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ABSTRACT 

UCRL-16925 

A theoretical investigation has been made of' the effect of' a 

moving interface upon gas-liquid mass transfer~ where the control 

·of the mass transfer is entirely within the gas phase and where 

the control is distributed between the two phases. An analytical 

model is propo~ed for laminar interphase mass transfer in infinite 

media. Computer solutions have been obtained for gas-liquid mass 

transfer in confined phases. A cocurrent moving interface increases 

mass transfer coefficients over what they would be for-the same 

flow rate without interfacial motion. 

* Charles H. Byers is presently with the University of' Rochester, 
,..;, Rochester., New York. 
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::NTRODUCTION 

Many simple models have been suggested for the analysis of 

mass transfer between immiscible fluid phas8s. Most of these 

models neglect the effect of the fluid !Tlechanics of one phase upon 

those of the other phase. For example, penatration or surface 

renewal models are often employed to describe liquid phase mass 

transfer near a free gas-liquid interface (10,18,12, etc.). 

Such models postulate no gradient of velocity in the liquid adja~ 

cent to the interface; this is g~nerally a good assumption since 

the viscosity of a gas is usually orders of magnitude less than 

that of a liquid. In situations where the liquid flows as a 

laminar layer over a solid surface it is usually presumed that the 

. free surface velocity for use in a penetration model is 3/2 the 

average velocity. Strictly speaking this is true only when there 

is zero drag at the interface. \~hen there is a relatively high 

gas flow rate near the interface, the drag upon the interface may 

alter the interfacial velocity to an appreciable extent. As is 

shown below, this factor can assume importance. 

Similarly, most models and correlations which have been: 

proposed for gas phase resistance in gas-liquid contacting apara­

tus ignore the influence of' the liquid surface velocity (7,16, 

etc.). At least t\'lO theoretical papers have appeared analyzing 

mass transfer near a moving surface (1,2); however no concepts 

obtained from these works have been employed for the analysis of 

experimental mass transfer data. The influence of a moving inter­

face is explored fUrther in this paper and the subsequent one. 
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It is also common p:c·act:i.ce to :i.gnor9 the interaction between 

•'! the resistances to mass 1;r.s.!l!3fer o.f':'ered b~r each of two contacting 

'P 

fluid phases, just as the interaction of the fluid mechanics is 

often .ignored. The overall resistance to mass transfer is usually 

obtained from an ec;.uation of ~:he fo:':'l.n 
1 -= (1) 

The asterisks denote mass transfer coefficients measured in the 

absence or suppression of resistance in the other phase. ·Their 

use in Equation 1 implies that the value of each individual phase 

coefficient is unaltered by changes in the coefficient in the other 

phase. The use of ~ in Equation 1 implies that H and kQ/kL 

are both constant across the entire·contacting interface. The 

limitations of Equation 1 have been discussed by King (12,13); 

its applicability to single cocurrent or countercurrent fluid 

exposures is explored further in the present work. 

Although the ensuing discussion is carried out in the ter­

minology of mass trans:f'er.,.1t applies as well to heat transfer 

between a gas and a liquid. Mass transfer considerations are 

restricted to low concentration levels and low net fluxes of mass. 

Flow between Flat Plates 

Consider a gas and a liquid in parallel., laminar, stratified 

flow between two parallel flat plates. The velocity profiles for 

this situation are shown in Figure 1. F9r generality it will be 

presumed that the flow rates of the gas and liquid streams can be 

set independently; this could occur if, for example, part or all 

of the impetus for liquid flow came from gravity. The two phases 
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may be in cocurrent flow (u0m and ULm both posit.~ve) or counter­

current flow (Uam and ULm with different signs)a 

The equation of motion may be solved for this two-dimensional 

case With the boundary conditions of zero velocity at y = +band 

-5, UG = UL at y ~ o, anJ IJ.0 (dU0/dy) = IJ.L(dUr/dy) at y = o, giving 

and 

The ratio of the surface velocity to the average liquid velocity is 

(
biJ.L + u~\ 
61J.G ULJt! 

(4) 

Thus the surface velocity is 3/2 the average liquid velocity only 

if u0m = ULm. For cocurrent .. flow with UGm ) ULm' u0 ) ~ ULm; 

for cocurrent flow with UGm ( ULm or for countercurrent flow, 

uo < ~ uLm. 
For many systems used in mass transfer IJ.L is about 50 times 

IJ.a• If. 6 = b, u0m = -ULm will correspond to u0 = 1~44 ULm' 

UGm = 2ULm will correspond to u0 = 1.53 UGm" and UGm == 10 ULm will 

... 
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correspond to u0 = lo76 ULme The cha~ges in the ratio of surface 

velocity to average liquid velocity become more severe as the gas 

phase becomes thinner in relation to the liquido Thus for 

... b/6 = ··0.2 and ~r/1-La = 50, the ratios for the three previous 

situations become 1.231 -1.64 and 2.00~ respectively. 

