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ABSTRACT

The Nyquist Criterion of stability in linear systems with feedback
is extended to give predictions of the ringing time of a system for which
the point (1,0) lies close to but outside the Nyquist diagram. Since
simple derivations of Nyquist's theorem are hard to find, one is also

given,

¥ Consultant to the University of California Radiation Laboratory.
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Representation of Network Operators

The most general time-independent linear opefator'« which operates

on the past of a function f(t) may be represented in the integral form
@
«f(t) =/ a(t') £(t-t') dt', (1)
o
If £(t) = exp (st) and s = o % jw, we get the spectrum A(s):
t t ®© '
xSt = &° \f a(t?) e=S¥atr = 8t A(s), (2)
A .
Thus, the eigenfunctions of the operator & are the exponential functions
exp (st), and'the corresponding eigenvalues are the Laplace transforms
A(s) of a(t). This is a consequence of the fact that the operator X is
itself not a function of t. Any linear network may be represented by
some operator X which transforms an input signal f(t) into an output sig-
nal Af(t). If the response to a signal of finite duration dies out so

-

.70

that
‘a(t)‘ ?at < o (3)

then A(s) is a bounded holomorphic function in the right half plane o> 0,

for from the Schwarz inequality

: sﬂfllz dx o./|f2|2 dx (4)

,{fl f2 ax




we get
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|A(s)’2 < (_OO lal® at - foo e20° % a4t = (1/20° )ITZ;? dte (5)
' O (o] JO

Therefore, if we put A(s) = x+ jy, the half-plane o- > O is mapped onto

some finite region -in the A-plane, as in Figo.lo

S—plane

A-plane

\\

Fig. 1
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The effect of the operator @ on the unit pulse £(t) = £(t) shows clearly

the meaning of A(s):

8

A5 (t) ;/ ‘a(tt) B(t-t') dt' = a(t) = (1/2%3) | A(s) és*ids (6)
A ,

where the path of integration C goes to the right of all poles of .A(s), and

extends from (-jog to (+jo), as shown in Fig. 2.

|
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Fig. 2

-



UCRL-1695
—5ee

Thus the output is the sum of the residues of A(s) exp(st) at each of the

poles of A(s). If these poles are at S1s Sy eeo Sy, Wwe have an output

. of the form

n sit
a(t) =ab(t) =2 aje’ (7)
i=1
so that the poles of A(s) represent the natural modes of the network, If
any of these poles should lie in the right half plane o >0, we would have
and exponentially increasing output, leading to a catastrophe. Therefore

a passive network can never generate an operator & with poles of A(s) for

which o> O.

Feedback Networks

A feedback device operates as shown in Fig. 3.

f: {t) - 1 "‘ﬁfz

X %fz(t‘
A B [ .0
Figo 3_9
0 =[50 pe )| ®

£,(t) = _l___@«_ﬁ £1(t)

The f.eedback network p converts the network operator & into &X/(1 -O((3)o

If they contain power.sources, it is possible that

A(s) (9)
1 - A(s) B(s)

may have a pole s with'0'17 0, in which case the system can break into

oscillation with an output ~ exp (slt)., Since by hypothesis A(s) has no
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such pole, this can happen only if A(s) B(s) = 1 has a'root in the half-
plane o >0, This applies strictly cnly to response to ‘shock excitation,
but small distufbances, thermal or otherwise, are always presenit in phy-.
sical systems. Therefore if a feedback device is not to oscillate spon-
taneously, there must be no s for wﬁich Re(s) > O ana for which A(s) B(s)
=1, Thus, if we map the right hélf of . the s=plane onto the plane of .
the complex variable AB 2‘x_f_jy,uthe finite region obtaiﬁed must not con=
tain thé point (1,0). An eéuivalentjstatement is that the curve which
fepresents the locus §f AB fo; real frequencies (which ié the mapping of
the imaginary axis of the s-plane onto the AB-plane) must not enclose the

point (1,0). See Fig. 4.

