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Daniel z. Freedmant and Jiunn-Ming Wang 
Physics Department and Lawrence Radiation Laboratory 

University of California, Berkeley, California 

ABSTRACT 

It is not clear from the Regge representation that the asymptotic 

a(u) form s . holds in the backward scattering of unequal mass particles because 

the cosine of the u-channel scattering angle remains small as s increases. In 

this paper we use a representation for the scattering amplitude first suggested 

by Khuri to show that the form sa(u) is valid throughout the backward region. 

However, in order to ensure the analyticity of the amplitude defined by the 

Khuri representation at u = 0, it is necessary that Regge trajectories occur 

in familjes whose zero energy intercepts are spaced by integers. Denoting the 

leading or parent trajectory by a
0
(u), we find that duaghter trajectories 

~(u) must exist, of signature (-l)k relative to the parent, satisfying 

~(0) = a0(o)-k. We then study Bethe-Salpeter models and find that this 

daughter trajectory hypothesis is satisfied for any Bethe-Salpeter amplitude 

which Reggeizes in the first place. This fact follows elegantly from the fou:':··-

dimensional symmetry of Bethe-Salpeter eqUations at zero total energy. Some 

phenomenological implications of the daughter trajectory hypothesis are dis-

cussed. We have also characterized the behavior of partial wave amplitudes in 

unequal mass scattering at u = 0 and find the hitherto unsuspected result 

a(u,£) ~ u-a(O) where a(u) is the leading u-channel Regge trajectory. 

* Research supported in part by the Atomic Energy Commission and in part by 
the Air Force Office of Scientific Research, Office of Aerospace Research, 
United States Air Force, Grant No. AF-AFOSR-232-66. 
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I. INTRODUCTION 

The characteristic features of the Regge pole description of high 

energy scattering processes are the asymptotic forms sa(t) or sa(u). However, 

in the scattering of unequal mass particles, the question of whether the Regge 

form sa(u) holds in the backward region has never been settled because there 

is a cone about the backward direction in which cose does not become large 
u 

with increasing s. There has been general uneasiness1 ' 2 about applying the ·~ 

R~gge asymptotic form in this region. 

Our investigations show that the simple Regge form holds throughout 

the backward region. 'I'his conclusion is obtained by establishing a representa·· 

tion for the scattering amplitude which explicitly exhibits the Regge behavior 

in the region in question. Further we suggest very strongly that as a general 

consequence of Lorentz invariance, Regge trajectories occur in families, the 

leading parent trajectory a
0
(t) occurring with a set of daughter trajectories 

a (t) with zero energy intercepts a (0) = a0(o)-n. The daughter trajectories 
n . n 

play a minor role in equal mass situations, but for unequal mass scattering 

their function is to cancel singularities in the asymptotic contribution of 

the parent trajectory. 

As a by-product of this work, we have been able to show tha.t the 

+ partial wave amplitude a-(u,t) of an unequal mass scattering process behaves 

+ -a ±(o) + 
like a-(u,£)- u L near u = 0 where ot-(o) is the leading trajectory of 

the same signature in the u-channel. This behavior is quite different from 

that usually assumed3 in approximate dynamical calculations in s-matrix theory~ 

Usual discussions1 of the asymptotic behavior in the backward region 

are based on the application of the Sommerfeld-Watson transformation to 

expansions of the scattering amplitude in partial waves in the u-channel. The 



~· 

3 

high energy limit is introduced through the variable 

(1) 

This variable is bounded by unity for all s when u is in the backward cone 

defined by 0 ~ u ~ uB = (m2-~2 )2 s- 1 , and, since z· does not become large with . u 

increasing s, the conventional Regge representation (i.e., the Sommerfeld-VJatsor> 

transformed partial wave expansion) does not furnish an asymptotic limit in 

this region. Indeed, any representation A(u,s) = f(u,z ) is suspicious at u 

u = 0 bec&use the transformation of variables is singular there. 

Our discussion is based on work of Khuri4 who shows that Sommerfeld-

Watson transformations and Regge analysis can be applied to representa.tions 

other than partial wave expansions. Starting from power series. in the Mandel-

stam variables t and s, we follow Khuri and establish a representation whieh 

explicitly exhibits Regge behavior throughout the backward region. 

The reader should note that we do not attempt to prove £-plane mero-

morphy of partial-wave amplitudes in this paper but merely address ourselves 

to the problem of resolving the kinematic ambiguity in the Regge representatior, 

The resolution of this ampiguity is definitely not trivial and it is not sur-

prising that our investigations have revealed very distinctive features of 

the unequal mass scattering problem. 

In Section II we discuss the Khuri and Regge representations and 

their connection. We then show that daughter trajectories must exist if the 

Khuri representation is to define an amplitude with correct analyticity. In 

Section III we give an independent proof of the existence of daughter tra-

jectories based on the four-dimensional symmetry of Bethe-Salpeter equations 

at u = 0. In Section IV we discuss the phenomenological implications of 
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daughter trajectories and also discuss the kinematics of inelastic two body 

processes in which similar ambiguities of the Regge representation occur. In 

Section V we use the preceding results to characterize the behavior of partial 

wave amplitudes near u = o. In Appendix A, we prove that the reduced residue 

functions of Regge poles have at most isolated singularities at u = O, and in 

Appendix B, we establish a correspondence between the Regge and Khuri repre

sentations for Re£ < -1/2, a result which was thought unlikely in Khuri's 

original paper. 4 

Our notational convention is always to discuss the effect of Regge 

poles on the high energy limit of an a-channel process, and we therefore consi-

der partial wave expansions in the u-channel for the backward scattering 

problem and in the t-channel for forward inelastic processes. 

II. THE KHURI REPRESENTATION 

We assume that the scattering amplitude A(u,t) satisfies a fixed u 

dispersion relation 

A(u,t) = 1100 

dt' 
1( t 

0 

(2) 

and further assume that the corresponding Froissart-Gribov partial wave ampl:i.·· 

tudes 

a±(u,£) = + loodtAt(u,t)Q£(1+ t2) ± + JondsAs{u,s)Q£ (s-2m2;2!J.2+u -1) 
2q rr t

0 
2q 2q rr s0 2q 

(3) 

contain only- moving poles in the £-plane for Re£ > -1/2, and that they coincide~ 

1-1ith even and odd physical partial waves for all non-negative integral .e. 

Hence the subtraction terms which are in general neeessary in {2) need not be 

discussed. 
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The case where the background integral can be shifted to the left of -l/2 is 

treated in Appendix B. The Regge pole terms have asymptotic forms sa(u) omly 

'for u f 0, and have logarithmic singularities in u at u = 0. For s large and 

positive, the background integral does not converge for complex u,5 and the 

representation is not '\-tell defined at u = 0. 

Because of these defects of the Regge representation, we are led to 

consider a new representation based on power series in the Mandelstam variables 

t and s 
co co 

A(u,t,s) =I b(u,v)tv + I c{u,v)sv (5) 

v=O v=O 

The common region of convergence of the two series is the domain ltl < 4~2 , 

Is I < m2, for nN kinematics. Continuation to other regions is made after 

Sommerfeld-Watson transformation. 

