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e » GAS-LIQUID MASS TRANSFER WITH A TANGENTIALLY
« ' v - MOVING INTERFACE: I. THEORY
- : o ' Charles H. Byers* and C. Judson Kihg

Department of Chemlcal Engineering
University of California, Berkeley

 ABSTRACT

- A theoretical 1nVestigation‘has been made of the effect of a
_movingvinterface upbn gas-liquid mass transfer, wheré the cdntrOL
-of the massvtrahsfervis entirely within the gas phase and where |
the control is distributed between the two phases. An analytical
model 1s proposed for lamlnar lnterphase mass transfer in infinite
media.} Computer solutions have beeﬁ obtained for gas-liquid mass
transfer in confined phases. A cocurrent moving interface 1n¢reasés,
mass transfer coefficients over what they would be for the same

flow rate without interfacial motion.

Charles H. Byers 1s- presently with the University of Rochester,
W Rochester, New York. -
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ZNTRODUCTION
Many simple models have been suggested for thé analysis of o
mass'tranSfer between immiscible fluld phascs. Most of these
models neglect the effect of the fluiad me@hanics of one phase upon
'thosé-of the other phase. For exémplé, penatration or surface
renewal models are often employed to -describe liquid phase mass
transfer near a'freé gas-liquid interface (10,18,19, etc.).
Such models postulate nd gradient of velocity in the 1liquid adja~
cent to the interface; this is ggnerally a good.assumptiohAsince
‘the'viECOSity of a gas is usually drders of magnitude less than
that of a liquid. In situations where the liquid flows as a
iaminar layer over a soiid surface it is usualiy presumed that the
.free surface veloclty for use in a penetration model 1s 3/2 the |
average velocity. Strictly speaking this 1s true only when there‘
is zero drag at the interfaée} When there 1is a relatively high
gas flow rate near the Interface, the drag upon the 1nterface may
alter the interfacial'velocity to an appreciable extent. ’As'is
shown below, this factor can aSsume impqrtance. |
Similarly, most models and éorrelations which have been
proposed for'gas phase reslistance inrgas-liquid contacting apara-
tus ignore the influence of the liquid surface velocity (Z,;é, N
étc.); At least two theoretical papers have appeared”analyzing'.
mass transfer near a moving surface (;,g); howevér'ho concepts
obtained from these wofksvhave been employed for the analysis of
.experimental mass transfer-data. The 1nfluence of-a moving inter-

face 1s explored further in this paper and the subsequent one.
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It 1s alSo common practice to ignore the interaction between
the resistances to mass ftransefer offered by eéch of tWo contacting.
£luid phases,_Just as the interaction of the fiuid mechanics is

often ignored. The overall resistance to mass transfer is usually

obtained from an equation of the form'

e (1)

KGa 7 KGa kLa

The asteriske denote mass transfer coefficients measured in the

absence or suppression: of resistance in the other phase. -iheir
use in Equation 1 impiiee that the value of each iﬁdividual phase
coefficient is unaltered by changes 1in the coefficient 1n the other
phase. The use of a in Equation 1 implies that H and kc/k ‘
are both constant across the entire- contacting interface. The
limitations of Equation 1 have been dilscussed by King (;g,;g);

its applicability to single cocurrent or countercurrent fluid
exposures 1s explored further in the present worke.

'Alfhough the ensuing-discussion'is carried out in the ter-
minology ofvmasslﬁransfer,'it'applies as well to heat tfansfer
between a gas and a iiquid. Mass transfer considerations are.
reetricted to low concentration levels and_low‘net fluxes of mass.

Flow between Flat Plates

‘Consider a gas and a liquid in parallel, laminar, stratified

flow between two parallel flat plates. The velocity profiles for

“this siltuation are shown in Figure 1. For generality i1t will be

presumed that the flow rates of the gas and liquid streams can be
set independently; this could occur if, for example, part or all

of the impetus for liquid flow came from gravity. The two phases
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. may be in cocurrent flOw (UGm and Uim.both positive) or counﬁer-
current f£low (Ug, and Up, with different signs).

The equation of motion may be solved for this two-dimensional
case with,ﬁhe boundary conditions of zero velocity at y = +b and

-6, Uy = Uy at y = 0, and uG(dUG/dy) = uL(dUL/dy) at y = 0, glving

b3R8 (- 5) o) (G- D

ij (2)
Gm | <;?31 N 1)

and

RIS >(1~%>+6 )@Y
e (_._+1)

The ratio of the surface velocity to the average'liquid velocity 1is
Uy _3 Bug U B

Um0 pup
e +1>
Ha

—
oA
~—

(4)

Thus the surface velocity 1s 3/2 the average liquid velocity only
if U, = Up,+ For cocurrent flow with Ug > Urm’ Yo > 5 Ui
' for cocurrent flow with Usp < Vg, Or for countercurrent flow,

2 . .
Ug < S Urme

For many systems used in mass transfer M1, is about 50 times
hge If 6 =D, Ugm = - L will correspond to Uy = 1. i Uy o
UGmlz ZULm will correSpond to UO = 1.55 U om’ and Udm = 10 ULm will
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correspond to Uy = 1.76 U . The changes'in'the ratio of surface
velocity to average liquid velocity become more cevere as the gés
_ phase'becomes thinner in relation ﬁo the liqulid. Thus for
b/6 =f0-2 and uL/uG = 50, the ratlos for the three previbus
situations become 1.23, 1.64 and 2.00, respectively.

