the KLwidt i  and the 4-width with ratios to the p-width fixed by 
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SU3  syrnetry. We get very much the arne potentials as from the fixed-

spin particle exchange; in particular there are very small imaginary 

parts. 

(b) Various pararietrizations of the input trajectories and 

• 	residue functions we use a one-pole formula for the various trajec- 

21) 
tories 

• 	 t 

tB 	tR 
a(t)  

• 	 t13 

where 	- a gives the intercept at t = 0 , t is the square of the 

mass of.the resonance, J the spin of the resonance and t 	is the pole- 

position. Two forms of the residue functions have been used: the Chew- 

18 
ieplitz formula 

• 	 56 c&( t) +1  
Y(t) 	Ca'(t)[t - t]Qa ( t ) 	+ 
	) 

rhich has been used in Ref. 21) to get a self-consistent solution, and 

the one-pole formula 

A 
Y(t) 

13 

which can give a steeply-falling residue function as suggested by 

the results of fitting the high energy scattering data. 19  

To start with, we use the same parametrization for a and 

c and.theiesidue functions for y 	and y 	which gives a 
p 	 P7TIT 	 P7T1T 



self-consistent solution in the one-channel calculation as explained 

in Ref. 2b, and assume the P and p contribution in KK to be of 

the same form as that in 77 P  with P. coupled equally strongly to 

the KK- and the irtr-channels but with 	 0.5 , the 3U3  

ratio for all t. As for the trajectories a, t a 	 we take the 

pole positiont. to be the same as for a but a :ust the inter-

cept at t = 0 30 that they run more or 1033 parallel to the p'-

trajectory. For the resiiue functions y 	 and y 	 we again 

use the same form as for y 	with the magnitude fixed by SU 3  

ratios. The resulting outputas compared to the one-chaniel result 

is shown in Figs. 7-9. We notice that the output.is very similar 

to the one-channel case and we still get approximately self-consistent 

p and P in the i7t channel. This result presumably is due to 

the fact that the K*  and 0 trajectories, lying lower than the 

p-trajectory, are dominated by the p-contribution in the 7flt-

channel. The p- and P-contribution in the JOC channel is small 

as compared to that in the mt channel because the KK threshold 

is much higher and we cannot exchange p and P in the u-channel. 

The output in this case gives y/y 

	

0.15 and 	 0.09 , 

far smaller than the SU3  ratios of 0.5 and 1 respectively. 

Although these ratios are not directly subject to experimental test, 

we know that the K*_width  and -width calculated from SU3  ratios 

agree reasonably well with the p-width. These departures from the 

SU3  ratios therefore seem to indicate a defect in our calculation 

scheme. Hoever, if we increase the -contribution in the KK 



-35- 

channel by a factor of 6 , we find 	 0.2 and 

0.1 • This slight improvement suggests that, if in a better dynamjc 

model (see discussion in SectioriIV below) the attraction in the }< 

channel can he greatly enhanced, which we know will improve the out-

put 0-width, the above defect may also be cured. The outptit also 

suffers the srtrle difficulties as the one-channel case: 1are Output 

p-width, flat trajectories, violation of unitarity for lower 2. values. 

Since these qualitative features ap'arently are not sensitIve to the 

presence of the KK channel, a completely self-consistent solutin is 

considered as not significant. 

We next try to see whether we can irnprovethe output by hang 

ing the input drastically. As it turns out, mainly because unitarity 

at the strip boundary puts such a stringent restrIction on the imag-

inary part of the potential, we are unable to improve our result in 

any satisfactory ways We explain the details as follows: 

The strip width: In,contrast to the fixed-spin particle 

exchange case, the potential, now depending on the strIp width, de-

creases when we increase the latter. The additional attraction we can 

get by increasing a is thus very limIted. 

The trajectory: A steeper input trajectory will decrease 

the poentiai and flatten the output trajectory; the approximately self 

consistent p-trajectory used is about the best cornpromi8e we can 

manage. 

The residues: A steeply-falling residue function gives 

steep output trajectory and satsfes unitarity better for all values 
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of 2. , but the output residue function is never steeplyfalln 

and, if we try to keep the p-peak in the cross section at the right 

position, the trajectory deve1os a large imaginary part so fast, that 

we are unable to follow it above 2. = 0. o If we allow the p-peak 

to appear at much lower energy we can get steeper trajectories (Fig. 

10). 