I~ 

For the special case of true horizontal two-phase flow the 

pressure drop serves as the sole impetus of flow for both gas and 

liquid. A derivation similar to that given by Bird, et al (,2) 

yields 

blJ.L 
3 ~ 

Uam 4 + l)'ji:" + b G (5) u-= 6 o2l-La Lm 
4b +~+ 3 

b IJ.L 

and 

(6) 

The interfacial velocity is 3/2 the average liquid velocity only 

2 2 2 '> 2 (.2. . 2 < 2 if 6 l-1-a = b lJ.L• If 6 ~G b lJ.L' u0 2 ULm; a~d if 6 l-1-a b IJ.L1 

u0 ) ~ ULm. For phases of equal thickness with lJ.L = 50 ~J.a, 
u0 = 1.71 uLm. 

PHASES OF INFINITE EXTENT 

Fo~ mass transfer during brief exposures of a gas and a liquid 

in confined flow, it is permissible to consider only the region 

very near the interface and tq neglect the effect of the confining 
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walls upon the mass transfer process e The folJ.m'ling e.ec:tions will 

consider mass transfer b'etw~en gas and liquid phD.ses which are it:. 

fully developed cocurrent parallel flow and are infinite in extent~ 

Cases o,onsidered include gas phase controlled mass transfer, liquid 

phase controlled mass transfer, and the general :tnterphase case 

where the resistances of both phases are important. Even though 

the models consider phases of infinite extent, they are applicable 

to many cases of confined flow. The extent to which unconfined 

models are applicable to confined cases is discussed below. 

Gas Phase Controlled Mass Transfer 

The velocity profile near the gas-liquid interface may be taken 

to be linear for cases of brief exposures where the concentration 

changes due to mass transfer do not penetrate the gas deeply. 

A general model for the mass transfer process in this situation 

is shown in Figure 2. 

In this case the velocity profile is 

Therefore the diffusive transport equation reduces to 

oc o2c 
(UO + ay) oxA • DG oy2A , 

· ·· . with the boundary condi tiona 

at y- 0 

X= 0 

y=CD 

·cA =cAS 

CA = CAO 

CA = CAO 

(7) 

(8) 

(9) 

This problem has been solved by Beek and Bakker (2) by the method 

of' Laplace transforms~ Two asymptotic solutions were found for 

• 
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the local mass transfer coefficients hased upon the initial driving 

forceo For short exposures (a2DG x/u03 (( 1) tht:- solution is 

2 
k ( x )1/2 = _!_ + l (a DGx)l/2 (lO) 

CG U0DG l.(ir 4 u
0

3 

while for long exposures (a2D0 x/~03 )) 1) 

(11) 

Beek and Bakker used interpolation to approximate the solution 

in the intermediate region (a2DGx/u03 on the order of 1). An 

exact solution in this region is desirable because it must be 

used in estimating average mass transfer .coefficients for all 

but the shortest exposureso A numerical digital computer solution 

was made of the problem using a Crank-Nickolson 6 point implicit 

formula to approximate the parabolic partial differential equation. 

It was necessary to calculate local mass transfer coefficients by 

means of a numerical differentiation of the concentration profile 

at the interface. An unsymmetrical five point formula provided 

the necessary accuracy. It was found that the correct solution 

in the intermediate region is the one shown in Figure 3 as a 

solid line. The hatched curves are the asymptotic solutions 

(Equations 10 and 11). The exact solution lies below the two 

asymptotic solutions rather than between them, as was originally 

estimated by Beek and Bakker (Compare Figure 3 of Reference 2). 

For short exposures, where the slope in ~the velocity profile 

becomes unimportant compared to the interfacial velocity, the 
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solution approaches the penetration model~ 

. )1/2 
kca ( u~t5G · = 

1 -
F 

( 12) 

For hi.gh values of the abscissa, where the interfacial velocity is 

small compared to velocities a short distance away in the gas, the 

solution approaches LevSque model for transfer from a stagnant 

surface into a fluid with a linear velocity profile: 

(13) 

In the intermediate regionjl however, the mass transfer coeffi-
I 

cient is higher than predicted by either of these two limiting 

modelse Near an abscissa of' 1.0 both limiting models are in error 

by 30%o The physical basis for this behavior is clear enough: 

The penetration model allows for the interfacial velocity, but 

neglects the increased convective removal of mass ~esulting from 

the increase in velocity with distance ·away from the surface. 