- For the special case of true horizontal ﬁwo;phase flow the

pressure 4rop serves‘as the sole'impetus of flow for both gas and

liquid. A derivation similar to that given by Bird, et al (3)

- yields
_ bt
L o]
b+ g=+3¢ :
ULm " 5 621 i ) o
L = ———+ 3
b b2
DKy
‘and
U,  6(1+g o
= | (6)
"ULm R 52MG o . ,
45-+ 5 + 3
T by

The 1nterra7c1a1;velocity,1s_, 3/2 the average liquid vélocity_ only
Zup. I 8%y > b, Uy < 2 U ana 1f 8%y < bR,

1f 6°
U, > g'ULm‘ For phases of equal thickness witb p, = 50 Kg»

u0=b

'UQ.= 1571 ULm'

PHASES OF INFINITE EXTENT

For mass transfer during brief eXposures'of a gas and a liquid
in confined flow, it 1s permissible to consider only the region

very near the ‘interface and to neglect the effect of the'confining

I

I
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walls upon the mass transfer process. The foilawing sections will:
coﬁsider mass transfer bétween:gas and liquid pheses which are in
'fully developed cocurrentlparallel flow and are infinite in_extent?
Cases,oonsidgred include'gas phase controlied mass transfer, liquid
'phase controlled mass transfer, and the general lnterphase case |
- where the resiétances of both phases are important. Even though
 the models conéider phases of infinite extent, they are applicable
" to many cases of confined flow. The extent to which unconfined

models are applicable to conflned cases 1s discussed below.

(Gas Phase Controlled Mass Transfer

. The velocity profile near the gas-1liquid interface may'be taken
to bé linear for céses of brief exposures where the cdncentration
changes due to mass transfer do not penetrate the gas deeply.

A general model for the mass transfer process in this situation
;. 1s shown in Figure 2.
| In this case the velocit& profile 1ls

Uy = Uy + ay S o

Therefore the diffusive transport equation reduces to

BcA . aecA
(UO + ay) S;* = Dg S;g— s . (8)
- with the boundary.conditions
| at ¥y =0 ¢y =g
x =0 Cp = Cpg : (9)
y=® °a T a0

This pfoblem has been solved by Beek and Bakker (g) by the method

of‘Laplace transforms. Two asymptotié solutions were found for
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the local mass transfer coefficients bhased upon the initial dfiving

force. For short exposures (a2DCT x/UO3 {{ 1) the solution is

2
1/2 a“Dyx\1/2 .
k X = 24 L <__G;_ ' 10
CG <UO§G> NEa I UO3 | (10)

while for long exposures (agDG x/U03_>> 1)

. L \1/2 8 a2DG 1/6r , UO3 1/%4 (11)
k ( > = 005 ( l:l + Oo 75 > ]
o6 \UpDg - U, R a§DGx

 Béek and Bakkep'used interpolation to approximate the solution

in the intermediaten’region.(azDGx/UO3 on the.ordefvof 1)§',An_

exact soluﬁion in this region is desirable becausé it szt be

~used in estimating average mass ﬁransfer.coeffiéientérfor all

'buﬁ the'shdrteét exposures. A numerical digital computer solution

was made of the problem using a Crank-Nickolson 6 poiﬁt implicit

- formula to apprqximate the'pafabolic partial differential equation.

It was neceSSary to calculate local masé transfer coefficients by

' means of a numerical differentiation of the concentratién profile

at the:interfacé.- An unsymmetrical five point formula provided

the necessary accuracye It was fouhd that the correct solution

;Vin the 1ntermediate regionvis the one shown in Figure 5 as a

solid liné. The hatched curves are the asymptotic solutions

(Equations 10 and 11). The exact solution lies below the two

asymptotic solutions . rather than between them, aé Was originally'“

estimated by Beek and Bakker (Compare Figure 3 of Réferehce,g).
Fo? short exposures, where the slope in the veloclity profile

becomes unimportant compared to the interfacilal velocity, the
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solution approaches‘the penetration model: '
X ) S - (12)
¥og <ﬁoﬁG T . 3

