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E. T. Jaynes* 

Microwave Laboratory, Stanford University 

February 27, 1952 

ABSTRACT 

The Nyquist Criterion of stability in linear systems with feedback 

is extended to give predictions of the ringing time of a system for which 

the point (1,0) lies close to but outside the Nyquist diagramo Since 

simple derivations of Nyquist's theorem are hard to find, one is also 

given. 

* Consultant to the University of California Radiation Laboratoryo 
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NOTE ON THE STABILITY OF LINEAR FEEDBACK SYSTEMS 

Eo To Jaynes 

Microwave Laboratory, Stanford University 

February 27, 1952 

Representation of Network Operators 

The most general time-independent linear operator ~ which operates 

on the past of a function f(t) may be represented in the integral form 

t(f(t) =100 

a(t 1 ) f(t-t 1 ) dt 1
o 

0 

If f(t) = exp (st) and s = cr + jw, we get the spectrum A(s): 

(i{est =- estjooa(t') e-st•dt': est A(s)o 
0 

(1) 

(2) 

Thus, the eigenfunctions of the operator~ are the exponential functions 

exp (st), and the corresponding eigenvalues are the Laplace transforms 

A(s) of a(t)o This is a consequence of the fact that the operatorcX is 

itself not a function of to Any linear network may be represented by 

some operator~ which transforms an input signal f(t) into an output sig-

nalaf(t)o If the response to a signal of finite duration dies out so 

that 

(J) 

then A(s) is a bounded holomorphic function in the right half plane ~>0, 

for from the Schwarz inequality 

(4) 
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we get 

Therefore, if we put A(s) = x + jy, the half-plane o- > 0 is mapped onto 

some finite region-in the A-plane, as in Fig. lo 

y 
A-plane 

Figo 1 

The effect of the operator~ on the unit pulse f(t) = ~(t) shows clearly 

the meaning of A(s)g 

where the path of integration C goes to the right of all poles of.A(s), and 

extends from (-jaq to (+joo), as shown in Fig. 2. 

X S-plane 

X. ________ ,_ __ ~------& 
X 

Fig. 2 
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Thus the output is the sum of the residues of A(s) exp(st) at each of the 

poles of A(s). If these poles are at s1 , s2, ooo sn, we have an output 

. of the form 

n 
a(t) = cX6(t) = L 

i'=l ' 
(7) 

so that the poles of A(s) represent the natural modes of the networko If 

any of these poles should lie in the right half plane cr > 0, we would have 

and exponentially increasing output, leading to a catastropheo Therefore 

a passive network can never generate an operator~ with poles of A(s) for 

which a- "> 0 .. 

Feedback Networks 

A feedback device operates as shown in Fig. 3o 

f. (tl f. +13f2. o<. f2. ( t) 

(3fa. (3 f%. (tl 

Figo Jo 

r 2 (t) =t~:[r1 (t) +~r2(t)] (8) 

f2(t) = (3 fl(t) 
1 - 0(~ 

The feedback network~ converts the network operator~ into ~/(1 -~~)a 

If they contain power-sources, it is possible that 

(9) 

may have a pole s1 with o- 1 /' O, in which case the system can break into 

oscillation with an output~ exp (s1t).. Since by hypothesis A(s) has no 
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such pole, this can happen only if A(s) B(s)::: 1 has·aroot in the half;,., 

plane r::r /' Oo This applies strictly only to response to 'shock excitation~ 

but small disturbances, thermal or otherwise, are always present in phy-. 

sical systemso Therefore if a feedback device is not to oscillate span-

taneously, there must be no s for which Re(s) ~ 0 and for which A(s) B(s) 

= L Thus, if we map the right half ofthe s-plane onto the plane of 

the complex variable AB ~ x T. jy, the finite region obtained must not con~ 

tain the point (l,O)o An equivalent.statement is that the curve which 

represents the locus of AB for real frequencies (which is the mapping of 

the imaginary axis of the s-plane onto the AB-plane) must not enclose the 

The criterion of stability just.derived is recognized as Nyquist's 

theoremo Its intuitive content is this;g· ~pne might at first expect that 

the criterion for oscillation is the existence of some frequency for which 

AB is real and greater than lmity; Leo, if for some frequency the gain 

around the feedback loop is greliter than -unity and the total phase shift, 

is zero one might expect oscillations of the frequency to starto Nyquist's 

theorem, however shows that this is not quite correct; the essential con-

dition is not only the existence of a certairi frequencyw, but also a 
... ; 

', 



.~ 
/ I 

/ 

'· 

,., 
{ . 

