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REGGE POLES AND UNEQUAL MASS SCATTERING PROCESSES*
Daniel Z. FreedmanT and Jiunn-Ming Wang
Physics Department and Lawrence Radiation lLaboratory
University of California, Berkeley, California
ABSTRACT
It is not clear from the Regge fepfesentation that the asymplotic
form sa(u> holds iﬁ the bvackward scattering of unequal mass particles because
the cosine of the u-éhannel scatferiné angle remains small as s increases. In
this paper we use a representation for the scattering amplitude first suggested
by Khuri to show that the form Sa(u) is valid throughout the backward region.
However, in order to ensure the analyticity of the amplitudebdefined by the
Khuri representation at u = 0, it is necessary that Regge trajectories occur
in families whose zero energy intercepts are spaced by integers. Denoting the
leading or parent trajectory by aoéu), we find that duaghter trajectories |
ak(u) must exist, of signature (--l)k relative to the parent, satisfying |
ak(O) = ao(o)-k. We then study Bethe-Salpeter models and find that this
daughter trajectory hypothesis is satisfied for any Bethe-Salpeter amplitude
which Reggeizes in the first.place. This fact follows elegantly from thé four-
dimensional symmetry of Bethe-Salpeter equations at zero totqi energy. Some
phenomenological implications of the daughter trajectory hypothesis are dis-
cussed.' We have also characterized the behavior of partiasl wave amplitudes in
unequal mass scattering at u = 0 and find the hitherto unsuspected result

-a(0)

a(u,£) ~ u where a(u) is the leading u-channel Regge trajectory.
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I. TINTRODUCTION

The characteristic features of the Regge pole description of high

a(t) a(u).

energy scattering processes are the asymptotic forms s or s However,

in the scattering of unequal mass particles, the question of whether the Regge

form sa(u)

holds in the backward region has never been settled because there
is a cone about the backward direction in which coseu does not become large
with increasing s. There has been general uneasinessl’2 about applying the |
Regge asymptotic form in this region.

Our investigations show that the simple Regge form holds throughout
the backward region. This conclusion is obtained by establishing a representa-
tion for the scattering amplitude which explicitly exhibits the Regge behavior
in the region in question. Further we suggest very strongly that as a general
~ consequence of Lorentz invariance, Regge trajectories occur in families, the
leading parent trajectory ao(t) occurring with a set of daughter trajectories
an(t) with zero energy intercepts an(o) = aO(O)-n. The daughter trajectories
play a minor role in equal mass situations, but for unequal mass scattering
their function is to cancel singularities in the asymptotic contribution of
the parent trajectory.v

As a by-product of this work, we have been able to show that the
" partial wave amplitude ai(u,z) of an unequal mass scattering process behaves
like ai(u,z) ~ u—aLi(O) near u = O where aLt(O) is the leading trajectory of
the same signature in the u-channel. This behavior is quite different from
that usually assumed3 in approximate dynamical calculations in S-matrix theoryx=
Usual discussionsl of the asymptotic behavior in the backward region

are based on the application of the Sommerfeld-Watson transformation to

expansions of the scattering amplitude in partial waves in the u-channel. The



high energy limit is introduced through the variable

e cosd = - 2(su- (n2-1%)%)
Pu = 00 = [l+u2-2u(zgmg)2i(m2-p2)2:} (1)

This variable is bounded by unity for all s when u is in the backward cone

defined by 0 & u & uy = (m2~u2)2s-l, and, since z| does not become large with
increasing s, the conventional Regge representation (i.e., the Sommerfeld-Watson
transformed partial wave expansion) does not furnish an asymptotic limit in
this region. Indeed, any representation A(u,s) = f(u,zu) is suspicious at

u = 0 because the transformation of variables is singular there.

Our discussion is based on work of Khuri)+ who shows that Sommerfeld-
Watson transforhations and Regge analysis can be applied to representationé
other than partial wave expansions. Starting from power series in the Mandel-
stam variables.t and s, we follow Khuri and establish a representation whith
explicitly exhibits Regge behavior throughout the backward region.

The reader should note that we do not attempt to prove f-plane mero-
morphy of partial-wave amplitudes in this paper but merely address ourselves
to the problem of resolving the kinematic ambiguity in the Regge representatiorn
The resolution of this ambiguity is definitely not trivial and it is not sur-
prising that our investigations have revesled very distinctive features of
the unequal mass scattering problem.

In Section II we discuss the Khuri and Regge representations and
their connection. We.then show that daughter trajectories must exist if the
Khuri representation is to define an amplitude with correct analyticity. 1In
Section I1I we give an independent proof of the existence of daughter tra-
Jectories based on the four-dimensional symmetry of BethefSalpeter equations

at u = 0, In Section IV we discuss the phenomenological implications of



daughter trajectories and also discuss the kinematics of inelastic two body
processes in which similar ambiguities of the Regge representation occur. 1In
Section V we use thé preceaingvresults to characterize the behavior of partial
wave amplitudes near u = 0. In fAppendix A, we prove that the reduced residue
" functions of Regge poles have at most isolated singularities at u = 0, and in
Appendix B, we establish a correspondence between the Regge and Khuri repre- )
sentations for Ref < ~1/2, a result which was thought unlikely in Khuri's -
original paper.

Qur notational convention is always to discuss the effect of Regge
poles on the high energy limit of an s-channel process, and we therefore consi-

der partial wave expansions in the u-channel for the backward scattering

problem and in the t-channel for forward inelastic processes.

II. THE KHURI REPRESENTATION
We assume that the scattering amplitude A(u,t) satisfies a fixed u

dispersion relation

| » A (u,t") ®  A_(u,s')
1 ) 2
O N e A (2)
to So

and further assume that the corresponding Froissart-Gribov partial wave ampli-
tudes

e 2,2
* u - " -2m " =2p
a (u,8) = 5 f tht(u,t)Q,z(l-r _Eé.) + _l.é_.f dSAS(u,s)QE (S m 22[.! u ..1>

eqn to 2q 2a nV¥Ys 2q

(3)

contain only moving poles in the f-plane for Ref > »1/2, and that they coincide”
with even and odd physical partial waves for all non-negative integral 2.
Hence the subtraction terms which are in genersl necessary in (2) need not be

discussed.



We write an ordinary Regge representation £6r the amplitude

--]-:-I-]_co

alo,t,8) = 55 [ a8 BB (o (u,0)(p(2)4P,(-2)]-a7 (8, £)(P (2)-B ,(-2)])

sinnd
- -im

2

! P (z)+P -2)
nz Bi+(u)(2oci+(u)+1) at(u) * +( )(

im0 2sinno (u)
N (z)-P (-z)
) )
+ “Z' Bj-(u)(Eaj-(u)+l') ’J G (u . (&)
a=6 2sinxa3 (u)

The case where the background integral can be shifted to the left of -1/2 is
treated in Appendix B. The Regge pole terms have asymptotic forms sa(u) ohly
‘for u # 0, and have logarithmic singularities in u at w = 0. For s large and
positive, the background integragl does not converge for complex u,5 and the
representation is not well defined at u = O.