-qu high values of the abscissa, where the interfaclal velocity 1is
small compared to velocitles a short distance away in the gas, the
solution approaches Lev€que model for transfer from a stagnant

surface into a fluid with a linear velocity profile:

. o < x )1/2' 0,538 aQDGX>1/6 | - (13)
k o= 05- < .
CG | UOD.'G | v YUOB | | |

In the intermediate.region, hdwever, the méss transfer coeffi-
cient 1s higher than predicted by either of these two limiting
models. Near an ébscissé of 1.0 both iimiting models are in error
bj 30%;,‘The physical basis for this behavior is clear enough:

The penetration model allows for the interfaclal velocity, but
neglects the'increased‘convective rémoval of mass resulting from
the increase in velocity with distance“éway from the surface.

vThe Levéque'model allows for the increase in &elocity with distance
away from the interface, but neglects the convective removal of
mass resulting from the finite velocity at the interface 1tself.
Therefore, 1t is logical that the penetration and Lev8que models
both underestiméte the mass transfer coefficieﬁt. |

The Beek and Bakker modei assumes that the slope of'the‘ 5 :
velocity profile in the medium in quéstion is positive. There
are a number of situations where the slope is negatlve, and |
therefore 1t 1is of considerable interest to carry through such

a solution. Striectly speaking, one may not postulate an infinite
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‘phase for the case of a negative slope of the velocity profile,

- . since a flow reversal must occur at some distance from the inter-

face. This in turn would necessitate providing initial concentra-
tions -at both ends of the exposure (at x =0 and x = L in Figureie),
However, 1f the value of a D x/U is sufficiently small, the

' soldtionrshould not be sensitive to the flow reversal. If we carry

out the solution for a short exposure asymptote, the result is

| 1/2 L alp . x1/2 .
kCG <ﬁ%_> = .\/}- -5 G3 o o (14)

For any physically significant case the long exposure asymptote
,with Equation 9 as boundary conditions is meaningless. It 1is

evident that Equation 14 is a mirror image of Equation 10 about
the penetration solution. Equation 14 is shown as the hatched
line in-Figure 4i " The dotted line is the penetration model, while
the solid:line is the exact solution of this problem, which was

‘carried out-numeriCally by computer methods.

The solution for a negative velocity gradient allows some

o qualitative remarks concerning two important situations. In most

cases where a gas'and a liquid are in cocurrent motion, the gas
is moving sufficiently quickly to cause. some drag upon the liquid

interface, which in turn causes a small negative slope in thefliquid

: phase'yelocity, With this solutlon we are able to say that 1f the
value of a DLx/U b is less than 10 -3 penetration theory is obeyed :
’ to within 2%0_ The other important case is when a gas and a liquid

~are in countercurrent flow. Here there will be a negative slope in

the velocity profile in gas at the interface. While Equation'lu is

P
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1nvalid fOr‘most countercurrent problems, it is Interesting that
theASQlution-does predict that the negative slope causes a decrease
Ein the»maés transfer coefficient. This fact was confirmed experl-
mentally in the experimental portion (Part II) of the present work.
Equation lﬁ:codld not be applied directly in that study since the

flow reversal played an important role in ali the experiments.

Liquid Phase Controlled Mass Transfer

- Strictly speaking a model similar to that developed for the
gas phase would apply to the-mass.transfervresisténce of aﬁ.adjacent
liquid. However, since the drag of the gas on the liquild 1is
.relatively small énd sincé liquid diffusivities are low, one is
almést 1nvariably-lobated §n the penetration asymptote of Figure 3.
Hence,bnovféatures of the'liquid veloclity profile need be consideréd
for mass transfer purposes aside from the velocity of the interface
-itself. If a liquld with a constant véloéity, UO, 1s exposed to a
medium Which imparts to its interface a constant concentration
different from that in the éntering bﬁ1k, the transport equation

reduces to

BcA BQCA _ : (15)
U, =—— =D N : (15
. Oax Lay :

The local mass transfer coefficieht based upon_the initial driving
force will be | -_ , .
Ckop, = (DLUO//wxgl/e . (16)
For flow between parallel plates U0 would be calculated by means
of Equation 3. This form of the penetration model has been shoWn

. to be approprlate in many liquid phase controiled situatibﬁs (Q,lz,
19, ete.). |
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Interphase Mass Transfer

A model for 1nterphase mass transfer in fully—developed flow
is shown in Figure 5. Two infinite phases—a gas wlth an inter-
facia_l'V‘elocityUO and a velocity profile with'a constantvslope a,
and a liquid with constant velocity, Uo—- are contacted‘fdr a
lehgth, L. The convective transport equation for the gas phase 1is
the same as Equation 8, while‘in the liquid phase the equatidn is

the same as Equation 15Q The boundary condltions are as follows:

At x=0 .y > 0. C3 = Cgo
o x=0 y<0 eop=cpy (17)
at yedw egmegg Y
A & o | (18)
R °L * %o B
The interfacial conditions at y = O are as follows
¥, de : ‘ | o
G "L
Gay Lay | ,

-‘The first equation is the continuity of fluxes across the interface,
while the second is the assumption of Henry's law as the equilibrium.i
1nterfacia1 condition. ' The constant '# 1s dimensionless (H/HT).

