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Abstract

'Appérent‘anomalies iﬁ'charge and field distributions invthé diffusion layer
and thé diffuse.doﬁble layef»at the limiting currént are‘resolved‘by meaﬁs‘of two
métchihg éxpansions valid in the two regions. The region of appreciéble deviation
.from;electroneutrality is ﬁhicker, and in fhis region the eleéfric field is ex-
rpected to be smaller, than aﬁ»currenté below the limiting cﬁrrent.. quified zeta

‘ potentialsvaré calculated for a.cation-discharge reaction.



Introduction
In the diffuse part of the double layer at equilibrium, the concentratien c;
of .an ion obeys a Boltzmann distribution as avfunction of‘the electrical potential
@ (cf. Grahame;)? | |

— o - '
Ci = c; exp ( ziF®/RT) , | (1)

where cg is the concént;étion of 1 in the bulk, ziF is the charge on speéies i,

and RT has its usual meaningfi The concentration and potential distribution in'phe-
double'layer during the passage of current is of interest, for example, in electrode
kinetics.i Levich2’3 has found tha£ for small currents the concentratibn of non-
discharging iOnsvobeys a Bbltzmann—type dependence on the electfical boténtial in
“the double layef. It was also foﬁndAthat the discharging ions follow very ciosely'a
Boltzmann-type distribution.

More recent work%’5’6 has béen éirected toward‘obtainihg the concentration and
éofential distribution not only in the double layer, but also in the diffusion layer
outside the double layer, again fof small currents. For many years it has been
believed.that an electrolytip solution, éveﬁ during passage'of current, can be
treated as two regions: (1) the 'diffusé part of the double layer, where deviations
from electroneutrality are signifiéént but convection can be neglected and the con-
centrationé and potential are distributed'approxi@ately aé in a double layer at
equilibrium, and (2) the diffusion layér where convection must be taken into account
but electroneutrality is a good approximation, Baés7 hés criticized the assumptien
of}electroneutrality in the diffusion layer but failed to appreciate'the nafure of
this approximatien, i.e., the charge density 1is small.compared‘to the concentration
of the electrolyte. For a binary,_symmetric electrolyte in solutiqn;-this approxi-
mation is expressed&by

ley —e | e, +c_ . (2)



| The concept of two distinct regions of the solution was given a firm mathematical
basis in fhe previous paper8, and in addition it was demonstrated how one may make
the cofrections to the "equilibrium"_distributions to account for the passage of
current. Again, the analysis was for currents smaller than the limiting current.

| Tﬂe intent of the presenf paper is to elucidate the structure of the double
»layer at limiting current. The classical treatﬁent of the diffusion layer at
limifing current shows the concentratien approaching zéro at thé electrode surface.
As a consequence, the electric.field appfoaches infinity, and this raises a question
about the validity:of the electroneutrality assumption; at ieast in the inner par£ ‘
of the diffusion layer. Anvinfinite electric field implies an infinité.chargé deﬁ-
sity, but one would expect the éurface»charge density actually to be smaller at
limiting current. Tt is also found that within the diffuse part of the‘double layer
the electric field associated with the passage of current must be accounted for in
" the first approximation.

The énalysis is carried out for a symmetric electrolyte'of valence z. The
go&erhing~differential equations, the conservation equations for anions and cations
and PoiSsoh's equation, are.taken to be the came as beforea, and aré subject to the
same restrictions and boﬁndary conditions. .The convective velocity is taken.fo be
that for a rotating disk, vy = -A yg,'but this is appropriate for other hydrodynamic
situations as well. The dimensionless formulation is also very similar, but the
bulk concentratioh ¢, 1s used in forming dimeﬁsionless variables‘and parameters in—.
steéd of the concentration just outside the diffuse double layer. Thus we use

i) concentration and charge density,
¢ = (c,+c_)/2c, , p = (c,-c_)/2cq , _ (3)
ii) electric field and independent variable appropriate for the diffusion layer,

Y= awe(sn/m) 3R, % = y/(3p/a)3 | (%)



. satisfies the equation

iii) fluxes at the interfgce,
o o ' 0 ov . S
iv) 'barameteré, ' | | o
r= (0,00, 6=/ (/a3 e
where:X = JerT/2¢c_2°F° , D = 25+D_/(D++D_) .