Because of these defects of the Regge representation, we are led to
consider a new representation based on power series in the Mandelstam variables

t and s

co [0}

A(u,t,s) =§Z b(u,v)t’ + Ez c(u,v)s” (5)
v=0 v=0
The common region of convergence of the two series is the domain |t| < huz,.
Isl < m2, for nN kinematics. Continusation to other regions is made after
Sommerfeld~Watson transformation.

The power series coefficients are given by

b(u,v) = n‘l‘/ at At(u,t)t""l
t
0
c(u,v) = n-{/h ds 13xs(11‘,s)s-*v-l (6)
s .

0]



Actually the integrals defining b(u,v) and c(u,v) converge only for Rev > M
and Rev > N respectively, vhere M and N are the number of subtractions in the
t and s channel contributions to the dispersion relation (2), and must be
defined by analytic continuation to the left of these lines. We note that
b(u,v) and c(u,v) have only the physical cut in the variable u and are in this
respect much simpler than partial wave amplitudes. )
To investigate the continuation of b(u,v) and c(u,v) into the region

where their defining integrals diverge, we use the Regge representation (4) to

compute the asbsorptive parts

A (u,t) =D, (u,t) +-2‘2.2Bi+(u)(2ai+(u)+l)Pai+(u)(z)
1
; -gZaj'<u><2aj‘<u>+l>Pai—<u>(z> (T)
J
A (u,8) =D_(u,s) + 'g'ZBi+(“)(20‘1+(u)+l)Pai+(u)(z)
i

- g}:aj'(uxeaj'<u>+1>Paj-(u)<-z> . (8)
j |

Here Dt(u,t) and Ds(u,s) are the discontinuities of the Regge background
integrals for positive and negative z respectively, and we are to use for =z

the expressions

z=l+-1;—§ (9)
2q
in (7) and
2 52
z =1 - BB AL | (10)
2q

in (8). For real u # 0, Dt(u,t) = O(t-l/g) and Ds(u,s) = 0(5'1/2) so that



their contributions to b(u,v) and c(u,v) through (6) are analytic for Rev > -1/2

The contribution of the Regge pole terms can be found from the

integrals
at P, (1 + t/2¢°)t7 VL (11)
. ou)
't
0
and
ds P S-em =2p tu g \-v-lo (12)
a(u) 2
so 2q ,

KhuriLL has shown that (11) is regular for Rev > —1/2 except for simple poles
at v = a(u), a(u)-1,...,0(u)-n where 1/2 > Re(a(u)-n) > -1/2. This result

follows from the truncated asymptotic expansion

~am,

P (%) = g (@)xre (@™ Br. . 4g () P (x) (13)

The integer m is determined by the condition 3/2 > Re(o-2m) > -1/2, so that

-1/2) and its contribution to the integral (11l) is analytic in

Ga(x) = 0(x
Rev > —l/2f An identical technique works for (12) and we agein find that to
each Regge pole a(u), there correspond Khuri poles at v = afu),o(u)-1,es0,
a(u)-n, with 1/2 > Rea(u)-n > ~1/2, It is useful to speak of the pole at

v = a(u) as the principal Khuri pole, and the poles displaced to the left by
integers as satellite poles, The reader should be careful to distinguish these

satellite v-plane poles from the daughter Regge poles which we discuss later.

The residues of the Khuri poles can easily be computed, and we obtain

1T 8 Tl tHs/2) 2q2°‘i+ Py
b(u,v) = 3; qazi+r(a ol R + . Foeee + ;:ETI:;- J
i i i i i T4
+ = - + e b ey F ——
L v-0t v=Q, +1 V=0, +n,

Jx LJ-* el I‘(1+o:j')

+ b(u,v) (ih)



and
1 ai+r(o¢i++3/2) - (2q2+2m2+2|.12-u)0£i+ : ani+ ]
e(u,v) = JF'}: 20 %, * + T +ooot —
"1 - - - -
15 g P(ai +1) Ly Q@ v-a, +1 V=0, 0,
- - 5w -
T . Mo, +3/2 2q ¢,
-—lZ el S + Sl U . ]
za. - - see - -
N T J P(03 +1) L v v-a, +1 V-0 +ng
+ c(u,v) (13) -

where b(u,v) and c(u,v) are regular in Rev > -1/2. We have omitted the argu-,
ment u of the residue and trajectory functions, and have written explicitly
only the residues of the principal and first satellite Khuri poles. Residues
of the higher satellites are given in Appendix B. The significant property of
these residues is that the residue of the Jth satellite pole contains the term
(2q2)j, and therefore has a pole of order j at u = O.

So far we have established that b(u,v) and c(u,v) are meromorphic
functions of v for Rev > -1/2 and for u real, u ¢ 0. It follows from the
definition‘(6) that b(u,v) and c(u,v) are analytic in u in the whole cut u-
plane for Rev > M and Rev > N, respectively. However to the left of these
lines, the analyticity (meromorphy, to be more exact) of b(u,;) and c(u,v) at
u = 0 (or for complex u), cannot be inferred rigorously from the definition (6)
because the defining integrals diverge or from the Regge representation (k)
since the latter fails to furnish the asymptotic behavior of Dt(o,t) and DS(O,Q
It seems impossible to avoid this difficulty, which we regard as a failure of
the Regge representation rather than as any genuine defect of the Khuri ampli-
tudes. Therefore we gssume that the Khuri amplitudes b(u,v) and c(u,v) as
defined by (&) can be continued to u = 0 or into the complex u plane, and have
no singuiarities for Rev > —1/2 other than these given by the finite number of
moving poles in (14) and (15). Hence b(u,v) and c(u,v) are analytic in the

cut u-plane and in Rev > -1/2.



The next step is to make a Sommerfeld-Watson transformation of the

power series (5) obtaining

1.
_.—2..-{-1@
Alut,s) = (-21)'f/ﬂ av(siney) Lo (u,v) (-5) e (a,v)(-5)")
w00
+ + + + +
B. (e, +3/2) o Q, o, -1
) _[(+t) * #(=5) * -20%.*(-t) |
- =1 P(czi +1)s.imozi '
5 o o + a.to1 n, ; o, Fon, + a.+—ni
+ (2q +2m“+2u -u)ai (-8) ¥ 4e..+(-1) l'pn (-t) * l+on (-s) * ]
i i
B F(a “+3/2) o o, a. -1
- «fn [(-t) I ~(-s) I -2d%0,7(-t) 7
225
J P(a +l)sinn05 J
5 } -1 ng oG eng L agen
- (2q%+en 42y -u)a5 (-s) E foat(-1) D T(-t) T e T(-s) 01 (16)

J J

The Khuri background integral converges and defines a function which has ogly
the physical cut in u, and falls off at least as fast as an inverse square rootl
as 8 or t become large with u fixed. Each square bracket in (16) gives the
contributions of the principal and satellite Khuri poles coming from one Regge
pole of definite signature.