The power series coefficients are given by 

-1 reo -v-1 
b(u,v) = n J~ dt At(u,t)t 

to 

-1{
00 

-v-1 
c(u,v) = n J. ds As(u,s)s 

so 
(6) 
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Actually the integrals defining b(u,v) and c(u,v) converge only for Rev> M 

and Rev > N respectively, "\'There M and N are the number of subtractions in the 

t and s channel contributions to the dispersion relation (2), and must be 

defined by analytic continuation to the left of these lines. We note that 

b(u,v) and c(u,v) have only the physical cut in the variable u and are in this 

respect much simpler than partial wave amplitudes. 

To investigate the continuation of b(u,v) and c(u,v) into the region 

where their defining integrals diverge, we use the Regge representation (4) to 

compute the absorptive parts 

At (u, t) = Dt (u, t) + ~ ~ ~t (u)(2a1 + (u)+l)Pcx
1 
+(u) ( z) 

~ 

+ ~2 \ ~.-(u)(2o:.-(u)+l)P -c )(z) 
~ J J a. u 
j l 

(7) 

A (u,s) = D (u,s) + ~ \ f3.+(u)(2a.+(u)+l)P +( )(z) 
s s ~ 1 ~ a1 u 

1 

Here Dt(u,t) and Ds(u,s) are the discontinuities of the Regge background 

integrals for positive and negative z respectively, and we are to use for .z 

the expressions 

(9) 

in (7) and 

z = 1 -
2 2 

s+u-2m -2~ (lO) 
2q2 

in (8 ). For real u f 0, Dt(u,t) = O(t-1/ 2 ) and D
5
(u,s) = O(s-1/ 2 ) so that 
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their contributions to b(u,v) and c(u,v) through (6) are analytic for Rev>-~. 

The contribution of the Regge pole terms can be found from the 

integrals 

(11) 

and 

~:ds Pa(u) ( s-2m::~g2+u - 1)s-v-1 • (12) 

Khuri
4 

has shown that (11) is regular for R~v > -1/2 except for simple poles 

at v = a(u), a(u)-l, ••• ,a(u)-n where 1/2 > Re(a(u)-n) > -1/2. This result 

follows from the truncated asymptotic expansion 

(13) 

The integer m is determined by the condition 3/2 > Re(a-2m) > -1/2, so that 

G
0

(x) = O(x-1/ 2) and its contribution to the integral (11) is analytic in 

Rev > -1/2. An identical technique works for (12) and we ~gain find that to 

each Regge pole a(u), there correspond Khuri poles at v = a(u),a(u)-1) ••• , 

a(u)-n, with 1/2 > Rea(u)-n > -1/2. It is useful to speak of the pole at 

v = a(u) as the principal Khuri pole, and the poles displaced to the left by 

integers as satellite poles. The reader should be careful to dj.stinguish the::-:e 

satellite v-plane poles from the daughter Regge poles which we discuss later. 

The residues of the Khuri poles can easily be computed, and we obtain 

b(u,v) 

t3j-r(aj-+3/2) 
+.1:) [ 1 + 

.frr.~ q20f r(l+aj-) v-a. 
J J 

+ b(u,v) 

2 + 2q a. 
1 + 

+ v-a. +1 
1 

2 -2q a. 

••• + 

J + ••• + 
v-a. +1 

J 

Pni 

J v-a. +n. 
J J 

(14) 



and 

c(u,v) 

1'' --'L ~. 
J 

+ + I < 2 - 2 2 + ~'i r(ai +3 2) [ 1 2q +2m +2j.J. -·u)ai . 
+ ------ + ••• + 

20:· ( + ) + + q J. r a
1 

+1 v-a. v-a:. +1 
J. J. 

t).-r(a.-+3/2) [ 2q
2
a:.- an· J 

J J 1 + J --~1..___ + ••• + 
q2o:j-r(a:.-+l) v-o:. v-a:. +1 v-a:. +n. 

J J J J. J. 

8 

+ 
Oni l 
+ + v-a:. +n. -' 

J. l. 

+ c(u,v) (15) 

where b(u,v) and c(u,v) are regular in Rev> -1/2. We have omitted the argu-. 

ment u of the residue and trajectory functions, and have written explicitly 

only the residues of the principal and first satellite Khuri poles. Residues 

of the higher satellites are given in Appendix B. The significant property of 

these residues is that the residue of the jth satellite pole contains the term 

(2q2 )j, and therefore has a pole of order j at u = o. 

So far we have established that b(u,v) and c(u,v) are meromorphic 

functions of· v for Rev > -l/2 and for u real, u ~ 0. It follows from the 

definition (6) that b(u,v) and c(u,v) are analytic in u in the whole eut u-

plane for Rev > M and Rev > N, respectively. However to the left of these 

lines, the analyticity (meromorphy, to be more exact) of b(u,v) and c(u,v) at 

u = 0 (or for complex u), cannot be inferred rigorously from the definition (6) 

because the defining integrals diverge or from the Regge representation (4) 

since the latter fails to furnish the asymptotic behavior of Dt(O,t) and Ds(O,~ 

It seems impossible to avoid this difficulty, which v1e regard as a failure of 

the Regge representation rather than as any genuine defect of the Khuri ampli-

tudes. Therefore we assume that the Khuri amplitudes b(u,v) and c(u,v) as 

defined by (6) can be continued to u = 0 or into the complex u plane, and have 

no singularities for Rev > -1/2 other than these given by the finite number of 

moving poles in (14) and (15). Hence b(u,v) and c(u,v) are analytic in the 

cut u-plane and in Rev > -1/2. 
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The next step is to ma.l~e a Soromerfeld-~vatson transformation of the 

power series (5) obtaining 
l+i 

A(u,t,s) = (-21)-~2 :v(sinnv)"1(b(u,v)(-t)Y+c(u,v)(-s)Y) 
1 . 

-2-~co 

+ + I f3. r(a. +3 2) 
~ ~ 

+ + + 
o:i o:. 2 + a. -1 

[(-t) +(-s) ~ -2q ex. (-t) ~ 
J. 

f3.-r(o:.-+3/2) a.- aj 
2 

a. -1 
--=--::.I::J __ J"'---- [ ( -t) J - (- s) -2q a.- ( -t) J 
q2o:j-r(o:.-+l)sill:J'{O:.- J 

J J 

2 2 2 
ex.- -1 n. a;_. -n. + ex. -n. 

(2q +2m +2tJ. -u)ex.-(-s) J + ••• +(-1) JP -(-t) J J+a (-s) J J] (16) 
J ~ ~ 

The Khuri background integral converges and defines a function which has only 

the physical cut in u, and falls off at least as fast as an inverse square root 

as s or t become large with u fixed. Each square bracket in (16) gives the 

contributions of the principal and satellite Khuri poles coming from one Regge 

pole of definite signature. 

