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Abstract 

Apparentanomalies in charge and field distributions in the diffusion layer 

and the diffuse double layer at the limiting current are resolved by means of two 

matching expansions valid in the two regions The region of appreciable deviation 

from electroneutrality is thicker, and in this region the electric field is ex- 

• 	pected to be smaller, than at currents below the limiting current. Modified zeta 

• 	potentials are calculated for a. cation-discharge reaction, 	 . 	•• 
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Introduction 

In the diffuse part of the double layer at equilibrium, the concentration c 

of.an ion obeys a Boltzmann distribution s a function of the electrical potential 

(cf. Grahame1 ): 

c 1  = c exp (-z.FD/RT)  

where c0  is the concentration of i in the bulk, zF  is the charge on species i, 

and RT has its usual meaning. The concentration and potential distribution in the 

double layer during the passage of current is of interest, for example, in electrode 

kinetics.. Levich 2,3 has found that for small currents the concentration of non-

discharging iOns obeys a Boltzmann-type dependeflce on the electrical potential in 

the double layer. It was also found that the discharging ions follow very closely a 

Boltzmann-type distribution0 

More recent work'' 6  has been directed toward obtaining the concentration and 

potential distribution not only in the double layer, but also in the diffusion layer 

outside the double layer, again for small currents0 For many years it has been 

believed that an electrolytic solution, even during passage of current, can be 

treated as two regions: (i) the diffuse part of the double layer, where de-viations 

from electroneutrality are significant but convection can be neglected and the con-

centrations and potential are distributed approximately as in a double layer at 

equilibrium, and (2) the diffusion layer where convection must be taken into account 

but electroneutrality is a good approximation. Bass 1  has criticized the assumption 

of electroneutrality in the diffusion layer but failed to appreciate the nature of 

this approximation, i.e., the charge density is small compared to the concentration 

of the electrolyte. For a binary., symmetric electrolyte in solution,.this approxi-

mation is expressed by 

c - ci << c+ + c_ 	. 	 (2) 
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The concept of two distinct regions of the solution was given a firm mathematical 

basis in the previous paper , and in addition it was demonstrated how one may make 

the corrections to the "equilibrium" distributions to account for the passage of 

current. Again, the analysis was for currents smaller than the limiting current. 

The intent of the present paper is to elucidate the structure of the double 

layer at limiting current. The classical treatment of the diffusion layer at 

limiting current shows the concentration approaching zero at the electrode surface. 

As a consequence, the electric.field approaches infinity, and this raises a question 

about the validity of the electroneutrality assumption, at least in the inner part 

of the diffusion layer. An infinite electric field implies an infinite charge den-

sity, but one would expect the surface charge density actually to be smaller at 

limiting current. It is also found that within the diffuse part of the double layer 

the electric field associated with the passage of current must be accounted for in 

the first approximation. 

The analysis is carried out for a symmetric electrolyte of valence z. The 

governingdifferential equations, the conservation equations for anions and cations 

and Poisson's equation, are.taken to be the same as before, and are subject to the 

same restrictions and boundary conditions. The convective velocity is taken to be 

that for a rotating disk, v = -A y 2 , but this is appropriate for other hydrodynariiic 

situations as well. The dimensionless formulation is also very similar, but the 

bulk concentration c is used in forming dimensionless variables and parameters in-

stead of the concentration just outside the diffuse double layer. Thus we use 

concentration and charge density, 

C = (c+c )/2c , 	p = (c-c)/2c , 	 (3) 

electric field and independent variable appropriate for the diffusion layer, 

zF(3D/A)1/3/RT , 	= y/(3D/A)1/3, 	 () 



fluxes at the interface, 

	

- 	)1/3 	
+ 	

b 	
(3D/A)l/3 

	

a - 	2c 	G 	D,/' 	- 	2c 	\D -  0 	0 
parameters, 

r = (D-D )/(D+D) , 	5 = x/(3D/A)l/ 3 ,  

where X =/2cz2F2 , D = 2DfD/(D+D) 

In terms of these quantities, the differential equations become 

C" + 3 2C' = 3r 2p + (p)' 

+ 32pf = 3r 2C + (c) 

where the primes denote differentiation with respect to x 

The First Approximations 

In the diffusion layer, equation (9) indicates that the charge density is 

small and of order 	Let the first approximations to the concentration and the 

electric field in the diffusion layer be denoted by 	
() 

and 	with the anti- 

cipation that higher order terms can be obtained later. Since p  is small, C0  

satisfies the equation 

+ 3b = 0 
	

(io) 