The Lev~que model allows for the increase in velocity with distance 

away from·the interface, but neglects the convective·removal of 

mass resulting from the finite velocity at the interface itself. 

Therefore, it is logical that the penetration and Lev@que models 

both underestimate the mass transfer coefficient. 

The Beek and Bakker model assumes that the slope of the 

velocity profile in the medium in question is positive. The·re 

are a number of situations where the slope is negative, and 

therefore it is of considerable interest 'to carry through such 

a solution. Strictly speaking, one may not postulate aninfinite 

.. 
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phase for the case of a negative slope of the velocity profile, 

since a flow reversal must occur at some distance from the inter-

face. This in turn Nould necessitate providing initial concentra-

tions 'at both ends of the exposure (at x = 0 and x = L in Figure 2). 

However, if the value 2 3 or a n0x!u0 is sufficiently small, the 

solution should not be sensitive to the flow reversal. If we carry 

out the solution for a short exposure asymptote, the result is 

. ( x )112 1 1 ·ca2nax)l/2 
kca u0n0 = ~ - 4 u

0
3 (14) 

For any physically significant case the long exposure asymptote 

with Equation 9 as boundary conditions is meaningless. It is 

evident that Equation 14 is a mirror image of Equation 10 about 

the penetration solution. Equation 14 is shown as the hatched 

line in Figure 4. · The dotted line is the penetration model, while 

the solid line is the exact solution of this problem, which was 

carried out numerically by computer methods. 

The solution for a negative velocity gradient allows some 

qualitative remarks concerning two important situations. In most 

cases where a gas and a liquid are in cocurrent motion, the gas 

is moving sufficiently quickly to cause some drag upon the liquid 

interface, which in turn causea a small negative slope in the liquid 

~~ phase velocity. With this solution we are able to say that if the 

value of a2DLx/u03 is less than 10-3 penetration theory is obeyed 

to within 2%o The other important case is when a gas and a liquid 

are in countercurrent flow. Here there will be a negative slope in 

the velocity profile in gas at the interface. While Equation 14 is 
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invalid for most countercurrent problems, it is lnteresting that 

the. solution·does predict that the negative slope causes a decrease 

in the mass transfer coefficient. This fact was confirmed experi­

mentally in the experi~ental portion (Part II) of the present work. 

Equation 14 could not be applied directly in that study since the 

flow reversal played an important role in all the experiments. 

Liquid Phase Controlled Mass Transfer 

· Strictly speaking a model similar to that developed for the 

gas phase would apply to the mass.transfer resistance of an.adjacent 

liquid. However, since the drag of the gas on the liquid is 

re~atively small and since liquid diffusivities are low, one is 

almost invariably located on the penetration asymptote of Figure 3· 

Hence, no features of the liquid velocity profile need be considered 

for mass transfer purposes aside from the velocity of the interface 

. itself. If a liquid with a constant velocity, u0, is exposed to a 

medium which imparts to its interface a constant concentration 

different from that in the entering bulk, the transport equation 

reduces to 

( 15) 

The local mass transfer coefficient based upon the initial driving 

force will be 

(16) 

For flow between parallel plates u0 would be calculated by means 

of Equation 3. This form of the penetration model has been shown 

to be appropriate in many liquid phase controlled situations (8 111, 

19, etc.). 

,. 
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Interphase Mass Transfer 

A model for interphase mass transfer in fully-developed flow 

'" is shown in Figures. Two·infinite phases-a gas with an inter­

facial-velocity u0 and a velocity profile with a constant slope a, 

and a liquid with constant velocity, u0 - are contacted for a 

length, L. The convective transport equation for the gas phase is 

the same as Equation 8, while in the liquid phase the equation is 

the same as Equation 15. The boundary conditions are as follows: 

At X = 0 y) 0 

x=O y(O 

At y = +co 

y = -CD 

C
CG : ccGO } .. · 
L- LO. 

] 
The interfacial conditions at y = 0 are as follows 

ocG ocL 
DG -= DL-oy oy 

(17) 

(18) 

(19) 

(20) 

The first equation is the continuity of fluxes across the interface~ 

while the second is the assumption of Henry's law as the equilibrium 

interfacial condition. : The constant 'H is dimensionless (H/RT). 

The prob.lem is solved by the method of Laplace transformation. 