We now examine the pole terms in the limit appropriate to high energy 

2 2 bacbrard scattering in the s-channel, by substituting t = 2m +2tJ. -s-u in (16), 

expanding powers of this quantity in binomial series, and considering some large 

positive s. Each square bra.~ket becomes 

+ + + ± + 

( i~o:-)[ ex- ( 2 2 2 a--1 ( a -2 a--n - ( ) l±e s + u-2m -2tJ. -2q )s +f2 a,u)s + ••• +f (a,u)s ]+f u,s • n a 

(17) 

The functions appearing here are written explicitly in Appendix B. Th':-! functim 

fa(u,s) is of order s-1/ 2 and comes from. the convergent tails of the binomial 
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series, while the first n terms correspond exactly to the first n terms of the 

expansion of 

(18) 

which is what one would have obtained from the ordinary Regge representation. 

To proceed further it is necessary to discuss the analytic properties 

of the Regge residue functions. In Appendix A it is shown that the reduced 

residue functions defined by ~(u) = q~2a(u)~(u) have no cuts in the vicinity 

of u = 0. However the proof does allow finite order poles or essential singu-

larities at this point. 

We consider the analyticity properties of (16) at u = 0. The back-

. ground integral is analytic there, and so is the full amplitude. The contri-

bution of each principal Khuri pole has the same analyticity as the reduced 

residue of the Regge pole to which it corresponds, and the jth satellite contri· 

bution has an additional singular polynomial of order j in u-1• The sum of all 

the Khuri pole contributions must be analytic at u = o, and this can occur only 

if the singularities of the individual contributions cancel because of coopera-

tion among the Regge trajectories. 

+ Let a
0 

(u) be the leading Regge trajectory near u = 0, assumed for 

definiteness to be of positive signature. Its reduced residue must be analytic 

at u = o, since a singularity there could not otherwise be cancelled. The 

first Khuri satellite contribution then has a pole at u = 0 whose residue can 

be computed from (16) and (17). To cancel this pole there must be another 

Regge trajectory a
1
-(u), of opposite signature, satisfying a1-(o) = a 0+(0)-l, 

which we call the first daughter trajectory. 6 Its reduced residue ~1-(u) has 

a pole at u = 0, fixed so that the singular part of its principal Khuri 
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asymptotic series in powers of s of the Legendre functions keeping onl:\r the 

finite number of terms which grow faster than background. Introduce one by 

one the daughter trajectories with reduced residues chosen to cancel the singu-

larities which occur in the term by term continuation to u = 0 of the contri-

butions of the parent trajectory and the higher-lying daughters. All this can 

be done in a finite number of steps and results in a finite set of powers whose 

sum is analytic at u = 0. To tru~e explicit account of the cancellation of 

singularities, a Taylor expansion about u = 0 should probably be used j_n 

phenomenological data analyses. There iS\no a priori reason why the regular 

parts of the daughter contributions should not be as important as the parent 

trajectory contributions in any given order and parameters should be introduced 

to describe these regular parts. 

Although the mechanism of cancellation of singularities by daughter 

Regge trajectories may seem rather miraculous, it is a rigorous consequence of 

the assumption that the Khuri amplitudes b(u,v) and c(u,v) are analytic at 

u = 0 except for singularities due to the moving poles in v. Although not 

proven, such analytic behavior is suggested by the maximal analyticity concept. 

Since it does not appear possible to avoid an assumption of this kind, 'ive have 

sought and obtained additional support for the daughter trajectory hypothesis. 

This is discussed in the next section. 

III. DAUGHTER TRAJECTORIES AND BETHE-SALPETER EQUATIONS 

In field theory the scattering amplitude satisfies a Bethe-Salpeter 

equation 'VThich can be written in momentum space as 

1 4 II("' .1'\lf {').) ("'" "'t ") 
T(A "''·"')-I("' "'•·"') + _!__ d pI p,p ;AT p ,p ;K p,p ,K - p,p 'K 2 1 2 2 lA 2 2 

21r i [ (-K+p") +m )[ ( "";:.K-p) +11 J 2 2 

(20) 
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contribution exactly cancels that of the first Khuri satellite of the leading 

parent Regge pole. 

In general there will be a series of daughter trajectories OJ{(u) in 

the £-plane, of alternating signature, satisfying 

k = l, ••• ,n 1/2 > Rea0(o)-n > -1/2 • (19) 

The corresponding reduced residues i3k(u) will have poles of order k at u = 0, 

with everything arranged so that singularities of the individual Khuri pole 

contributions cancel among themselves upon summation. The cancellation 

requirement imposes conditions on the first k-1 derivatives of the daughter 

trajectory functions and on derivatives of the reduced residue function as 

well. It should be noted that the shadow poles need satisfy (19) only at u = 0 

and will in general not be integrally spaced for u f 0. 

There may, of course, be more than one Regge trajectory with reduced 

residue analytic at u = 0. Each such parent trajectory will have a series of 

daughters with the properties discussed above. 

In Appendix B we show that the whole discussion above can be 

generalized to include the case where the Regge background integral contour 

can be shifted to the line Ret = -L with L > 1/2. In this case the Khuri 

amplitudes will be meromorphic for Rev > -L, and there vrill be correspondingly 

more Regge daughters in each family of trajectories. 

The foll~ring prescription for the high energy contribution of a 

family of Regge trajectories sums up our work on the Khuri representation. The 

contribution of a parent Regge trajectory in the Regge representation is well 

defined for u fo 0, and involves Legendre function of argmnent z. Obtain the 

·, .... 
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becomes infinite because of the extra degree of invaria.nce present. 

It is very convenient to make the Wick rotation7 in which the inte-

gration contour of the relative energy variable is moved to the imaginary axis. 

External relative energies are also continued to imaginary values, and new 

variables defined by p0 = ip4, Po' = ip4', p0" = ip4". The resulting integral 

equation is 

in which the integration space and scalar products are Euclidean. For 

K2 < (m~)2 , the Wick rotation is justified if the Bethe-Salpeter kernel is not 

too singular on the light cone. Sufficient conditions for its validity are 

discussed below. We note that at u = 0, the invariance group of Eq. (22) is 

0(4) and it will be very useful to expand the scattering amplitudes using 

representation functions of this group. 

Several authors8'9 have used the four dimensional symmetry of the 

Bethe-Salpeter equation to discuss the high energy limits of field theory. The 

only authors who recognize the implications of such a symmetry for Regge 

trajectories are Domokos and Suranyi.9 Our discussion resembles theirs in 

spirit, although the momentum space approach we use does not appear to have 

previously been given. 