' ' \.,I 

UCRL-1695 
-7-

certain build-up time constant 1/<:r such that when the signal exp (st) = 

exp (o- + jw)t is applied, the gain around the feedback loop is exactly 

unity. Once one has this mathematical result it is easy to see physically 

why it is correct: the physical conditions imposed on the signal is, of 

course, that in the absence of any input excitation, the g~in around the 

feedback loop must be exactly unity, and the condition AB = 1 determines 

both the real and imaginary part of s. That the wrong criterion can be 

satisfied without having the correct one fulfilled is shown by the ex-

ample of an amplifier with an AD plot as shown in Fig. 5. There are two 

frequencies ~' w2 which satisfy the incomplete criterion, but neverthe­

less the amplifier is stableo This has been verified experi~mentally. 

According to the above linear relations, an unstaole system would 

generate a signal that increases exponentially with timec In actual sys-

tems this will be true only when the signal amplitude is luwo For suffi-

ciently high-level signals the network operators ~,~ will always become 

nonlinear due to such things as driving vacuum tubes beyond the linear 

range of their characteristics, saturating the core in an output trans-

former, sparking across condensers, heating of resistors, etc. In general 

the effect of these nonlinearities is to decrease the gain of a networko 

The final stable state of oscillation is again determined by the condition 
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~0 = 1, where~~~ are now nonlinear~operators, so that not only an_ 

amplitude and frequency, but also a. wave shape (harmonic content) may be 

found from the condition that the gain around the feedback loop be ex­

actly unityo Thus 1 the requirement ~~ ~ 1 determines the behavior of an 

unstable system throughout it;:;. b}lildup processo 
. . . . ' .. . .. :~ ·. ' .. ''; '· . -~ .. ':", f·. - . 
Regarding practical applications;;;·· it is· clear thai?.' our .original 

criterion that.A(s) B(s) = 1 shall have no roots for which o- )' 0 is the 
. -"'·'·, ..... 

better one to use when the analytical expressions for the functions A(s), 

B(s) are known~ while Nyquist 1s formulation is more convenient when the 

information available consists of experimental measurements of A and B 

at various frequencies. 

Predi£_tion of Ringing~'I'tme from~a Nyquist J2iagr§:l!± 

Although the Nyquist diag:r·am gives a definite and unambiguous an­

swer to the question whether a system is stable, there remains a question 

of practical interest as to the behavior bf 'systems. whos:e stiibili ty is 
- •• -. l• . 

'•':~.· 

marginal; Le~,, for which the point (1,0) lies very near to the AB plot, 
.. "'·,;· 

but outside ito All such systems act like high-Q resonant circuits, and 

will 11ring 11 with a long time constant in response to any disturbanceo In 

practice, this may be as objectionable as true instabilityo To see this 

we note that since the Nyquist diagram is a conformal map of the imaginary 

axis of the s-pla:ne, the response function will then have a pole at a 
position s ""' CJ + jw very close to the imaginary axisJ but to the left of 

it g o- < 0~\ cr.<< w o From the general definition of Q {see Fig. 6) 

So2 + cr 2 i" w 2 :: 0 (10) 
. ;... .. ,;:' 
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Regarded as an equation in the unknowns, this has roots at S'= ~ ± jUJ, 

as required, and we have Q = - wj2cr o 

5o . .s ,::....~ (.J 

/I 
I I 

\I 
':..l slit ..._ 

Fig. 6. 

The ringing corresponding to such a pole is given by 

exp (st) = exp (cr .e- jw)t -= exp (-t/t
0

) exp (jwt) , (11) 

where the ringing time-constant is 

t = -1/o- >0. 
0 

• 
(12) 

Because of the well known property of conformal transformations that 

in small regions they consist merely of uniform expansion or contraction 

with preservation of angles, we can find the rjnging time-constant as easily 

from the Nyquist diagram as from the location of the pole in the s-plane. 

This time-constant is proportional to the reciprocal of thf' distance of the 

pole from the imaginary axis in the s-plane, and therefore to the reciprocal 

of the distance of the point (1,0) from the nearest part of the Nyquist plot. 

The proportionality factor is found by writing cr in a form that is inde-

pendent of the scale of the diagram. Since the magnification factor in the 

Nyquist diagram is determined by the rate at which we move along the curve 

as the frequency is varied, we see that the correct formula is 
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1/t :: -cr- = a \ dw \ 
o dZ 

. (13) 

where a is the distance of the point (1,0) from the nearest point on the 

Nyquist diagram, and 1 dz/dw l is the rate at which \ve move along the curve 

as the frequency is changedo The Q of the ringing is then given by t 0 : 

2Q/w, or 

(14) 

Conclusion 

The response of a system that is close to the point of instability 

is that of a high-Q resonant circuit. The frequency and Q of the ringing 

may be predicted from the Nyquist plot of the systemo 
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