In terms of these quantities, the differential equations become

¢+ 3RPC = -31”%20"-!- (eE)' ,. _ , ' (7).
0" + F0r = 350 + (cB)' - - (®)

Where the primes denote differentiation with respect to ;a

The First Approximations

\

In the diffusion layer, equation (9) indicates that the charge density is

© small and of order'Se. .Let the first approximations to the concentration and the B

electric field in the diffusion layer be denoted by Eg(i) and EO(Q), with the anti-

cipation that higher_brder terms can be obtained later. Since.p is small, Eg

g+ T =0 - (o)
with the solution o B | _
Eg =1+ Pb;/ﬁ e"X3 ax C | | (11)
Iy .
which satisfies the boundary cohdifibn ﬁg =1 as §;—>“’o ?o corfespoﬁd to fhe cléssi4

cal limiting current, T —>0as ¥—0, and the integration constant is Py = 1/T(L/3).

Equation (11) vpecomes

g ,
P 3 , o
~ . ]_ -X ‘ .
C, = (173 \/Pve ax . (12)
B O "
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This function is tabulated in reference 9. The first approximation to the electric

field is obtained from equation (8)

3 ‘ ,
: ~2 =X .
~ o~ ~a -3rX e '
t L .
(COEO) = -3rx CO = ——ﬂw s (13)
with the solution _ _%3
Io+re

By = COFEM735 ’ ' _ (1%)
The first approximation to the charge density is related to the derivative of
the electric field by equation (9). For small values of X this becomes infinite in
the following manner:
2
~ (

P Sgﬁé - -5 Io+r)/§2 as X =0 . ' (15)

This becomes of the same order of magnitude as the concentration 5 > i/P(h/3),
and the electroneutrallty approx1matlon breaks down, for values of ¥ on the order

of 62/3. This 1nd1cates that- the outer edge of the diffuse double layer extends

to the region where X = 0(3 /3), and an appropriate inner variable for the double-

layer region is .

% - §/52/3 . ‘ o (16)
The double-layer region is still thin_éompared to the diffusipn'layer but is con-
siéerably thicker than the double-layer region at currents much below the limiting
currenﬁ, where the thickness, in terms of %, is of order &. This reéult ié iﬁ agreé—
mént with that of Grafov and ChernenkoLL and Chernenko6, who touch briefly oﬁ the
structﬁre of the double layer at limiting cﬁrrent,v

I . .
In terms of the inner variable X, the differential equations are

c" o+ 322820' = 3r22629' + (pE)'/61/3I, | o (17)
p" + 3?2620' = 3r22620' + (cE)'/61/3., o (18)
P = 81/3E' 5 (19)

where E = 8F = ZFXQ/RT and where the primes now denote differentiation with respect

to X.
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0(82/35

the concentration and the charge density are of order 82/3

2/3

For X =
while the electric field E is of crder ® or E = 0(51/3)0 Hence, the first

2 J

approximations to the concentration, the charge density, and the electric field in

the diffuse part of the double layer are
2 — 2/ —y 1/3%
c =623 @), o= ), B-6%E (). (20)

When equations (20) are substituted into equations (17), (18), and (19) and higher
order terms in 8 are neglected, the following differential equations are obtained

for détermining the first approximations in the diffuse part of the double layer:

cl - (8E)' =0, B, - (CE)' =0, (21)
B, = Eé . - (22)

Equations'(El) can be integrated to yield

ol
t |

Cé = Pt ~ a (23)

7 Bg :'Eaﬁo -b ’ (2h)

- where the integration constants have been evaluated from the boundary conditibns

for the fluxes at the interface:
a62/3 = Ep/bl/3'- ¢C' atX=0. . : (25)

b62/3 = EC/S}/3 -p'" atxXx=0. ‘ (26)