---4-L 
WI L1 tue bL).LLtU 1011 

r 
C0=l+P6 	

3
j e 	dx, 	 (11) 

CO 

which satisfies the boundary condition C. -+ 1 as - °° 	To correspond to the classi- 

cal limiting current, 	0 as 	0, and the integration constant is P0  = 

Equation (11) becomes 
1 	P -x 

C0 = 	e 	dx 	 (12) 
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This function is tabulated in reference 9 The first approximation to the electric 

field is obtained from equation (8) 

2 
-3rC' = -3re 
	

(13) 

with the solution 
I +re X 

Eo 
= 	F(/) 	 (in) 

The first approximation to the charge density isrelated to the derivative of 

the electric field by equation (9) For small values of this becomes infinite in 

the following manner: 

_52 (1 +r)/ 	as 	-+ 0 0 

	

(15) 

This becomes of the same order of magnitude as the concentration 

and the electroneutrality approximation breaks down, for values of on the order 

of 5 2/3 This indicates that the outer edge of the diffuse double layer extends 

to the region where = 0(52/3), and an appropriate inner.riable for he double-

layer region is 

= /2/3 	
(16) 

The double-layer region is still thin compared to the diffusion layer but is con-

siderably thicker than the double-layer region at currents much below the limiting 

current, where the thickness, in terms of , is of order 8. This result is in agree-

ment with that of Grafov and Chernenko and Chernenko6, who touch briefly on the 

structure of the dQuble layer at li 

In terms of the inner variable 

C" + 

_2 2 
p + 3x S p 

p 

niting current. 

, the differential equations are 

= TTR 	+ ( pE)'/8 	 (17) 

= 3r282C' + (C)f/81'3 ., 	 (18) 

= 51/3E1 , 	 (19) 

where E = SE = zFX/RT and where the primes now denote differentiation with respect 

to 3. 
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For 	= 0(52/3 ) ,  te concentration and the charge density are of order 2/3 

while the electric field 	is of çrder 	or E = 0(5) 	Hence, the first 

approximations to the concentration, the charge density, and the electric field in 

the diffuse paft of the double layer are 

c 
= 	

p 
= 	2/(), 	

E = 51/3E(x)  

When equations (20) are substituted into equations (i'), 	(18), and (19)  and higher 

order terms in 5 are neglected, the following differential equations are obtained 

for determining the first approximations in the diffuse part of the double layer: 

- 	 ( ) 	
= 0 	

() 	 = 0,  

~50 = 	 .  

Equations (21) can be integrated to yield 

Ct 
=

TOEO a , .  

- (2) 

where the integration constants have been evaluated from the boundary conditions 

• 	for the fluxes at the interface: 

a2/3 	Ep/31/3 
 - 

C.t 	at 7 = 0 	.  

b52/3 = EC/5 	- p t • 	at x = 0 	 .  

Substitution of equation (22) into equation (23) and integration yields - 

- 1— 	- 
C 	=—E 	-ax+J 

/ 

27' 
0 	20 	0 

Substitution of equations (22) and (27) into equation (24) yields a differential 

equation for the determination of E : 	 • 	 - 

0 

T? 	 _+J) 	
. 

- 	

+b(2 
o 	o2 	o 	o 

(3) 

Since the electric field must become small outside the diffuse double layer, 

• one of the boundary conditions for equation (28) is 

E-0 	as 	1OO 	
• • (29) 
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The other boundary condition is related to the specified surface charge density c 

in the diffuse part of the double layer and the diffusion layer0 This takes the 

form 	

E() - E(0) = 	 = _il/3 = a/2zFcX 	 (30)

00  

To express o/2zFcX as _K81/3  reflects the fact that the surface charge density is 

smaller at the, limiting current than at lower currents and also reflects the order 

of magnitude found for p  within the diffuse part of the double layer0 On this basis, 

the other boundary condition for equation (28) is 

E'=K 	atO, 	 (31) 

since E is of higher order at x =00 . 

