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May 1966 

The yield stress of alloys with 1a'ie1lar microstructres is related 

to the intena1 coherency strains associated with individual larneiiae. 

The results are as follows: (i) The,  yield stress is directly propor-

tional to the difference in the.cubic lattice parameters of the two 

chemically different lamellae forming the lamellar microstructure (2) 

• 	• 	For alloys containing volume fractions of one kind of lamellae bcow 

the critical lue of 	the yield stress is directr proportional to 

• 	 the vcaume fraction; () For alloys containing volume fractions between 

critical values ( 	to 	), the yield stress is indepeacn of c vo'c 

•
fraction; () The yield stress is independent of the interlamellar 

spacing present. 
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firt tae is called the ' t side-band' T  state because..of the satellite re-

flectiOns which appear on either side of the main reflections in Debre- 

• 	Sherrer x-ray patterns. These satellites are due to one-dimensional 

composition (and therefore lattice parameter) fluctuations in face-centere-

cubic material. . The satellite position with respect to the main Bragg 

line is a ftnction of the wavelength of the cOmpOSition fluctuation and is 

more removed from the mainline the smaller the wavelength. 
0 

A sine wave 

has been used to approximate the composition-distance curve although other 

investigators' 8  have suggested that a square or more general wave shoe 

would be just as appropriate. No method has been devised to ascertain 

experimentally the exact wave form that exists during the transformation. 

The second stage x-ray patterns reveal the formation of two tc..... -  

479 gonal structures.'' 	The two non-equilibrium structures have a common 

.ttafl tetragonal lattice parameter which is constant throughout both struc-

tures. One ofthese structures has a c/a ratio less than one while the 

other has a c/a ratio greater than unity. The aorphology of the two struc-

tures is lameliar with the plates lying parallel to (100) planes. The 

two tetragonal 'a axes lie in the common [100) plane and the tcr axes are 
• 	 1,6 
normal to this plane. 	It is apparent that the seconc. saage sarucrmre 

also possesses a one-dimensional lattice parameter variation along the 

1'c" axis which probably more nearly approaches a square wave configura- 

I4 
.LO1 LLW11 is 	i' 	 U,LJ.0 	Li1 

the fJ-ctuation wavelength of the tetragonal state is larger than that 

of the side-band stage, the difference in stages one and owo may 

be only one of degree. Bagaryatskii and TyapkinlO1 have shown for 

similar transformations found in Ni-Ti and Ni-Cr-Ti alloys that the 
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two stages described above are observed with soft x-radiation but only 

• one stage is found with hard radiation. This supports the suggestion 

that the appearance of two different inteediate stctures during 

aging is only a matter of degree in a continuously changing system. 

• 

	

	(Kelly and Nicholson2  have reviewed the work of Bagaryatskii and Tyaphin 

and other work pertinent to the present investigatioi.) 

• 	 The microstructure of greatest interest is the one which gives the 

maxnum room temperature yield stress for any given aging temperature. 

• 	 This maxium occurs at a time when the magnetic coercivity and other 

properties 9  are at a maximum and when the transformation is still in the 

Tv side band?T stage. The ' T sideband" microstructure can be consiccref 

two tetragonal stnctures with c/a < 1 and c/a > 1 where a is ecntant. 

and c is a function of position. Thus a one dimiensional lattice para 

• •• 	meter fluctuation occurs. The basic assumption employed in the theory 

• 	 to be developed is that the tetragonality of the two stractures is 

tic strains needed to maintain coherency of two stractures caused by els  

that, 	 m if unattached, would be cubic. It has been sho that structures 

of all compositions in CuNi-Fe alloys are cubicwhen quenched from above 

12 	 - • 	* the miscibiliy gap and they are cubic when eraging nas causec. a loss 

of coherency. 7  One of the strained structures has a cubic parameter that 

is too small to match with the other and consequently plates of thas 

structure will be tressed in two densional tension in the coherent 

state Likewise plates of he other structuro ill be scrcsea 	cop- 

pression. It has been suggestei1  that these coherency strainc irhiT::t 

the transfomriation such that the composition maxima do not reach those 

given by the equilibrium diagram until coherency is lost. 
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The end effects introduce a complication in the stress ana±rsJ, 

if it is assumed that the plates are long compared to their thickness, 

the end effects can be neglected. Noderate deflectiOflS at the ends of 

long plates cause only slight changes in the strain along the lech of 

the plates. An electron microscope studr of the structureS which form 

during spinodal decomposition is in progress and it indicates that the 

plates in Cu-Ni-Fe alloys are indeed long compared to their width. 