(1,0

%

L 4
Po

Figo 4o

The criterion of stability juét‘aerivéd'is recognized as Nyquist's
theorem, Its intuitive content 1s this: -one might at first expect that
the criterion for oscillgtion is the existence of some frequency for which
AB is real and greater than uhitig ioeo;if‘fér some frequepc& tﬁe.gain
around the feedback loop is?greétér:thaﬁ>Unity aﬁd fhe total phaée shift
is gero one might expect oscillations of the frequency to start., Nyquist's

theorem, however shows that this is not quite correct; the essential con-
2 2 . )

dition is not oniy the existencevéfJé certain frequency w, but also a
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certain build-up time constant 1/0- such that when the signal éxp (st) =
exp (0~ + jw)t is applied, the gain around the feedback loop is exactly
unity. Once one has this mathematical result it is easy to see physically
why it is correcf: the physical conditions imposed on the signal is, of
course, that in the absence of any input excitation, the gain around the
feedback loop must be exactly unity, and the condition AB = 1 determines
both the real and imaginary part of s. That the wrong criterion can be
satisfied without having the correct one fulfilled is shown by the ex-
ample of an amplifier with an ADB plot as shown in Fige 5. There are two
freguencies Wy, Wy which saﬁisfy the incomplete criférion, but neverthe-

less the amplifier is stable. This has been verified experimentally.

Fig. 5.

According to the above linear relations, an unstavle system would
generate a signal that increases exponentially with tj_meu In actual sys-
tems this will be true only when the signal amplitude is low. For suffi-
ciently high-level signals the network operators &,¢ will always become
nonlinear due to such things as driving vacuum tubes beyond the linear
range of their characlteristics, saturating the core in an output trans-
former, sparking across condensers, heating of resistors, etc. In general
the effect of these nonlinearities is to decrease the gain of a network,

The final stable state of oscillation is again determined by the condition
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xB=1, where A, are now nonlinear.operators, so that not only an ' 5
amplitude and freguency, but also .a wave shape (harmonic content) mayvbe I
found from the condition that the gain around the feedback loop be ex-
actly unity. Thus, the requirement xf = 1 determines thé behavior of an
unstable syatem throughout 1ts bulldup pmocesso ~
Regardlng practlcal appllcatlon59 1t is Lleéf tﬁat ou¥ orlglnal

criterion thatﬁé(s) B(s) = 1 shall have no roots for which o >0 is the
better one to use when the analytical eﬁpressions.for the functions A(s),
B(s) are known, while Nyquistis”formﬁlation is more convenient when the
information available consists of experimental measurements of A énd B

at various frequencies.

Prediction of Ringinngﬁme from a Nyquist Diagram

Although the Nyquist diagfam giVes a definite and unambiguous an-
swer to the question whether a system is stable, there remains a question
of practical interest ‘as to the behav1or of systems whcse stablllty is
marginals ioé;, for which the point (1,0) lies very near to the AB plot,
but outside i£:y All such systems act like high-Q resonant circuits, and
will ®ring® with a long time constant in response Lo any disturbance., In
practice, this may be aévobjeétionable as true instability. To see this
we note that since the Nyquiét diagram is a conformal mep of the ﬁnaginéry
axis of the s-plane, the response function will then have a pecle at a
position s = o 4 jw very close to the imaginary axis, but to the left of

its 0o <0, oo Kw, Frdm the generai definition of Q {see Fig. 6)

2 2 ., Bq L ) o . i

i ’ : . .
So” + o2 w2 =0 (10)
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. Regarded as an equation in the unknown s, this has roots at s'= o + jw,

as required, and we have Q = -#/20-,
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Fig. 6.
The ringing corresponding to such a pole is given by
exp (st) = exp (o= ¢+ jo)t = exp (—t/to) exp (jwt) , (11)
where the ringing time-constant is

ty = -1/0- >0, (12)
[ ] .

Because of the well known property of conformal transfofmations that
in small regions they consist merely of uniform expansion or contraction
with preservation of angles, we can find the ringing time-constant as easily
from the Nyquist diagram as from the location of the pole in the s-plane,
This timefconstant is proportional to the reciprocal of the distance of the
pole from the imaginary axis in the s-plane, and therefore to the reciprocal

of the distance of the point (1,0) from the nearest part of the Nyquist plot.

~ The proportionality factor is found by writing o in a form that is inde-

pendént of the scale of the diagram. Since the magnification factor in the
Nyquist diagram is determined by the rate at which we move along the curve

as the frequency is varied, we see that the correct formula is
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dw S - {13) A

1/t = -0 = a
/. de A

Wwhere a is the distance of the point (1,0) from the nearest point on the
Nyguist diagram, and |dz/auﬂ is the rate at which we move along the curve
as the frequéncy is changed. The Q of the ringing is then given by tg =

- 2G/w, or

. \ | (14)

Conclusion
The response of a system that is close to the point of instability
is that of a high-Q resonant circuit. The freguency and @ of'thé‘ringing

mey be predicted from the Nyquist plot of the system.
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