The outer solution for 	and 2 contains one, as yet, undetermined integration 

constant, 10 in.equation (14), The inner solution contains J, which also has not 

yet been evaluatecL In addition the flux parameter a must be selected so as to 

correspond to thelimiting current condition0 These constants can be evaluated by 

the condition that the inner and outer solutions must match. The inner limit of 

the outer solution for the concentration is 

c 	/F(/3) 	52/3/r(/3) 	o . 	 ( 32) 

Since E -+ 0 as 7 -. , the outer limit of the inner solution for the concentration is 

c 	2/3 	82/3_ + J 
05 	as 7 	 () 

In order for these to match, a must take the value 

a =,-1/F(/3) 	 (3) 

The constant J would need to match with a term of the outer solution of order 2/3 

and will later be shown to be equal to zero0 

From equation (lii.), the inner limit of the outer solution for the electric 

field is 

= 	 S(I+r)/ = 81/3(I±)/ 	as 	; 0 . 	,' ' ' 	(35) 
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The outer limit of the inner solution for the electric field can be obtained directly 

from equation (28) without solving the differential equation0 The result is 

E 	1/3 	81/3b/_ 	 (36) 

These two limits match if 

I = -r - b/a 

It is not very easy to obtain an analytic solution for E from equation (28) 

However, there-are only two parameters, b and K, involved, since J0  = O Furthermore 

b = a = _1/F( 1 /3) for a cation-discharge process, and it is feasible to solve equa-

tion (28) numerically for various values of the parameter K. For this case the re-

suits are shown in figure 1. 

In the course of the numerical calculations it was found that, for the case 

b = a, values of K greater than about -0141 have no physical meaning since for such 

values the cation concentration becomes negative near the electrode surface0 Near 

the limiting current anions are driven awey from the interface by the electric field, 

while cations are driven toward the interface and react there0 The net charge in 

the diffuse double layer and the diffusion layer cannot drop below the value corres-

ponding to K Z -00141 without the cation concentration decreasing to zero at the 

interface 

It might be noted that convection is negligible in the first approximation 

within the diffuse part of the double layer and that, in contrast to the situation 

at currents.below the limiting current , the electric field within the diffuse 

double layer does not have an "equilibrium" distribution but instead involves the 

flux parameters a and b. 
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Figure 1. First approximation to the electric field within the diffuse 
• part of the double layer, corresponding to the classical limiting current 
for a cation discharge reaction from a solution of a symmetric binary 
electrolyte. The parameter K. corresponds to the total surface charge 
density in the diffuse double layer and in the diffusion layer. For 
K> -0.741, the true limiting current.hasalready been exceeded, and.: 
the cation concentration at the interface is negative 
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Higher Order Terms 

The purpose of this section is, to show how to calculate higher order terms, 

both within the diffuse double layer and in the diffusion layer, in order to account 

for the terms neglected in the first approximations. The necessity for these higher 

order terms may be due-to terms, neglected in the differential equations themselves 

or in the boundary conditiOns, or they may be required by the fact that the inner 

and outer expansions must match. 

Inner Expansions 

The next terms in the inner expansion arise from the boundary condition (30) 

since E()/8 	(°°) = I0/1'(4/'3) = b + r a. The-inner expansions are found to 

take the form 	 - 

- C 	= 	I(3) + 8C1 ().+ 	802 (x) ± o(8°" - ). - 

- E- = 61/() + 5 E1(x) 
+ 65/32() ± 

0(81/3 ), (38) 

- 	- p 	82/3_(_) ± + 822() + 0 (88/3) . 	- 

If these expansions a.re substituted into equations 	(lï), 	(18), and (19) and terms 

in equal powers of 8 are equated, one obtains equations (21) and (22) and 

c1  = (P0E1) 	+ 	10 r C11 =E 	+ piE1 	PoE2 () 

= 	(cE1 ) 	+ 	(C1E) , 	= (c2E 	± C1E1  + CE2 )', - 	(no) 
- 

p1  -E1 	 , 	 - 	P2 	E2 	. 	 - (41) 

- 	Equations (39) and 	(no) can be integrated to yield - 

ci  = pE1  + TlEo 
' 	= P2Eo + p1E1 + PoE2 

l 	OL1 	1E0  P2 	2Eo +C1E1  +00E2  , 	 -. (1t3) 

where the integration constants have been evaluated from the boundary conditions 

(25) and (26) for the fluxes at the interface - - Substitution of equations -tl) 
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into equations (I2)  and integration 'yields 

EE1  + 11 (1) 

02 = EE2 + 2 E1  + 1 	 , ( 	5) 

Substitution of equations 	(l), 	(1),  and (5) into equations 	(3) yields differ 

ential equations for the determination of E 1  and E2 : 

= 	 + 	
+ J) + (6) 

E f '= E2  (-a 	+ 	+ j) + j2 	+ j11 (T) 

The constants J )  J, and J2  stillneed to be evaluated. 