TIE JyjERNAL STRESSES 

The method to be followed in calculating the yield stress is to 

determine the magnitudes of the iernal stresses present in coherefl 

lemellar microstructures ándo resolve these stresses along the slip 

• 	 plane in order to relate them to the first harge migration of dis:LoCa- 

tions enforced by a gradually increasing load. In the analysis, a square 

wave composition_distance curve will first be assumd. The resultifl[ 

structure will then be as shown in Fig. 1. The subscriP t  s 1 and 2 refer 

respectively to the properties of the structure with c1
/a < 1 and to the 

• structure with c 2/a > 1. Let a represent the common non_equiiibrum q' 

• paremeter of the two tetragonal structures, and let a 10  and a20  be the 

equilibrium cubic lattice parameters for structures having the most ex-

treme compositions existing in the plates. These two values will tend 

hose of the equiibrium phases predicted by the phase diagrm. to approach t  

• The lemellar plates are considered to be parallel to the x-Y plane 

• 

	

	in the followingderivatlon but the results are equally valid for plates 

lying parallel to either x-z or y-z planes. The x-y plane is taken to 

be parallel to (ooi). The cross_hatched plane of Fig. 1 represeflt a 

cut section through the lamella and the external forces F xl and F x2 



replace the constraints which were psent before the cut; X is the wave- 

length of the composition fluct!.lation and. 	and. f2 = (1-f1) are the 

	

• 	volume fractions of the two structures. Because c1 < a and C2 >E the 

toa1 displacement over many lamellae in the z dixectidn will be small 

.±1d therefore the aiription is made tht a 
ZZ 	 ZZ 

=0 where a is the stress 

	

• 	 . 	
. 	 .  

±h the z direcbion The effect of having a differ from zero is to zz 

ie the steses in plates of one compositioh while it lowers the 

•tes in the plates of the other compositibri by a corresponding amount. 

The net ffec eventually nearly cancels when the final calcUlat -c 	 ions are 

• nde (cfi Eq (18) ). 

• From 	 0 and Fig. 1 it can be seen that 

. L7f = -a. LXf 
oU

. 
 • 1 	o2 	2 

tdlI 

 

have a negative sign sho'nng compre 

thkn to bèthe pohitive direcioh bf stress.) 

are tetragorial and re not. orthorhombic, a = xx 

a 	and 	. • are constants whh a square wave xl • 	xx2 

is asurned. 

(1) 

sion because plus x is 

Because the structures 

a in both structures. 
YY 

compos ition-clistance curve 

Equation (1) can also be obtained for a more general composition- 

distance wave form. For this case let a 	vary across plates of corn- 
Xxl 

position 1 according to the expression. 

= a1 Lax 
	

ln  

	

sin 	
(o < z < 1) . 

noda. 

• 	 . 	 . 	 . 	

. 

whe'e -che maximum s.mpfl'cude of 	2, A1  sla •-.- , for n odd., is restricted. 
In 

 
to trhity. Thereforea 	 where a 	is a contari 	Also 

xxl xxl 	 xxl 
maw 	 max 

in plates of cbmposition 2 



n 2irnz 	2 
Cr =a > A2n 	2 

sin 	, 
xx2 	oc2 	 - - 

max  
nodd 

or 

=o2 	

fl 	
. 2z , (o <z 	 (s) 

max 
nodd 

where z T  = z - X2/2 and a2! 	 is a positive CO- 

- 	 max 	max 

stant and 2  is always a compressive stress, i.e., 	< 0. 	ana 

•1 	 are related to the modulation wavelength by 

and the volume fractions f 1 .and f2  are related to 	and 2 by 

(i) 
• 	• 	• 	2 

Again,ZF = 0 and 	• 

L
f 	lrnax A1 	2z dz = -L 	oc2 	A2 sin 	dz 

 nodd 	 Jo 
nodd 

0 

• 	 On integrating both sides of the equation between the given limits 

Jn Aln 	A 	 'n 	 A 2n, 
Cr 

2 	(n = 	
CCS I 

• 	'max 	1 	 • J 	max 
• 	 nodd 	 nodd. 