In the Laplace domain the liquid phase solution is the solution for 

penetration into a stream with constant velocity 

cL ~ c~o +A exp (Y ~) (21) 

(22) 
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where s is the Laplace transform variable and A is a constant to 

be determined by the application of' the interfacial conditions .• 

The gas phase solution is carried out by the same method as 

the so~ution of' Beek and Bakker (£,~). The solution in the LaPlace 

domain to this portion of the problem is 

1 u 3 1 3 
e(l+ ~ ~~ K [g ( o )2 5 1/2(1 + !L Y)2J 

00 'l $ 3 a2DG UO 
(23) 

(24) 

where e is a constant. The two constants, A and e, are· obtained 

by the simultaneous application of the two interfacial conditions 

(Equations 19 and 20) to the solutions in the Laplace domaino 

where 

and 

A=~ 
s 

e ac E H = -
s . 2 1/2 2 

Hcr K_213 (~ ~ s ) + K1; 3(, ~ 

= (na/nL)l/2 
. u 3 1/2 

a ~=(+-) ·. 
a n0 

t:::.c 
eGO 

=71- 0 LO 

z = 2 ~ 3 . 
81/2 

( 25) 

81/2~ (26) 

(27) 

(28) 

;, 
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It is obvious that concentration profiles would be quite difficult 
. . 

to generate •. As a result only a solution for the mass transfer 

coefficient is sought •. The local overall mass transfer coefficient 

based·on the initial driving force is defined in the Laplace domain 

as 

and is found to be 

2H U 2 
0 Kca = __ .....__ 

3za 

. y = 0 (29) 

(30) 

No simple general solution is available for this problem. However 

it is possible to find asymptotic solutions for short and long 

exposures. For large values of z, the following simple form may 

be given to the Bessel's function of the second kind. 

K (x) = -v:£. e-x [R + S ] n 2x n n (31) 

where Rn and sn are series in n and x given by Carslaw and 

Jaeger (6). If this approximation is included in the solution 

and the binomial in the denominator is expanded in a series the 

result is: 

where 

·y = 2 HU0 
2/3 a 

a. = a H+ 1 

13 = 5 - 7(cr H + 1) 
72 

(32) 

(33) 
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This series may be inverted term by term.. The overall mass trans-' 

fer coefficient based upon the gas phase is ~ 

= '1. ( 3 + 9 (13 + .L2) + .... 0 ·)\ . 

a2~~ 42"a 7 
(34) 

Rearranging 

( 
X )l/

2 
_ .H ~ [ 1 6 x

1
/

2 
( 5 - 70 }{ l) . J 

KeG UG~G - crH + 1 ~ -y-Tr + 4 ' 2 ( cr H + 1 )72 + 72 + • • • 
·~. 

f (35) 

'::Dhe solution for low values of z is riot quite as satisfactory­

For small values of z 

K (x) = 2p-l (p-1)~ x-p 
p . 

(36) 

For this case Equation (30) becomes 

KCG ~ t~ a H +lF zJ./3) (37) 

where 

(38) 

A solution is dtfficult in this case so that we seek a solution 
~.;:~ 

only for the situation where 

cr H ) F zl/3 

Let 
crH .... =-. • F 

Then if 

zl/3/'t' << 1 

KeG = ( 1 - zl/3/'t' + z2/3;'t' ••• •) . (39) 

The solution is inverted and rearrangede Finally the coefficients 

are evaluated. The result is: 



1 

KeG (n~u0 )
2 

= 
1 

crH 

0.515 
-------------- + 

(
a2D ~1/6 

H G 
C) 3 

·. uo 

15 
lJCRL-16925 

(40) 

The results of this solution are shown graphically in Figure, 6 .. 
. 1/2 2 3 

A presentation of KeGGx/U0DG) as a function of a DGx/U0 is 

made fo~ different values of the parameter crH • The solid line 

represents the analytical solution while the dotted line shows the 

results of a computer solution of the same problem in the regions 

where the analytic solution is not valid. This computer solution 

is discussed in detail elsewhere (,2). 

King (12) has shown that the addition of resistances principle 

(Equation 1) should be closely obeyed for cocurrent flow. This will 

be particularly true to the extent that the independently measured .,· 

individual phase mass transfer coefficients tend to vary with the 

same power of the distance since th.e start of an exposure. The 

addition of resistances principle should therefore be effective for 

the prediction of the results shown in Figure 6, since for liquid 

phase controlled mass transfer the coefficient varies as x-1/ 2 while 

for gas phase controlled mass transfer the coefficient varies as 

x-1/ 2 for very short times with the exponent increasing toward -1/3 

at longer times. 