(iv) The effect of K*  and 	: In the fixed-spin particle 

exchange case we found that we could narrow the output p-width by 

changing the contribution of K.*  and -exchange, if we made the 

p-meson as a bound state of the Iff channel weakly coupl 'ed to the 

in channel. There we had to use a y,,ff too large to be acceptahle 

in the present case we find that unitarity at the strip boundary rules 

out such a possibility. In Fig. 11 we plot two illustrative cases 

where we increase the attraction in the }& channel by very large 

factors. Even though unitarity is violated severely already at 2.  

we still cannot get the experimental p-width. 
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IV. CONCLUSION 

Our two-channel calculation in Section III—]3 of the output 

1 2a p-width for fixed-spin particle exchange agrees with earlier results 

based on the same N/D model (Regge trajectories were not considered 

in the earlier publications). From the discussion of Section 111-C 

it is evident thai; !eggeizatcn, because of the restriction imposed 

by unitarity at the strip boundary, does not improve the result in any 

appreciable way in our approximation scheme. 

Three immediate possible improverents in the dynamics come to 

mind: (a) Iterate the potential to get additional strength without 

violating unitarity, (b) Include additional inelasticity through a 

complex generalized potential within the strip. This, furthermore, 

will allow a smooth transition across the strip boundary, avoiding 

the artificial singularity. (c) Treat properly the long range 

20 i 
Pomeranchuk repulsion 	n order to narrow the output p-width. All 

these aspects can be handled very naturally using the Mandelstam iter-

ation scheme. In view of Finkeistein's resultsl2b, using the equi-

valent potential method by Balzs, we know that point (a) is signifi-

cant. The importance of (c) is etablishea in Ref 20 Thus we need 

not be too discouraged by our results here. Adding one more channel 

has not in itself turned out to cure the ills of a particular strong 

interaction model, but we have shown that it is computationally feasible 

to include multi-channel effects in a Reggeized system. The qualita- 

• 	 tive results reported here should be of assistance in the construction 

• of better models, 
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Fig. 1 	A typical Rege traJeätory that reaches the right-half 

angular-momentum plane. 
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Fig. 3 	Some I 1 output trajectories from fixed-spin particle 

exchange, labeled by the case numbers as listed in Table 1. 
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listed in Table 1. 
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i'i C 	The uande1tazn diarari for the new strip approximation, 

showing the six strip i 
1 2 	1,2 , 	, and k

1,2 
 • Also ,  

the boundaries of the double spectral function 



J 8.. 

	

T'T 	
tI'jGCtCy 

NQ 

	

put 	_- 	VioIteg p . trGjcofl9 

- .- - — — - 	 , 	witvlty 

Uput 
 

0 

0.5 

a: 
V 2CPinnI 

Output 	I-Chnl 
(I-Channel 

Output 

01 

-200 -too 	 0 
$ 	(m 2.) 

MU 811185 

Fig. T 	The approximately self.-consistent p— and Ptrajectories 

(parameters taken from Ref. 2b). (These are the input 
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Fig, 8 	The approximately self—consistent residue functions 
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Fig. 10 	Output I = 1 trajectories for steep input residue 

functions (the trajectories are the same as the approxi- 

mately self-consistent case) (a = 200 
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B1 (s) , B1 (s) same as the approximately self-consistent case, 

B2 (s) is 15 times the approximate self-consistent case. 

The kink in the cross section is due to the presence of a secondary trajectory 
which is mainly a resbnance of the irir channel. (As a measure of violation of unitarity 
we have 	x 1 =Q.Gi 	A 2 	1.43 for L=1.) 
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Fig. 1. A typical Regge trajectory 4;hat reaches the right-half angular-

momentum plane. 

Fig. 2. The particles being exchanged that give rise to the generalized 
-- 

poteial. 

Fig. 3. Some 	= 1 output trajectories from fixed-spin particle 

• 	 exche, labeled by the case numbers as listed in Table 1. 

• Fig. . Some I = 0 ort -put, trajectories fran fixed-spin particle 

exchange, labeled by the ca'e numbers as listed in Table I. 

F 1g. 5. Some I = 1 , 2 = 1 cross sections from fixedLspin particle 

• 	 exchange, labeled by the case numbers as listed in Table 1. 

Fig. 6. The Mandeistam diagram for the new strip approximation, showing 

• 	 the six strip 
1 112 	 and 1l,2 • Also the boundaries 

• 	 of the double spectral function. 

Fig.7., The approximately self-consistent p- and P-trajectories 

(parameters taken from Ref. 2b). (These are the input 

trajectories we used in all cases below,) (a = 100 
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Fig. 8, The approximately self-consistent residue functions ' 

and y 	(parameters taken from Ref 2b). (a = 100 m2) 
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Fig. 11. The I = 1 , 2 = 1 cross section. 

(a) a = 100 m 2 

B11 (s) , B(s) same as the approximately self consistent 

case, 

B221 (s) is 15 times the approximate self-consistent case. 

The kink in the cross section is due to the presence of a 
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secondary trajectory which is mainly a resonance of the 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, not the Com-
mission, nor any person acting on behalf of the Commission: 

Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor-

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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