• 	• If the two wave shapes are similar such that Am 	2n' thCn 
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r 
xx aXX2 

max ) 	 max 

and using Eq. (Lb) 

(t 

Cr 	-= 	Cr 
xxi I 	xx2 	2 

max 	 max 

The maximum value of a 	is a 	(cf. Eq. (2) ) and. the extreme value 
xxi 	xxi 

	

max

Cr 
ofxx21isaxx2 	,i.e., 5xx2 = 	xx2} 	

(Cf. Eq. (3) ), then again 

max 	 max 

or 	-p 	- - 	-a 	-L 

	

xxi 1 	xx2 2 

for the conditions of identical wave form. This is identical to En. (i) 

• 	when L andX are cancelled in the earlier equation. Hereafter the sub- 

-' 	scripts d.enoting maximum stress will be dropped, and. cxxi and. °xx2 Wll 3C 

used to indicate maximum values of these two stresses. Only stress maxima 

need be considered in the following analysis bOcause dislocations will en-

' counter the greatest barriers where the stresses are largest. 

The maximum stresses '  can be determined, when the corresponding strains 

are known, from the relationships of Eq. (8) for anisotropic cubic cstals. 

	

e 	=11 	
+ S12c + S12c5

yy 

=12+ S11a + S12 a 5 	

/ 

e7 = Sl2axx + '12'yy + S1a5 	
() 

• 	 • 	e 	= 

	

e 	= 445zx 	
) 

• 	e 	=Sa 	 ' 

	

XY • 	•.•'. 	 )• 
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The first subscript of the stresses and strains in Eq. (8) refers to the 

• 	.. 	normal of the plane over which the streses act while the second gives the 

• . 	. 	direction of their action. S11, S1 , and S )  are the elastic compliances 

for cubic crystals. As previously mentioned, when the lamellar plateslie 

in the x-y plane, a = Cr and a = 0. In addition, Cr = 0 because the 
• 	. 	 )OC 	OJ 	•ZZ 	 XT 

two structures are tetragonaL and the x-y plane is taken perpendicular to 

• 	the four-fold axis of rotation. a and a are not zero, but for mlates 

	

yz 	xz 

that are long compared to their thickness, these hear stresses are small. 

a and a will be greatest at the boundary between stctures 1 and 2
yz 

where they are related to axx rnax by the ratio of x/L. For thin 1at.es 

%< < L and x/L is .  small so that a and a can be neglected. Therefore 

	

yz 	XZ 

e 	=(s •..+S )a 

	

xx 	• .11 	12 	xx 

e = (S11  + s12) axx 	' 	 ( 9)
yy 

	

a 	 )zz 	l2xx 

and. 	• 	• 

e xx 
Cr 	= 	 ( 10 

	

xx 	S11 S12 	. 

• 	• 	Appring Eq. (i) or (7), 	 • 	 • 

• 	. 	
a 	f• 	 e 	1' 

	

• •. 	. 	• 	.. 	• 	xxi 	1 	 xx 	? 

(S11  + s12) 	- (S11 + 12 
	

(n) 

• 	where the subscripts outside the parentheses refer to the data for ztructure 

one and twdrepective1y. By substituting e 	
= 	

into Eq. (II) 

and solving for a, . 
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• 	 a10a20tI5o11 m0 122 	2ll12'1 
• a 	 -- 	

(12) 
• 	 . 	 . 	 S 	 ) 	

+ 	 1 s 	+s a20i1 II 	12 2 a102 
	12Jl 

• 	Equtiofl (10) can be rewritten 

a_a0 	 - 

	

•= 	 (l) 
xx 	(S11+-S12 )a6  

so that when the elastic complianceS and Cubic lattice parameters are 

kno, Eq. (i) can be uses to evaluate the principle stresses in each 

plate. 

From EqZ (9). and (10), 

• 	2Se l2xx 
zz e 	= 	+ 12 

c - a 	2S12 	. ( - a 0 ) 

and , therefore 
a0 	S11  S12 	a0  

2S 
12 	- (a-a0) 	 • 	( lu) 

11 	12 

•or, if and the c/ ratio are known for each structure, then the cubic 

paraneters can be obtained by rearranging Eq. (i) and 

a= 11 _i12 [(S11  + S12)c - 2S12 	 (15) 

• • T} EFFECT OF INTERNAL ALD APPLD STRESSES ON DISLOCATION MI0N 

In order to find the effects of ol and 	oi d.slocatiofl noioxx  

shear components of these stresses on the slip plane and in the slip 

direction must be found. For FCC crstals the slip plane is (111) and 

• 	the slip direction is (110 . Resolution of these stresses can be done 

• 	with the aid of a stress tensor. On using the tensor meth, the stress 
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in the v:::dir.eàti9fl,.heflthe normal to the slip.plané.isgivenby 	is 