‘The problem is solved by the method of Laplace transformation.
In the Laplace domain the liquid phase solution 1s the solutlon for>

penetration into a stream with constant velocity o : '
Crp o U.s |
= _ Lo _ o) L _
cp, = —5— + A exp (y V ) o (21)
iT, - [Ts T8 S
el A b~ exp (& v ﬁ—-> - o (22)
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 where s is the Laplacevtransform variable and A is a constant to
be determiﬁed by the application of the interfacial conditions.
- The gas phase»solution is carried out by.the same method as
 the solution of Beek and Bakker (2,5). The solution in the LaPlace
domain to this portion of thé problem 18 |

- GO ol 2« 2 J/2( L a_ % 2
g <1+ > [ <a s > ( - y) ] (23)
o | | | 31/2 3,.1/2
___.ﬁ_ )(:2-) -2/3[3-&1)) ~
LTI P

where 6 is a coﬁstant. The two constants,; A and 8, are obtained
by the simultanedus application of the two interfacial conditions
(Equations 19 and 20) to the solutions in the Laplace domain.
B C Ho (K ( ¢ s+?)) |
. Ae
Ho K 2/3(3't s1/2) K1/3(3 ¢ s )

6 = - -‘-‘9-' ” ' > (26)
® \uo k (2 ¢ s¥2y 4 Ky (2¢ 51/2)
-2/3\3 3\3
where - |
3 1/2
/2, Uo :
@ = (o /n) ot (aQDG)
¢ o . .
Ne = -7(7}-9 - CLO . 4 . (27)
and ' |
z=2¢ 2 (28)
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It 1s obvious that cqncentratibnfprofiles'would'bé quite difficult
to generate. As a result'only a solution fbr Eﬁé_mass Eransfér
-coefficient is sought., The local overall mass transfér’coefficient
based -on the initial driving force is;defined in the Laplace domain

as

Kog = - & y=o0- - (29)

~ and is found to be

o ,.= 2H U,° Kopslz) . (30)
G 3za OH (K_p,5(2)) + Ky y5(2)) |

No simple general solution is available for this problem. However

1t 1s possible to‘find asymptotic solutions for short and long
exposures. For large values of z, the-following simple form'may )

be given to the Bessel's functlon of the second kind.

K (x) = é% e™ [R, + 8] | o - (31)

where Rn and Sn are series in n and x givenvbY'Carslaw andv
Jaeger (6). If this approximation is included in the solution
~and the binomlal in the denominator is expanded in a series the

vresult.is: ' _ | o
SR ONCREYORICRET: 21
<%>3 +f..,.] - (32)

where
v =2HU 58 -
a='0H+j_ | N  ?' (33)
625~ TloH+1) | AP

T2
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Thils series may be 1nvébted term by term. The overall mass trans-

fer coefficlent based upon’the gas phase is .

: A .
K = l "'—'3""'""""—"*‘ <'B—'+'I—>+ o s 00 ' ’ (34)
S Sy Z%é a7 . )
"  Rearrang1ng

1/2 H 6 1/2 H |
K ﬁ§~— =& [ 1l ,0x 5 =79 + L 4»...]
CG( QPG> oH + 1 Lgafmr &4 §2 (o H+ 1)72 72

| (35)
The so1ut1on'for low values of z 1s not quite as satisfactory-

For small values of z
K (x) = 2P7F (p-1)t x7P - (36)
For this case Equatioﬁ (30) becomes

/A T -
Kea Z(k;H +-F'zl/3) | (37)

where : :
F=2"3(2/3)1 /(-1/3) (38)

A solution 1s difficult in this case so that we seek a solution

only for the situation where

gl > F_zl/3
Let |
oH
_ TET
Then if |
23/ 1
Rgg = (1 - zl/3/r + 22/3/1 ...,> ' (39)

The solution is inverted and rearranged. Finally the coefficlents

‘are evaluated. The result is:
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1 ) . \
' CG"DGGO oH kﬂ 22D - 1/6 > ‘aQDGx 1/3
UH(‘ g (oH) < 3>
AR | * U |
(40)

The results of this solutionare shown graphically in Figure 6.
A presentation of Kn.(x/U.D )l/2 as a function of a°D.x/U 3 45

7 CG oG’ . G 0
made for different values of the parameter oH . The solid line
represents the analyticel solution while the dotted 1ine shows the
results of a computer solution of the same problem in the_regiOns

where the analytic solution is not valid. This computer solution

is discussed in detail elsewhere (2)

King (12) has shown that the addition of resistances principle
(Equation 1) should be closely obeyed for cocurrent flow. This will

be particularly true to the_extent that the independently messured

individUal.phase mass transfer coefficients'tend to vary with the

. same power of the distance since the start of an exposure. The

‘addition of resistances principle should therefore be effective for

the prediction of the results shown in Flgure 6, since for liquid

-1/2

phase controlled mass transfer the coefficient varles as x " while:

‘for gas phase controlled mass transfer the coefficlent varies as

x'l/evfor,very short times with the exponent increasing towsrd -1/3
at longer times.