Addition of resistances for the independently measured local 

coefficients at all points yields 

( 
X )1/2 

KeG DGUO -

·c x_)l/2 
keG DGUoJ 

( 
x_'\1/2 

1 + -y:rr cr H keG VoJ 
(41) 
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The penetration model is employed for the liquid and the gas phase 
' 1/2 

mass transfer group, kca(nGU~ , is taken from Figure 3. 

The solution using the additivity of resistances was compared 

with the analytical solution where it is applicable and the com­

puter solution in the remainder of the region. It was found that 

the deviations of the additivity solution were greatest in the 

region where aH is near unity, that is where control is evenly 

divided between phases. Also the deviation tends to increase as 

a2Dax!u0
3 increases, but the maximum deviation is less than 2% 

~or any reasonable value of the length group ((100,000). The use 

of the. addition of resistances with average coefficients is simi­

larly effective. 

CONFINED PHASES 

Interphase mass transfer situations generally involve confined 

fluid phases; hence it is important to analyze the rates of mass 

transfer which are to be expected in confined flows. Such-analyses 

are particularly needed for the interpretation of the experimental 

measurements reported in the second portion of the present work. 

The prediction of mass transfer coefficients is simpler for fluids 

of infinite extent. It is therefore important to compare the 

unbounded models with the corresponding confined flow solutions 

in order to ~dentify the degree of equilibration or duration ·or 

surface exposure for which the former are valid. 

Mass Transfer Controlled by a Single Phase 

The hydrodynamic simplicity of L ... minar flow in a circular tube 

made the prediction of mass and heat transfer coefficients for that 
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case a relatively simple task. Since the original solution by 

Graetz (2) for uniform wall temperature on concentration, there have 

been several solutions made of this problem for various boundary 

conditions. Mass transfer to laminar flow between two infinitely 

wide flat plates is similar to the Graetz problem. The constants 

generated by this solution are, of course, somewhat different from 

those in the original Graetz solution. 

The problem of mass transfer to a stream flowing between two 
t-:· 
jL 

flat plates has been solved by Butler and Plewes (i) ~or the case 
l' 

of a constant solute concentration at one wall, differe-nt from that 

in the entering fluid stream, and a zero flux at the other wall. 

A modification of their velocity profile is needed for the present 

study. The wall at which the mass transfer takes place is a fluid 
,:•rr; 

··' interface which is in motion with a ve1o~~ty, u0, rela~ive to the 
\! 
i"*. the fixed wall. The physical situation is illustratedjin Figure 7• 
"' 

The fluid enters with a solute conc~ntration, CAO' andi1s contacted 

with an immiscible fluid which holds the concentration at the 

interface constant at CAs• The velocity profile may be expressed as 

(42) 

The profile is also applicable to the liquid, in which case UL is 

expressed as a function of u0, ULm and y/6. The transport equation 

for this case may be written nondimensionally as: 

·The boundary conditions are: 

X= 0 
y = 0 
y = 1 

c = 0 
c = 1 
oc/oY = o 

(43) 

(44) 
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The velocity profile is parabolic and the problem could be solved 

by a method of separation of variables in the same way as Butler 

and Plewes solved for the case of zero interfacial motion. The· 

present situation must be solved for a wide range of values of the 

parameter, v. As a result the generation of constants was found 

to be impractical, and the equation was solved directly on the 

computer for seven values of the parameter, V = UmfU0• These range 

from 0.5 to 100, the latter figure being essentially equivalent to 

the solution of Butler and Plewes. Equation 43 is a parabolic 

_partial ·differential equation and therefore may be put in finite 

difference form by the application of the Crank-Nicholson six-point. 

implicit formula. The resulting tridiagonal matrix may be· solved 

directly bya.Thomas method (14), and corrected by means of a - . 

Gauss-Seidell procedure using a successive overrelaxation factor. 

A listing of the Fortran programs written for this solution along 

with all the other programs mentioned in the present discussion may· 

be found elsewhere (2)• 

The results were given directly in the form of graphs on the 

digital plotter. Figure 8 shows the average (cup-mixing) fraction 

saturation, ((CA- CA0 )/(CAS - cA0 ))AV' as a function of the 

Graetz number, Dax/Umb2, for the seven values of the parameter 

UmfU0 which were considered. The solution was verified by compari­

son with the two pertinent analytical solutions availableo The 

solution by Butler and Plewes almost perfectly matched the solution 

for the highest value of Uz1u0 (100), over the entire range for 

which the former is valid. Pigford (!!) has solved for the case 

of liquid flow down a plane, where UmfU0 is 2/3. Again in this 
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case the present solution almost perfectly matched the earlier 

solution from a fraction saturation of 0.20 to 1.00. At values 

." of the average fraction saturation below 0.2, insufficient terms 
\ 

are available for the analytical solution. 