We now examine the pole terms in the limit appropriaste to high energy
backward scattering in the s-channel, by substituting t = 2m2+2u2-s-u in (16),
expanding powers of this quantity in binomial series, and considering some large

positive s. Each square bracket becomes

- I + + *
MO s (ue2n®-2uP-20P)s% Tha, (gpu)s® TPt (0,u)s” TIAE (u,s)

(17)

(1te

The functions appearing here are written explicitly in Appendix B. Tho functim

?&(u,s) is of order s-l/2 and comes from the convergent tails of the binomial
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series, while the first n terms correspond exactly to the first n terms of the

eXpansion of
(26°) B, (-2)2P,(2)] (18)

which is what one would have obtained from the ordinary Regge representation.
To proceed further it is necessary to discuss the analytic properties
of the Regge residue functions. In Appendix A it is shown that the reduced -

residue functions defined by B(u) = qu2a(u)

B(u) have no cuts in the vicinity
of u = 0. However the proof does allow finite order poles or essential singu-
larities at this point.

We consider the analyticity properties of (16) at u = 0. The back-

~ground integral is analytic there, and so is the full amplitude. The contri-
bution of each principal Khuri pole has the same analyticity as the reduced
residue of the Regge pole to which it corresponds, and tﬁe jth satellite contri.
bution has an additional singular polynomial of order J in u-l. The sum of gll
‘the Khuri pole contributions must be dnalytic at u = 0, and this can occur only
if the singularities of the individual contributions cancel becguse of cocpera-
tion among the Regge trajectories.

Let ao+(u) be the leading Regge trajectory near u = 0, assumed for
definiteness to be of positive signature. Its reduced residue must be analytic
at u = 0, since a singularity there could not otherwisé be cancelled. The
first Khuri satellite contribution then has a pole at u = O whose residue can
be computed from (16) and (17). To cancel this pole there must be another
Regge trajectory al_(u), of opposite signature, satisfying al'(o) = a0+(0)-l,
which we call the first daughter t_ra.jectory.6 Its reduced residue Elﬁ(u) has

a pole at u = 0, fixed so that the singular part of its principal Khuri
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asymptotic series in powers of s of the Legendre functions keeping only the
finite number of terms which grow faster than background. Introduce one by
one the daughter trajectories with reduced residues chosen to cancel the singu-
larities which occur in the term by term continuation to u = O of the contri-
butions of the parent trajectory and the higher-lying daughters. All this can
be done in a finite number of steps and results in a finite set of powersvwhose
sum is anglytic at u = 0. To take explicit account of the cancellation of
singularities, a Taylor expansion about u = 0 should probebly be used in
phenomenological data analyses. There isino a priori reason why the regular
parts of the daughter contributions should not be as important as the parent
trajeétory contributions ih any given order and parameters should be introduced
to describe these regular parts.

Although the mechanism of cancellation of singularities by daughter
Regge trajectories may seem rather miraculous, it is a rigorous consequence of
the assumption that the Khuri amplitudes b(u,v) and c(u,v) are analytic at
u = O except for singularities due to the moving poles in v. Although not
proven, such analytic hehavior is suggested by the maximal analyticity concept.
Since it does not appear possible to avoid an assumption of this kind, we have
sought and obtained additional support for the daughter trajectory hypothesis.

This is discussed in the next section.

I1I.  DAUGHTER TRAJECTORIES AND BETHE-SALPETER EQUATIONS
In field theory the scattering amplitude satisfies a Bethe-~Salpeter

equation vwhich can be written in momentum space as

]

L[ a'p"1(5,8";)2(5",5" 1) (20)

I(3,8'5%) + .
[(FR+5")2mP [ (3R-5) ")

2 i
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contribution exactly cancels that of the first Khuri satellite of the leading
parent Regge pole,
In general there will be a series of daughter trajectories ak(u) in

the g-plane, of alternating signature, satisfying
ak(o) = ao(o)-k -
k=1,0e0,n 1/2> Reao(o)—n > -1/2 . (19) .

The corresponding reduced residues Ek(u) will have poles of order k at u = O,
with everything arranged so that sipmgularities of the individual Khuri pole
contributions cancel among themselvesbupon summation. The cancellation
requirement imposes conditions on the first k-1 derivatives of the daughter
trajectory functions and on derivatives of the reduced residue function as
well. It should be noted that the shadow poles need satisfy (19) only at u = 0
and will in general not be integrally spaced for u #>O.

There may, of course, be more than one Regge trajectory with reduced
residue anglyti¢ at u = O. Each such parent trajectory will have a series of
daughters with the properties discussed above.

In Appendix B we show that the whole discussion above can be
generalized to include the case where the Regge background integral contour
can be shifted to the line Ref = -L with L > 1/2. 1In this case the Khuri
amplitudes will be meromorphic for Rev > -L, and there will be correspondingly -
more Regge daughters in each family of trajectories.

The following prescription for the high energy contribution of a
family of Regge trajectories sums up our work on the Khuri representation. The
contribution of g parent Regge trajectory in the Regge representation is Well

defined for ﬁ % 0, and involves Legendre function of argument z. Obtain the
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becomes infinite because of the extra degree of invariance present.

It is very convenient to make the Wick rotation7 in which the inte-
gration contour of the relative energy variable is moved to the imaginary axis.
External relative energies are also continued to imaginary values, and new
variables defined by p, = ip,, D' = ip, ', po" = ipu". The resulting integral

equation is

arLo 1 d”p"I(p;"",ﬁ)T(p" D!
P3K) + T 5 . 3
[(51 Vu-p,") 2elp" |2 ][(-—1 Ju+p )2]p" |2

(22)
in which the integration space and scalar products are Euclidean. For
2 < (m+u)2, the Wick rotation is justified if the Bethe-Salpeter kernel is not
too singular on the light cbne. Sufficient conditions for its validity are
discussed below. We note that at u = 0, the invariance group of Eq. (22) is
O(4) and it will be very useful to expand the scattering amplitudes using
representation functions of this group.

s8’9 have used the four dimensional symmetry of the

Several author
Bethe-Salpeter equation to discuss the high energy limits of field theory. The
only authors who recognize the implications of such a symmetry for Regge
trajectories are Domokos and Suranyi.9 Our discussion resembles theirs in
spirit, although the momentum space aspproach we use does not appear to have
previously been given.

We consider Bethe-Salpeter kernels which possess spectral representa-
tions of the form |

13,6050 « 1 [ -'“—"—(—*—L‘ﬁ- f arp(rsu) (23)
' T, T+(B-B o TH(B45")

where the spectral densities may contain delta functions in T, but are required
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The center of mass motion has vbeen separated out, and % is the total energy-
momentum four-vector, while P and D' are the relative energy-momentum vectors
of the particles in the initial and final states. The interaction kernel
I(p,5';R) is Gefined in formal field theory as the sum of all graphs which are
two-particle irreducible, although it is usual in practice to approximate the _
kernel by a small number of irreducible graphs. Equation (20) defines an off-
mass shell extension of the T-matri#, and the physical scattering amplitude is

obtained by evaluating at
2 2 2 2 2 2 2 -1 2
1271 = 1p"®] = [u™-2(a®® )ur(@®-u®)2] (bu) ™ = 2q
2 2 -
b, =D, = (mP-u®)(2 Nu)™t (21)
0 0

Our notation is to use carats D to denote four-vectors, and bold letters p to
denote spaiial thrée-vectors, while IR' = (3-2)1/2, and P = (ﬁ-'ﬁ)l/2 =
(iglg-pog)l/g- ,

Because of Lorentz invariance, the kernel I(D,P';%) depends at most
on the six independent invariants which can be formed from it three four-vector
arguments. It is convenient to discuss the properties of the equation in the
center of mass frame in which ® = ( Jﬁ,g). For u #£ O the equation is invariant:
under the gfoup 0(3) of three-dimensional spatial rotations, and this invariancc

permits a separation of the equation via the ordinary partial wave expansion.