We consider Bethe-Salpeter kernels which possess spectral representa-

tions of the form 

I(" ""' ·") = !foo dTcd-r,u) + !fco d-rp(T .•. ~ 
P ,p 'K rr 2 rr 2 

Tl T+(p-p') T2 T+(p+p') 
(23) 

where the spectral densities may contain delta functions in -r, but are required 
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The center of mass motion he,s been separated out, and R is the total energy-

momentum four-vector, while p and p' are the relative energy-momentum vectors 

of the particles in the initial and final states. The interaction kernel 

I(p,p';~) is defined in formal field theory as the sum of all graphs which are 

two-particle irreducible, although it is usual in practice to approximate the . 

kernel by a small number of irreducible graphs. Equation (20) defines an off-
. 

mass shell extension of the T-matrix, and the physical scattering amplitude is 

obtained by evaluating at 

2 2 2 2 2 2 -1 [u -2(m +~ )u+(m -~ ) ](4u) 

(21) 

Our notation is to use carats p to denote four-vectors, and bold letters E to 

denote spatial three-vectors, while 1~1 = (~·~)1/2 , and p = (p•p) 1
/

2 = 

( bti2-Po2)1/2. 

Because of Lorentz invariance, the kernel I(p,p';K) depends at most 

on the six independent invariants which can be formed from it three four-vecto1· 

arguments. It is convenient to discuss the properties of the equation in the 

center of mass frame in which 'R = ( .fu,o ). For u ~ 0 the equation is invarir:v,t· 
"' 

under the group 0(3) of three-dimensional spatial rotations, and this invariancc 

permits a separation of the equation via the ordinary partial wave expansion. 

For u = 0 the kernel depends only on the three Lorentz invariants formed from 

p and p', and the invariance group of the equation is isomorphic to the Lorentz -

group itself. This extra degree of invariance at u = 0 ensures the existence 

daughter 
of · trajectories with exactly the properties described in Section II. 

This phenomenon is analogous to that in Yukawa potential scatter:ing in which 

the Coulomb degeneracy of bound states is obtained as the potential range 
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not to have two-particle cuts in u. Such kernels are not the most general 

permHted by Lorentz invariance, but if xr( T, u) and p(,., u) vanish as ,. -~ oo, 

they are essentially the only kernels for I'Thich the Wick rotation can be 

justified and £-plane meromorphy proved. 10 We will prove that the pattern of 

daughter trajectories discussed in the previous section must exist in any 

Bethe-Salpeter amplitude with £-plane meromorphy. However the symmetry which 

is responsible for this pattern of daughters is far moTe general and we briefl;y 

discuss its effect in the case of kernels for which meromorphy cannot be proved. 

The ordinary partial wave Bethe-Salpeter equation is obtained by 

expanding in partial waves 

co 

T(p,p' ;1<:) = I (2£+l)T .e(p4, l;el ;p4 
1

, l;e' l;u)P .t(z) 

00 

I(p,p';K) = I (2£+l)I.e(p4, IPI;p4', l2' l;u)P.e(z) (23) 

£==0 

where z == ;e·;e' /l;ell;e' I, and 

\ 
(24) 

Separation of the Bethe-Salpeter equation is thus achieved by using the additim 

theorem for Legendre functions and e;}thogo!"!S.lity of tile spherical harmonics. 

One obtains 



1 dp4 " IP"I 2
dp"I ./(p4, lk:I;P1t" I~" I ;u)T _/(p4", I£" l;p4', 1£' I JU) 

+ -J (26) 
2rr

2 
[ (~i ..fu-p4" )

2
+ jp" l2+m

2
]( (~i .fu+p4 

11 
)
2
+lp'' 1 2~ 2J 

where to obtain suitable Regge continuations, we have defined I£±.= I~l) ± r~2 ~ 

vrhich coincide with physical .£ amplitudes fm• positive and negative integers 

respectively. 

If the particles are identical then m = ~ t~•Ji'l. oi T, u) = p( T, u). l;t is 

inte!esting that in this case the odd signature amplitude vanishes identic~lly 

on the mass shell, but does not vanish off shell. 

The interaction kernels (23) are 0(4) invariant for all u, and it is 

convenient to express them in terms of four•dimensional spherical harmonics as 

f 
. 11 

defined, or example, in the paper of Schwartz. It follmvs from the 

. 12 
generating equation of the Gegenbauer polynomials that 

. 
00 2 2 

-~- = ..L \ f ( P +P' '+T) c l(w)(±l)n 
. T+(p±pi )2 2PP' f::o n 2PP n 

- "'"'I where w = p•p' PP', and 

r;:;-- 'n+l 
. fn (x) = 2[x- "-'x.:::-lJ 

(27) 

(28) 

The functions f (x) in the four-space treatment play a role analogous to the n , 

Q.e functions in the conventional treatment. 

To proceed it is useful to defint:! functions 

(29) 

which are orthonormal wEh rec:·pect to the lower :'..r.:lex on the interval (-1,1) 

with integration measure (1-i' )1/ 2dx. In terms of thrise functions th,, addition 

:· .· 
t; 
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theorem for GeGenbauer polynomials reads12 

r.o 

cn
1

(w) = 2(n:l) I D~~~(w·)D~:~(w' )(2£+l)P .e(z) (30) 

.e=O 
where 

- 2 1/2 2 1/2 w = vTW 1 + (1-w ) (1-w' ) z • (31) 

The variable vT is the cosine of the angle between p and the fourth axis, and 

w' is similarly defined. 

One can then expand, after exchanging orders of summation, 

()() 00 

I(p,p';K) = rr I I In(P,P';u)[2(n+l)J-~!~~(w)D~~~(w')(2£+l)P.e(z) (32) 

where 

(33) 
·. 

and 

(34) 

Comparing (23) and (32) we find 

00 

I /CP4' IJzl ;pL~ r' I~' I; u) = rr I 
A.=O 

>vith 

(36) 

As a consequence of 0(4) inva.riance, these kernels depend essentially only on 

the sum .e+A., the only separate A. dependence is a simple sign alternation, so 

that there are two independent kernels for each value of the sum .e+A.. 
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Completeness of the Gegenbauer polynomials permits us to write a 
+ 

similar expansion forT~-
"' 

00 

T ./ (p4' IP I ;p4 I' IP' I; u) = 1t IT~ ,A (P ,P' ;u)[ 2(.HA+l )r 1n~+ 1(w )D~+1 (w' ) (37) 

A=O 

but since the 0(4) symmetry of the Bethe-Salpeter equation is broken for u ~ 0 

by the propagator factors we cannot expect the T.t,A to depend simpl~r on the 

sum £+A for u ~ o. 

We can use ( 35 ) and ( 37) to revTrite Eq. ( 26) as 

00 

+ (4n: f 1 I (£+v+lr~P"P"3r~,A (P ,P" ;u)G~ v (P"' u)T~, v (P" ,P'; u) (38) 

v=O 

where 

(39) 

Equations (26) and (38) are mathematically equivalent. We have merely used 

orthogonal polynomials to change one of the integrations in (26) into a dis-

crete summation. 