Addition of resistances for the independently-meesured local

coefficients at all points yields

x >1/2 _ CG(D Uo>l/2

Kea (“'U‘D ‘

a0 » X,1/2
o 1l +ymTo kCG<$Eﬁé>

(41)
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The penetration model is employed for the liquid and the gas phase
- " 1/2 '
mass transfer group, kCG<$£%6> s> 1s taken from Figure 3.
G .

| The solution using the additivity of resistances was compared
with the analytical solution where it is applicable and the com-
puter solution in the remainder of the région. It was found that
the deviations of the additivity solution were greatest in the
| reglion wheré GH»_is néar unlty, that 1s where control is evenly
»divided.between phases. Also the devlation tends to 1n¢rease as
aaDGx/U03 increases, but the maximum deviation 1s less than 2% ‘v.
: for.any reasonable value of the length group ((lO0,000).v Thévusé
‘of the. addition of-resistances'with average coefficients is simi-

larly effective.

. CONFINED PHASES

Ihterphésevmass transfer situations generally involve cOnfined, o

fluid phases; hence,it'is important to analyze the rates of mass
transfer which are to be expected 1h'cdnfined flows. Such analyses
are parﬁicularly needed for the 1n§erpretation of'the experimental
measurements‘repbrted in ﬁhe sécond ﬁortion of the présent wofk;
The predictioh of mass transfer coéfficients 1s simpier for fluids.
of infinite extent. .It is therefore ilmportant to compare bhe. |
unbounded models with the.corresponding confined flow Soiﬁtibns

in order to identify the degree of equilibration or duration of

surface exposure for which thé-former are valid.

"Mass Transfer Controlled by a Single Phase

The hydrodynamic simplicity of l.minar flow in a circular tube

‘made the prediction of mass and heat transfer coefficlients for that

i
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case a relatively simple task. Slnce the original solution by -
Graetz (g) for uniform wall temperatufe on concentration, there have
been several solutions made of this problem for various boundary'
oonditions. Mass transfer to laminar flow between two 1nf1nite1y
wide flat plates 1s similar to the Graetz problem. The constants
generated by this solution are, of course, somewhat different from
tnose in the ofiginal Graetz solution.

The problem of mass transfer to a stream flowing Eetween two
~ flat plates has been solved by Butler and Plewes (4) éor.the case
of’a constant solute concentration at one wall; different from that
in the entering fluid stream,,and a zero flux at the other'wall.
A modification of their velocity profile-is needed for the present
study. The wall at which the mass transfer takes place is a fluid
interface which is in motion with a velocity, UO, relative to the
the fiked wall. The physical situation 1s illustrated 1n Figure 7.
| The.fluid enters with a solute concentration, Cro’ andgis contacted
"with an immiscible fluld which holds the concentration at the
:Alinterféoe conetant at Cpo+ The velocity profile may be expressed as
Ug = Uy + (6Ugy = 8U,) 3/b + (30, - 60y ) (¥)° (42)
'The‘profile is also applicable to the'liquid, in which cese'UL is

expressed as a function of Uy, Uy and y/6. The transport equation

for this case may be written nondimensionally as:

2 o
[1+ (6V - 4)Y + (3 - 6v)¥°] &£ _a__g (43)
| - X oY :
-The boundary. conditions are:
| X=0 C=0 | -
Y=0 C =1 T (A)
Y =1 9C/0Y = 0O o ' ,
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The velocity profile is parabolic and the problem could be solved
. by a method of separation of variables in the same way as BUtler
and Plewes solved for}the case of zero interfacial motion. 'Tﬁe“
present situation‘must be solved for a wide range of values of the'
;oarameter, V. As a result the generation of constants was found
to be impractical, and the eqguation was solved directly on the
computer for seven values of the parameter, V = Uﬁ/UO‘ These range l
from 0.5 to 100, the latter figure being essentlally equivalent to'
.the 501ution'of Butler and Plewes. Equation 43 is a parabolic
_partial ‘differential equation and therefore may be put- in finite
difference form by the application of the Crank—Nicholson six—point-
‘implicit formula. The resulting tridiagonal matrix may be solved |
directly by a Thomas method (14), and corrected by means of a |
:mGauss-Seidell.procedure using a successive overrelaxation factor.s‘
‘A listing of the Fortran programs written for thiS'solution alohg
with all the other programs mentioned in the present discussion may'
be found elsewhere (5). | - |
The results were given directly in the form of'graphs on the |
digital-plotter. Figure 8 shows the average (cup-mixing) fraction .
saturation, ((C -C O)/(CAS - CAO)) Ay 88 2 function of the
Graetz number, Gx/Uhpe, for the'seven values of the parameter
U /U which wererconsidered. The solution was verified by compari~
‘son with the two pertinent analytical solutions available. 'The
solution by Butler and Plewes almost perfectly matched the solutionl
for the highest value of Um/UO (100), over the entlre range for
which the former is vallid. Pigford (ll) has solved for‘the case‘
of liquid flow down a plane, where Um/UO is 2/3. _Again’iﬁ this'"
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case the present solution almost perfectly matched the earlier
. solution from a fraction saturation of 0.20 to 1.00. At values
of the average fraction saturation beiéw 0.2, 1nsUfficient:terms
ere avallable for the analytical-solutien.