Outer Expansions 

• 	 In the diffusion layer the first neglected terms in equations () and 	(8) are 

• 	of order 
52, 	

However, it is not immediately appa'entthat terms for C and E of 

2I3 	
5 • 	order 	and 	might not be necessary in order to match with terms of the 

• 	inner expansion. 	Thus, for the outer expansions we adopt the -form 

C = c() + 	2/3.() + 	 + 	(52 )  

- 	- 	

+ 	
+ 	/3) + 	0(52) 	. (8) 

= 	2j + 	(8/3), 

We shall show that 0, 02 	E1, and E2  are, in fact, identically zero. 

Substitution of-these expansions into equation (7) shows that Cl  and 02 

• 	satisfy th& differential equation 

- 	 C+32Cf=O, 	n=l,2, (19) 

with the solution 
x 

- 	
- 	 C' = P 	J 	ex 	dx , 	n =1,2 , (o) 

where the other integration constants, besides P1  andP2  have been evaluated so - 

that C - 1 as x -+ 	. 
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The terms for the electric field satisfy the equations, obtained from equa-

tion (8), 

+ ( l ) t 	=3rC1 	3r 2P1e 	, 

(5'. ) 

2 	2 
(c2E + CE1  + 	-3rx 	3rx 

which can be integrated to yield 

= (I 
+ rP,e_X 

- 

(52) 

E2 = (12 ± rP2e 	C  2  E - 

Matching - 

The integration constants J, 1 1 , J2 , F1, P2, I, and 12  must be determined by 

matching the inner and outer expansions for the concentration and the electric field0 

The inner limit of the outer expansion for the concentration is 

= lim 
( 	

+, 2/3  +:o 
x-*O 

-4 
= 	(0())/F(/3) 

+ 4 2/3p [P(/3) ± Z + o()] () 

~.3p2[/3 ) + + o()] + o( 2 ) 

The outer limit of the inner expansion for the concentDation is 

= urn (62/3 	+ 	± 0(82 )) 

X-*co 

= 62/3[J 	
- a 	

+ 	(2)] + 	/3[1 + o(,3)] + 0(82) (54) 
- 

-a-+ 82/3J .+ 8J1 + 0(82 ) 

where equations 	(21), 	(41),  and  (1)  have been uséd0 	These two expansions must 

match term by term, with the result 

a = -1/F(/3), 	Jo 
= -P1 /3), Pl  = 2, 	J,  = -P2F(/3), 	IP = 0 	(55) 
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The inner limit of the outer expansiOn for the electric field is, since 

pl =P2 =0, 

	

E = 6(o) = lim [ 	+ 6E1  + 5h/3E2 + 0(5 3 )] 

= 6[(i +r)/ + 	± 8 5 [I1P(/3)/ + 

(56) 
+ 6h/3[I2r(/3)/ + (2)] ± 0(6) 

= 61/3(1 + r)/ + 6I1P(/3)/ + 6I2F(/3)/x + 0(6 1/3 ) 

The outer limit of the inner expansion of the electric field is, sInce J=J 1=0, 

,E(oo) = lim [5l/3 	+ 5E + 	+ o(6h/)] 

• 	

( ) 

	

= 51/3[ b/ 	()] + 6 / [-J2b/a
2  x 2 + 0(5)] + 0(61/3 ), 

The matching condition thus requires that 

10=-r-b/a, 	I1=I2_0 

The evaluation of J2  requires the determination of higher order terms wh1ch have 

been neglected 

Composite Expansions 

• 	The principal result can be expressed in the form of uniformly-valid, composite 

expansions, valid for all values of x., both in the diffusion layer and in the dif -

fuse part of the double layer. These are formed by adding the inner and outer ex-

pansions and subtracting the common terms. The common teuns comprise the inner 

limit of the outer expansion, which is the same as the outer limit of the inner 

expansion. The composite expansions are 

$ 	 C = c() + 62/3() - /r(/3) + 54/31() + O(6).. 	 (58) 

E = 6V3() + 6() + 	
0

6() + 6b/a + 0(6'). 	 (i;) 
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The terms E0 () and E1 (.) are to be obtained by solving the differential equations 

	

E 
o  
"+b=E o  ( 2  E2 0  -a), 	 (60) 

- 	-.3-2 E1  =E 	E - ax) , 	 (61) 

subject to the boundary conditions 

E0 =K, 	E1 =b+ar 	at5=0, 	 (62) 

E-0 	as-+°°. 	 (63) 

Solutions for 	are plotted in figure 1 for the äase a = b = - 1/r4/3) and for 

several values of K. The other terms of the composite expansion are 

x 

Co = fl(14/3) f e 	dx, 	= -(r+b/a-re)/f 	dx, 

H 	 (614) 
1-2 - 	-- C = E - ax, 	C1  = EE . 