Equation (38) is coupled in the discrete indices because the O(h) 

symmetry is broken for u ~ o. Indeed 

(Ll-0) 

so that for u = 0, we obtain the uncoupled equation 

d.P"p"3I± (P p"·o)T± (P" P'·O) 
± ± 1 J £A ' ' £A ' ' T0 A(P,P';O) = I 0 A(P,P';O) + 4 (£+A+l) 2 2 2 2 
~, ~, n (P" +m ] [P" i1! ] 

(41) 

Moreover it follows from the remarks after Eq. (36) that there are really only 
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"' two independent amplitudes A~~~) (P,P 1 ) for each value of £+/1., such that 
± . + + + 

T£,/1. = A£+t.. if /1. is even, and T£,t.. = A£+/1. is /1. is odd. 

Now it has been shown using Fredholm techniques that the solution of 

Eq. (26) or (38) contains only Regge poles. These appear as zeros of the 

Fredholm determinant. This determinant factors into an infinite product at 

u = 0 corresponding to the decoupling of Eq. (38), with two independent factors 

for each value of £+/1., /1. = 0,1,2, •••• The zeros of the factors give the 

+ + + 
location of poles of A£+t..• Suppose A£+/1. has a pole at a (0), so that in its 

vicinity 

A+ (P P') ~ b(P,P') 
£+/1. ' £+/1.-a+(o) 

(42) 

Then by (37) vre find that T .. /(p4, IPI ;p4•, IP' l;o) has Regge poles at £ = a+(o), 
+ + - + + a (0)-2, a (0)-4, etc •••• , while T£ has poles at £ =a (0)-1, a (0)-3, etc. 

Similarly if A ~+/1. has a pole at a- ( 0), then T £- has zero energy Regge poles at 

£ = a-(o), a-(o)-2, etc., and T£+ has poles at£= a-(0)-1, a-(0)-3, etc. 

Since trajectory functions are analytic near u = o, a pole in the £-plane at 

u = 0 must lie on a genuine trajectory. Hence we have proven the existence of 

daughter trajectories of alternating signature spaced by integers at u = 0. 

The next task is to calculate the residues of the daughter poles 

using (37) and (42). The calculation is straightforward but messy, and we will 

merely outline the steps and then give the results. First we define a reduced 

residue function by 

(43) 

The factor extracted is analogous to the centrifugal barrier in the conven

tional treatment, and it is easy to see using the properties of fn(x) in 
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Eq. (28) that b~P,P') has no singularities as its arguments approach zero. 

The second step is to calculate the D£+l(w) explicit!y, and then use the 
J..l. 

relations 

IPI = P(l-w
2

)
1

/
2 

p4 = Pw (!~4) 

to eliminate w and vi' from the result. Finally we extrapolate to the mass 

shell using (21) and remembering that p4 = -ip
0 

because of the Wick rotation. 

Denoting the on-shell limit of b(P ,P') simply by b', we find that the parent 

Regge pole and its first and second daughter pole terms at u = 0 are 

(45) 

Corresponding formulas hold if the principal Regge pole is of negative signat'll!(' 

We infer from (45) the behavior of the on-shell Regge residue 

functions near u = 0. The parent trajectory a+(u) has a reduced residue 

f3+ (u) which is regular near u = 0. The residue f3
1

- (u) of the first daughter 

trajectory can be written as 

(46) 

where h1(u) is regular at u = 0. The pole at u = 0, discussed in Section II, 

is evident in ( 46). 

Sc.·me· pllo:perties of the residue of the second daughter trajec:;ory can 



21 

also be obtained from (45), and there is obviously a double pole at u = o. 

There is also a single pole whose residue cannot be completely calculated from 

(45) since it involves the solution of the Bethe-Salpeter equation to first 

order in the symmetry breaking parameter u. A complete verification of the pole 

cancellation mechanism for the second and lower-lying daughter tr~ectories 

requires a perturbation solution of the Bethe-Salpeter equation in the energy 

- u of the type outlined by Domokos and Suranyi.9 We have not carried out such 

a calculation because these trajectories lie quite far to the left in the .£-

plane and are unlikely to be of interest in the near future. 

We note that in the equal mass case, the residues 6f the first and 

all odd number daughter trajectories would vanish at u = 0 even in the 

physically artificial case of non-identical particles. Statistics, of course, 

guarantees that _the whole on shell amplitude T.R,-(u) van~sidentically. The 

second and all other even daughters do contribute at u = 0 in the equal mass 

case. 

It is easy to use (46) and (16) to compute the contribution of the 

first daughter to the large s limit of the amplitude. We write here the 

resulting large s contributions_ of the principal and first satellite Khuri 

+ poles of the parent Regge trajectory a
0 

(u) and the principal Khuri contri-

bution of its first daughter a
1
-(u): 

-2 ~r(a0+(u)+3/2) +( ) 
A( ) Q*"o(u)[l + eirrao u J u,s ~ + + ~ 

r(a0 (u)+l)sinna0 (u) 

+ + ) 

[ 
a0 (u) ( 2 2 1 (m2-~2)2) + a0 (u -1] 

X s - 'm +~ -~- 2u a0 (u)s (47) 
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The condition cx
1
-(o) = c-:

0
+(0)-1 ensures that the singular terms in (L~-'7) cancel 

exactly~ which is just vrhat -vms required in Section II. There vre found that 

such a cancellation was required in order that the Khuri representation define 

an amplitude analytic at u = 0. Here we have shown that the requirement is 

fulfilled because of the 0(4) symmetry of the Bethe-Salpeter equation. 

Our proof of the existence and properties of daughter trajectories 

applies to Bethe-Salpeter kernels of the form (23). This class of kernels can

be enlarged by allm1ing the spectral functions in (23) to depend on the 

invariants p2, p' 2,K·p, and K•p' with smoothness and asymptotic conditions 

which ensure that the.Wick rotation can be performed and that the resulting 

integral equation is of Fredholm type. Such kernels also Heggeize, and the 

existence of daughter trajectories can be proved. 

Domokos and Suranyi9 and other authors have investigai>ed kernels 

whose spectral functions cr(~2 ) and p(~2 ) are asymptotically constant. A sub

traction is then necessary in (23 }. The Wick rotation is valid in this case~ 

and the resulting marginally singular integral equation yields u-independent 

square root branch points in the £-plane, These branch points are spaced by 

integers because of the O(J+) symmetry of the equation. 

Kernels for which cr(~2 ) and p(!l2 ) grow at infinity are highly 

singular on the light cone in configuration space. Halpern13 has recently 

shown that the Hick rotation fails for such kernels, so that previous results 

in these cases should be discredited. The Bethe-Salpeter equation in the 

original Lorentz metric has so far not proved tractable, and it is difficult 

to give mathematical meaning to the scattering amplitude for such kernels. 

Since the four-dimensional symmetry of the kernel at u = 0 follows frcm Lorentz 

invariance alone, one might suspect that if the scattering amplitude can be 
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suitably defined, its $-·plane singularities would have integer spacing at u = o. 