For u

O the kernel depends only on the three Lorentz invariants formed from
D and P', and the invariance group of the equation is isomorphic to the Lorentz -
group itself. This extra degree of invariance at u = O ensures the existence
ofdaughtertrajectories with exactly the properties described in Section IT.

This phenomenon is analogous to that in Yukawa potential scattering in which

the Coulomb degeneracy of bound states is obtained as the potential range



not to have two-particle cuts in u. Such kernels are not the most general
permitted by Lorentz invariance, but if s(t,u) and p(7,u) vanish as 7 - o,
they are essentially the only kernels for which the Wick rotation can be
justified and Z-plane meromorphy proved.lo We will prove that the pattern of
daughter trajectories discussed in the previous séction must exist in any
Bethe-Salpeter amplitude with £Z~plane meromorphy. However the symmetry which
is responsible for this pattern of daughters is far more general and we briefly
discuss its efféct in the case of kernels for which meromorphy cannot be proved.
The ordinary partial wave Bethe-Salpeter equation is obtained by

expanding in partial waves

7(8,5%;%) = }Z (22+1)7,(p,, Iplsmy t5 IR 5 w)P y(2)
=0

I(ﬁ;f"3ﬁ) = (23+l)1£(Pu:|pl5Ph'9|}3"5‘1)}?'6(2) (23)
£=0

where z = R'E’/|R||E'!, and

1,(p, lplsp, s 10t l5w) = Iél)(Pulplspu'lp'I;u)+(-l)11§2)(Pu,|P lsp, 50 15u0)
' (2k)
with
V21212
(1) R 1 °° (py,=p,," )+l “rlpt 1%+
I[/ (PW|P|,PLF ,IP ‘:u) = mﬁf-m(h@%( STpl o]
- IR INIL
(2) ot ] 1 = (py+py," ) +pl T+pt [Ter
Ig (Ph_:lg‘:Pu 9|R I,u) = m‘/;szD(T:U)QZ< AR >
(25)

Separation of the Bethe-Salpeter equation is thus achieved by using the additim
theorem for Legendre functions and ewthogonality of the spherical harmonics.

One obtains



+ .
T, (Pu,IP!sPh ptliw) = 1,5, Inlsn, 1p* 5u)

(26)

+

" " 1t i
1 \/"dplL Ip"1%a0"1,*(,.» Iphsm, " Ip" 1 50)2,“ (2, ", 19" hsm, ' " | 5)
or® [(51 Ve, ")Z+]p" |Pn®1 (31 Ju+ph ")l B

where to obtain suitable Regge continuations, we have defined Iﬂi.= Igl)‘i 122{
which coincide with physical £ amplitudes for positive and negative integers
respectively. ”
v If the particles are identical then m = p asd oft,u) = p{T,u). It is
inte;esting that in this case the odd signature amplitude vanishes identically
on the mass shell, but aoes not vanish off shell. |

The interaction kernels (23) are O(4) invariant for all u, and it is
convenient to express theﬁ in terms of féﬁr-dimensional spherical’harmonics as

11

defined, for example, in the paper of Schwartz. It follows frcem the

generating equation of the Gegenbauer polynomials12 that

T+(p+ 12 opp! Z <P;§P'+T>cnl@)(ﬂ)n (27)

AN A

where w = B+B'/PP!, and

£ (x) = 2[x- J""l]n*l S (28)

The functions fn(x) in the four-space treatment play a role analogous to the
QZ functions in the conventional treatment.

To proceed it is useful to define functions

zl 2P (1) 1 ) (1-x2) 12 g1 |
x) = 2 r(m)[ ()il ) 17t ) (29)

which are orthonormal with rerpcct to the lower index on the interval (-1,1)

with 1ntegration measure (1-x° l/edx. In‘terms of these functions the addition
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theorem for Gegenbauer polynomials read512

¢, () = sray Z A NI ENE) (30)
£=0
where
wo=ww' + (1w )1/2 '2)1/22 . (31)

The variable w is the cosine of the angle between P and the fourth axis, and
w' is similarly defined.

One can then expand, after exchanging orders of summation,

1(3,5%%) = = Z }: (,Pt5u)[2(n41)] an"l( DALt ) (20418 (2)  (32)
£2=0

where |
I (P,P'3u) = I(l)(P P'3u) + (-1) 1(2)(P P';u) | (33)
and
Ir(ll)(P,P';u) = -é;%-f;,-fd'm(nu)fn <ﬁ§gﬁii>
Ir(lg)(P,P';u) - 5??;_15"\[ aro(r,u)f_ (%&1 > (34)

Comparing (23) and (32) we find

(=]

Izt(Ph:|E|$Pu':IE'I;u) = 1 22 k(P Ptiu)[2(e+n+1)] lD2+l( )D£+l( ')
r=0 (35)
with
Ii (P P"u) = (l)(P P' ) ( l) 1(2)(P P' ) (36)
LAY 2 4@'9\ LAN

As a consequence of O(4) invariance, these kernels depend essentially only on
the sum f£+A, the only separate N dependence is a simple sign alternation, so

that there are two independent kernels for each value of the sum £+A.




18

Completeness of the Gegenbaver polynomials permits us to write a

+
similar expansion for T,
A

00

v, (o5 Iol5m, s 1ot I5u) = ij,xm';une(mﬂ)J‘ln{f*l(w)nf*l(w') (37)

A=0

but since the O(4) symmetry of the Bethe-Salpeter equation is broken for u # 0

by the propagator factors we cannot expect the T A to depend simply on the
H

)/
sum g+N for u £ O.

‘We can use (35) and (37) to rewrite Eq. (26) as

* +
Tﬁ,k(P,P';u) = Iz,h(P,P';u)

' "l - LS 1] k4 1 " + 1
+ (b)) Z(2+v+l) lj:m P 3I£’}‘(P,P';u)G£ V(P ,u)Tz,V(P ,P'u) (38)
v=0

where

| +1 dw(l-w2)l/eDgfl(w)DZ+l(w)
o, e = [ - . ()

1 [P2+m2-%u-i Jan][P2+u2—%u+i Nupw]

Equations (26) and (38) are mathematically equivalent. We have merely used

orthogonal polynomials to change one of the integrations in (26) into a dis-
crete summation.