The effect of~the interfacial velocity upon the mass transfer
process is quite clearly shown in Figuﬁe 8. For a given.system,
~:_;f the average velocity of the gas phase, Um, 1s kept constant
and the interfacial veloeity, U, 1s allowed to increase from zero
to a high value, one moves vertically upwards on the graph. It ;s
' obvious‘that there is a considerable increase in the mass transgerAh
eoefficienﬁ merely because ef the fact that the 1ﬁterfa¢e is in,
motion. " For example at'a Graetz number ef 6.32, the‘averege
fraction saturation corresponding to no interfacial motion (V 109)_
is 0.58 while for V = 0.5 this increases to 0.78. .&'

The local Sherwood number (Nusselt number for masé‘transferj
based upon the 1nitial‘driving force was computed, using an unsym-
metrical five point formula to estimate the local mass tranSfer'

flux. For very short exposures numerically estimated derivatives
are inaccurate; and therefore only values ef the Sherwood number

~ for valuesvof the Graetz number greater than 10'4 are shown in

eFigure 9. This figure is a logarithmic plot of the local Sherwood

number as a function of the Graetz number, for the same seven values

of the velocity parameter. The curves cross at a Graetz number of
about 0.2 since at higher interfacial velocities saturation is

achieved at a lower Graetz number. The fact that the curves all

cross at one point appears to be a'coincidenee.
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- Finally, concentration profiles were generated for all of the
values of U /U0 mentioned above. Figure 10 is a typical set of .
profiles for Um/Uo 7,2/3' The profiles for thevother cases ere
'reperted elsewhere (5). The dimensionless_concentration'C is
plotted as a.function of the fractional distance from the 1nterfeCe
with the Graetz number es a parameter."This series of proflles 1s
of-particﬁlar interest since 1t 1is the selution.to mass tranefer
'v,;nto a 11quid flowing‘downva plane where there is no drag uponfthe'
interface. For this case, 1t 1s,normal to use the penetration
‘ﬁodel in the estimation of the mass’trensfer coefficlents. ahd
cohcentration profiles. When the exact solution is compared with
the penetration model, it 1s found that the latter is a close
‘approximation‘up to an average fraction saturation of about_0.60,
Vfor estimating the average mass transfer coefficient. The concen-
tration profiles are in agreement up to a Graetz number of 0.04.
| 1Anetherecomparison which is of interest is between the
infinite phase medei with a positive slope in velocity.and tﬁe con-
finedvflow,selutiqn.' For this Qompariseﬁ a value of_Um/Uo of 2.0_vv
was chosen for the confined case. The cbncentration'profiles'
coincide only up to a Graetz number of 0.01 (average fraetion
saturation of 0.125). On the other hand, the average'mass transfer

~coefficient was valid to within 10% up to a Graetz number of 0.2,

which represents an average fraction saturation of about 50%

Interphase Mass Transfer

When a third component passes from a solvent to an inert

- carrier gas, the resistance to mass transfer is in general .
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distributed between the two phases. In the analytic solution to
the unbounded problem it was found that the degree of control which
1s resldent in either phase is dependent upon the parameter, -
(DG/DL)l/z(H/RT). In the confined flow case this group sefves
the séme purpose. The convective transport equation was solved
for two different cases of confined interphase mass transfer.
'The_experimental study which accompanied this theorefical work had
the geometry:shown in Figufe 1. Therefore, the first solution
involves transfer between two‘confined phases, both of which have
parabolic profiles. The partial differehtial'equatidné_for both
| ‘phases may be'puﬁ-into finite difference form by means of a
Crank-Nickolson formula. Henry's law 1s'used to describé the
- equilibrium felationship at the 1ntefface; This assumption along
with the éQuality of fluxes (Equations 19 and 20) are used to
define the cOnnectiqn.bétWeen the two phases at the interface.
The resﬁlﬁing tridiagonalrmaﬁrix 1s solved by the usual techniques.
In'the case'whefé both phases have parabolic profiles in veloéity,'
thréevindependent}parameters*are'necessary to define the problem.
Therefore, a general solution is not pragmatic. The experimehtally
important cases were éolved using this modél,_while the general
sQlutiOn was carried out with,é simplified velocity profiie. Thé
three independent parameters necessary to define each case may |
" be reduced by one if a constant velocity equal to the ihterfaciél
- veloclty 1s assumed in the liquid phase. vSince‘the effect of the
jmass transfer'penetrates to only a small fraction of the total
liquid depth, this assumption is almost always applicable. The