• 	Cr 	= 	Cr.  
.LV 	 13 	14.1JV 

ij 

i 	= 	x,y,z. 

j 	= 	x,y,z 

where R. 	and 2. 	are direction cosines between the given lines. 	Letting 
341. 	JV 

be normal to the (ll1) plane and v be in [10], then, when the lamdllar 

plates lie in the x-y p1sxe, 

CT 
(lli)[loJ. 	

a 	
'[100][111]2[i0Q1[l0] 

± 

where 

12 	 • 	 1 
', - [100][lll] 	 [l00J[l0l 	[010][111 

and £[olo][lo] = 0 	Therefore a (111 ) [10J 	= 

Cr 

Likewise, 	a(111 ) [011 ] 	= 	but Cr 	= 0. 

These stresses are pure shear components because v is normal to 	. 

Consider a dislocation in the (iii) pThne with 	rgers vector 

riol. 	For plates which are parallel to (001), (i.e., parallel to 	he 

x-y plane), we have seen that a (111 ) 10] 	- 	 adoiniaG se 	of 

plates will be parallel to either (010) or (100). 	For plates para.Llel to 

(010), a 	= Cr 	and a 	= 0 so that the shear stress acting on the above 
xx  

dislocation while it is in these plates is 

I 	) = 0 
xy' \r2 	 3 

I 
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• For plates parallel to (100), 	. = 0, and a = a so tnccc 
XX 

= a £ .2 	+a 
)[l0  ] 	yy y yv 	zz zi zv 

a, lll  

Cr 
1 	 1 	1 .__(o)+ a_(_ — )= -----. . 

• 	2 

The magnitude of a forplates parallel to (100) is the same as the 
YY 

magnitude of 	fo plates parallel to (001). xx 

• 	
Because a dislocation will interact with these three plate orienta- 

tions with equl probability, one-third of a unit length o dislocation 

wUl eerieflce an accelerating stress from plates parallel to (001) 'rIca 

> 0, one-third will eerience zero stress from plates parallel to 

(010), and the remainder will experience a retarding stress from plates 

parallel to (ioo) when a > 0. The portion of the dislocation which is
Yy 

accelerated will move until it encounters an adjacent tetragonal plate 
a 

that is loaded in compression sothat a < 0 and Or 	 = 
XX 	 li)[lo] 	 'a 

which is now a retarding stress. Consequentr, the dislocation will ho 

retarded along one-third of its length by plates which are in comprccsiOn, 

eerience zero stress along one-third of its length, and be retarded alond 

• 	 • the remaining third by plates that are loaded in tension. Dislocations in 

other slip systems will encounter identical conditions. The maximum re-

tarding force on a unit dislocation will be. 

F = 	T1 jb + 	TJb + 0 	 (17) 

where T, is the absolute value of the resolved shear stress acting on 

dislocations with Burgers vector b from plates which are in tension (for 

plate orientations where 0),and IT2 j is the absolute value of the 
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resolved shear..stress from ptes wnich are in compression (Tot pJnte 

xxi 02 

orientations where 	0). Now 	JT1 f= and 	jr2  

that F 	(e 	- 	)b 	where the negative sign appears hefore e:2 

• 	because of its compressive nature. 	T h e applied stress which must overcome 

this force if dislocations are to move is T =or 
app 	b 

1 12) 
=- 	Cr 	. 

	

app 	r6 	od 	xx2)  

However, when 'r 	> 	which can happen when f2  is large and stlnictuce 
app 

2 contains a small strain, then Eq. (18) no longer governs the stress for 

the first dislocation motion. In this case the applied stress will cause 

• the dislocation segment inhibited by T2  to move through structure 2 until 

it reaches structure 1 where it will be accelerated. Thus only one-thir 

of the unit length of dislocation line will be retarded while the other t..o 

segments will have, either zero shear stress or an acceleratiflg stress. The 

net effect is that plastic flow can easily take place. The applied stress 

ap needed to start this chain of events is 

& xx2 
Tapp = 

 

CRITICJ VOLUIv FRACTIONS 

The shear stresses 	and 2 are dependent on the volume f.ctiofls 

3 	
of the two structures present. By equating the applied stress to ' 2 ifl 

• 	 (18); a solution for the critical volume fraction where Eq. (18) will 

• 	break down can be obtained. Therefore, 

d 

T2 1 
= - xx2 = 

	
( cXi 	

(20) 



- 

and 

= 
xx2 	xxi

Cr  

Using Eqs (i) or 

• 	 xxi 
=  - -a- = - 	 = - 2. 