Equation (38) is coupled in the discrete indices because the 0(L)

symmetry is broken for u # 0. Indeed
£ 2 24=1..2 24-1
Gy, (P;0) = & [P"+m I o TR _ (k0)

80 that for u = 0, we obtain the uncoupled equation

" n3 x ", + a—
B (2,0050) = T8 (2,0130) + ok [ r L a (PPN ) [P F50)
Z;h oe:%- 4ﬂ(.e+7\+l) [Px|2+m2] [P"2+u2]

(1)

Moreover it follows from the remsrks after Eq. (36) that there are really only
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A

two independent amplitudes Ag;i) (P,P') for each value of Z+\, such that

F

L+N

+
Ten = A
Now it has been shown using Fredholm tethniques that the solution of

+
if N is even, and TE \ = A is A is odd.
3

Eq. (26) or (38) contains only Regge poles. These appear as zeros of the
Fredholm determinant. This determinant factors into an infinite product at
u = O corresponding to the decoupling of Eq. (38), with two independent factors

for each value of f+h, A = 0,1,2,... . The zeros of the factors give the

*

location of poles of AE+K.

Suppose A;+x has a pole at af(o), so that in its

vicinity

A;+x(p,p:) ~ —D(P,P") (42)

£+A-a+(o)
Then by (37) we find that T£+(pu,|p|;pu',|p'|;0) has Regge poles at £ = a+(0);

+ -
a (0)-2, a+(o)-u, etc. +e., while T, has poles at £ = a+(o)-1, a+(0)-3, etc.

¥
has a pole at a (0), then T

LN
2 =a (0), a(0)-2, etc., and T

P has zero energy Regge poles at

* nas poles at £ = a (0)-1, o (0)-3, etc.

Similarly if A
£
Since trajectory functions are analytic near u = 0, a pole in the f-plane at
u = 0O must lie on a genuine trajeétory. Hence we have proven the existence of
daughter trajectories of alternating signature spaced by integers at u = O.

The next task is to calculate the residues of the daughter poles
using (37) and (42). The calculation is straightforward but messy, and we will
merely outline the steps and then give the results. First we definé a reduced

residue function by

b(P,P') = Pa+(°)P'a+(°)3(P,P') (43)

The factor extracted is analogous to the centrifugal barrier in the conven~

tional treatment, and it is easy to see using the properties of fn(x) in
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(28) that b{P,P') has no singularities as its arguments approach zero.
The second step is to calculate the D (w) explicitlyy, and then use the
relations

Ipl = (122

ph’ = Pw (Ll-u-)
to eliminate w and w' from the result. Finally we extrapolate to the mass
shell using (21) and remembering that p, = -ip, because of the Wick rotation.
Denoting the on-shell limit of b(P,P') simply by b, we find that the parent
Regge pole and its first and second daughter pole terms at u = O are

5 u“+<°)r(a?(o)+l)2 qeaf(o)
2-c(0) r(2a(0)+2)

+

- uawua@n[gmﬂ;y> 2o’ T o

pr2-0f(0)  r(2a’(0)) 2
27 (0) ~ E+ 1@ (O)F£a+(o)+l)2 -gmi;ff 20702
4+1-a (0) (2o (0)+1)

Correspondiﬁg formulas hold if the principal Regge pole is of negative signature
We infer from (45) the behavior of the on-shell Regge residue

functions near u = 0. The parent trajectory a*(u) has a reduced residue

§+(u) which is regular near u = O. The residue Ei_(u) of the first daughter

trajectory can be written as

+ —t 2 2,2
(e (O E O™y () (46)

B, () -

" where hl(u) is regular at u = 0. The pole at u = O, discussed in Section II,
is evident in (L6).

8cme properties of the residue of the second daughter trajectory can
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also be obtained from (45), and there is obviously a double pole at u = O.

There is also a single pole whose residue cannct be completely calculated from
(45) since it involves the solution of the Bethe-Salpeter equation to first
order in the symmetry breaking parameter u. A complete verification of the pole
cancellation mechanism for the second and lower-lying daughter trajectories
requires a perturbation solution of the Bethe-Salpeter equation in the energy

9

" u of the type outlined by Domokos and Suranyi. We have not carried out such
a calculation because these trajectories lde quite far to the left in the £~
plane and are unlikely to be of interest in the near future.

We note that in the egual mass case, the residues of the first and
all odd number daughter trajectories would vanish at u = O even in the
physically artificial case of non-identical particles. Statistics, of course,
guarantees that the whole on shell amplitude Tﬁ-(u) vanises identically. The
second and all other even daughters do contribute at u‘= 0 in the equal mass
case.

It is easy to use (46) and (16) to compute the contribution of the
fifst daughter to the large s limit of the amplitude. We write here the
resulting large s contributions of the principal and first satellite Khuri

poles of the parent Regge trajectory ao+(u) and the principal Khuri contri-.

bution of its first daughter al-(u):

-2 Nar(a, 2 .
a(,s) ~ +n (ao (u)+3/+) Eg(u)[l N elnag(u)]
F(ao (u)+l)sinnozO (w) :
ao+(u) 2 21 (nPu®)? . ao+(u)-1
X [s - <m 1 -5u- __—LEuu >a0 (u)s ] (47)

irrocl— (w) Ofl-(u)
Is

- .

. 2 2,2
5 {;P(al_(u)+3/?) [ -(2ao+(u)fli§z(u)(m -1") . hl(u)][l-e
p(al (u)+1)sinnal (u) ’
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The condition al_(o) = ao+(0)~l ensures that the singular terms in (47) cancel
exgetly, which is just what was required in Section II. There we found that
such a cancellation was required in order that the Xhuri representation define
an amplitude analytic at v = O, Here we have shown that the requirement is
fulfilled because of the O(4) symmetry of the Bethe-Salpeter equation.

Our proof of the existence and properties of daughter trajectories
applies to Bethe-Salpeter kernels of the form (23). This class of kernels can--
be enlarged by allowing the spectral functions in (23) to depend on the
inveriants pe, p'2,K-p, and X*p' with smoothness and asymptotic conditions
which ensure that the Wick rotation éan be performed and that the resulting
integral equation is of Fredholm type. Such kernels also Lieggeize, and the
existence of daughter trajectories can be proved.

9

Domokos and Suranyi” and other authors have investigated kernels
whose spectral functions o(pe) and p(ue) are asymptotically constant. A sub-
traction is then necessary in (23). The Wick rotation is valid in this case,
and the :esulting marginally singular integral equation yields u~-independent
square root branch points in the f-plane. These branch points are spaced by
integers because of the O(4) symmetry of the equation.

Kernels for which o(u2) and p(pa) grow at infinity are highly
singular on the light cone in configuration space. He,lpern13 has recently
shown that the Wick rotation fails for such kernels, so that previous results
in these cases should be discredited. The Bethe-Salpeter equation in the
original Lorentz metric has so far not proved tractable, and it is difficult
to give mathematical meaning to the scattering amplitude for such kernels.