The effect of the interfacial velocity upon the mass transfer 
I 

process is quite clearly shown in Figure 8. For a given system, 

if the average velocity of the gas phase, Urn' is kept constant 
; 

and the interfacial velocity, u0, is allowed to increase from zero 

to a high value, one moves vertically upwards on the graph. It is 

obvious that there is a considerable increase in the mass transfer .. 
..,.-:-1.· .·· 

coefficient merely because of the fact that the interface is in~ 

motion. · For example at a Graetz number of 0.32, the average 

fraction saturation corresponding to no interracial motion (V = .,lOQ) 

is OD58 while for V = 0.5 this increases to 0.78. 

The local Sherwood number (Nusselt number for mass transfer~) 

r _based upon the initial driving force was computed, using an unsym­

metrical five point formula to estimate the local mass transfer 

flux. For very short exposures numerically estimated derivatives 

are inaccurate, and therefore only values of the Sherwood number 

for values of the Graetz number greater than lo-4 are shown in 

Figure g. This figure is a logarithmic plot of the local Sherwood 

number as a function of the Graetz number, for the same seven values 

'ii of the velocity parameter. The curves cross at a Graetz number of 

about 0.2 since at higher interfacial velocities saturation is 

achieved at a lower Graetz number$ The fact that the curves all 

cross at one point appears to be a coincidence. 

·'' 
I ! 

I I 
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Finally, concentration profiles were generated for all of the 

values ot Um(U0 mentioned above. Figure 10 is a typical set of. 

profiles for UmfUo = 2/3. The profiles for the other cases are 

reported elsewhere (.2_). The dimensionless concentration C is 

plotted as a function of the fractional distance from the interface 

with the Graetz number as a parameter. This series of profiles is 

of particular interest since it is the solution to mass transfer 

into a liquid flowing down a plane where there is no drag upon the 

interface. For this case, it is normal to use the penetration 

model in the estimation of the mass transfer coefficients and 

concentration profiles. 11/hen the exact solution is. compared with 

the penetration model, it is found that the latter is a close 

approximation up to an average fraction saturation of about o.6o 

for estimating the average mass transfer coefficient. The concen­

tration profiles are in agreement up to a Graetz number of o.o4. 
Another comparison which is of interest is between the 

infinite phase model with a positive slope in velocity and the con­

fined flow solution. For this comparison a value of Un/Uo of 2.0 

was chosen for the confined case. The concentration profiles 

coincide only up to a Graetz number of 0.01 (average fraction 

saturation of 0.125). On the other hand, the average mass transfer 

coefficient was valid towithin 10% up to a Graetz number of 0.2, 

which represents an average fraction saturation of. about 50%· 

Interphase Mass Transfer 

When a third component passes from a solvent to an inert 

carrier gas, the resistance to mass transfer is in general 
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distributed between the two phases. In the analytic solution to 

the unbounded problem it was found that the degree of control which 

is resident in either phase is dependent upon the parameter, 

(DG/DL) 1/ 2(H/RT). In the confined flow case this group serves 

the same purpose. The convective transport equation was solved 

for two different cases of confined interphase mass transfer. 

The experimental study which accompanied this theoretical work had 

the geometry shown in Figure lo Therefore, the first solution 

involves transfer between two confined phases. both of which have 

parabolic profiles. The partial differential equatio"ns for both 

phases may be put into finite difference form by means of' a 

Crank-Nickolson formula. Henry's law is used to describe the 

equilibrium relationship at the interface. This assumption along 

with the equality of fluxes {Equations 19 and 20) are used to 

define the connection between the two phases at the interface. 

The resulting tridiagonal matrix is solved by the usual techniques. 

In the case where both phases have parabolic profiles in velocity, 

three independent parameters are necessary to define the problem. 