It is curious that such an obvious consequence of Lorentz invariancc 

in local field theory as the four-dimensional symmetry has no obvious analogue 

in S-matrix theory. It 'vould be very interesting to formulate and study such 

a property in the language of analyticity and unitarity. Of course the argu-

ment of Section II can be viewed as a proof of the daughter trajectory hypothe-

sis in the language of analyticity, but the argument there depends on the 

unequal mass kinematics. In the equal mass case the Khuri representation is 

manifestly analytic and one would not suspect that daughter trajectories exist. 

IV. PHENOMENOLOGY 

Our work suggests that Regge trajectories always occur in families 

whose zero-energy intercepts are integrally spaced in the £-plane. SUch a 

picture has very interesting implications for phenomenology. In particular 

we suggest that each of the presently known particle trajectories is the paren•. 

trajectory to a family of daughters of the same baryon number, iscspin, hype~-

charge and charge conjugation (the latter for B = 0, Y = 0 systems). we· con-

centrate on the first daughter trajectory in this section. This trajectory 

has opposite signature to the parent, so that if J± is a physically realizable 

state of angular momentum and parity of the parent trajectory, then (J-1)+ is 

a physical:\..y realizable state of the daughter. (Hence, the Pomeranchuk daughter 

does not give a physical 0+ meson of zero mass.) 

We first discuss briefly backward 1CN scattering, the exper:imental 

configuration which originally motivated our work. The spin kinematics com-

plicates the asymptotic formulas in this case, but first daughters of the N 

* and N
3
; 2 trajectories will be required to cancel the singularities or their 
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parents and a sufficiently accurate analysis of the data should determine the 

parameters of these trajectories. Of course we must also consider the possi-

bility that the daughter trajectories also rise high enough to make physical 

particles, and these are possible candidates for such states among the plethora 

of resonances in this system. 

In two body inelastic processes there are kinematic difficulties 

similar to those in unequal mass scattering. We consider the s-channel reactiou 

1 +2 ..... 3+4 (!~8 ) 

in which 11e allow the four masses m. 2 to assume arbitrary positive values. The 
~ 

corresponding t-channel process is 

1+3 ..... 2+4 ' (49) 

and the contribution of a t-channel Regge pole at large s is found through the 

Regge pole term ~(t)Pa(t)(-zt). 

The relevant kinematic formulae are 

2 2 2 2 
s-u (ml -m3 )(m2 -m4 ) 

2pl3p24zt = ~ + 4t 

2 2 2 2 2 2 
2 = t -2(m1 +m34~t+(m1 -m3 ) 

pl3 

(50) 

A 1 f th d . ff 2 2 2 2 . th al s ong as one o e mass ~ erences m
1 

-m
3 

, m2 -m4 ~s non-zero, e v ue 

of zt will not increase 1-rith s at t = 0, and there is an ambiguity in the Regge 

representation which can be resolved by using a Khuri representation. 

The general definition of the reduced Regge residue function is 

( )a(t) - -~(t) = P13P24 ~(t), and the function ~(t) will have no cut near t = o. 
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If only one of the mass differences above is non-zero, then the first 

Khuri satellite contribution will be :regular at t = 0 and there will be no neeti 

for odd order daughter trajectories. Such trajectories can contribute to the 

process if their quantum numbers allow them to couple to the external particles 

involved, and vre will discuss this possibility below. The second Khuri 

satellite contribution has a single pole at t = 0 in this mass configuration 

and even order daughter Regge trajectories are needed to cancel the ensuing 

differences 
set of singularities. If both mass i . a.re non-zero all the Khuri satellite 

of even and odd order 
contributions are singular and daughter trajecto:riesAare required to cancel 

the singularities. 

Consider now the first daughter trajectory of the Pomeranchuk, called 

ap1(t). It has B=O, Y=O, T=O, G = +1 and odd signature, and its possible 

couplings can be deduced by ·studying the possible couplings of a T=O, G = +1, 

p -
J = 1 meson which could be a physical state on tbis trajectory. Bose 

statistics prohibit a coupling to rrrr, and G-parity conservation rules out KK. 

It is easy to see from the formula G = (-l)S+L+T that such a meson could not 

couple to NN. Hence ~l (t) does not couple to any of the common bro- body 

equal mass channels and would not be observed in any of the common scattering 

or reaction processes. It does couple to unequal mass channels and could in 

principle be observed in double diffractive production processes such as 

* * N+N ~ N1; 2+N1; 2 in vrhich two T = 1/2 nucleon isobars are produced. 

We have not ·studied the behavior of the daughter trajectories away 

from zero energy, but it is tempting to consider the possibility that they are 

roughly parallel \·lith the parent trajectories. If so ther0 would be lc physical 

vector meson of mass between 1.0 and 1.5 Bev on the Pl trajectory. Such a 

meson could not decay to two scalar mesons. It could decay to K~, with 
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*- -p-wave !barriers in the configuration (K K) or in the (KK)rc configuration vdth 

d-wave angular momentum barriers in both the KK subsystem and in the orbital 

coupling of KK with·rc. It could decay to four pions in the configuration pp. 

It is possible that the partial widths of these strong decay modes would be so 

small that the particle vrould be identified primarily by its electromagnetic 

+- 0 decay modes rc rc r or p r. This argument would also apply to the P' or to any 

trajectory on vrhich a 2+ meson lies. 

The first daughter of the p, ap1(t) has B=O, Y=O, T=l, G = +1 and 

even signature and would create a physical 0+ meson. This trajectory also 

cannot couple to rr,-,KK or NN, and could only be detected at high energies in 

double production processes. If a 1(t) were roughly parallel with a (t) then 
p p 

the 0+ meson it produced v1ould have mass between 700 and 1100 ~lev. This time 

decay into two pseudoscalars and into KKrc would be forbidden by strong inter-

action conservation laws, the KKrc decay being forbidden even if the meson v1ere 

sufficiently massive. The lowest all"owed strong decay mode would be four pions 

in the ap configuration, so that vre might again expect the electromagnetic 

+ -decay rc rc r to be dominant although one should be more cautious here because 

ad-wave is required in the rc+rc- system. 

It would be interesting to make a more detailed study of the meson 

daughter trajectories, including estimates of the decay widths of the particle>; 

on them, and a comparison with experiment. The present experimental situation, 

although not conclusive, is not favorable to the existence of such particles, 

and this would indicate that daughter trajectories have slopes less steep than 

the parents. 

If there really are particles on the daughter trajectories then our 

notions about the relative importance of the various channels in dynamical 

calculations need revision because none of the lm'l mass two-body channels v1hich 
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are thought to be :iJnportant for the dynamics of the parent particles vrould be 

able to communicate Hith the daughters, and high mass channels with spin \orould 

have to be included. For example in any common dynamical mechanism for the 1-p 

and its 0+ daughter, the ap channel would be L~portant. 

V. BEHAVIOR OF PARTIAL WAVE AMPLITUDES AT u = 0 

It is standard practice in approximate dynamical calculations of 

partial wave amplitudes a(u,.e) to divide out the zeros at the physical threshc:il.d£ 

- -2£ and consider the reduced amplitudes a(u,.e) = q a(u,.e). There is a question 

in the unequal mass case whether the zeros of the kinematic factor at u = 0 

lead to corresponding zeros of a(u,£). It has been concluded on the basis of 

a tentative argument in Reference 3 that a(u,£) does not have such kinematic 

zeros, and this is commonly believed to be the case. 