Since the four-dimensional symmetry of the kernel at u = O follows frcm Lorentz

invariance alone, one might suspect that if the scattering amplitude can be
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suitably defined, its f-plane singularities would have integer spacing at uw = O.
It is curious that such an obvious conéequence of Lorentz invariance
in local field theory as the four-dimensionél symmetry has no obvious analoguc
in S-matrix theory. It would be very interesting to formulate and study such
a property in the langugge of analyticity and unitarity. Of course the argu-
ment of Sectiop II can be viewed as a proof of the daughter trajectory hypothe-
sis in the language of gnalyticity, but the argument there depends on the
unequal mess kinematics. In the equal fnass case the Khurl representation is

manifestly analytic and one would not suspect that daughter trajectories exist.

IV, PHENCMENOLOGY

Our work suggests that Regge trajectories always occur in families
whose zero-energy intercepts are integrally spaced in the £-plane. Such a
picture has very interesting implications for phencmenology. 1In particular
we suggest that each of the presently known particlé trajectories is the parent
trajectory to a family of daughters of the same baryon number, isoéspin, hyper-
charge and charge conjugation (the latter for B = 0, Y = O systems). We con-
centrate on the first daughter tragjectory in this section. This trajectory
has opposite signature to the parent, so that if Ji is a physically realizable
state of angular momentum and parity of the parent trajectory, then (J-l)¢ is
a physically realizable state of the daughter. (Hence, the Pomeranchuk daughter
does not give a physiéal O+ meson of zero mass.)

We first discuss briefly backward nlN scattering, the experimental
configuration which originally motivated our work. The spin kinematics com-
plicates the asymptotic formulas in this case, but first daughters of the N

* .
and N3/2 trajectories will be required to cancel the singularities ol their
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parents and a sufficiently accurate analysis of the data should determine the
paraneters of these trgjectories. Of course we must also consider the possi-
bility that the daughter trajectories also rige high enough to make physical
particles, and these aré possible candidates for such states among the plethora
of resonances in this system. |

In two body inelastic processes there are kinematic difficulties

similar to those in unequal mass scattering. We consider the s-channel reactiocn
142 — 34 (48)
in which we allow the four masses mi2 to assume arbitrary positive values. The
corresponding t-channel process is
143 - 244 | (49)

and the contribution of a t-channel Regge pole at large s is found through the
Regge pole term B(t)Pa(t)(-zt).‘

The relevant kinematic formulae are

(my %) (my"-m, )
2p 5 = S-u . 1 3 2 k
13P24%¢ = 73 Tt
2 2, 2 2 242
2 t -2(ml +my )t+(ml -y )
P13 = It
£2-2(m,.%+m, 2 )t+(m.2mm, 2 )°
2 _ 2 4 2 L (50)
Poy = It |
As long as one of the mass differences mlg-m3 R m22-m,+ is non-zero, the value

of Zy will not increase with s at t = 0, and there is an ambiguity in the Regge
representation which can be resolved by using a Khuri representation,

The general definition of the reduced Regge residue function is

oft)

B(t) = <P13P2h) B8(t), and the function B(t) will have no cut near t = O.
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If only one of the mess differences gbove is non-zero, then the first
Khuri sagtellite contribution will be regular at t.= 0 and there will be no need
for odd order daughter trajectories. Such trajectories can contribute to the
process if their quantum numbers allow them to couple to the external particles
involved, and we will discuss this possibility below. The second Khuri
satellite contribution has a single pblevat 1t = 0 in this mass configuration
and even order daughter Regge trajectories are needed to cancel the ensuing

' differences
set of singularities. If both mass ‘x - @are non-zero all the Khuri satellite

.contributions are singular gnd daughter trajeg£o$¥22A2§% gg%u??%Erto cancel
" the singularities.

Consider now the first daughter trajecéory of the Pomeranchuk, called
aPl(t). It has B=0, Y¥=0, T=0, G = +1 and odd signature, and its possible
couplings can be deduced by studying the possible couplings of a T=0, G = +1,
JP = 1 meson which could be a physical state on this trajectory. Bose
statistics prohibit a coupling to nw, and G-parity conservation rules out KX.

S+IAT that such s meson could not

It is easy to see from the formula G = (-1)
couple to_Nﬁ. Hence a?l<t) does not couple to any of the common two-body
equal mass channels and would not be observed in any of the common scattering

or reaction processes, It does couple to unequal mass channels and could in

principle be observed in double diffractive production processes such as
X
1/2771/2

We have not studied the behavior of the daughter trajectorics away

N+ - N in which two T = 1/2 nucleon isobars are produced.

from zero energy, but it is tempting to consider the possibility that they are
roughly parallel with the parent trajectories. If so there would be . physical
vector meson of mass between 1.0 and 1.5 Bev on the Pl trajectory. Such a

meson could not decay to two scalar mesons. It could decay to KKm, with
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p-wave barriers in the configuration (K*K) or in the (KK)r configuration with
d-wave angular momentum barriers in both the KK subsystem and in the orbital
coupling of KK with'z. It could decay to four pions in the configuration pp.
It is possible that the partial widths of these strong decay modes would be so
small that the particle would be identified primafily by its electromagnetic
decay modes n+ﬂ-Y or pOY. This argument would also apply to the P' or to any
trajectory on which a 2+ meson lies, ‘

The first daughter of the p, apl(t) has B=0, Y=0, T=1, G = +1 and
even signature and would create a physical O+ meson. This trajectory also
cahnot couple to anK or Nﬁ, and could only be detected at high energies in
double production processes. If apl(t) were roughly parallel with ap(t) then
the O+ meson it produced would have mass between 700 and 1100 Mev. This time
decay into two pseudoscalars and into KKn would be forbidden by strong inter-
action conservation laws, the Kkr decay being forbidden even if the meson vere
sufficiently massive, The lowest allowed strong decay mode would be four pions
in the op configuration, so that we might again expect the electromagnetic
decay n+ﬂ-Y to be dominant although one should be more cautiqus here bhecause
a d-wave is required in the n+n- system.

It would be interesting to make a more detailed study of the meson
daughter trajectories, including estimates of the decay widths of the particles
on them, and a comparison with experiment. The present experimental situation,
although not conclusive, is not favorable to the existence of such particles,
and this would indicate that daughter trajectories have slopes less steep than
_ the parents.

If there really are particles on the daughter trajectories then our
notions about the relative importance of the various channels in dynamical

calculations need revision because none of the low mass two-body channels which
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are thought to be important for the dynamics of the parent particles would be
able to communicate with the daughters, and high mass channels with spin would
have to be included. For example in any common dynamical mechanism for the 1 p

and its O+ daughter, the op channel would be important.