Therefore, a general solution is not pragmatic. The experimentally 

important cases were solved using this model, while the general 

solution was carried out with a simplified velocity profile. The 

three independent parameters necessary to define each case may 

be reduced by one if a constant velocity equal to the interfacial 

.velocity is assumed in the Uquid phase. Since the effect of the 

mass transfer penetrates to only a small fraction of the total 

liqUid depth, this assumption is almost always applicable. The 

two remaining independent parameters are the velocity parameter, 
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Un(U0 and the control parameter, (D0/DL) 1/ 2(atRT). This problem 

was solved for five different values of the control parameter 

(5, 2, 1, 0.5 and 0.25). Figures 11 and 12 are the results for 

aH = 1• The other results are also available (~J· Figure 11 

presents the local Sherwood number based upon the initial driving 

force as a function of the Graetz number. Figure 12 shows the 

average fraction saturation as a function of Graetz number. 

This solution provides an opportunity to compare the predic­

tions of the addition o£ resistances principle with the exact 
I 

l:?Olution for a. cocurrent laminar confined flow case. Most other 

such comparisons have been made for models in which there are 

infinite media (,!g_,l3)• The one comparison which does exist for 
l 

confined media pictures a countercurrent turbulent confined phase 

to which the film model is applied <.!.2). In the present solution 

it is interesting to ascertain whether the effect of the penetration 

of the. mass transfer to the wall may be properly predicted by the 

addition of the two independently measured individual resistances. 

For the gas phase resistance the confined flow case with a moving 

interface is ·used, while the penetration model is chosen to ·describe 

the liquid phase behavior. The addition of resistances principle 

was applied. to predict local and.average Sherwood numbers for the· 

interphase mass transfer case. For the sake of comparison, a value 

·or aH of 1 and a velocity parameter of V = 4 were c-hosen. These 
-

probably represent the .most severe test of' the addition of resis-

tances principle. The ratio of the predicted and actual Sherwood 

numbers are shown in Figure 13. The solid curve represents the 

· comparison of local Sherwood numbers as a function of Graetz number, 

I .~· 
~ 
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with the Sherwood numbers based upon the initial driving force 

(HcLO - c00 ). At- low Graetz numbers the situation reduces to the 

problem previously analyzed for phases of infinite extent. As has 

already been noted~ the addition principle works well in this rangeo 

At Graetz numbers above 0 .. 5 the addition of resistances prediction 

becomes increasingly erroneous. In this range the gas phase 

approaches saturation in the gas phase controlled case; this 

necessarily causes the individual .gas phase Sherwood number based 

on the initial driving force to drop toward zero and causes the 

predicted overall coefficient to follow. In the interphase case 

the gas phase·is less ~aturated at a given Graetz number and the 

true overall coefficient remains high. 

Because of this behavior one might expect that the addition 

principle would work better if applied to local Sherwood numbers 

based upon the local driving force. Such a comparison is also 

given in Figure 13, with cup-mixing concentrations used as driving 

forces. In this case the addition principle predicts too high a 

mass transfer coefficient-at high Graetz numbers. This is at least 

partially caused by the fact that the local driving force approaches 

zero at lower Graetz numbers for the individual gas phase resistance 

than for the overall r.esistance to mass transfer .. 

Also shown in Figure 13 are comparisons for predicted and 

actual values of the average Sherwood group. The average Sherwood 

group based upon the log mean driving force exhibits a deviation 

from the addition principle which is similar to that for the local 

Sherwood number based on the local driving force. The average 

Sherwood group based on the initial driving force, on the other 
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hand,- -shows agreement with the addition principle to a Graetz 

number of 2. This form of Sherwood group weights the initial mass 

transfer highly; it has already been shown that the initial mass­

transfer follows a penetration model in both phases and thus gives 

average overall coefficients which agree well with the addition 

principle. Thus, the preferred form of application of the additio: ... 

principle is that corresponding to the dashed curve in Figure 13: 

= (45) 

where the mass transfer coefficients are baaed on the initial 

driving force. 

CONCLUSIONS 

1. In many instances of gas-liquid mass transfer it is importnat 

to allow for the 'effects of the interaction of the fluid 

mechanics of the contacting phases. 

2 •. In most cases of laminar gas-liquid contacting the liquid 

phase will follow a penetration model closely, but the surface 

velicity to be used in the moael may be greater or less than 

3/2 the average velocity. 