Substitutiqn of equation (22) into equation (23) and integration yields

c =1%

o S5 By -ax I - | (27)

Substitution of equations (22) and (27) into equation (24) yields a differential

egquation for the determination of EO:
B 4b=EEE - ax ‘g ) - - (28)
o o2 "o o : :

Since the electric field must become small outside the diffuse double layer,

-one of the boundary conditions for equation (28) is

Eo—fo as X = >, S (29)
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- The constant JO would need to match with avterm of the outer solution of order ©

' The other boundary condition is related to the specified surface charge density O

in the diffuse part of the double layer and the diffusion layer, This takes the

form

E(«) - E(0) = 6*‘1/3fp ax% = -xot/3 - o/2zFc ) . (30)
: |

To express G/EchwX as -K51/3 reflects the fact that the surface charge density 1is
smaller aﬁ.the,limiting current than'atvlower currents and also reflects the order
of magni$ﬁde'fouhd for p within the diffuse part of the double layer. On this basis,
the other boundary condition for equation (28) is |

E =K atX=0, ' (31)

vsihce E is of higher order at X = %

The outer solution for @o and Eo contains one, as yet, undetermined integration

‘constant, I_ in equation (14). The inner solution contains J_, which also has not

yet been evaluated. In addition’the flux parameter a must be selected so as to
_correspond to the -limiting current condition. These constants can be evaluated by
the condition that the inner and outer solutions must match. The inner limit of

the outer solution for the concentration is

~

¢ w8 = 7/r/3) = 82 /T/3) as Km0 . (32)

Since Eo —+ 0 as X = %, the outer limit of the inner solution for the concentration is

C = 82/360 ‘*'62/3a§ + J062/3 as X =+, (33)

In order for these to match, a must take the value

a = -1/T(4/3) . - (3W)
/3

and will later be shown to be equal to zero.

From equation (1L), the inner limit of the outer solution for the electric

. field is

E = 8E ~ BEL —*6(I6+r)/; = 61/3(Io+r)/i as x =0 . - _ (35)



v/

The outer limit of the inner solution for the electric field can be obtained directly

from equation (28) without solving the differential equation. The result is
E =~ 81/3EO —>-61/3b/az . ‘ (36)

These two limits match if

T =-r - b/av, _ | - ’ (37)

o
It is‘ﬁot very easy to obtain an analytic solution for Eo from equation (28).
However, there-are only two parameters, b and K, involved, since JO = 0., Furthermore-

b =a-= -l/F(h/3) for a-cation-discharge process, and it is feasible to solve equa-

'~tion'(28) numerically for various values of the parametef K. For this case the re-

' sults are shown in figure 1.

In the course of the numerical calculations it was found that, for the case

b = a, values of K greater than about -0.T4l have no physical meaning since for "such

values the cation concentration becomes negative near the electrode surface. Near

the limiting current anions are driven»away'from the interface by the électric fieid,
while cations are driven toward the interface andireéét thereg. The net charge in -
the -diffuse double layer and the aiifusion layer cahnot drop below the value cofré$—
ponding to K = -0.74l without the cation concentration decreasing to zéro at the
interface- | | | | |

Tt might be noted that convection is negligible in the first.apprékimation :
within the diffuse part of the double layér and that, in contrast to tﬂe siﬁuation
at curfents‘bel§w the limiting curfent8, the electric field within.the diffuée
double layer does not have an "equilibrium" distribﬁtion but instead invoives the

flux parameters a and b.



N e =—l/r<4/3> g

x|

Figure 1. First approximation'to the electric field within_the diffuse

~-part of the double layer, corresponding to the classical limiting- cufrent-“v'
- for a cation discharge reaction from a solution of a symmetric binary

electrolyte. - The parameter K corresponds to the total surface charge
density in the .diffuse double layer and in the diffusion layer. For
K > -0. 7hl, the true limiting current has.already been exceeded, and-
the cation concentratlon at the interface is negative. ,
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Higher Order Terms
The purpose of this section is to show how to calculate higher order teimsy‘
both within the diffuse double'layer and in the diffusion layer, in order to account
for thevterms neglected in the first approximations. The necessity for these higher
order terms may be due-to terms neglected in the‘diffefential equations themselves
.or in the boundar& conditions, or they 5ay'be required by the fact that -the inner

and outer expansions must match.