V. BEHAVIOR COF PARTIAL WAVE AMPLITUDES AT u = O

It is standard practice in approximate dynamical calculations of
partiél wave amplitudes a(u,£) to divide out.the zeros at the physical threshdds
and consider the reduced amplitudes a(u,l) = q_gﬁa(u,z). There is a question
in the unequal mass case whether the zeros of the kinematic factor at u = 0
lead to corresponding zeros of E(u,z). It has been concluded on the basis of
a tentative argument in Reference 3 that E(u,z) does not have such kinematic
zeros, and this is commonly believed to be the case.

| In this section we show that the behavior of a(u,£) at u = O is very

different from that usually assumed. More precisely we are able to show that
the partial wave amplitudes of definite signature ai(u,z) behave like u—ai(o)
where ai(o) is the zero energy intercept of the leading parent Regge trajectory
of the same siénature in the direct channel.lu It is not surprising that the
cross channel asymptotic limit of the full amplitude determines the behavior
of partial wave amplitudes at u = O, since the integral from z, = -1 to z, = +1

O to an

which defines (physical) partial wave amplitudes corresponds at u
integral of infinite range over t or s. The proof follows.

We first derive the result under the assumption AS(u,s) = 0, and
then discuss the modifications necessary when a third spectral function is
included. The absorptive part At(u,t) is analytic at u = 0. Its leading term

is easily found from the Khuri representation (16) of the full amplitude,
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a (u,t) ~ 2r(w)e®) (51)

where a(u) is the leading Regge trajectory, and

I(c(u)+3/2) i (52)
J;F(a(u)+l)sinﬁa(u)

v(u) = B(u)

In order to write Eq. (51) it is necessary that daughter trajectories
exist with the properties we have ascribed to them, since the correction terms
to Eq. (51) would otherwise be singular at u = O. Actually for any € > O,
there exists an NN > O such that for t > N, the correction to Eq. (1) is bounded
by 2Y(u)e ta(u)—a, where a is some. fixed positive number less than the distance
from the leading pole to the next singularity in the Khuri v-plane.

We next consider the Froissart-Gribov integral

1 ® 2ut
a(u,z)=—-2—-f ata, (u,t)Q, (1+ 5 22“ 55 2> (53)
29 to (m-p" ) -2u(m +u")+u
and divide the interval of integration into a part from to to N and a part frem

N to o, with N chosen as above. For u sifficiently close to zero we may

approximate the Legendre function and write the first integral as

N
..]:_._ dtA (u,t QL1+ —2ut
2 t L 2 2,2
29"V b (m"=p")

N
-2u 1 ut
= -——~———7§J[‘ tht(u,t) [§ log —5 575 * c]
)"Vt (m™-u")

2
B n(m®-p o

;wv = Bulogu + Cu (54%)

- near u = 0, where B, C and c are constants.
In the second integral we approximate At(u,t) by its leading ternms,

obtaining near u = 0
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burgoz u/‘ it to:(o)Q 1 4+ —2ut ?ut )

(n*-s%) (m®-p®)° |
0),(0) pe ol N
SRR fu e QE<1 + = > (55)

In the limit as u — O this integral can be evaluated exactly with the help of

(37), Sec. 3.2 and Eq. (4), Sec. 2.4 of HTF. One obtains

a(u,t) = _119_ a(0)+1)° [ ne-?)? ]0(0)

G(0)+2+2) T if a(0) > -1

= Bu log u + Cu if a(0) £ -1 (56)

near u = 0. We note that for a(0) $ -1 the contribution from the finite part
of the integration range is actually more singular at u = O than the infinite
contribution. This case is unlikely to be realized in physical situations.

If a third channel spectral function is present we cén write

a (u,t) = Y*(u)ta+(u)+yr(u)ta’(u)

h(a,8) ~ ¥ Wy () ()

Wwhere a+(u) and & (u) are the leading Regge trajectories of positive and
negative signature. We assume that both are of parent type.15 The integral
over At(u,t) in the Froissart-Griboy continuation (3) can be handled exactly
as above. The integral over As(u,s) is slightly messier, but a similar

treatment applies, and we find the results

o¥(u,2) - 2(0) (e (0)H) [(mz-u2)2 ]O"(O_)

X T(QE(0)+4+2) u if o7(0) > -1

it

R log u + ctu if ai(O) s -1 (58)

We expect that the behavior we have found determines the shape of

the partial wave amplitude in a region in which |u] << (me-pz)z. As the mass
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difference vanishes this region would shrink to the origin, and the influence
of this behavior on the amplitude at any non-zero value of u would become
negligibly small.

It would probably improve the accuracy of approximate dynamical cal-
culations to incorporate Eq. (58) as a constraint on the calculated amplitudes.
The zero energy intercepts and residues of the trajectories can be taken from-
high»energy data. For cases such as T = 1/2 nK scattering where ai(O) ~ 1/2,.

the divergence at u = 0 may have an important effect on the low energy s-wave

amplitude in the physical region.

. VI. CONCLUSIONS AND DISCUSSION

We have studied and resolved the kinematic ambiguity in the Regge
representation in unequal mass scattering at u = 0. This ambiguity arises
because the transformation from the Mandelstam variables (u,s) to the pair
(u,z\) is singuléf at u = 0. Our approach to the problem is through the Khuri
representation which involves the Mandelstam variables directly and thus avoids
representations involving 2, which are inherently suspicious at u = O.

The contribution of a single Regge pole to the Khuri representation

a(a) at u = 0, but its lower-lying terms have singularities

has leading term s
there which must be cancelled since the full amplitude is analytic. The only
way this cancellation can occur is for Regge trajectories to exist in families
which are spaced by integers at u = 0. If the leading parent trajectory is

ao(u), then the kth daughter trajectory ak(u) has signature (-1)k relutive to
the parent and satisfies ak(o) = ao(O)-k. The reduced residue Bo(u) of the

parent trajectory is analytic at u = 0, while the,reducéd residue Bk(u) of the

kth daughter has a pole of order k there. It is perfectly consistent with

general analytic properties for the reduced residues to have poles at u = O.
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We have studied Bethe-Salpeter models in order to obtain additional
support for the daughter trajectory hypothesis and find that it is satisfied
for any Bethe-Salpeter amplitude which Reggeizes in the first place. This
property follows elegantly from the four dimensional symmetry of Bethe-Salpeter
equations at u = Q.

Goldberger and Jones16 héve written a recent paper in which the same
subject is approached from a somewhat different point of view. Different
results are obtained largely because these authors fail to take into account
the mechanism of cancellation of singularities by daughter trajectories. Such
a mechanism would eliminate the need for the condition (0) < 1/2 which they
find necessary for the consistency of their method. This condition would seem
to be violated by the Pomeranchuk which certainly couples to uncqual mass
channels and in Bethe-Salpeter models (for sufficiently lafge coupling; constant
‘which have all the analyticity properties used by Goldberger and Jones. Since
the daughter trajectory hypothesis is definitely satisfied in Bethe-Salpeter
medels we feel that it is the correct mechanism b& which the ambiguity in the
Regge representation is resolved.

The Regge pole terms we find are very well adapted to phenomenologica’
data analysis. They are given in Eas. (16), (17) and (47). The daughter
trajectory hypothesis is obviously rich in phenomeﬁological implications,vand
we have discussed these briefly here.