	

Figure 2 shows the electric field for 5 = 	r = 0 1  a = b, and several values 

of K. The long region of overlap of the inner and outer expansions is clearly 

displayed here. 

Discussion 

The structure of the diffuse part of the double layer described here is also 

applicable to other hydrodynamic situations at the limiting current since convection 

is negligible in the double layer. What is important, as far as the double layer 

is concerned, is the value of the fluxes and the value of the concentration gradient 

at the interface as predicted by classical diffusion theory. A particularly simple 

result is found for a stagnant electrolytic solution, in a capillary of length L, 

sealed at one end with an electrode and open to a reservoir of solution at the other. 

Although the double layer is'restricted to. a region very c1se to the electrode 

interface, the "inner" expansions for the concentration and the electric field are 



I T 

inner 
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to_i - 
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expansion 

1OL 

\ 
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to 
102 	iO I 	1 	 10 	102 	to 3 	to 4  

x 

Figure 2. Electric field in the diffuse part of the double layer 
and in the diffusion layer at the classical limiting current. 
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uniformly valid throughout the capillary. The value for a may be somewhat different, 

say a = -1 for the capillary if the length L is used instead of (3D/A)1/3 in forming 

the dimensionless variables and parameters 

The results obtained here indicate that., even at the classical limiting cur-

rent, the potential at the interface, or the outer Helmholtz plane relative to a point 

just outside the diffusion layer is still finite. The current can be varied by a 

small amount about the classical limiting current before a true limiting current is 

obtained (zero concentration of the reacting ions at the interface), although for a 

cation-discharge reaction (a = b) and K z-0741 the classical limiting current and 

the true limiting current coincide. The true limiting current and other small iaria-

tions around the classical limiting current could be investigated by letting 

a = a0 - 6
2/3al  = -1/F(/3) - a152/3 

b =b -b 2/3 
0 	1 	' 

instead of a = -1/1'( 1 /3), The first approximations within the diffuse double layer 

still follow equations (27) and (28), with a and b replaced by a 0  and b 0, but now 

the constant J.has the value J 0  = a1F( 14/3). The outer solution would also be 

modified since now C 1  and E are no longer zero, but P1  = a1 . 

The magnitude of the potential in the outer Helmholtz plane relative to the 

outside of the diffusion layer can be obtained by subtcting the ohmic drop in the 

solution, extrapolate.d to the interface with the bulk conductivity. 

CO 

zF/RT =f [E E() d. 	 (65) 

By taking proper account of the singular nature of some of the terms for the expan-

sions of the electric field, one can express this as 

= (2b/3a)(RT/zF) l't S + 
0  + 
	+ 

5 2/3 	+(53) , 	 ( 66) 
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where  
zF 

.00 

[EC) 
+ 

d +f [() 	- ()] 	a - 	 (6) 

ZF  1 

CO 1 	

(-57, 	d7x =f+f kc,  + 	a, 
a7] 

(68) 
RT  0 

zF 
CO 

RTfEld (69) 

Some calculate,d values of 	are given in table 1. 

Table 1. 	Zeta potentials at the classical limiting current. 

For 8 = r = 0, a = b = -1/F(/3), 	z. = 1, T = 298.15°K. 

K - 	5 	- 2 - 	1 0.71 

(2b/3a) ZY, 8 	 7.675 7.675 7.675 -. 	7.675 

zF 0/R 1.Q17 l.017 1.017 1.017 

zF 1/T 2.777 1.522 - 	0.89 - 	0.713 

zF 2/RT - 	0.357 	- 0.622 - 	0.8o - 	0.825 

zF/RT - 	9.35 	- 8.180 - 	7.557 - 	7.371 

, mV -242,4 	-210.2 -194,2 -189.)- 
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Nomenclature 

A 	- constant in expressiOn for the velocity (cm-sec). 

D,D 	- diffusion coefficients of cations andanions (cm 2/sec). 

- component of the electric field in the y-direction (V/cm). 

- cation and anion fluxes at the interface (mole/cm2 -sec)! 

y 	- distance from the interface (cm). 

r(/3) = 0.89298. 

€ 	- dielectric constant (farad/cm). 

- total electric charge in the diffuse part of the double layer and in the 
diffusion layer (coulomb/cm2). 
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