two'remaining independent parameters are the velocity_parameter,
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" U /Uy and the control parameter, (DG/DL)I/E(H/BT). This. problem
was-éqlved for five different values of the control paramétef.

(5, 2, 1, 0.5 and 0.25). Figures 11 and 12 afe the results for

OH = 1. The other results are also available (5) Figure 11

4 presents the 1qcél Sherwood number based upon the'initiai driving
force as a function of the Graetz number. Figuré 12 shows the
average fraction saturation as a function of Graetz number.

'}This solution provides an opp¢rtunity to compare the predic- '
tions of the éddition of resistances principle with the exact
solutidh'for a cocurrent laminar confined flow_case.' Most other
such comparisoﬁs have beeh madé for models in Whiéhltheré are
infinite media.(lg,;z). The one comparison which does exist for
confined media plctures a countercurrent turbulent confined phase
to which the film model 1s applied (15). In the prgsent‘solution |
it is 1nterest1ng to ascértain whether the efféct Of'the penetration
of the_mass transfer to thé wall may be properly predicted by the
addition:Of'the two indepeﬁdently measufediindividﬁél résistances.
For the gas phase resistance the confined flow caée'wiﬁh:a moving -
interface 1éﬂuseds while the penetration model is. chosen toldeSCfibe
; the‘liquid‘phase behavior. The addition of resistances pfinciple
7‘was appliedvtospfedict local and,average'Sherwood numbers for the'.'
1nterphas§ maés transfer case. For the sake of comparison, a value
of OH of 1 and a velocity parameter of V = 4 were chosen. These
probably represent the most severe test of the addition of resis— R
| ﬁances principle. The ratio of the predicted and actuél'sﬁerwoodv
numbers are shown in Figure 13. The solid curve représents the‘

'comparison_of local Sherwood numbers as a function of GraetZ“number,

PP
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.with.the Sherwood numbers based upon the ihitial driviné'force"
(HCLO - cGo); At low Graetz numbers the situation reduces to the
problem previously analyzed for phases of infinite extent. As has
already been noted, the additlion principle works well in this range°
At Graetz numbers above 0.5 the addition of resistances prediction
}becomes increasingly erroneous. In this rangevthe gas phase
‘epproaches saturation in the'gas phase controlled case; this
necessarily causes the 1nd1vidual<gas phase Sherwood number’based
on‘the 1ﬁ1tial driving force to drop toward zero end causes the
oredicted overall coefficient to follow.> In the 1nterphase case

_'the gas phase is less saturated at a given Graetz number and the

- true overall coefficient remains high»

Because of this behavior one might expect that the addition
principle would work better if applied to_local Sherwood numbers
based uponvthe‘local driving force. Such e comparison is also
given_in Figure 13,‘w1fh cupamixing'cohcentrations'usedvas driving
. forces. In this case the addition principle predicts too high a.
mass transfer coefficient at high Graetz numbers. This i1s at least
~partially caused by the fact that the local drivingwforce approeches‘
zero at lower Graetz numbers for the individual.gas phase resistance
than for the overall resistance to mass transfer.

| Also shown in Figure 13 are comparisons for predicted and
actual values of the averagevSherwood group. The average Sherwood
group based upon the log'mean driving force exhibits a deviation -
from the addiﬁion principle which is similar to that for the-localv
She rwood number based on‘the local driving force. The average

Sherwood group based on the initial driviﬁg force, on the:otherv
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hand, . shows agreement with the addition principle to a QGraetz .'
number of 2. This form of Sherwood group welights the initial mass
transfer highly; it has already been sbown that the 1n1tial'maesf

- transfer follows a.penetration model 1n boﬁh phases'and thus givee
average overail coefficients ﬁhich agree well with the addition
"prihciple. Thus, the'preferred_form of application of thefadditioe
principle is that corresponding\to the dashed curve in Figure 13: '

S + ’1 S o (b5)
Kog®  ¥gg2  ¥gr2 | |

‘where the mass transfer coefficients are based on the initial

driving force.

CONCLUSIONS

le In many instances of gas—liduid mass transfer 1t'1s 1m§ortnat
to allow for the ‘effects of the interaction of the fluid

mechanics of the contacting phases.