In this sect ion ,,,e show that the behavior of a( u, £) at u = 0 is very 

different from that usually assumed. More precisely He are able to show that 

the partial wave amplitudes of definite signature a±(u,£) behave like u-a±(o) 

+ 
where a-(0) is the zero energy intercept of the leading parent Regge trajectory 

of the same signature in the direct channe1. 14 It is not surprising that the 

cross channel asymptotic limit of the full amplitude determines the behavior 

of partial Have amplitudes at u = 0, since the integral from z = -1 to z = +l u u 

which defines (physical) partial wave amplitudes corresponds at u = 0 to an 

integral of infinite range over t or s. The proof follm1s. 

He first derive the result under the assumption A (u,s) = 0,. and s 

then discuss the modifications necessary when a third spectral func~ion is 

included. The absorptive part At(u,t) is analytic at u = 0. It~: leacl.i.ng tern 

is easily found from the Khuri representation (16) of the full amplitu,Je, 
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(51) 

where a(u) is the leading Regge trajectory, and 

r(u) = ~(u) r(a(u)+3/2) 
~r(a(u)+l)sinrra(u) 

(52) 

In order to write Eq. (51) it is necessary that daughter traj ectori~s 

exist with the properties we have ascribed to them, since the correction terms 

to Eq. (51) would otherwise be singular at u = 0. Actually for any E > 0, 

there exists an N > 0 such that for t > N, the correction to Eq. (1) is bounded 

by 2r(u)e ta:(u)-a, where a is some. fixed positive number less than the distance 

from the leading pole to the next singularity in the Khuri v-plane. 

We next consider the Froissart-Gribov integral 

a(u,£) = ~ 1oodtAt(u,t)Q£ 0 + 2 2 ~ut 2 2 2) (53) 
2q n t 0 (m -~ ) -2u(m +~ )+u 

and divide the interval of integration into a part from t 0 to N and a part from 

N to oo, with N chosen as above. For u sifficiently close to zero we may 

approximate the Legendre function and write the first integral as 

~ JNdtAt(u,t)Q.£(1 + 22u~ 2) 
2q 1r t 0 (m -~ ) 

= ; 2u 2 2 { N dtAt ( u' t ) [~ log ( 2 ut 2) 2 + c] 
1r(m -~ ) Jt0 m -~ 

= Bulogu + Cu "' ,,. 
(54) 

near u = o, where B, C and c are constants. 

In the second integral we approximate At(u,t) by its leadin~ terms, 

obtaining near u = 0 
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hur(o) Joo dt ta(o)Q ( 1 + 2ut ) 
2 2 2 £ 2 2 2 

(m -1-1 ) rc N (m -~ ) 

-a( o) ( o) j oo ( ) _ 4u y d~ ~a(O)Q 1 + 2~ 
- 2 2 2 £ 2 2 2 

:rr (m -1-1 ) uN (m -1-1 ) 
(55) 

In the limit as u ~ 0 this integral can be evaluated exactly with the help of 

Eq. (37), Sec. 3.2 and Eq. (4), Sec. 2.4 of HTF. One obtains 

a(u,£) if o:(O) > -1 

= Bu log u + Cu if o:(O) ~ -1 (56) 
•. 

near u = o. We note that for o:(O) ;S -1 the contribution from the finite part 

of the integration range is actually more singular at u = 0 than the infinite 

contribution. This case is unlikely to be realized in physical situations. 

If a third channel spectral function is present we can writt: 

where o:+(u) and o:-(u) are the leading Regge trajectories of positive and 

negative signature. We assume that both are of parent type. l5 The integral 

over At(u,t) in the Froissart-Gribov continuation (3) can be handled exactly 
I 

as above. The integral over A (u,s) is slightly messier, but a similar s 

treatment applies, and we find the results 

+ 
if o:-(o) > -1 

± + 
= B u log u + C -u (58) 

We expect that the behavior we have found determines the shQpe of 

the partial w~ve amplitude in a region in which lui << (m2-~2 )2 . As the mass 
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difference vanishes this region would shrink to the origin, and the influence 

of this behavior on the amplitude at any non-zero value of u would become 

negligibly small. 

It would probably improve the accuracy of approximate dynamical cal-

culations to incorporate Eq. (58) as a constraint on the calculated amplitudes. 

The zero energy intercepts and residues of the trajectories can be taken from 

+ 
high energy data. For cases such as T = 1/2 rrK scattering where a-(o) ~ 1/2,-

the divergence at u = 0 may have an important effect on the low energy s-wave 

amplitude in the physical region. 

VI. CONCLUSIONS AND DISCUSSION 

We have studied and resolved the kinematic ambiguity in the Regge 

representation in unequal mass scattering at u = o. This ambiguity arises 

because the transformation from the Mandelstam variables (u,s) to the pair 

(u,z ) is singular at u = o. Our approach to the problem is through the Khuri 
u 

representation which involves the Mandelstam variables directly and thus avojJs 

representations involving z which are inherently suspicious at u = 0. 
u 

The contribution of a single Regge pole to the Khuri representation 

has leading term sa(u) at u = 01 but its lower-lying terms have singularitieG 

there which must be cancelled since the full amplitude is analytic. The only 

1-1ay this cancellation can occur is for Regge trajectories to exist in families 

which are spaced by integers at u = 0. If the leading parent trajectory is 

th k ao(u), then the k daughter trajectory ~(u) has signature (-1) relative to 

the parent and satisfies ak(O) = a
0

(o)-k. The reduced residue '§"
0

(u) <•f the 

parent trajectory is analytic at u = 0, while the reduced residue 'i3k(u) of the 

th k daughter has a pole of order k there. It is perfectly consistent with 

general analytic properties for the reduced residues to have poles at u = o. 
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He have studied Bethe-Salpeter models in order to obtain additional 

support for the daughter trajectory hypothesis and find that it is satisfied 

for any Bethe-Salpeter amplitude which Reggeizes in the first place. This 

property follows elegantly from the four dimensional symmetry of Bethc-Salpeter 

equations at u = o. 

Goldberger and Jones16 have written a recent paper in -vrhich the same 

subject is approached from a somewhat different point of viei-J. Different 

results are obtained largely because these authors fail to take into account 

the mechanism of cancellation of singularities by daughter trajectorie:s, Such 

a mechanism would eliminate the need for the condition a(O) < 1/2 which they 
-

find necessary for the consistency of their method. This condition vwuld seem 

to be violated by the pomeranchuk which certainly couples to unequal mass 

channels and in Bethe-Salpeter models (for sufficiently large coupling constant 

which have all the analyticity properties used by Goldberger and Jones. Since 

the daughter trajectory hypothesis is definitely satisfied in Bethe-Salpeter 

models we feel that it is the correct mechanism by which the ambiguity in the 

Regge representation is resolved. 