Inner Expansions
The next terms in the inner expansion arise from the boundary condition (30)

since E(“)/ﬁ ~ EO(W) = IO/T(H/B) = Db + r a. The inner expansions are found to

take the form

Q
1

- 62/360(2) n 6h/361(§)‘+ azig(y) + 0(68/3).
B - 8Y/35 (x) + 5 B (x) + 67/ 35, (x) + o(s7/3). (38) -
o = 8°/%5_(x) + 8/35 (x) + 8%, (%) + 0(s¥/3).

If these expansions are substituted into equations (17), (18), and (19) and ﬁerms

in equal powers of © ére equated, one obtains equations (21) and (22) and

v (= ! = 1 "o = — - = -
Cp = BBy )" + (BB)" Gy = (BpE, + P8y + B F,) ", (39)
—_n -~ T 1 ~ [ -t — e __'—’ - = []
oy = (CE )"+ (CE)', B, = (CE + glEl + CEy)', (ko)
=  _ Tt =  _ Tt
py = E , B, = 22 . L, (h1)
' Equations (39) and (LO) can be integrated to yield
At = = T A~ T h =T = T ' >
Cy =P E) + P E ¢2 = PE + Py + B E, 2 (k2)
- P! =CE +C.E P! =CE + CE +CE (43)
1 o1 l o’ 72 270 171 o2’

[ . ) -
W where the integration constants have been evaluated from the boundary conditions

(25) and (26) for the fluxes at the interface.. Substitution of equations (k1)
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into equations (42) and integration ‘yields

3]l
eall
oy

E

=

2
1

=1
t=|

C,. =

5 JEp + Jy L ' (4s)

Substitution of equations (41), (bk), and (45) inte equations (43) yields differ-

ential equations for the determination of E and EEZ

1
E' =E(aXx+2E +J)+J E. | | e
1 1 270 o I7o ' . ‘
—n _ = _ -3._2 —_ —_ ‘3___2 ‘ '
Ep =B (-aX+ 5 E +J )+ JE +JE +ZEE . (&7

The constanté Jo’ Jl’ and J2 still need to be evalﬁated.

Outer Expansions

In the diffusion layer the first neglected terms in equations (7) and (8) are
of order 62. However, it is not immediately apparent that terms for C and E.of
oy, , , A - .
order .0 /3 and 6u/3 might net be necessary in order to match with terms of the

inner expansion. Thus, for the outer expansions we adopt the -form

¢ - B, + 623 @) + 8Y35,@) « o) .

~ .

E (%) + 52/3§i(z)‘+ sh/3E2(§) + 0(s2) . | - (8)

E

o o |
o = %5,60) + 0(s%/3). | N

~ ~

We shall show that Ei, 52, El’ and.E2 are, in fact, identical;y Zero.
Substitution of»these expansions into equation (7) shows that Ei and Eé
satisfy thé;differential;equation

Cr+ 3G =0, n=12, | d (49)

with the solution : 5

~ ’ _X3 .
C' =P "jf e ax , n=1,2, (50)

n n

[os]

-~

where the other integration constants, besides Pl and'P2 have been evaluated so .

that C =1 as X - @ .



12

The terms for the electric field satisfy the equations, obtained from equa-

tion (8), \ _
, . . 3
. N ‘ ~ ~ . Ny _ ~2~ . ~2 -X
| (ClEo) + (CoEl) =-3rx"C; = -3rX P e s
, (51)
GF + 85 ¢ T E)e 3525 5P
270 171 02 2 2
which can be integrated to yield
- 33 ~
B, = (I + rPe - clEo)/co,,
o , (52)
~3
E, = (I2 + rPe CE, ClEl) C.e
' Matching
The integration constants Jos Jys Jps Pys By, I, and I, must be determined by

matching the inner and outer expansions for the concentration and the electric field.