2. ,In mpst cases of laminar gas-liquid contacting the liquid
phase will follow a penetration model closely, but the surféce
velicity to be used in the model may be greater_or less‘than

3/2 the average velocity.

e Gas phase mass transfer in cocurrent, laminar, gas—liquid flow |
is 1nf1uenced by the interfacial velocity. For well-developed
flow with phasee of 1nf1n1te exteﬁt the'mass'transfer coeffi-
clent is given by Figure 3 and is greater than predicted by

either the Levéque or penetration models.
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4, The effect of donfinihg walls on cocurreﬁt, laminar gas-liquid
mass transfer causes mass transfer coefficients to be less than
glven by Figure 5 for the gas and less than given by the
,penetration model for the liquid. 'Thesereffects become impor-

tant above 50% equilibration of either phase.

5. The addition of resistances principle should work well for gas
and.liquid phases of infinite'extent'(brief_eXpdsures)lin co-
current, laminar flow. For confined phases the most effective

form of the:additibn principle is thaf given by Equation 45.
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Nomenclature

- slope of the velocity of a phase at the interface, sec™t
a - area of mass transfer expdsure,‘c_m2

b - thickness of gas phase, cm
¢ - the concentration of a transferring component in a

phase; Ac = HCLO ~ Cao? g.mol‘es/cm3

C - dimensionless concentration (CA‘- CAO)/(CAS - CAO)

D / - diffhsion coefficient, cme/sec o

F - consﬁant defined in Equation 38

H - Henry's law consféntg atm. cmj/g.mole

H - dimensionless Henry's law constant, H/RT

kc - local mass transfer coefficient based upon the'initial_

concentration driving force, cm/sec
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Bessel function of the second kind |
overall mass transfer coefficient based upon the initial
concentration driving force, cm/sec
length of exposure, cm
index of series

order of the Bessel function

'universal gas constant, atm.'cm?/g.mole K ’
‘a remainder series defined in Reference 6

Laplace transform variable

a remainder series defined in Reference 6

‘absolute temperature, °K

interfacial velocity, cm/sec

velocity parameter, U /U

distance from start of exposure, cm__ _
GX/UOb

direction and distance perpendicular to the 1nterface, ecm

_’y/‘b- |
'2/3 (4 81/2

oH + 1

[5 - 7(oH + 1)1/72

2H U2/3a |

thickness of the 1iquid phase, cm
(U3/a0,)Y/2

constant defined in Equation 26 ' o ,

constant defined in Equatlion 25

viscosity, g«/cm sec



27

UCRL-16925
o - (Dg/D )2 |
T - GH/F
- Subscripts
A - of component. A
AV - a#erage
c - based upon concentration difference driving force.
G - of the gas phase
L - of the liquid phasé

average

]

0 - initlally

s - at the interface
. Superscript
* - measured in the absence or suppression of resistance

in the other phase.
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'CAPTIONS

Flow ahdtintefphase'masé'trénsfer between two flat plates .

 1nfihitetmedium with'an-interfécial velocitye

Solution for méss transfer to an 1nfih1te'medium with an

V;inﬁerfacial veloéity — - Asymptotic solutions,

4,

‘Exact solution, — — — Limiting solutions.

Solution for mass transfer to a phase with a negative

'slope in the velocity profile ~ ——— Asymptotic

10.

for the values of Graetz number listed below.

solufion - Exact solutioﬁ, - Penetration'mOde1¢

Model for interphase mass transfer with control distri-

buted between gas and liquid.‘

- See caption on figure.

See caption on figure.

.See caption on figure.

See caption on figure.

ancentratidn (Cy = €40/Cps - Cpp) a8 a function of

K-distancé from the interface with Uh/Uoréqual to 2/3

Number
of Curve = Graetz No.
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Captions cont.

Number

of Cuprve ‘Graetz No.
10 0.080

S 11 . 0.096
12 ‘ 0.112
13 0.128
14 : 0,144
15 0.16
16 0.24
17 ' 0,32
18 ' O.o-l\lO
19 , 0.48
20  0.56

21 - 0.064 ,
22 - 0s72
23 - 0.80

Figurevll.  Loca1 Sherwobd numbérs as ayfunction of Graetz number
for different values of the paraheter U, /Uy with
6H ='i;O‘for a model with a confined gas and an.

infinite 1iquid,

Figure}l?gi Average fraction saturation as a function of Graetz
number for different values of the parameter Um/UO
with OH = 1.0 for a model wlth a confined gas and an

infinite liquid.

Figure 13. A comparison of the exacﬁ solution for interphase mass
 transfer‘from an infinite liquid phase to a confined ¢
phase wlth the results of the addition of resistances

model for U /U, equal to 4 and oH = 1.0,
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