The Regge pole terms we find are very well adapted to phenomenologica-

data analysis. They are given in Eqs. (16), (17) and (47). The daughter 

trajectory hypothesis is obviously rich in phenomenological implications, and 

we have discussed these briefly here. 

Our final result is the elucidation of the behavior of partial wave 

amplitudes at u = o. The power behavior u-a(O) vle find has not heretofore 

been suspected and its implications for bootstrap calculations in unequal mass 

systems deserve further study. 
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APPENDIX A. BEHAVIOR OF HEGGE RESIDUE FUNCTIONS NEAR u = O. 

We consider the At contribution to the reduced partial wave amplitud·= 

a(u,t) = q-2£ a(u,£) using the Froissart-Gribov definition (3). The A contri
s 

bution can be treated similarly. We use Eq. (37), Sec. 3.2 of HTF to vrrite 

near u = 0 

(m -~+ ) (Al) 2 2 2) 
ut 

Consider the u-discontinuity of Eq. (Al). For u > 0 the hyper-
"' 

geometric function is analytic and the discontinuity vanishes. For u < 0 we 
"' 

use Eqe (10), p. 400 IT vol. 2 1 to help evaluate the discontinuity obtaining 
2 2 2 

(m -H ) 2 2 2 

Disc a(u,£) = 4~ -u dt t-£-lAt(u,t)F(£+1,£+1;1; (m ~~ ) -1) (A2) 

0 

Since the integration range is finite for any fixed u ~ 0, the discontinuity is 

an entire function£, so that the reduced Regge residue functions ~i(u) cannot 

have cuts in the vicinity of u = o. 

We note that the proof permits isolated singularities of the reduced 

residues at u = 0, and we have shown in the text that finite order poles 

actually do occur. Of course it follows from the N/D decomposition and the 

definition of Regge poles as the roots of D that the trajectory functions 

a.(u) are analytic at u = 0 unless two trajectories cross there. 
~ 



APPENDIX B. IJTIJRI REPRESENTATION FOR Rev < -1/2. 

In this appendix 1<1e establish a correspondence between the Ehuri and 

Regge representations for Ret and Rev less than -1/2. We also computE: in closed 

form the residues of Khuri satellite poles. 

We assume that partial wave amplitudes a(u,£) are meromorphic for 

Re£ > -L. Then Mandelstam's form17 of the Regge representation can be written 

where 

and 

(;;) 

_..l\ 
2rr L 

£=A 

+ + Q-a.±(u)-1(-zu)±Q_a.±(u)-l(zu) 
= !2 \ [3. -(u)(2a. -(u)+l) J. + 

1 

~ 1 l -c ) + cosrra. u 
a.-(u)>-L 1 

l 

where A is the least integer greater than L-3/2. 

(Bl) 

(B2) 

(B3) 

We use (B2) and (B3) to compute the absorptive parts At and As 

At(u,t) = Bt+(u,t)+Bt-(u,t)+Rt-(u,t)+Rt-(u,t) 

A (u,t) = B +(u,t)+B -(u,t)+R -(u,t)+R -(u,t) s s s s s 
+ + + 

where Bt- and B
8

- are the t and s discontinuities of B-, and 

=21I + + + C . ) ~.-(2a.-+l)tanrra.-Q + 1 + ~2 l l. l - 1 0 + -a. - r. .• q 
->-L l a. 

l. 

(B5) 

(B6) 
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where t > t 0 in (B5) and s > (m2
--tJ.

2 )2/u in (B6). 

Only those terms in At and As 't'lhich are of order greater than t -L or 

s-Lat infinity can contribute singularities to the Khuri power series coeffi-

cients of Eq. (6). Similarly the contribution of the finite interval 

s
0 

< s < (m2
-tJ.

2 )2/u to c(u,v) through (6) is an entire function in the v-plane. 

Using truncated asymptotic expansions of the Q£ functions we can 

evaluate the Khuri pole terms just as in Section II and can write in analogy 

w·ith (14) 

N + 2 n 
b(u, v) = o±(u) I r( -a-:n) ( ~}) (4q2)n \ 

n=O r(-2a-+n) • v~(a -n) 
+ b(u,v) (B7) 

N 

c(u,v) = ±o±(u) I 
n=O 

(4q2)n : 
v-(a--n) 

~( ( 2 2 2 )n-r + ± ) ~ m -tJ. ) rc-a-+r) l_ r(a -r+l 
xr=O 

1
- 4ug2 . r(-2a±+r) r! r(n-r+l)r(a±-n+l) 

(B8) 

o(u) = _1 ~ q-2a r(a+3/2)r(-2a) 

~ r(a+l)r(-a)2 

=- (4n)- 1~(2a+l)tanna(4q2 )-a (B9) 

1-Jhere b(u, v) and c(u, v) are analytic for Rev > -L, and N is the larger;t positi'i 

integer satisfying Rea-N > -L. The summation over different Regge trajectories 

is suppressed in (B7) and (B8) and in similar equations below. 

Equations (B7) and (B8) express the meromorphy of b(u,v) and c(u,v) 

in Rev > - L and shou that the Khuri image of a single Reggc pole at a is a set 

of poles at v = a,a-l, ••• ,a-N. 

The next step is to make a Sommerfeld-Hatson transform of tl e p011er 

series (5) to obtain 



. J -L+ico 
A(u,t,s) = ~ . dv(sinrrvf1[b(u,v)(-t)v+c(u,v)(-s)v] 

- L-l.ro 

(BlO) 

vlhich establishes the correspondence between the Regge and Khuri representaticmE 

in the half planes Re£ > -L, Rev > -L. 

Khuri's argument against the possibility of such a correspondence to 

the left of Re.e = -1/2 is based on a counter-example for Hhich the Regge ampli-

tude has fixed poles at the negative integers while the corresponding Khuri 

amplitude is an entire function. This is not in contradict ion to our result, 

since it is obvious from (B7-B9) that the residues of the Khuri poles vanish 

when the Regge pole is at a negative integer. However such Reggc poles do 

contribute to the full Khuri representation (BlO) because of the facto~ 

( sinrca f 1
• 

We also see from (B7) and (B8) that the residue of the nth satellite 

th . -1 pole contains a factor which is an n order polynomial 1.n u 

To investigate the large s limit of (BlO) it is convenient to sub

stitute t = 2m
2+21-l2-s-u in the pole terms there obtaining the representation19 

. J-L+ioo l 
A(u,t,s) = ~ . dv(sinrrv)- (b(u,v)(-t)v+c(u,v)(-s)v) 

-1-~oo 

+ 

+ rc 
( 2 2)N-n+l a--N-1 
_N-2m -21-l _ s (4q2)n 

n! 

x ----+~r~(a~±_-~n~+~l~)-- F(N-a±+l,l;N-n+2;- u-2m
2

- 21-l
2 

r(a--N)r(N-n+2) s 



+ 
+ rr ( l±e- i:n:o.:-) 

The second term in (Bll) is of background size. 
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