The inner limit of the outer expansion for the concentration is . '

- » Lo N _ o , \
- ¢(%20) = lim (C +;62/3c + 6u/3c +;o(62)) '
~ o] 1 - 2
- (0(E)/T(b/3) + 82/3Pl[~r(u/3> £ %+ o) 3 (53)
+-6M/3P2[~f(u/3) + X+ O(%h)] + 0(62) .
_ . R -/
The outer limit of the inner expansion for the concentration is
3\

C(X>w)

1im (62/350 +-8u/351 +'O(6?))

X0

=_62/3[JO - 8% + 0(x )] + 64/3[Jl + o(Ji§“3)] + 0(8%) g (5k)

2) ,

axa 8235 4 835 o(s
o] 1 Y,

where equations (27), (44), and (45) have been uséd. These two expansions must

match term by term, with the result

a = -1/T(4/3), g, =-BT(4/3), ¥ =0, J =-p,(4/3), B, =0 (55)



13

The inner limit of the outer expansion for the electric field is, since

§E(§»o) = lim [SEO + 55/3%1 + 67/3§2 + (83)]
X-0 .

=
1

Il

sL(z +2)/% + 0(32)] + 8°/311,T(1/3)/% + 0(3)]

+ 57/3[12F(4/3)/§ +'0(§2)] * o(83)

31+ n)E + sL T3+ 05 3,n0/3) /% + 0(6).

" The outer limit of the inner expansion of the electric field is, since JO=J1=O,1-

 E(%w) = lim [61/3§O + Sﬁi + 85/3E2 " 0(57/351
X—>00 . -

| ‘ (57)
- 830 v /e + 0x )] + 65/3[-J2b/a222 + 0@ )] + o(87/3).
The matching condition thus requires that
I =-r-bla, I =I,=0.
The evaluation of ngrequifes the determination of higher order terms which have

been neglected.

Composite Expansions
The principdl result can be expressed in the form of uniformly-valid, cémpoSife
expansions, valid for all values of §, bbth in thé diffusion léyer and in the dif-
fuse part of the double layerc 'These'are formed by adding the inner and outer ex-
» pansi§n$ and subtracting the commen terms. The common terms cémprise the inner
‘limit of the outer expansion, which is the same as the owter Llimit of the’igner

expansion. The composite expansions are

¢ = 5.5 + 82/% (3) - 5/70/3) + 813 (3) + 0(6?) . (58)

E ;'61/3E0(§) + BB () + BE_(%) + 8b/aX + 0(55/3)° (59



L

1k

The terms EO(E) and El(i) are to be obtained by solving the differential equations
"4+ p =B (l’—ﬁ _ ai) - ‘ (60) .
9) 02 "o ? . ' :
L L i =2 _ —_ - . : ;
El —vEl(e Eo /ax) P _ A (1)

E =K, ©E =b+ar at X = 0, (62)

=1
i
o
=
i
o
o
4]
%
i
8

1 : f v _ (63)
Solutions for Eo are‘plotted'in figure 1 for the case a = b = -1/T(4/3) and for

several values of K. The other terms of the composite éxpansions are

~

S _ s S ~3 X 3
v A e-x3 dx, Eo = —(r+b/a-re ™ ) U/\ e ™ ax,
o~ T(L/3) . ' : S _
. ‘o ) ‘ | i » g
| | o (1)
'z 1., T -EE . ]
Co =3 Eo gx, Cl = EoEl o :

Figure 2 shows the electric field for & = 10'5, r=0,&a=5b, and several values
of K. The long region of overlap of the inner and outer expansions is.cléarly

displayed here°

Discussion
The ‘structure of‘the'diffuse part of the double léyer desgfibed hére is also
applicable_to cher hydrodynamic situations at the limiting current since cénvection
is negligible in the double“layero What is iﬁporfént, as far as the double layer
is céncernéd, is the value of the fluﬁeé and ﬁhe value of'fhé concentratioh"gradient

at the interface as predicted by classicalbdiffusion theory. A particularly'simple

: result is found for a stagnant electrolytiec solution in a capillary'of lengfh L,

sealed at one end with an electrode and epeﬁ to a reservbir\of sdlutioﬁ at the other.