Our final result is the elucidation of the behavior of partial wave

a(O) we find has not heretofore

amplitudes at u = O, The power behavior u~
been suspected and its implications for bootstrap calculations in unequal mass

systems deserve further study.
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APPENDIX A. BEHAVIOR OF REGGE RESIDUE FUNCTIONS NEAR u = Q.
We consider the At contribution to the reduced partial wave amplitud:
a(u,$) = q~2£ a(u,£) using the Froissart-Gribov definition (3). The A contri-
bution can be treated similarly. We use Eq. (37), Sec. 3.2 of HIF to write

near u = 0

2 L po 2 2,2
- I (g+1 )k -2-1 m"-
a(u,f) = — 2312 ft at t At(u,t)F <z+1,z+1;2z+2;- S—-—Tll,*c-)-—> (A1)
0

Consider the u-discontinuity of Eq. (Al). For u > O the hyper-
geometric function is analytic and the discontinuity vanishes, For u 5 0 we

use Eq. (10), p. 400 IT vol. 2, to help evaluate the discontinuity obtaining
2 242
m”-p")

2 2.2

Disc a(u,£) = A’i[ Mgt t-z-lAt(u,t)F(.e+l,£+l;1; Kin.%l%—L -1)  (a2)
t

0

Since the integration range is finite for any fixed u # 0, the discontinuity is
an entire function £, so that the reduced Regge residué functions Ei(u) cannot
have cuts in the viginity of u = O.

We note that the proof permits isolated singularities of the reduced
residues at u = 0, and we have shown in the text that finite order poles
actually do occur. Of course it follows from the N/D decomposition and the
definition of Regge poles as the roots of D that the trajectory functions

ai(u) are analytic at u = O unless two trajectories cross there.

A,
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APPENDIX B. IJTURI REPRESENTATION FOR Rev < -1/2,
In this appendix we establish a correspondence between the Khuri and
Regge representations for Ref and Rev less than -1/2. We also compute in closed
form the residues of Khuri satellite poles.
We assume that partial wave amplitudes a(u,£) are meromorphic for

Ref > -L. Then Mandelstanm's form17 of the Regge representation can be written

\

Au,t) = B (u,t )48 (w,t)+R (u,t)+R (u,t) (B1)
vhere
+ O A £ Q_, (-2 )%, (7))
B (u,t) = EEEM/:L-im as(24+1)a" (u, £) Yy,
- -éiz (-1)%(2082)a" (w,241/2)[ 0 1 (-2, )40y p(2,)] (32)
L=A
and

Qhaii(u)-l(-Zu)iQ%aii(u)-l(Zu)

Rt 1) s (e ()

+ _
o (u)>-L

(B3)

o+
cosnai"(u)

where A is the least integer greater than I-3/2.

We use (B2) and (B3) to compute the absorptive parts A, and A

+ - - -
At(u,t) = B, (u,t)+Bt (u,t)+R,c (u,t)+Rt (u,t)
A (u,t) = B (0 )48, (0,6 )+R " (u,)4R " (u,t) o (Bh)
x + x
where Bt and BS are the t and s discontinuities of B, and
+ N + + +
DR M(u,t) = £ 8.5 (20 *+1 )tanna, T 1+ 2 (B5)
t 2 i i i k2 Anl
+ "'ai -1 «q
ai‘>-L

2 2.2
+ + + s~ -
R *(u,s) = & B, ¥ (20, F+1 )tannc, 0 1+ SRR (86)
s 2 i i 7 g% 2uq2

a.>~1L
i




where t >t in (B5) and s > (mQ“HE)E/u in (B6).

Only those terms in At and AS which are of order greater than t'L or
s-L at infinity can contribute singularities to the Khuri power series coeffi-
cients of Eq. (6). Similérly the contribution of the finite interval
54 < s < (mz-pg)e/u to ¢(u,v) through (6) is an entire function in the v-plane.

Using truncated asymptotic expansions of the Qz functions we can

evaluate the Khuri pole terms just as in Section II and can write in analogy

with (14)

N
b(u,v>=ai<u)z fCetml DT gt L LB (1)

r(-2a” +n) nl v=(a ~n)

e(upv) = 55(u) Z (42

-M

n
i m2_ 2,2 | -r F(-OF+r) 1 P(OF~r+l)
xZ( L——JJ—-Z—uu > > (B8)

¥ I
(-2 +r ) r! I(n-r+1)0(c0 -n+l)

s(u) = —=p g P(a+3/2)r(—zg)
Vr I (a+1)r(-a)

(b )" B(20+1 Jbanna(lig®)™* (89)

where b(u,v) and c(u,v) are analytic for Rev > -L, and N is the largest positiv
integer satisfying Req-N > ~L. The summation over different Regge trajectories
is suppressed in (B7) and (B8) and in similar equations below.

Equations (B7) and (B8) express the meromorphy of b(u,v) and c(u,v)
in Rev > -L and show that the Khuri image of a single Regge pole at o is a set
of poles at v = ,a-1,.s.,0~N.

The next step is to make a Sommerfeld-Watson transform of tle power

series (5) to obtain
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g [ Lte ;. -1 Y v
Alu,t,s) = §L/P dv{sinnv) “Ib(u,v)(-t) +c(u,v)(~s)"]

L-ie
Si \ -+ )2 1 2 (07

1 - n n -1

T Eﬂ Ié-zawni a7 (BT (%)

sinna” =
+ J & £ 12 x
. s} Z ("S)a -nz P(-a +r) l..__ P(a "r+l) (h—q2 )r(u_2m2_2u2)n—r

- ¥ £ +

sinnc = ro I'(-2a7+r) r! I(n~r+1)I(Q ~n+l)

(B10)
which establishes the correspondence between the Regge and Khuri representations
in the half planes Ref > -L, Rev > -L.

- Khuri's argument against the possibility of such a correspondence to
the left of Ref = -1/2 is based on a counter-example for which the Regge ampli-
tude has fixed poles at the negative integers while the corresponding Khuri
amplitude is an entire function. This is not in contradiction to our result,
since it is obvious from (B7-B9) that the residues of the Khuri poles vanish
when the Regge pole is at a negative integer. However such Regge poles do
contribute to the full Khuri representation (Bl0O) because of the factor
(sinna)-l.

We also see from (B7) and (B8) that the residue of the ntl satellite
pole contains a factor which is an nth order polynomial in u-l.

To investigate the large s limit of (B10) it is convenient to sub-

19

stitute t = 2m2+2p2-s—u in the pole terms there obtgining the representation

. -L4ic
A t,e) =4 [ L_.l av(siny) 7 (b(a,v) (-6) re(,v) (-5)")
- joo

N +
+ + - -N-
5" }: P(-a+n)° (N-2mP-py2 )"0t -N-1 (hg?)P

?
P(-2ai+n) ns

+

sinnai
n=0

P(o-n+1) + u-2m°-2u°
X F(N-f +1,1;N-nt2;~ " )

P (o -N)D(M-n+2) S
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+ + L\T—. +
¥ p(Lee ) B '*\ZJ B (y-2m®-2y nz r(-o: TJ——
sinnc” = i (-2 +r)
r(d-rel) 1 ( bg? )1» (511)
r(n-r+1)r(oz~ n+l) T7 u-onP2,?

The second term in (Bll) is of background size.
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