3· Gas phase mass transfer in cocurrent, laminar, gas-liquid flow 

is influenced by the interfacial velocity. For well-developed 

flow with phases of infinite extent the mass transfer coeffi­

cient is given by Figure 3 and is greater than predicted by 

either the Lev$que or penetration models. 
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4. The effect of confining walls on cocurrents laminar gas-liquid 

mass transfer causes mass transfer coefficients to .. be less than 

given by Figure 3 for the gas and less than given by the 

.penetration model for the liquid .. These·effects become impor­

tant above 50% equilib~ation of either phase. 
( 

5e The addition of resistances principle should work well for gas 

and liquid phases of infinite extent (brief exposures) in co­

current, laminar flow. For confined phases the most effective 

form of the addition principle is that given by Equation 45. 
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Nomenclature 

a - slope of the velocity of a phase at the interface, sec-l 

a - area of mass transfer exposure, cm2 

b - thickness of gas phase, em 

c the concentration of a transferring component in a 

G 

D 

F 

H 

H 

kc 

phase, 6c = HcLO - eGO' g.rnoles/crn3 

- dimensionless concentration (CA- CA0 )/(CAS - CA0 ) 

diffusion coefficient, cm2/sec 

constant defiriedin Equation 38 

- Henry's law constant, atm. 6m3 /g .. mole 

- dimensionless Henrycs law constant, H/RT 

- local mass transfer coefficient based upon the initial 

concentration driving force, em/sec 
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K - Bessel function of' the second kind 

K0 - overall mass transfer coefficient based upon the initial 

concentration driving force, em/sec 

L 

n 

p 

R 

X 

X 

y 

y 

z 

a 

"' 6 

- length of exposure, em 

- index or series 

- order of the Bessel function 

- universal gas constant, atm. cm}/g.mole °K 

- a remainder series defined in Referenc1e 6 

- Laplace transform variable 

- a remainder series defined in Reference 6 

- absolute temperature, °K 

- interfacial velocity, em/sec 

- velocity parameter, Un/Uo 

- distance from start of exposure, em 
2 - n0x/U0b 

- direction and distance perpendicular to the interface, em 

y/b 

- 2/3 l; s 1/ 2 

- aH + 1 

- [5 - 7(crH + 1)]/72 

2H U~3a 
- thickness of the liquid phase, em 

<u6fa2Da)l/2 

e - constant defined in Equation 26 

A constant defined in Equation 25 

~ - viscosit~g./cm sec 



.. 

a - (DG/DL)l/2 

-r - oH/F 

Subscripts 

A ~of component-A 

AV - average 

C - based upon concentration difference driving force 

G - of the gas phase 

L - of the liquid phase 

m - average 

o - initially 

s - at the interface 

S~ers CJ:'!Ei 
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* - measured in the absence or suppression of resistance 

in the other phaseo 
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F~gure .· 1. Flow and interphase mass transfer between two flat plates 

Figure 2. The Beek and Bakker model for mass transfer to an 

infinite medium with an ·interfacial velocity~ 

Figure 3~ Solution for mass transfer to an infinite medium with aJ• 

· interfacial velocity -- - - Asymptotic solutions j 

Exact solution, --- Limiting solutions. 

Figl.lre 4. Solution for mass transfer to a phase with a negative 

slope in the velocity profile---- Asymptotic 

solution----Exact solution,--- Penetration modelo 

Figure 5· Model for interphase mass transfer with control distri-

buted between gas and liquid. 

Figure 6. See caption on figure. 

Figure 7· See caption on figure. 

Figure 8~ .. See caption on figure • 

Figure 9· See caption on figure. 

F:tgure 10. Concentration (CA - CAr/CAS - CA0 ) as a function of 

distance from t.he interface with U /U0 equal to 2/3 
- m 

for the values of Graetz number listed below. 

Number 
of Curve 

1 
2 
} 
4 

i 
~ 
9 

Graetz No. 

0.0005 
0.001 
0.002 
o.oo4 
o.ooa 
0.016 
.0.032 
0.048 
0.064 

{cont. on next pg.) 

.. 
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Captions cont. 

Number 
of Curve 

10 
11 
12 
13 
14 
15 
10 
17 
18 
19 
20 
21 
22 
23 

Graetz No .. 

o .. oso 
0.096 
0 .. 112 
0 .. 128 
0 .. 144 
0 .. 16 
0.24 
0.32 
o .. 4o 
o.48 
0.56 
o.64 
Oo72 
o.8o 

Figure lle Local Sherwood numbers as a function of Graetz number 

for dif'ferent values of the parameter Un/Uo with 

GH = 1.0 for a model with a confined gas and an. 

1nfin1te liquid. 

Figure l2e Average fraction saturation as a function of Graetz 

number for diff'8rent values of the parameter Um/U0 
with aH = 1.0 for a model with a confined gas and an 

Figure 13. 

infinite liquid. 

A comparison of the exact solution for interphase mas;S 

transfer from an infinite liquid phase to a confined ~; 

p~ase with the results of the addition of resistances 

model for Un/Uo equal to 4 and aH = 1.0 .. 
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