_Although>the.double layer is restricted to a region very clese to the electrode

§

interface, the "inner" expansions for the concentration and the electric field are



10 T T — ) T
K==5 . N, Outer o
. expansion s
&=107% r=0
| = ~a=b:=-1/T(4/3) ]
K=-0.741 7 R
' ~lnner _
-expansion
107k ~
i
[
X
~N
b
0 i
Quter
_ expansion
chs; : _
N
lnner . NQ
expansion — N
10 - i " ' g 1 R I N
10* o' 10 10® 10° 10
* Figure 2. Electric field in the diffuse part of the double layer

and in the diffusion layer at the classical limiting current.

15
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uniformly valid throughout the capillary. The value for a mayﬁbe soméwhaf different,

say a = -1 for the capillary if the length L is used instead of (SD/A)l/3 in forming

v

the dimensionless variables and parameters.

The results obtained here indicate that, even at the classical limiting cur-
rent, the potential‘at.the interface or the outer Helmholtz plane relative to a point
Jjust outside the diffusion layér is still finite. The cufrent can be varied by a
small_amount.about the classical limitiﬁg current before g true limiting current is
obtained (zero cohcentration of the reacting ions at the interface), although for a
cation-discharge reaction (a = b) and K #mO»Thl the classical limiting current and
tﬁé true limifing current coincide. The true limiting current and other small %éria-

tions around the classical limiting current could be investigated by letting

a =a_ - 62/3&1 = -1/T(4/3) - ai62/3,,

o}

_ 2/3
b = bo f bl5 i

2
instead of a ='-1/T(4/3). The first approximatiéns within the diffuse double layer”
still follow equations (27) and (28), with a and b replaced by a, and b, but now

the constant JO has the -value Jg =.-alF(h/3), The outer solution would also be

~

modified since now C, and E. are no longer zero, but P, = ay-

The magnitude of the potential € in the outer Helmholtz plane relative tovthev

1 1 1

' outéide of the diffusion layer can be obtained by subtracting the ohmic drop in the

solution, extrapolated to the interface with the bulk conductivity.

wefrr = [ BB e o (65)

By taking proper account'of the singular nature of some of the terms for the expan-

sions of the electric field, one can express fhis as

6 = (2b/3a)(RT/2F) In B + &+ by + 52/3¢, coE3y, (es) |
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ZFCO | l: . e N
- =‘/é [EO(X) + —w} ax +¢/i [E (%) - E(=)] aX - E (=) , *,  (67)
oo 1
_Ziél :;/; EO(§) d2'+k/r EEO(i) + 25] &, i - (68)
© o 1 : :
Ziig éi/T'El ) ax . (69)
(o]

Some calculated values of { are given in table 1.

Table 1. Zeta ‘potentials at the classical llmltlng current.

For = 1072, r =0, a = b = -1/P(h/3), z=1, T = 298.15°K.
K -5 - 2 -1 - 0.Th1
(2b/3a) n ® S TW6T5 = TW6TS - T.6TS = TL6T5
zF( /RT Lot .07 - 1.007 - . 1.017
CZFG/RE - 2777 - 1522 - 0.899 - 0.713
ZFCQ/RT - 0.357 - 0.622 - 0.780 - 0.825
2FC /RT - 9.435 - 8.180 - T7.557 - T7.371

£, mv -ek2.L -210.2 -19k.2 -189.L
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. - constant in expression for the velocity (cm™l-sec

Nomenclature '

_l)o

- diffusion ceefficients of cations and anions (cm2/sec).A
- component of the electric field in the y-direction (V/cm).

cation and anion fluxes at the interface (mble/cmg—“sec)°

- distance from the interface (cm).

0.89298,

]

- dielectric constant (farad/cm

- total electric charge in the diffuse part of the double layer and in the )
diffusion layer (coulomb/cm?).
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