°xx2 	i 

Solving for f thus yields f 2 = and f 	. Similar equations can be 

derived for the case when T 	= 	J . The solution for this case will app 	1 

give f1  = and 	= 	. Thusaéquatio (i8) is good for < f1  < 

SILICATI0NS WHEN (S 11 
 + s12 ) = ( s11  ± 512)2 

If Eq. (18) is valid, and (s11+ l2l = 	s12 ) 2 . then Eqs. (12), 

(13), and (18) can be combined to give a simplified equation for the tpplied 

yield stress of alloys which have volume fractions between the critical 

limits. Thus 

a10a 	+ f 20 (f12 ) 
a 	 + 	 , 	

. 	 (2k) 
a201  a10 2 

and 	 • 

- a10 	a 
20 

S12)a0 - 	(S11± s12 ) 	2Q±1+ a10f2 	5 
and 	• 	• 	• 

r 	a10 
°02 	's12 ) 	a20f1±a 0f2  

) 

Therefore, from Eq. (18), 



- 

( 

• 	 ____ 	1' 	
a20 - a10  

Tapp  = 	S 1 L S12 	a20f1  a10f2  

• but because a 10 	a 	' 

1 	1 	i 	0 
______ ___ • 	 ( 2) 

app 	 + 12 ) 	 Ill 

Thus the yield stress is directly proportional to the difference in lattice 

pareters of the two extreme compositions when Eq. (iS) is valid. Usually 

the elastic moduli do not differ widely in meti systems. ni direct.propor-

tiohàlltran oftei. hehexpected.. 

When •Tapp  is given by Eq.(19), a gene1 relationship betTeen yield 

stress and volume fxction can be obtained if it is again assumed that the 

sumsof the elastic moduli are the same for both structures. From Eqs. (15) 

and 

20 
Tapp 	1 T21 	

- 	 = a2 

When (s11+ s12 )1 	 (S11  + s12 ) 2,a is given by Eq. (21), and 

1 	1 	1 	10 
Tapp  = - 	

12 	
a20f1  a, 0f2  

and Qflr.earianging 

1 	 1 	• 	1 
Tapp - 	 12 	10 

OU 

alO 

then 
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Tapp = 	( s 1  ± s12) 	
() . 

	 ( 23) 

3) is valid for f 1  < 	. Thus, the yield stress is directly 

1 to the difference in cubic lattice parameters and the 
1 

tion of stn.cture 1 for the above conaiiions. For f 1  < < 

most precipitation hardening systems. It is clear from this discussion 

that Eq. (22) gives an estimate of the maximum attainable yield stress 

for any precipitation hardening system having plate-like precipitates 

where coherency strains are controlling because the yield stress does 

ot increase after the critical volume fraction is exceeded. 

STM'iARY AND CONCLUSIONS 

For alloys that have (S11 + l2l = (S11  + s 2 ) 2, Eqs (22) and (2) 

show that the yield stress is directly proportional to the dSference in 

• 	. 	. cubic lattice parameters. When (S 11  + s12)(Sli + 122' the results of 

Eqs. (12), (13), and (18) can be combined to give the yield stress if the 

elastic constants, volume fractions, and cubic lattice parameter for the 

14 
• 	 extreme compositions are known. Numerical calculatiofls 	using Eqs. (12), 

(13), and (18) have shown that the yield stress is proportional to the 

difference in cubic lattice parameters even when + s12 ),1  (s11  + 

- for a given alloy. 

The equations derived above show four significant points: 

I. The yield stress is directly proportional to the difference in 

the cubic lattice parameters of the two chemically different lamellae 

forming the lamellar microstructure. 
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For alloys containing volume fractions of one kind of lameLlae 

below the critical value of 	. the yield stress is directly urucrtiOnal 

to this volume fraction. 

For alloys ctainiflg volume fractions between critical values 

(l2\ 
• 	

o 	pthe yield stress is indepenaeflt of volume fracriofl. 

. The yield stress is independent of ?., the modulated structure 

wavelength, which means the yield stress is independent of the intr-

lellar spacing or particle size present. 

erimentallY verifi Points 1, 3, and 1 have been e 	 ed for alloys of 

Cu-Ni-Fe with volume fractions between the critical limits. These re- 

14 
sults will be found in a subsequent report. 	• 
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FIGURE CAPTIONS 

Fig. 1 	1&del used to determine the stresses in coherent lamellar 

plates. Front surface (shaded) represents a plane cut 

through the lamella and the forces F 1  and F represent 

replacements for the constraints which were removed by cutting. 

V 
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